Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
cit-ctnlab
ctn_labdata
Commits
7b110766
Commit
7b110766
authored
Feb 13, 2020
by
Anchal Gupta
Browse files
Further optimization
parent
86babaf8
Pipeline
#103131
failed with stage
in 2 minutes and 33 seconds
Changes
390
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
data/20200212_FSS_Gain_Span/ChannelList.txt
0 → 100644
View file @
7b110766
C3:PSL-TEMP_TABLE
C3:PSL-TEMP_VACCAN_INLOOP
C3:PSL-PRECAV_BEATNOTE_FREQ
C3:PSL-PLL_AUTOLOCKER_BEATNOTE_FREQ
C3:PSL-PLL_AUTOLOCKER_FREQ_MOD
C3:PSL-SCAV_TRANS_POW
C3:PSL-NCAV_TRANS_POW
C3:PSL-SCAV_REFL_POW
C3:PSL-NCAV_REFL_POW
C3:PSL-SCAV_MODE_MATCHING
C3:PSL-NCAV_MODE_MATCHING
C3:PSL-SCAV_FSS_SLOWOUT
C3:PSL-NCAV_FSS_SLOWOUT
C3:PSL-SCAV_FSS_COMGAIN_DB
C3:PSL-NCAV_FSS_COMGAIN_DB
C3:PSL-SCAV_FSS_FASTGAIN_DB
C3:PSL-NCAV_FSS_FASTGAIN_DB
C3:PSL-HEATER_SHIELD_DIFF_POUT
C3:PSL-HEATER_SHIELD_COM_POUT
data/20200212_FSS_Gain_Span/FSS_Gain_Span.ipynb
0 → 100644
View file @
7b110766
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt #For plotting\n",
"from matplotlib import cm\n",
"import matplotlib.colors as colors\n",
"import seaborn as sns;\n",
"from matplotlib.backends.backend_pdf import PdfPages #For saving figures to single pdf\n",
"figlist = []\n",
"#*******************************************************************************************************\n",
"#Setting RC Parameters for figure size and fontsizes\n",
"import matplotlib.pylab as pylab \n",
"params = {'legend.fontsize': 'xx-large',\n",
" 'figure.figsize': (20, 10),\n",
" 'axes.labelsize': 'xx-large',\n",
" 'axes.titlesize':'xx-large',\n",
" 'xtick.labelsize':'xx-large',\n",
" 'ytick.labelsize':'xx-large',\n",
" 'lines.linewidth': 2.0}\n",
"pylab.rcParams.update(params)\n",
"#********************************************************************************************************\n",
"import os\n",
"from noiseBudgetModule import noiseBudget\n",
"import uncertainties.unumpy as unp\n",
"import yaml"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def gainValues(fn, data_dir='./'):\n",
" cwd = os.getcwd()\n",
" os.chdir(data_dir)\n",
" configFile = fn.replace('Spectrum', 'ExpConfig').replace('.txt', '.yml')\n",
" with open(configFile, 'r') as cf:\n",
" config = yaml.full_load(cf)\n",
" NCOM = config['C3:PSL-NCAV_FSS_COMGAIN_DB']\n",
" NFAST = config['C3:PSL-NCAV_FSS_FASTGAIN_DB']\n",
" SCOM = config['C3:PSL-SCAV_FSS_COMGAIN_DB']\n",
" SFAST = config['C3:PSL-SCAV_FSS_FASTGAIN_DB']\n",
" os.chdir(cwd)\n",
" return {'NCOM' : NCOM,\n",
" 'NFAST' : NFAST,\n",
" 'SCOM' : SCOM,\n",
" 'SFAST' : SFAST}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def createBNDist(files, X, Y, fStart, fStop, y_ax, x_ax, data_dir='./'):\n",
" cwd = os.getcwd()\n",
" os.chdir(data_dir)\n",
" Z = np.ones(np.shape(X))*np.inf\n",
" for fn in files:\n",
" data = np.loadtxt(fn)\n",
" fStartInd = np.argmin(np.abs(data[:, 0] - fStart))\n",
" fStopInd = np.argmin(np.abs(data[:, 0] - fStop))\n",
" xG = gainValues(fn, data_dir)[x_ax]\n",
" yG = gainValues(fn, data_dir)[y_ax]\n",
" for ii in range(np.shape(Y)[0]):\n",
" if Y[ii, 0] == yG:\n",
" break\n",
" for jj in range(np.shape(X)[1]):\n",
" if X[0, jj] == xG:\n",
" break\n",
" #print('Ind', ii, jj)\n",
" #print(X[ii, jj], Y[ii, jj])\n",
" #print(yG, xG)\n",
" '''\n",
" Z[ii, jj] = np.sqrt(np.sum((((data[fStartInd:fStopInd, 1]**2)\n",
" * (data[fStartInd+1:fStopInd+1, 0]\n",
" - data[fStartInd:fStopInd, 0])\n",
" ))))\n",
" '''\n",
" Z[ii, jj] = np.sum(data[fStartInd:fStopInd, 1])\n",
" os.chdir(cwd)\n",
" \n",
" return Z"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"NFSS_Span_Files = [fn for fn in os.listdir() if (fn.find('.txt')!=-1\n",
" and fn.find('NFSS_Spanned')!=-1) ]\n",
"NCOM = np.array(sorted(list(set([gainValues(fn)['NCOM'] for fn in NFSS_Span_Files ]))))\n",
"NFAST = np.array(sorted(list(set([gainValues(fn)['NFAST'] for fn in NFSS_Span_Files ]))))\n",
"print(NCOM, NFAST)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X, Y = np.meshgrid(NCOM, NFAST)\n",
"Z = createBNDist(NFSS_Span_Files, X, Y, 300, 600, 'NFAST', 'NCOM')\n",
"minInd = np.unravel_index(np.argmin(Z), np.shape(Z))\n",
"print(minInd)\n",
"print(np.min(Z))\n",
"print('Minimum at COM Gain: '\n",
" + str(X[0, minInd[1]]) + ' dB, FAST Gain: '\n",
" + str(Y[minInd[0], 0])+ ' dB')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ax = sns.heatmap(Z, cmap=cm.jet,\n",
" cbar_kws = {'label' : 'Summed BN Noise [$Hz/\\sqrt{Hz}$]'},\n",
" linewidths=0.5, annot=True,vmin=0.9, vmax=1.3)\n",
" #vmin=np.min(Z[np.nonzero(Z)]), vmax = 3.2)\n",
"ax.invert_yaxis()\n",
"ax.set_xticklabels(X[0, :])\n",
"ax.set_ylim([-0.5, len(Y[:, 0]) + 0.5])\n",
"ax.set_yticks(Y[:, 0] - Y[0, 0] + 0.5)\n",
"ax.set_yticklabels(Y[:, 0])\n",
"plt.setp(ax.get_yticklabels(), rotation=0, ha=\"right\",\n",
" rotation_mode=\"anchor\");\n",
"ax.set_xlabel('NFSS COM Gain (dB)', linespacing=4)\n",
"ax.set_ylabel('NFSS FAST Gain (dB)', linespacing=4)\n",
"ax.set_title('Beatnote frequency noise summed from 300 Hz to 600 Hz\\n'\n",
" 'South COM Gain = 23 dB; North Fast Gain = 15 dB')\n",
"fig = ax.get_figure()\n",
"fig.set_size_inches(11, 8.5, forward=True)\n",
"figlist = [fig]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"SFSS_Span_Files = [fn for fn in os.listdir() if (fn.find('.txt')!=-1\n",
" and fn.find('SFSS_Spanned')!=-1) ]\n",
"SCOM = np.array(sorted(list(set([gainValues(fn)['SCOM'] for fn in SFSS_Span_Files ]))))\n",
"SFAST = np.array(sorted(list(set([gainValues(fn)['SFAST'] for fn in SFSS_Span_Files ]))))\n",
"print(SCOM, SFAST)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X, Y = np.meshgrid(SCOM, SFAST)\n",
"Z = createBNDist(SFSS_Span_Files, X, Y, 300, 600, 'SFAST', 'SCOM')\n",
"minInd = np.unravel_index(np.argmin(Z), np.shape(Z))\n",
"print(minInd)\n",
"print(np.min(Z))\n",
"print('Minimum at COM Gain: '\n",
" + str(X[0, minInd[1]]) + ' dB, FAST Gain: '\n",
" + str(Y[minInd[0], 0])+ ' dB')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ax = sns.heatmap(Z, cmap=cm.jet,\n",
" cbar_kws = {'label' : 'Summed BN Noise [$Hz/\\sqrt{Hz}$]'},\n",
" linewidths=0.5, annot=True,vmin=0.9, vmax=1.3)\n",
" #vmin=np.min(Z[np.nonzero(Z)]), vmax = 3.2)\n",
"ax.invert_yaxis()\n",
"ax.set_xticklabels(X[0, :])\n",
"ax.set_ylim([-0.5, len(Y[:, 0]) + 0.5])\n",
"ax.set_yticks(Y[:, 0] - Y[0, 0] + 0.5)\n",
"ax.set_yticklabels(Y[:, 0])\n",
"plt.setp(ax.get_yticklabels(), rotation=0, ha=\"right\",\n",
" rotation_mode=\"anchor\");\n",
"ax.set_xlabel('SFSS COM Gain (dB)', linespacing=4)\n",
"ax.set_ylabel('SFSS FAST Gain (dB)', linespacing=4)\n",
"ax.set_title('Beatnote frequency noise summed from 300 Hz to 600 Hz\\n'\n",
" 'North COM Gain = 12 dB; North Fast Gain = 10 dB')\n",
"fig = ax.get_figure()\n",
"fig.set_size_inches(11, 8.5, forward=True)\n",
"figlist = [fig]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pp = PdfPages('FSS_Gain_Span.pdf')\n",
"for fig in figlist:\n",
" pp.savefig(fig,bbox_inches='tight')\n",
"pp.close()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
%% Cell type:code id: tags:
```
python
import
numpy
as
np
import
matplotlib.pyplot
as
plt
#For plotting
from
matplotlib
import
cm
import
matplotlib.colors
as
colors
import
seaborn
as
sns
;
from
matplotlib.backends.backend_pdf
import
PdfPages
#For saving figures to single pdf
figlist
=
[]
#*******************************************************************************************************
#Setting RC Parameters for figure size and fontsizes
import
matplotlib.pylab
as
pylab
params
=
{
'legend.fontsize'
:
'xx-large'
,
'figure.figsize'
:
(
20
,
10
),
'axes.labelsize'
:
'xx-large'
,
'axes.titlesize'
:
'xx-large'
,
'xtick.labelsize'
:
'xx-large'
,
'ytick.labelsize'
:
'xx-large'
,
'lines.linewidth'
:
2.0
}
pylab
.
rcParams
.
update
(
params
)
#********************************************************************************************************
import
os
from
noiseBudgetModule
import
noiseBudget
import
uncertainties.unumpy
as
unp
import
yaml
```
%% Cell type:code id: tags:
```
python
def
gainValues
(
fn
,
data_dir
=
'./'
):
cwd
=
os
.
getcwd
()
os
.
chdir
(
data_dir
)
configFile
=
fn
.
replace
(
'Spectrum'
,
'ExpConfig'
).
replace
(
'.txt'
,
'.yml'
)
with
open
(
configFile
,
'r'
)
as
cf
:
config
=
yaml
.
full_load
(
cf
)
NCOM
=
config
[
'C3:PSL-NCAV_FSS_COMGAIN_DB'
]
NFAST
=
config
[
'C3:PSL-NCAV_FSS_FASTGAIN_DB'
]
SCOM
=
config
[
'C3:PSL-SCAV_FSS_COMGAIN_DB'
]
SFAST
=
config
[
'C3:PSL-SCAV_FSS_FASTGAIN_DB'
]
os
.
chdir
(
cwd
)
return
{
'NCOM'
:
NCOM
,
'NFAST'
:
NFAST
,
'SCOM'
:
SCOM
,
'SFAST'
:
SFAST
}
```
%% Cell type:code id: tags:
```
python
def
createBNDist
(
files
,
X
,
Y
,
fStart
,
fStop
,
y_ax
,
x_ax
,
data_dir
=
'./'
):
cwd
=
os
.
getcwd
()
os
.
chdir
(
data_dir
)
Z
=
np
.
ones
(
np
.
shape
(
X
))
*
np
.
inf
for
fn
in
files
:
data
=
np
.
loadtxt
(
fn
)
fStartInd
=
np
.
argmin
(
np
.
abs
(
data
[:,
0
]
-
fStart
))
fStopInd
=
np
.
argmin
(
np
.
abs
(
data
[:,
0
]
-
fStop
))
xG
=
gainValues
(
fn
,
data_dir
)[
x_ax
]
yG
=
gainValues
(
fn
,
data_dir
)[
y_ax
]
for
ii
in
range
(
np
.
shape
(
Y
)[
0
]):
if
Y
[
ii
,
0
]
==
yG
:
break
for
jj
in
range
(
np
.
shape
(
X
)[
1
]):
if
X
[
0
,
jj
]
==
xG
:
break
#print('Ind', ii, jj)
#print(X[ii, jj], Y[ii, jj])
#print(yG, xG)
'''
Z[ii, jj] = np.sqrt(np.sum((((data[fStartInd:fStopInd, 1]**2)
* (data[fStartInd+1:fStopInd+1, 0]
- data[fStartInd:fStopInd, 0])
))))
'''
Z
[
ii
,
jj
]
=
np
.
sum
(
data
[
fStartInd
:
fStopInd
,
1
])
os
.
chdir
(
cwd
)
return
Z
```
%% Cell type:code id: tags:
```
python
NFSS_Span_Files
=
[
fn
for
fn
in
os
.
listdir
()
if
(
fn
.
find
(
'.txt'
)
!=-
1
and
fn
.
find
(
'NFSS_Spanned'
)
!=-
1
)
]
NCOM
=
np
.
array
(
sorted
(
list
(
set
([
gainValues
(
fn
)[
'NCOM'
]
for
fn
in
NFSS_Span_Files
]))))
NFAST
=
np
.
array
(
sorted
(
list
(
set
([
gainValues
(
fn
)[
'NFAST'
]
for
fn
in
NFSS_Span_Files
]))))
print
(
NCOM
,
NFAST
)
```
%% Cell type:code id: tags:
```
python
X
,
Y
=
np
.
meshgrid
(
NCOM
,
NFAST
)
Z
=
createBNDist
(
NFSS_Span_Files
,
X
,
Y
,
300
,
600
,
'NFAST'
,
'NCOM'
)
minInd
=
np
.
unravel_index
(
np
.
argmin
(
Z
),
np
.
shape
(
Z
))
print
(
minInd
)
print
(
np
.
min
(
Z
))
print
(
'Minimum at COM Gain: '
+
str
(
X
[
0
,
minInd
[
1
]])
+
' dB, FAST Gain: '
+
str
(
Y
[
minInd
[
0
],
0
])
+
' dB'
)
```
%% Cell type:code id: tags:
```
python
ax
=
sns
.
heatmap
(
Z
,
cmap
=
cm
.
jet
,
cbar_kws
=
{
'label'
:
'Summed BN Noise [$Hz/\sqrt{Hz}$]'
},
linewidths
=
0.5
,
annot
=
True
,
vmin
=
0.9
,
vmax
=
1.3
)
#vmin=np.min(Z[np.nonzero(Z)]), vmax = 3.2)
ax
.
invert_yaxis
()
ax
.
set_xticklabels
(
X
[
0
,
:])
ax
.
set_ylim
([
-
0.5
,
len
(
Y
[:,
0
])
+
0.5
])
ax
.
set_yticks
(
Y
[:,
0
]
-
Y
[
0
,
0
]
+
0.5
)
ax
.
set_yticklabels
(
Y
[:,
0
])
plt
.
setp
(
ax
.
get_yticklabels
(),
rotation
=
0
,
ha
=
"right"
,
rotation_mode
=
"anchor"
);
ax
.
set_xlabel
(
'NFSS COM Gain (dB)'
,
linespacing
=
4
)
ax
.
set_ylabel
(
'NFSS FAST Gain (dB)'
,
linespacing
=
4
)
ax
.
set_title
(
'Beatnote frequency noise summed from 300 Hz to 600 Hz
\n
'
'South COM Gain = 23 dB; North Fast Gain = 15 dB'
)
fig
=
ax
.
get_figure
()
fig
.
set_size_inches
(
11
,
8.5
,
forward
=
True
)
figlist
=
[
fig
]
```
%% Cell type:code id: tags:
```
python
SFSS_Span_Files
=
[
fn
for
fn
in
os
.
listdir
()
if
(
fn
.
find
(
'.txt'
)
!=-
1
and
fn
.
find
(
'SFSS_Spanned'
)
!=-
1
)
]
SCOM
=
np
.
array
(
sorted
(
list
(
set
([
gainValues
(
fn
)[
'SCOM'
]
for
fn
in
SFSS_Span_Files
]))))
SFAST
=
np
.
array
(
sorted
(
list
(
set
([
gainValues
(
fn
)[
'SFAST'
]
for
fn
in
SFSS_Span_Files
]))))
print
(
SCOM
,
SFAST
)
```
%% Cell type:code id: tags:
```
python
X
,
Y
=
np
.
meshgrid
(
SCOM
,
SFAST
)
Z
=
createBNDist
(
SFSS_Span_Files
,
X
,
Y
,
300
,
600
,
'SFAST'
,
'SCOM'
)
minInd
=
np
.
unravel_index
(
np
.
argmin
(
Z
),
np
.
shape
(
Z
))
print
(
minInd
)
print
(
np
.
min
(
Z
))
print
(
'Minimum at COM Gain: '
+
str
(
X
[
0
,
minInd
[
1
]])
+
' dB, FAST Gain: '
+
str
(
Y
[
minInd
[
0
],
0
])
+
' dB'
)
```
%% Cell type:code id: tags:
```
python
ax
=
sns
.
heatmap
(
Z
,
cmap
=
cm
.
jet
,
cbar_kws
=
{
'label'
:
'Summed BN Noise [$Hz/\sqrt{Hz}$]'
},
linewidths
=
0.5
,
annot
=
True
,
vmin
=
0.9
,
vmax
=
1.3
)
#vmin=np.min(Z[np.nonzero(Z)]), vmax = 3.2)
ax
.
invert_yaxis
()
ax
.
set_xticklabels
(
X
[
0
,
:])
ax
.
set_ylim
([
-
0.5
,
len
(
Y
[:,
0
])
+
0.5
])
ax
.
set_yticks
(
Y
[:,
0
]
-
Y
[
0
,
0
]
+
0.5
)
ax
.
set_yticklabels
(
Y
[:,
0
])
plt
.
setp
(
ax
.
get_yticklabels
(),
rotation
=
0
,
ha
=
"right"
,
rotation_mode
=
"anchor"
);
ax
.
set_xlabel
(
'SFSS COM Gain (dB)'
,
linespacing
=
4
)
ax
.
set_ylabel
(
'SFSS FAST Gain (dB)'
,
linespacing
=
4
)
ax
.
set_title
(
'Beatnote frequency noise summed from 300 Hz to 600 Hz
\n
'
'North COM Gain = 12 dB; North Fast Gain = 10 dB'
)
fig
=
ax
.
get_figure
()
fig
.
set_size_inches
(
11
,
8.5
,
forward
=
True
)
figlist
=
[
fig
]
```
%% Cell type:code id: tags:
```
python
pp
=
PdfPages
(
'FSS_Gain_Span.pdf'
)
for
fig
in
figlist
:
pp
.
savefig
(
fig
,
bbox_inches
=
'tight'
)
pp
.
close
()
```
data/20200212_FSS_Gain_Span/FSS_Gain_Span.pdf
0 → 100644
View file @
7b110766
File added
data/20200212_FSS_Gain_Span/NFSS_SpannedExpConfig_20200212_155926.yml
0 → 100644
View file @
7b110766
C3:PSL-HEATER_SHIELD_COM_POUT:
0.5
C3:PSL-HEATER_SHIELD_DIFF_POUT: -0.12511
C3:PSL-NCAV_FSS_COMGAIN_DB:
10.0
C3:PSL-NCAV_FSS_FASTGAIN_DB: -1.0
C3:PSL-NCAV_FSS_SLOWOUT:
2.920692702579768
C3:PSL-NCAV_MODE_MATCHING:
68.87319526355358
C3:PSL-NCAV_REFL_POW:
2.562527031768
C3:PSL-NCAV_TRANS_POW:
5.511283463109001
C3:PSL-PLL_AUTOLOCKER_BEATNOTE_FREQ:
27.330584169659662
C3:PSL-PLL_AUTOLOCKER_FREQ_MOD:
2.0
C3:PSL-PRECAV_BEATNOTE_FREQ:
27.340926
C3:PSL-SCAV_FSS_COMGAIN_DB:
23.0
C3:PSL-SCAV_FSS_FASTGAIN_DB:
15.0
C3:PSL-SCAV_FSS_SLOWOUT: -6.2684230369509075
C3:PSL-SCAV_MODE_MATCHING:
77.52343146234584
C3:PSL-SCAV_REFL_POW:
1.798154960607
C3:PSL-SCAV_TRANS_POW:
6.210823990049999
C3:PSL-TEMP_TABLE:
18.994165397260673
C3:PSL-TEMP_VACCAN_INLOOP:
34.36323221692307
detector
:
SN101
instrument
:
moku
data/20200212_FSS_Gain_Span/NFSS_SpannedExpConfig_20200212_160152.yml
0 → 100644
View file @
7b110766
C3:PSL-HEATER_SHIELD_COM_POUT:
0.5
C3:PSL-HEATER_SHIELD_DIFF_POUT: -0.10985
C3:PSL-NCAV_FSS_COMGAIN_DB:
10.0
C3:PSL-NCAV_FSS_FASTGAIN_DB:
0.0
C3:PSL-NCAV_FSS_SLOWOUT:
2.9202595953303194
C3:PSL-NCAV_MODE_MATCHING:
69.31963979748339
C3:PSL-NCAV_REFL_POW:
2.554728314184
C3:PSL-NCAV_TRANS_POW:
5.772189288219001
C3:PSL-PLL_AUTOLOCKER_BEATNOTE_FREQ:
27.33637697765964
C3:PSL-PLL_AUTOLOCKER_FREQ_MOD:
2.0
C3:PSL-PRECAV_BEATNOTE_FREQ:
27.336738
C3:PSL-SCAV_FSS_COMGAIN_DB:
23.0
C3:PSL-SCAV_FSS_FASTGAIN_DB:
15.0
C3:PSL-SCAV_FSS_SLOWOUT: -6.26874916201885
C3:PSL-SCAV_MODE_MATCHING:
77.49815443086085
C3:PSL-SCAV_REFL_POW:
1.8042446000789998
C3:PSL-SCAV_TRANS_POW:
6.21396259335
C3:PSL-TEMP_TABLE:
18.993549544015725
C3:PSL-TEMP_VACCAN_INLOOP:
34.38228548461538
detector
:
SN101
instrument
:
moku
data/20200212_FSS_Gain_Span/NFSS_SpannedExpConfig_20200212_160418.yml
0 → 100644
View file @
7b110766
C3:PSL-HEATER_SHIELD_COM_POUT:
0.5
C3:PSL-HEATER_SHIELD_DIFF_POUT: -0.13685
C3:PSL-NCAV_FSS_COMGAIN_DB:
10.0
C3:PSL-NCAV_FSS_FASTGAIN_DB:
1.0
C3:PSL-NCAV_FSS_SLOWOUT:
2.9203445257731184
C3:PSL-NCAV_MODE_MATCHING:
69.3996853532704
C3:PSL-NCAV_REFL_POW:
2.55559483836
C3:PSL-NCAV_TRANS_POW:
5.795936405235
C3:PSL-PLL_AUTOLOCKER_BEATNOTE_FREQ:
27.344357036259623
C3:PSL-PLL_AUTOLOCKER_FREQ_MOD:
2.0
C3:PSL-PRECAV_BEATNOTE_FREQ:
27.344212
C3:PSL-SCAV_FSS_COMGAIN_DB:
23.0
C3:PSL-SCAV_FSS_FASTGAIN_DB:
15.0
C3:PSL-SCAV_FSS_SLOWOUT: -6.268878465487645
C3:PSL-SCAV_MODE_MATCHING:
77.60828825355192
C3:PSL-SCAV_REFL_POW:
1.797393755673
C3:PSL-SCAV_TRANS_POW:
6.229655609849999
C3:PSL-TEMP_TABLE:
18.975689799912132
C3:PSL-TEMP_VACCAN_INLOOP:
34.37982699846154
detector
:
SN101
instrument
:
moku
data/20200212_FSS_Gain_Span/NFSS_SpannedExpConfig_20200212_160644.yml
0 → 100644
View file @
7b110766
C3:PSL-HEATER_SHIELD_COM_POUT:
0.5
C3:PSL-HEATER_SHIELD_DIFF_POUT: -0.12186
C3:PSL-NCAV_FSS_COMGAIN_DB:
10.0
C3:PSL-NCAV_FSS_FASTGAIN_DB:
2.0
C3:PSL-NCAV_FSS_SLOWOUT:
2.9203917529077246
C3:PSL-NCAV_MODE_MATCHING:
69.34410696131138
C3:PSL-NCAV_REFL_POW:
2.557327886712
C3:PSL-NCAV_TRANS_POW:
5.819995984317
C3:PSL-PLL_AUTOLOCKER_BEATNOTE_FREQ:
27.341106106259613
C3:PSL-PLL_AUTOLOCKER_FREQ_MOD:
2.0
C3:PSL-PRECAV_BEATNOTE_FREQ:
27.340176
C3:PSL-SCAV_FSS_COMGAIN_DB:
23.0
C3:PSL-SCAV_FSS_FASTGAIN_DB:
15.0
C3:PSL-SCAV_FSS_SLOWOUT: -6.268846906653796
C3:PSL-SCAV_MODE_MATCHING:
77.59356668146043
C3:PSL-SCAV_REFL_POW:
1.792065321135
C3:PSL-SCAV_TRANS_POW:
6.229655609849999
C3:PSL-TEMP_TABLE:
18.98431174534145
C3:PSL-TEMP_VACCAN_INLOOP:
34.37644658
detector
:
SN101
instrument
:
moku
data/20200212_FSS_Gain_Span/NFSS_SpannedExpConfig_20200212_160911.yml
0 → 100644
View file @
7b110766
C3:PSL-HEATER_SHIELD_COM_POUT:
0.5
C3:PSL-HEATER_SHIELD_DIFF_POUT: -0.12174
C3:PSL-NCAV_FSS_COMGAIN_DB:
10.0
C3:PSL-NCAV_FSS_FASTGAIN_DB:
3.0
C3:PSL-NCAV_FSS_SLOWOUT:
2.920325446569629
C3:PSL-NCAV_MODE_MATCHING:
69.2565131436531
C3:PSL-NCAV_REFL_POW:
2.56426008012
C3:PSL-NCAV_TRANS_POW:
5.776563757143
C3:PSL-PLL_AUTOLOCKER_BEATNOTE_FREQ:
27.340672644419612
C3:PSL-PLL_AUTOLOCKER_FREQ_MOD:
2.0
C3:PSL-PRECAV_BEATNOTE_FREQ:
27.340128
C3:PSL-SCAV_FSS_COMGAIN_DB:
23.0
C3:PSL-SCAV_FSS_FASTGAIN_DB:
15.0
C3:PSL-SCAV_FSS_SLOWOUT: -6.268746970696589
C3:PSL-SCAV_MODE_MATCHING:
77.62978776540712
C3:PSL-SCAV_REFL_POW:
1.789020501399
C3:PSL-SCAV_TRANS_POW:
6.2083131074099995
C3:PSL-TEMP_TABLE:
18.989854424546017
C3:PSL-TEMP_VACCAN_INLOOP:
34.36691994615384
detector
:
SN101
instrument
:
moku
data/20200212_FSS_Gain_Span/NFSS_SpannedExpConfig_20200212_161137.yml
0 → 100644
View file @
7b110766
C3:PSL-HEATER_SHIELD_COM_POUT:
0.5
C3:PSL-HEATER_SHIELD_DIFF_POUT: -0.12181
C3:PSL-NCAV_FSS_COMGAIN_DB:
10.0
C3:PSL-NCAV_FSS_FASTGAIN_DB:
4.0
C3:PSL-NCAV_FSS_SLOWOUT:
2.9203841992276756
C3:PSL-NCAV_MODE_MATCHING:
69.3200317457405
C3:PSL-NCAV_REFL_POW:
2.563393555944
C3:PSL-NCAV_TRANS_POW:
5.791874398377
C3:PSL-PLL_AUTOLOCKER_BEATNOTE_FREQ:
27.340209219779588
C3:PSL-PLL_AUTOLOCKER_FREQ_MOD:
2.0
C3:PSL-PRECAV_BEATNOTE_FREQ:
27.339816
C3:PSL-SCAV_FSS_COMGAIN_DB:
23.0
C3:PSL-SCAV_FSS_FASTGAIN_DB:
15.0
C3:PSL-SCAV_FSS_SLOWOUT: -6.2689169691507125
C3:PSL-SCAV_MODE_MATCHING:
77.65572345941628
C3:PSL-SCAV_REFL_POW:
1.7791248372569999
C3:PSL-SCAV_TRANS_POW:
6.183204281009999
C3:PSL-TEMP_TABLE:
18.998476369975336
C3:PSL-TEMP_VACCAN_INLOOP:
34.3884317
detector
:
SN101
instrument
:
moku
data/20200212_FSS_Gain_Span/NFSS_SpannedExpConfig_20200212_161403.yml
0 → 100644
View file @
7b110766
C3:PSL-HEATER_SHIELD_COM_POUT:
0.5
C3:PSL-HEATER_SHIELD_DIFF_POUT: -0.12167
C3:PSL-NCAV_FSS_COMGAIN_DB:
10.0
C3:PSL-NCAV_FSS_FASTGAIN_DB:
5.0
C3:PSL-NCAV_FSS_SLOWOUT:
2.920356925786669
C3:PSL-NCAV_MODE_MATCHING:
69.36805493260513
C3:PSL-NCAV_REFL_POW:
2.55126221748
C3:PSL-NCAV_TRANS_POW:
5.775626370945001
C3:PSL-PLL_AUTOLOCKER_BEATNOTE_FREQ:
27.340602731219555
C3:PSL-PLL_AUTOLOCKER_FREQ_MOD:
2.0
C3:PSL-PRECAV_BEATNOTE_FREQ:
27.33989
C3:PSL-SCAV_FSS_COMGAIN_DB:
23.0
C3:PSL-SCAV_FSS_FASTGAIN_DB:
15.0
C3:PSL-SCAV_FSS_SLOWOUT: -6.268912163578876
C3:PSL-SCAV_MODE_MATCHING:
77.49554114035578
C3:PSL-SCAV_REFL_POW:
1.787498091531
C3:PSL-SCAV_TRANS_POW:
6.166883543849999
C3:PSL-TEMP_TABLE:
18.993549544015725
C3:PSL-TEMP_VACCAN_INLOOP:
34.36784187846153
detector
:
SN101
instrument
:
moku
data/20200212_FSS_Gain_Span/NFSS_SpannedExpConfig_20200212_161630.yml
0 → 100644
View file @
7b110766
C3:PSL-HEATER_SHIELD_COM_POUT:
0.5
C3:PSL-HEATER_SHIELD_DIFF_POUT: -0.12114
C3:PSL-NCAV_FSS_COMGAIN_DB:
10.0
C3:PSL-NCAV_FSS_FASTGAIN_DB:
6.0
C3:PSL-NCAV_FSS_SLOWOUT:
2.9200333973236683
C3:PSL-NCAV_MODE_MATCHING:
69.21405102923725
C3:PSL-NCAV_REFL_POW:
2.574658370232
C3:PSL-NCAV_TRANS_POW:
5.788437315651
C3:PSL-PLL_AUTOLOCKER_BEATNOTE_FREQ:
27.340221204899542
C3:PSL-PLL_AUTOLOCKER_FREQ_MOD:
2.0
C3:PSL-PRECAV_BEATNOTE_FREQ:
27.339902
C3:PSL-SCAV_FSS_COMGAIN_DB:
23.0
C3:PSL-SCAV_FSS_FASTGAIN_DB:
15.0
C3:PSL-SCAV_FSS_SLOWOUT: -6.269003167095315
C3:PSL-SCAV_MODE_MATCHING:
77.50670577497385
C3:PSL-SCAV_REFL_POW:
1.792065321135
C3:PSL-SCAV_TRANS_POW:
6.175043912429999
C3:PSL-TEMP_TABLE:
18.995397103750577