diff --git a/gstlal-inspiral/python/stats/inspiral_extrinsics.py b/gstlal-inspiral/python/stats/inspiral_extrinsics.py index 17f08683de6f0f1fb372fbfc12441a970f58d893..a39e4604643d91676e8acd3d666a5e3ab338f945 100644 --- a/gstlal-inspiral/python/stats/inspiral_extrinsics.py +++ b/gstlal-inspiral/python/stats/inspiral_extrinsics.py @@ -187,6 +187,27 @@ that the assumption is optimal. Review Status ------------- +Do no harm check of O2 results +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +- Comparing runs before and after (done) +- Checking the probabilities returned by new code and old code (sarah is working on it) to show consistent results + +Check of error assumptions +^^^^^^^^^^^^^^^^^^^^^^^^^^ + +- Calculate theoretical delta T, delta phi and snr ratio values of an O2 injection set. Then compute same parameters from injections. The difference between those (in e.g., a scatter plot) should give a sense of the errors on those parameters caused by noise. (sarah is working on it) +- Eventually use the fisher matrix for the error estimates (chad will do it, but not for O2) + + +Inclusion of virgo +^^^^^^^^^^^^^^^^^^ + +- Virgo should not make the analysis worse in an average sense. (this has been demonstrated, but Chad will make it a bit more quantitative) +- Understand cases where / if virgo does downrank a trigger +- Consider having the likelihood calculation maximize over all trigger subsets (Chad and Kipp, but not for O2) + + +-------------------------------------------------+------------------------------------------+------------+ | Names | Hash | Date | +=================================================+==========================================+============+