diff --git a/gstlal-inspiral/python/cbc_template_fir.py b/gstlal-inspiral/python/cbc_template_fir.py index f6f9eba28aaf7d3394cd72b239dd4f7d06ddab84..6490b26aa65a896a09ee1a65d6f7fbe746e0dba8 100644 --- a/gstlal-inspiral/python/cbc_template_fir.py +++ b/gstlal-inspiral/python/cbc_template_fir.py @@ -156,6 +156,7 @@ def generate_template(template_bank_row, approximant, sample_rate, duration, f_l hplus = fseries return hplus + def condition_imr_template(approximant, data, epoch_time, sample_rate_max, max_ringtime): assert -len(data) / sample_rate_max <= epoch_time < 0.0, "Epoch returned follows a different convention" # find the index for the peak sample using the epoch returned by @@ -176,6 +177,7 @@ def condition_imr_template(approximant, data, epoch_time, sample_rate_max, max_r # done return data, target_index + def condition_ear_warn_template(approximant, data, epoch_time, sample_rate_max, max_shift_time): assert -len(data) / sample_rate_max <= epoch_time < 0.0, "Epoch returned follows a different convention" # find the index for the peak sample using the epoch returned by @@ -188,6 +190,7 @@ def condition_ear_warn_template(approximant, data, epoch_time, sample_rate_max, data = numpy.roll(data, target_index-epoch_index) return data, target_index + def compute_autocorrelation_mask( autocorrelation ): ''' Given an autocorrelation time series, estimate the optimal