diff --git a/gstlal-inspiral/python/stats/inspiral_lr.py b/gstlal-inspiral/python/stats/inspiral_lr.py index fdbb8ff292c206d17c95c6c078842280e5300edd..ac9424e4e32f870c6be9fbbb4fdcbc797fb90780 100644 --- a/gstlal-inspiral/python/stats/inspiral_lr.py +++ b/gstlal-inspiral/python/stats/inspiral_lr.py @@ -765,6 +765,8 @@ class LnNoiseDensity(LnLRDensity): segment = segments.segment twopi = 2. * math.pi ln_1_2 = math.log(0.5) + lnP_template_id = -math.log(len(self.template_ids)) + template_ids = tuple(self.template_ids) def nCk(n, k): return math.factorial(n) // math.factorial(k) // math.factorial(n - k) while 1: @@ -807,7 +809,7 @@ class LnNoiseDensity(LnLRDensity): # FIXME random_params needs to be given a meaningful # template_id, but for now it is not used in the # likelihood-ratio assignment so we don't care - kwargs["template_id"] = None + kwargs["template_id"] = random.choice(template_ids) # NOTE: I think the result of this sum is, in # fact, correctly normalized, but nothing requires # it to be (only that it be correct up to an @@ -815,7 +817,7 @@ class LnNoiseDensity(LnLRDensity): # so the documentation doesn't promise that it is. # FIXME: no, it's not normalized until the dt_dphi # bit is corrected for other than H1L1 - yield (), kwargs, sum(seq[1::2], lnP_t + lnP_instruments) + yield (), kwargs, sum(seq[1::2], lnP_t + lnP_instruments + lnP_template_id) def to_xml(self, name): xml = super(LnNoiseDensity, self).to_xml(name)