From b089d4ec9b59ab22c24f5e0728acc36dffb7e2dd Mon Sep 17 00:00:00 2001 From: Chad Hanna <chad.hanna@ligo.org> Date: Fri, 24 May 2019 12:36:10 -0400 Subject: [PATCH] gstlal_inspiral_compute_dtdphideff_cov_matrix: initial commit --- gstlal-inspiral/bin/Makefile.am | 1 + ...lal_inspiral_compute_dtdphideff_cov_matrix | 86 +++++++++++++++++++ 2 files changed, 87 insertions(+) create mode 100755 gstlal-inspiral/bin/gstlal_inspiral_compute_dtdphideff_cov_matrix diff --git a/gstlal-inspiral/bin/Makefile.am b/gstlal-inspiral/bin/Makefile.am index 6a3daf771b..7734a2dc41 100644 --- a/gstlal-inspiral/bin/Makefile.am +++ b/gstlal-inspiral/bin/Makefile.am @@ -9,6 +9,7 @@ dist_bin_SCRIPTS = \ gstlal_inspiral_calc_likelihood \ gstlal_inspiral_calc_rank_pdfs \ gstlal_inspiral_coinc_extractor \ + gstlal_inspiral_compute_dtdphideff_cov_matrix \ gstlal_inspiral_add_dt_dphi_snr_ratio_pdfs \ gstlal_inspiral_calc_snr \ gstlal_inspiral_create_dt_dphi_snr_ratio_pdfs \ diff --git a/gstlal-inspiral/bin/gstlal_inspiral_compute_dtdphideff_cov_matrix b/gstlal-inspiral/bin/gstlal_inspiral_compute_dtdphideff_cov_matrix new file mode 100755 index 0000000000..9ae89a9f8b --- /dev/null +++ b/gstlal-inspiral/bin/gstlal_inspiral_compute_dtdphideff_cov_matrix @@ -0,0 +1,86 @@ +#!/usr/bin/python +# +# Copyright (C) 2019 Chad Hanna Amit Reza +# +# This program is free software; you can redistribute it and/or modify it +# under the terms of the GNU General Public License as published by the +# Free Software Foundation; either version 2 of the License, or (at your +# option) any later version. +# +# This program is distributed in the hope that it will be useful, but +# WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General +# Public License for more details. +# +# You should have received a copy of the GNU General Public License along +# with this program; if not, write to the Free Software Foundation, Inc., +# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. +import argparse +import itertools +import numpy, scipy.interpolate +from lal import series +from ligo.lw import utils as ligolw_utils +import sys + + +parser = argparse.ArgumentParser(description = 'generate a dt dphi covariance matrix') +parser.add_argument('--psd-xml', help = 'XML containing HLV psd') +parser.add_argument('--H-snr', type = float, help = 'H characteristic SNR') +parser.add_argument('--L-snr', type = float, help = 'L characteristic SNR') +parser.add_argument('--V-snr', type = float, help = 'V characteristic SNR') +args = parser.parse_args() + +refpsd = args.psd_xml +rho = {"L1": args.L_snr, "H1": args.H_snr, "V1": args.V_snr} + + +psd = series.read_psd_xmldoc(ligolw_utils.load_filename(refpsd, verbose = True, contenthandler = series.PSDContentHandler)) +psddict = {} +for ifo in psd: + f = numpy.arange(len(psd[ifo].data.data)) * psd[ifo].deltaF + psddict[ifo] = scipy.interpolate.interp1d(f, psd[ifo].data.data) + +def fn(fmin, fmax, n, ifo, psddict = psddict): + farr = numpy.linspace(fmin, fmax, 100000) + df = farr[1] - farr[0] + return 4 * numpy.sum(farr**(-7/3.) * farr**n * df / psddict[ifo](farr)) + +def moment(fmin, fmax, n, ifo, psddict = psddict): + return fn(fmin, fmax, n, ifo, psddict) / fn(fmin, fmax, 0, ifo, psddict) + +sigsqtt = {} +sigsqpp = {} +sigsqtp = {} + +for ifo in rho: + sigsqf = moment(10, 1024, 2, ifo) - moment(10, 1024, 1, ifo)**2 + sigsqtt[ifo] = (1. / (2 * 3.14 * rho[ifo] * sigsqf**.5)**2) + sigsqpp[ifo] = moment(10, 1024, 1, ifo)**2 / (rho[ifo]**2 * sigsqf) + sigsqtp[ifo] = moment(10, 1024, 1, ifo) / (2 * 3.14 * rho[ifo]**2 * sigsqf) + +for combo in itertools.combinations(("H1", "L1", "V1"), 2): + a,b = combo + m11 = sigsqtt[a] + sigsqtt[b] + m22 = sigsqpp[a] + sigsqpp[b] + m12 = m21 = sigsqtp[a] + sigsqtp[b] + mat = numpy.array([[m11, m12], [m21, m22]]) + print combo + + #print "cov mat" + #print mat + #print "cov mat inv" + #print matinv + + print "cholesky on " + matinv = numpy.linalg.inv(mat) + cholesky_transpose = numpy.linalg.cholesky(matinv).T + print cholesky_transpose + + #val, vec = scipy.linalg.eigh(mat) + #print "sanity check" + #print mat + #print numpy.dot(vec.T, numpy.dot(numpy.diag(val), vec)) + #answer = numpy.dot(vec, numpy.diag(val)**.5) + #print answer + #print "sanity check" + #print numpy.dot(answer, answer.T) -- GitLab