diff --git a/gstlal-inspiral/bin/gstlal_inspiral_plotsummary b/gstlal-inspiral/bin/gstlal_inspiral_plotsummary index 0bdb89b2bcf67a0dc4dc78b436ff08f8103121f1..0e92b9f999e30e05dc7e84788db3463ee07b939e 100755 --- a/gstlal-inspiral/bin/gstlal_inspiral_plotsummary +++ b/gstlal-inspiral/bin/gstlal_inspiral_plotsummary @@ -1465,9 +1465,9 @@ def create_rate_vs_lnL_plot(axes, zerolag_stats, fapfar, is_open_box): # if is_open_box: - axes.legend((line5, line1, line4, line3, line2), ("Observed", r"Expected, $\langle N \rangle$", r"$\pm\sqrt{\langle N \rangle}$", r"$\pm 2\sqrt{\langle N \rangle}$", r"$\pm 3\sqrt{\langle N \rangle}$"), loc = "upper right") + axes.legend((line5, line1, line4, line3, line2), ("Observed", r"Noise Model, $\langle N \rangle$", r"$\pm\sqrt{\langle N \rangle}$", r"$\pm 2\sqrt{\langle N \rangle}$", r"$\pm 3\sqrt{\langle N \rangle}$"), loc = "upper right") else: - axes.legend((line5, line1, line4, line3, line2), (r"Observed (time shifted)", r"Expected, $\langle N \rangle$", r"$\pm\sqrt{\langle N \rangle}$", r"$\pm 2\sqrt{\langle N \rangle}$", r"$\pm 3\sqrt{\langle N \rangle}$"), loc = "upper right") + axes.legend((line5, line1, line4, line3, line2), (r"Observed (time shifted)", r"Noise Model, $\langle N \rangle$", r"$\pm\sqrt{\langle N \rangle}$", r"$\pm 2\sqrt{\langle N \rangle}$", r"$\pm 3\sqrt{\langle N \rangle}$"), loc = "upper right") # # adjust bounds of plot @@ -1646,7 +1646,7 @@ WHERE yield fig, "count_vs_ifar", is_open_box if ln_likelihood_ratio: - fig, axes = create_plot(r"$\ln \mathcal{L}$", r"Number of Events $\geq \ln \mathcal{L}$") + fig, axes = create_plot(r"$\ln \mathcal{L}$ Threshold", r"Number of Events $\geq \ln \mathcal{L}$") # ln(L) in ascending order zerolag_stats = numpy.array(sorted(ln_likelihood_ratio, reverse = True)) create_rate_vs_lnL_plot(axes, zerolag_stats, self.fapfar, is_open_box) @@ -1657,7 +1657,7 @@ WHERE yield fig, "count_vs_lr", is_open_box if self.background_ln_likelihood_ratio: - fig, axes = create_plot(r"$\ln \mathcal{L}$", r"Number of Events $\geq \ln \mathcal{L}$") + fig, axes = create_plot(r"$\ln \mathcal{L}$ Threshold", r"Number of Events $\geq \ln \mathcal{L}$") axes.semilogy() background_stats = numpy.array(sorted(self.background_ln_likelihood_ratio, reverse = True)) zerolag_stats = numpy.array(sorted(self.zerolag_ln_likelihood_ratio, reverse = True))