From d7a22892257551e6f73d7547d39acc54e3af8219 Mon Sep 17 00:00:00 2001
From: Patrick Godwin <patrick.godwin@ligo.org>
Date: Wed, 18 Jul 2018 11:44:46 -0700
Subject: [PATCH] gstlal_feature_hdf5_sink: fix issues caused by restructuring
 of hdf5 saving causing pipeline to crash

---
 gstlal-burst/bin/gstlal_feature_hdf5_sink | 26 +++++++++++------------
 1 file changed, 12 insertions(+), 14 deletions(-)

diff --git a/gstlal-burst/bin/gstlal_feature_hdf5_sink b/gstlal-burst/bin/gstlal_feature_hdf5_sink
index d15f910ca1..d4648770c0 100755
--- a/gstlal-burst/bin/gstlal_feature_hdf5_sink
+++ b/gstlal-burst/bin/gstlal_feature_hdf5_sink
@@ -52,7 +52,7 @@ def parse_command_line():
     parser = OptionParser(usage=__usage__, description=__description__)
     parser.add_option("-v","--verbose", default=False, action="store_true", help = "Print to stdout in addition to writing to automatically generated log.")
     parser.add_option("--log-level", type = "int", default = 10, help = "Sets the verbosity of logging. Default = 10.")
-    parser.add_option("--rootdir", metavar = "path", default = ".", help = "Sets the root directory where logs and metadata are stored.")
+    parser.add_option("--rootdir", metavar = "path", default = ".", help = "Sets the root directory where features, logs, and metadata are stored.")
     parser.add_option("--basename", metavar = "string", default = "GSTLAL_IDQ_FEATURES", help = "Sets the basename for files written to disk. Default = GSTLAL_IDQ_FEATURES")
     parser.add_option("--instrument", metavar = "string", default = "H1", help = "Sets the instrument for files written to disk. Default = H1")
     parser.add_option("--tag", metavar = "string", default = "test", help = "Sets the name of the tag used. Default = 'test'")
@@ -100,22 +100,22 @@ class HDF5StreamSink(object):
         self.keys = multichannel_datasource.channel_dict_from_channel_file(options.channel_list).keys()
 
         ### iDQ saving properties
-        self.rootdir = options.rootdir
         self.timestamp = None
         self.last_save_time = None
         self.last_persist_time = None
+        self.rootdir = options.rootdir
         self.sample_rate = options.sample_rate
         self.write_cadence = options.write_cadence
         self.persist_cadence = options.persist_cadence
-        self.tag = '%s-%s' % (options.instrument[:1], options.basename)
+        self.basename = '%s-%s' % (options.instrument[:1], options.basename)
         self.columns = ['start_time', 'stop_time', 'trigger_time', 'frequency', 'q', 'snr', 'phase', 'sigmasq', 'chisq']
         self.feature_data = utils.HDF5TimeseriesFeatureData(self.columns, keys = self.keys, cadence = self.write_cadence, sample_rate = self.sample_rate)
 
         ### get base temp directory
         if '_CONDOR_SCRATCH_DIR' in os.environ:
-            tmp_dir = os.environ['_CONDOR_SCRATCH_DIR']
+            self.tmp_dir = os.environ['_CONDOR_SCRATCH_DIR']
         else:
-            tmp_dir = os.environ['TMPDIR']
+            self.tmp_dir = os.environ['TMPDIR']
 
     def set_hdf_file_properties(self, start_time, duration):
         """
@@ -127,15 +127,15 @@ class HDF5StreamSink(object):
         job_id = '0001'
         subset_id = '0001'
         self.feature_name = os.path.splitext(utils.to_trigger_filename(self.basename, start_time, duration, 'h5'))[0]
-        self.feature_path = utils.to_trigger_path(os.path.abspath(self.out_path), self.basename, start_time, job_id, subset_id)
+        self.feature_path = utils.to_trigger_path(os.path.abspath(self.rootdir), self.basename, start_time, job_id, subset_id)
         self.tmp_path = utils.to_trigger_path(self.tmp_dir, self.basename, start_time, job_id, subset_id)
 
         # create temp and output directories if they don't exist
-        aggregator.makedir(self.fpath)
+        aggregator.makedir(self.feature_path)
         aggregator.makedir(self.tmp_path)
 
         # delete leftover temporary files
-        tmp_file = os.path.join(self.tmp_path, self.fname)+'.h5.tmp'
+        tmp_file = os.path.join(self.tmp_path, self.feature_name)+'.h5.tmp'
         if os.path.isfile(tmp_file):
             os.remove(tmp_file)
 
@@ -167,7 +167,7 @@ class HDF5StreamSink(object):
         while self.feature_queue:
             ### remove data with oldest timestamp and process
             self.timestamp, features = self.feature_queue.pop()
-            logger.info('processing features for timestamp %d' % timestamp)
+            logger.info('processing features for timestamp %d' % self.timestamp)
 
             # set save times and initialize specific saving properties if not already set
             if self.last_save_time is None:
@@ -178,21 +178,19 @@ class HDF5StreamSink(object):
 
             # Save triggers once per cadence if saving to disk
             if self.timestamp and utils.in_new_epoch(self.timestamp, self.last_save_time, self.write_cadence):
-                self.logger.info("saving features to disk at timestamp = %d" % self.timestamp)
+                logger.info("saving features to disk at timestamp = %d" % self.timestamp)
                 self.feature_data.dump(self.tmp_path, self.feature_name, utils.floor_div(self.last_save_time, self.write_cadence), tmp = True)
-                self.to_hdf_file()
                 self.last_save_time = self.timestamp
 
             # persist triggers once per persist cadence if using hdf5 format
             if self.timestamp and utils.in_new_epoch(self.timestamp, self.last_persist_time, self.persist_cadence):
-                self.logger.info("persisting features to disk for gps range %d - %d" % (self.timestamp, self.timestamp-self.persist_cadence))
+                logger.info("persisting features to disk for gps range %d - %d" % (self.timestamp-self.persist_cadence, self.timestamp))
                 self.persist_to_disk()
-                self.finish_hdf_file()
                 self.last_persist_time = self.timestamp
                 self.set_hdf_file_properties(self.timestamp, self.persist_cadence)
 
             ### add new feature vector to dataset
-            self.feature_data.append(timestamp, features)
+            self.feature_data.append(self.timestamp, features)
 
     def persist_to_disk(self):
         """
-- 
GitLab