From dbae109a515bf23765ed332ab02f203988d9eaef Mon Sep 17 00:00:00 2001 From: Chad Hanna <chad.hanna@ligo.org> Date: Sat, 2 Jun 2018 11:39:24 -0400 Subject: [PATCH] inspiral_extrinsics: calculate marginal dist more accurately --- gstlal-inspiral/python/stats/inspiral_extrinsics.py | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) diff --git a/gstlal-inspiral/python/stats/inspiral_extrinsics.py b/gstlal-inspiral/python/stats/inspiral_extrinsics.py index 6a4bcbc1c1..f3d6ac9bb8 100644 --- a/gstlal-inspiral/python/stats/inspiral_extrinsics.py +++ b/gstlal-inspiral/python/stats/inspiral_extrinsics.py @@ -1097,11 +1097,7 @@ class TimePhaseSNR(object): if verbose: print >> sys.stderr, "marginalizing tree for: ", combo slcs = sorted(sum(self.instrument_pair_slices(self.instrument_pairs(combo)).values(),[])) - # - # NOTE we approximate the marginalization - # integral with 10% of the sky points - # - num_points = int(self.tree_data.shape[0] / 10.) + num_points = self.tree_data.shape[0] marg = [] # FIXME the n_jobs parameter is not available @@ -1109,8 +1105,10 @@ class TimePhaseSNR(object): # get used in practice during an actual # analysis. This will use 8GB of RAM and keep # a box pretty busy. - for points in chunker(self.tree_data[:,slcs], 1000): - Dmat = self.KDTree[combo].query(points, k=num_points, distance_upper_bound = 20, n_jobs=-1)[0] + for cnt, points in enumerate(chunker(self.tree_data[:,slcs], 100)): + if verbose: + print >> sys.stderr, "%d/%d" % (cnt * 100, num_points) + Dmat = self.KDTree[combo].query(points, k=num_points, distance_upper_bound = 8.5, n_jobs=-1)[0] marg.extend(margprob(Dmat)) self.margsky[combo] = numpy.array(marg, dtype="float32") -- GitLab