diff --git a/gstlal-inspiral/python/cbc_template_fir.py b/gstlal-inspiral/python/cbc_template_fir.py index 892dccec9e364275d9809317b1ef1b2c7dd48be8..f56b1a75663660bcfe481e73846eead4b2cf15b9 100644 --- a/gstlal-inspiral/python/cbc_template_fir.py +++ b/gstlal-inspiral/python/cbc_template_fir.py @@ -51,6 +51,7 @@ STATUS: reviewed with actions # +import bisect import cmath import math import numpy @@ -253,18 +254,26 @@ def compute_autocorrelation_mask( autocorrelation ): def movingmedian(interval, window_size): + interval = list(interval) tmp = numpy.copy(interval) - try: - import pandas - try: - # pandas version >= 0.18.1 is required - tmp[window_size : len(interval) - window_size] = numpy.array(pandas.Series(tmp).rolling(2 * window_size).median()[2 * window_size - 1 : -1]) - except AttributeError: - # pandas version < 0.18.1 - tmp[window_size : len(interval) - window_size] = pandas.rolling_median(tmp, 2 * window_size)[2 * window_size - 1 : -1] - except ImportError: - for i in range(window_size, len(interval) - window_size): - tmp[i] = numpy.median(interval[i - window_size : i + window_size]) + A = None + As = None + prev = None + for i in range(window_size, len(interval)-window_size): + if A is None: + A = interval[i-window_size:i+window_size] + ix = numpy.argsort(A) + As = list(numpy.array(A)[ix]) + else: + newdata = interval[i+window_size-1] + A = A + [newdata] + bisect.insort(As, newdata) + if len(As) % 2: + tmp[i] = As[len(As)/2] + else: + tmp[i] = (As[len(As)/2-1] + As[len(As)/2]) / 2. + prev = A.pop(0) + del As[bisect.bisect_left(As, prev)] return tmp