|
|
|
# Mass Gap
|
|
|
|
|
|
|
|
## Development teams
|
|
|
|
|
|
|
|
Sushant Sharma Chaudhary, Deep Chatterjee
|
|
|
|
|
|
|
|
|
|
|
|
## Reviewers and sign-off
|
|
|
|
|
|
|
|
|
|
|
|
| Reviewer | Status | version/tag | Sign-off hash |
|
|
|
|
| ----------- | ------- | --------------------- | ------------- |
|
|
|
|
| M. Coughlin | ongoing | ligo.em-bright v1.1.0 | |
|
|
|
|
| A. Toivonen | ongoing | ligo.em-bright v1.1.0 | |
|
|
|
|
|
|
|
|
## Step-wise installation of packages:
|
|
|
|
1. Clone the repository in a desired directory.
|
|
|
|
```
|
|
|
|
git clone git@git.ligo.org:emfollow/em-properties/em-bright.git
|
|
|
|
```
|
|
|
|
2. Create a anaconda environment using: `conda create -n {name} python=3.{9/10}`
|
|
|
|
|
|
|
|
3. Activate the environment : `conda activate {name}`
|
|
|
|
|
|
|
|
4. Install poetry using : `pip install poetry`
|
|
|
|
|
|
|
|
5. Go to the em-bright cloned directory and install the package using : `poetry install`
|
|
|
|
|
|
|
|
## Training classifier
|
|
|
|
1. Change configurations for training in `etc/conf.ini` (if required)
|
|
|
|
2. Creating condor jobs for training:
|
|
|
|
```
|
|
|
|
em_bright_dag_writer
|
|
|
|
-d {filename}.dag \
|
|
|
|
-w {output_dir} \
|
|
|
|
-i /home/sushant.sharma-chaudhary/O4_ssm_injections \
|
|
|
|
-c {CLONED_PROJECT_DIRECTORY}/etc/conf.ini \
|
|
|
|
-e $(dirname `which em_bright_dag_writer`) \
|
|
|
|
-m ssm
|
|
|
|
```
|
|
|
|
3. Change directory to `{output_dir}`
|
|
|
|
4. Submit condor jobs :
|
|
|
|
` condor_submit_dag {filename}.dag`
|
|
|
|
|
|
|
|
## Output files
|
|
|
|
1. The `gstlal_ssm.pickle & mbta_ssm.pickle` output is stored at `{output_dir}` directory
|
|
|
|
2. The `{pipeline}_param_sweep_has_{SSM/NS/MassGap}_ssm.png` is also stored at `{output_dir}` directory
|
|
|
|
|
|
|
|
## Testing classifier on gstlal/mbta reconstructed data
|
|
|
|
1. If you have previously installed em-bright then: `rm ~/.ligo.em_bright`
|
|
|
|
2. In the conda environment open python
|
|
|
|
```
|
|
|
|
from ligo.em_bright import em_bright
|
|
|
|
em_bright.source_classification_ssm({m1},{m2},{chi1},{chi2},{m_chirp},{snr},{pipeline})
|
|
|
|
```
|
|
|
|
This outputs (has_SSM, has_NS, has_MassGap)
|
|
|
|
|
|
|
|
## Relevant Notebooks
|
|
|
|
|
|
|
|
1. Training and MDC performance [Notebook](https://git.ligo.org/emfollow/em-properties/mass_gap/-/blob/main/mass_gap_train.ipynb)
|
|
|
|
2. High mass data analysis [Notebook](https://git.ligo.org/emfollow/em-properties/mass_gap/-/blob/main/high_mass_artifact_study.ipynb)
|
|
|
|
3. Parameter grid search [Notebook](https://git.ligo.org/emfollow/em-properties/mass_gap/-/blob/main/mass_gap_grid_search.ipynb) |
|
|
|
\ No newline at end of file |