Maintenance will be performed on,,, and on Tuesday 7th July 2020 starting at approximately 10am PDT and lasting for around 15 minutes. There will be a short period of downtime towards the end of the maintenance window. Please direct any comments, questions, or concerns to

Commit f1cda596 authored by Leo Pound Singer's avatar Leo Pound Singer

Refactor and add unit test for get_max_z

parent 5c8a41c6
Pipeline #95822 failed with stages
in 43 minutes and 32 seconds
......@@ -23,7 +23,7 @@ not reject an excessive number of events. We divide the intrinsic parameter
space into a very coarse grid and we calculate the maximum horizon distance in
each grid cell."""
import functools
from functools import partial
from astropy import cosmology
from astropy.cosmology.core import vectorize_if_needed
......@@ -36,6 +36,7 @@ from scipy.interpolate import interp1d
from scipy.optimize import root_scalar
from scipy.ndimage import maximum_filter
from ..util import progress_map
from ..bayestar.filter import sngl_inspiral_psd
from . import (
ArgumentParser, FileType, random_parser, register_to_xmldoc, write_fileobj)
......@@ -73,7 +74,7 @@ def lo_hi_nonzero(x):
return nonzero[0], nonzero[-1]
def z_at_snr(cosmo, psds, waveform, f_low, snr, params):
def z_at_snr(cosmo, psds, waveform, f_low, snr, mass1, mass2, spin1z, spin2z):
Get redshift at which a waveform attains a given SNR.
......@@ -98,7 +99,6 @@ def z_at_snr(cosmo, psds, waveform, f_low, snr, params):
Comoving distance in Mpc.
# Construct waveform
mass1, mass2, spin1z, spin2z = params
series = sngl_inspiral_psd(waveform, f_low=f_low,
mass1=mass1, mass2=mass2,
spin1z=spin1z, spin2z=spin2z)
......@@ -134,6 +134,21 @@ def z_at_snr(cosmo, psds, waveform, f_low, snr, params):
return root_scalar(lambda z: snr_at_z(z) - snr, bracket=(0, 1e3)).root
def get_max_z(cosmo, psds, waveform, f_low, snr, mass1, mass2, spin1z, spin2z,
# Calculate the maximum distance on the grid.
params = [mass1, mass2, spin1z, spin2z]
result = progress_map(
partial(z_at_snr, cosmo, psds, waveform, f_low, snr),
*(param.ravel() for param in np.meshgrid(*params, indexing='ij')),
result = np.reshape(result, tuple(len(param) for param in params))
assert np.all(result >= 0), 'some redshifts are negative'
assert np.all(np.isfinite(result)), 'some redshifts are not finite'
return result
def _sensitive_volume_integral(cosmo, z):
dh3_sr = cosmo.hubble_distance**3 /
......@@ -226,8 +241,6 @@ def main(args=None):
import lal.series
from scipy import stats
from ..util import progress_map
p = parser()
args = p.parse_args(args)
......@@ -342,20 +355,9 @@ def main(args=None):
params = m1, m2, x1, x2
# Calculate the maximum distance on the grid.
max_z = np.reshape(
z_at_snr, cosmo, psds,
args.waveform, args.f_low, args.min_snr),
np.column_stack([param.ravel() for param
in np.meshgrid(*params, indexing='ij')]),,
tuple(len(param) for param in params))
# Make sure that all redshifts are valid.
assert np.all(max_z >= 0), 'some redshifts are negative'
assert np.all(np.isfinite(max_z)), 'some redshifts are not finite'
max_z = get_max_z(
cosmo, psds, args.waveform, args.f_low, args.min_snr, m1, m2, x1, x2,
max_distance = sensitive_distance(cosmo, max_z).to_value(units.Mpc)
# Find piecewise constant approximate upper bound on distance.
......@@ -9,7 +9,8 @@ import pytest
from scipy.misc import derivative
from ..bayestar_inject import (
get_decisive_snr, z_at_snr, cell_max, sensitive_distance, sensitive_volume)
get_decisive_snr, z_at_snr, get_max_z, cell_max, sensitive_distance,
def test_get_decisive_snr():
......@@ -49,11 +50,41 @@ def test_z_at_snr(mtotal, z):
snr = get_snr_at_z_lalsimulation(
cosmo, z, mass1, mass2, f_low, f_high, psd)
z_solution = z_at_snr(
cosmo, [psd], 'IMRPhenomPv2', f_low, snr, (mass1, mass2, 0, 0))
cosmo, [psd], 'IMRPhenomPv2', f_low, snr, mass1, mass2, 0, 0)
assert z_solution == pytest.approx(z, rel=1e-2)
def test_get_max_z():
cosmo = default_cosmology.get_cosmology_from_string('Planck15')
f_low = 10
f_high = 4096
df = 0.1
waveform = 'IMRPhenomPv2'
snr = 8
m1 = np.asarray([50.0])
m2 = np.asarray([30.0, 50.0])
x1 = np.asarray([-1.0, 0.0, 1.0])
x2 = np.asarray([-1.0, -0.5, 0.5, 1.0])
psd = lal.CreateREAL8FrequencySeries(
'', 0, f_low, df, lal.DimensionlessUnit, int((f_high - f_low) // df))
lalsimulation.SimNoisePSDaLIGODesignSensitivityP1200087(psd, f_low)
result = get_max_z(
cosmo, [psd], waveform, f_low, snr, m1, m2, x1, x2)
# Check that shape matches
assert result.shape == (1, 2, 3, 4)
# Spot check some individual cells
for im1, m1_ in enumerate(m1):
for im2, m2_ in enumerate(m2):
for ix1, x1_ in enumerate(x1):
for ix2, x2_ in enumerate(x2):
expected = z_at_snr(
cosmo, [psd], waveform, f_low, snr, m1_, m2_, x1_, x2_)
assert result[im1, im2, ix1, ix2] == expected
def test_sensitive_volume_0():
cosmo = default_cosmology.get_cosmology_from_string('Planck15')
assert sensitive_volume(cosmo, 0) == 0
Markdown is supported
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment