diff --git a/HDF5_SCHEMATA b/HDF5_SCHEMATA
deleted file mode 100644
index f7989feee01cdef64904d7bdae023299de3dad75..0000000000000000000000000000000000000000
--- a/HDF5_SCHEMATA
+++ /dev/null
@@ -1,107 +0,0 @@
-# HDF5 Schema for GWINC noise trace storage
-
-
-This file describes a schemata for HDF5 storage of noise trace data
-and plot styling GWINC noise budgets.  Python functions for writing
-budget data to and reading budget data from this format are included
-in the `gwinc.io` module.
-
-HDF5 is a heirarchical, structured data storage format [0].  Content
-is organized into a heirarchical folder-like structure, with two
-types of named objects:
-
- * groups: holder of other objects (like folders)
- * datasets: holder of data arrays (like files)
-
-Objects can also have attributes as (almost) arbitrary key:value
-pairs.
-
-Bindings are available for most platforms including Python [1] and
-Matlab.
-
-[0] https://en.wikipedia.org/wiki/Hierarchical_Data_Format
-[1] http://www.h5py.org/
-
-
-## version history
-
-v1
-- first versioned schema release
-
-
-## schema
-
-The following describes the noise budget schema.  Specific strings are
-enclosed in single quotes (''), and variables are described in
-brackets (<>).  Group objects are indicated by a closing '/'
-separator, data set are indicated by a closing ':' followed by a
-specification of their length and type (e.g. "(N),float"), and
-attributes are specified in the .attrs[] dictionary format.  Optional
-elements are enclosed in parentheses.
-
-A single trace is a length N array (with optional plot style specified
-in attributes:
-```
-/<trace>: (N),float
-(/<trace>.attrs['label'] = <label>)
-(/<trace>.attrs['color] = <color>)
-...
-```
-
-A budget item, i.e. a collection of noises is structured as follows:
-```
-/<budget>/
-    /'Total': (N),float
-    /<trace_0>: (N),float
-    (/<trace_1>: (N),float)
-```
-<!-- ``` -->
-<!--     /'noises'/ -->
-<!--         /*<noise_0>: (N),float -->
-<!--         ... -->
-<!--     /\*'references'/ -->
-<!--         /*<ref_0>: (N),float -->
-<!--         ... -->
-<!-- ``` -->
-
-
-## Top-level Budget
-
-The following two root attributes expected: a string describing the schema,
-and an int schema version number:
-```
-/.attrs['SCHEMA'] = 'GWINC Noise Budget'
-/.attrs['SCHEMA_VERSION'] = 1
-```
-
-Top-level attributes can be used for storing any relevant metadata,
-such as "ifo" parameters in YAML format or overall plot styling.
-Typically at least the following root attributes are defined:
-```
-/.attrs['title'] = <experiment description string (e.g. 'H1 Strain Budget')>
-/.attrs['date'] = <ISO-formatted string (e.g. '2015-10-24T20:30:00.000000Z')>
-```
-
-The budget frequency array is defined in a 'Freq' dataset:
-```
-/'Freq': (N), float
-```
-
-The budget traces are defined a traces group.  The overall structure
-looks something like this:
-```
-/.attrs['SCHEMA'] = 'GWINC Noise Budget'
-/.attrs['SCHEMA_VERSION'] = 1
-/.attrs['title'] = <experiment description string (e.g. 'H1 Strain Budget')>
-/.attrs['date'] = <ISO-formatted string (e.g. '2015-10-24T20:30:00.000000Z')>
-/'Freq': (N), float
-/traces/
-    /'Total': (N),float
-    /<noise_0>: (N),float
-    /<noise_1>: (N),float
-    /<noise_2>/
-        /'Total': (N),float
-        /<noise_3>: (N),float
-        /<noise_4>: (N),float
-    ...
-```
diff --git a/HDF5_SCHEMATA.md b/HDF5_SCHEMATA.md
new file mode 100644
index 0000000000000000000000000000000000000000..107980f3c8ec0aa0c4f96daf047dca2bc732fe95
--- /dev/null
+++ b/HDF5_SCHEMATA.md
@@ -0,0 +1,122 @@
+# HDF5 Schema for GWINC noise trace storage
+
+This file describes a schemata for HDF5 storage of noise trace data
+and plot styling GWINC noise budgets.  Python functions for writing
+budget data to and reading budget data from this format are included
+in the `gwinc.io` module.
+
+HDF5 is a heirarchical, structured data storage format [0].  Content
+is organized into a heirarchical folder-like structure, with two
+types of named objects:
+
+ * groups: holder of other objects (like folders)
+ * datasets: holder of data arrays (like files)
+
+Objects can also have attributes as (almost) arbitrary key:value
+pairs.
+
+Bindings are available for most platforms including Python [1] and
+Matlab.
+
+ * [0] https://en.wikipedia.org/wiki/Hierarchical_Data_Format
+ * [1] http://www.h5py.org/
+
+
+## schema
+
+The following describes the noise budget schema.  Specific strings are
+enclosed in single quotes (''), and variables are described in
+brackets (<>).  Group objects are indicated by a closing '/', data
+sets are indicated by a closing ':' followed by a specification of
+their length and type (e.g. "(N),float"), and attributes are specified
+in the .attrs[] dictionary format.  Optional elements are enclosed in
+parentheses.
+
+
+## top-level attributes
+
+The following two root attributes expected: a string describing the schema,
+and an int schema version number:
+```
+/.attrs['SCHEMA'] = 'GWINC Noise Budget'
+/.attrs['SCHEMA_VERSION'] = 1
+```
+
+The following root root attributes are defined:
+```
+/.attrs['title'] = <experiment description string (e.g. 'H1 Strain Budget')>
+/.attrs['date'] = <ISO-formatted string (e.g. '2015-10-24T20:30:00.000000Z')>
+/.attrs['ifo'] = <IFO Struct object, YAML serialized>
+```
+
+The remaining root level attributes usually pertain to the plot style.
+
+The budget frequency array is defined in a top level 'Freq' dataset:
+
+```
+/'Freq': (N),float
+```
+
+## version history
+
+### v1
+
+A single trace is a length N array (with optional plot style specified
+in attributes:
+```
+/<trace>: (N),float
+/<trace>.attrs['label'] = <label>
+/<trace>.attrs['color] = <color>
+...
+```
+
+A budget item, i.e. a collection of noises is structured as follows:
+```
+/<budget>/
+/<budget>/Total': (N),float
+/<budget>/<trace_0>: (N),float
+/<budget>/...
+```
+
+
+The budget traces are defined a traces group.  The overall structure
+looks something like this:
+```
+/traces/
+/traces/'Total': (N),float
+/traces/<noise_0>: (N),float
+/traces/<noise_1>: (N),float
+/traces/<noise_2>/
+/traces/<noise_2>/'Total': (N),float
+/traces/<noise_2>/<noise_3>: (N),float
+/traces/<noise_2>/...
+/traces/...
+```
+
+
+### v2
+
+Each trace is given the following structure:
+```
+/<trace>/
+/<trace>.attrs['style'] = <YAML trace style dict>
+/<trace>/'PSD': (N),float
+/<trace>/budget/
+/<trace>/budget/<subtrace_0>/
+/<trace>/budget/<subtrace_1>/
+/<trace>/budget/...
+```
+
+The overall structure is:
+```
+/<budget>/
+/<budget>/.attrs['plot_style'] = <YAML plot style dict>
+/<budget>/.attrs['style'] = <YAML "Total" trace style dict>
+/<budget>/.attrs[*] = <arbitrary data>
+/<budget>/'Freq': (N),float
+/<budget>/'PSD': (N),float
+/<budget>/budget/
+/<budget>/budget/<trace_0>/...
+/<budget>/budget/<trace_1>/...
+/<budget>/budget/...
+```
diff --git a/README.md b/README.md
index c1869f1f1d92d035fac176f475e81d0e7af5f2e2..ca2693bf5d5442c35846a4971d835f23cd5abcd0 100644
--- a/README.md
+++ b/README.md
@@ -39,8 +39,8 @@ data.
 
 The [`inspiral_range`](https://git.ligo.org/gwinc/inspiral-range)
 package can be used to calculate various common "inspiral range"
-figures of merit for gravitational wave detector budgets.  See
-[figures of merit](#figures-of-merit) section below.
+figures of merit for gravitational wave detector budgets.  See the
+[inspiral range](#inspiral-range) section below.
 
 
 ## usage
@@ -48,12 +48,12 @@ figures of merit for gravitational wave detector budgets.  See
 ### command line interface
 
 `pygwinc` provides a command line interface that can be used to
-calculate and plot noise budgets for generic noise budgets or the
-various canonical IFOs described above, save/plot hdf5 trace data, and
-dump budget IFO parameters:
+calculate and plot the various canonical IFO noise budgets described
+above, as well as custom noise budgets (see below):
 ```shell
 $ python3 -m gwinc aLIGO
 ```
+Budget plots save/plot hdf5 trace data, and dump budget IFO parameters:
 
 You can play with IFO parameters and see the effects on the budget by
 dumping the pre-defined parameters to a [YAML-formatted parameter
@@ -74,7 +74,7 @@ command line:
 $ python3 -m gwinc aLIGO --ifo Optics.SRM.Tunephase=3.14
 ```
 
-Stand-alone YAML files will always assume the nominal ['aLIGO' budget
+Stand-alone YAML files assume the nominal ['aLIGO' budget
 description](gwinc/ifo/aLIGO).
 
 [Custom budgets](#budget-interface) may also be processed by providing
@@ -84,18 +84,19 @@ $ python3 -m gwinc path/to/mybudget
 ```
 
 The command line interface also includes an "interactive" mode which
-provides an [IPython](https://ipython.org/) shell for interacting with a processed budget:
+provides an [IPython](https://ipython.org/) shell for interacting with
+a processed budget:
 ```shell
 $ python3 -m gwinc -i Aplus
 GWINC interactive shell
 
-The 'ifo' Struct and 'traces' data are available for inspection.
+The 'ifo' Struct and 'trace' data are available for inspection.
 Use the 'whos' command to view the workspace.
 
 You may interact with the plot using the 'plt' functions, e.g.:
 
-In [.]: plt.title("foo")
-In [.]: plt.savefig("foo.pdf")
+In [.]: plt.title("My Special Budget")
+In [.]: plt.savefig("mybudget.pdf")
 
 In [1]: 
 ```
@@ -106,7 +107,7 @@ $ python3 -m gwinc -h
 ```
 
 
-### python library
+### library interface
 
 For custom plotting, parameter optimization, etc. all functionality can be
 accessed directly through the `gwinc` library interface:
@@ -114,31 +115,32 @@ accessed directly through the `gwinc` library interface:
 >>> import gwinc
 >>> import numpy as np
 >>> freq = np.logspace(1, 3, 1000)
->>> Budget = gwinc.load_budget('aLIGO')
->>> traces = Budget(freq).run()
->>> fig = gwinc.plot_noise(freq, traces)
+>>> budget = gwinc.load_budget('aLIGO', freq)
+>>> trace = budget.run()
+>>> fig = gwinc.plot_budget(trace)
 >>> fig.show()
 ```
 
 The `load_budget()` function takes most of the same inputs as the
 command line interface (e.g. IFO names, budget module paths, YAML
-parameter files), and returns the un-instantiated `Budget` class
-defined in the specified budget module (see [budget
-interface](#budget-interface) below).
+parameter files), and returns the instantiated `Budget` object defined
+in the specified budget module (see [budget
+interface](#budget-interface) below).  The budget `ifo` `gwinc.Struct`
+is available in the `budget.ifo` attribute.
 
-The budget `run()` method is a convenience method that calculates all
-budget noises and the noise total and returns a (possibly) nested
-dictionary of a noise data, in the form of a `(data, style)` tuple
-where 'data' is the PSD data and 'style' is a plot style dictionary
-for the trace.  The dictionary will be nested if the budget includes
-any sub-budgets.
+The budget `run()` method calculates all budget noises and the noise
+total and returns a `BudgetTrace` object with `freq`, `psd`, and `asd`
+properties.  The budget sub-traces are available through a dictionary
+(`trace['QuantumVacuum']`) interface and via attributes
+(`trace.QuantumVacumm`).
 
 
 ## noise functions
 
-`pygwinc` noise functions are available in the `gwinc.noise` package.
-This package includes multiple sub-modules for the different types of
-noises, e.g. `suspensionthermal`, `coatingthermal`, `quantum`, etc.)
+The `pygwinc` analytical noise functions are available in the
+`gwinc.noise` package.  This package includes multiple sub-modules for
+the different types of noises, e.g. `suspensionthermal`,
+`coatingthermal`, `quantum`, etc.)
 
 The various noise functions need many different parameters to
 calculate their noise outputs.  Many parameters are expected to be in
@@ -161,7 +163,7 @@ def coating_brownian(f, materials, wavelength, wBeam, dOpt):
 ```
 
 
-### `gwinc.Struct` objects
+## `gwinc.Struct` objects
 
 `pygwinc` provides a `Struct` class that can hold parameters in
 attributes and additionally acts like a dictionary, for passing to the
@@ -232,8 +234,12 @@ are:
 * `update(**kwargs)`: update data/attributes
 * `calc()`: return final data array
 
-See the built-in documentation for more info (e.g. `pydoc3
-gwinc.nb.BudgetItem`)
+Generally these methods are not called directly.  Instead, the `Noise`
+and `Budget` classes include a `run` method that smartly executes them
+in sequence and returns a `BudgetTrace` object for the budget.
+
+See the built-in `BudgetItem` documentation for more info
+(e.g. `pydoc3 gwinc.nb.BudgetItem`)
 
 
 ### budget module definition
@@ -313,11 +319,10 @@ The `style` attributes of the various `Noise` classes define plot
 style for the noise.
 
 This budget can be loaded with the `gwinc.load_budget()` function, and
-processed with the `Budget.run()` method:
+processed as usual with the `Budget.run()` method:
 ```python
-Budget = load_budget('/path/to/MyBudget')
-budget = Budget(freq)
-traces = budget.run()
+budget = load_budget('/path/to/MyBudget', freq)
+trace = budget.run()
 ```
 
 Other than the necessary `freq` initialization argument that defines
@@ -333,63 +338,71 @@ suspension Struct is extracted from the `self.ifo` Struct at
 
 If a budget module defined as a package includes an `ifo.yaml`
 [parameter file](#parameter-files) in the package directory, the
-`load_budget()` function will automatically load the YAML data into a
-`gwinc.Struct` and include it as an `Budget.ifo` attribute in the
-returned `Budget` class.  This would provide the `self.ifo` needed in
-the `SuspensionThermal` Noise class above and is therefore a
-convenient way to provide parameter structures in budget packages.
-Otherwise it would need to be created/loaded in some other way and
-passed to the budget at instantiation, e.g.:
+`load_budget()` function will automatically load the YAML data into an
+`ifo` `gwinc.Struct` and assign it to the `budget.ifo` attribute.
+Alternate ifos can be specified at run time:
 ```python
-Budget = load_budget('/path/to/MyBudget')
+budget = load_budget('/path/to/MyBudget', freq)
 ifo = Struct.from_file('/path/to/MyBudget.ifo')
-budget = Budget(freq, ifo=ifo)
-traces = budget.run()
+trace = budget.run(ifo=ifo)
 ```
 
 The IFOs included in `gwinc.ifo` provide examples of the use of the
 budget interface (e.g. [gwinc.ifo.aLIGO](gwinc/ifo/aLIGO)).
 
 
-### "precomp" functions
+### the "precomp" decorator
 
-`BudgetItems` support "precomp" functions that are calculated during
-the `update()` method call and can be used to cache common derived
-values in the `ifo` struct for later use.  The execution state of
-these functions is cached at the Budget level, to prevent needlessly
-re-calculating them in multiple BudgetItems.  When they are calculated
-they are provided with the `freq` and `ifo` attributes as arguments.
-For example, take the following budget definition:
+The `BudgetItem` supports "precomp" functions that can be used to
+calculate common derived values needed in multiple `BudgetItems`.
+They are specified using the `nb.precomp` decorator applied to the
+`BudgetItem.calc()` method.  These functions are executed during the
+`update()` method call, supplied with the budget `freq` and `ifo`
+attributes as input arguments, and are expected to update the `ifo`
+struct.  The execution state of the precomp functions is cached at the
+Budget level, to prevent needlessly re-calculating them multiple
+times.  For example:
 ```python
+from gwinc import nb
 
-class Noise0(Noise):
-    precomp = [
-        precomp_foo,
-    ]
+
+def precomp_foo(freq, ifo):
+    pc = Struct()
     ...
+    return pc
 
-class Noise1(Noise):
-    precomp = [
-        precomp_foo,
-        precomp_bar,
-    ]
+
+def precomp_bar(freq, ifo):
+    pc = Struct()
     ...
+    return pc
 
-class MyBudget(Budget):
+
+class Noise0(nb.Noise):
+    @nb.precomp(foo=precomp_foo)
+    def calc(self, foo):
+        ...
+
+class Noise1(nb.Noise):
+    @nb.precomp(foo=precomp_foo)
+    @nb.precomp(bar=precomp_bar)
+    def calc(self, foo, bar):
+        ...
+
+class MyBudget(nb.Budget):
     noises = [
         Noise0,
         Noise1,
     ]
 ```
-When the `MyBudget.update()` method is called, all the `precomp`
-functions will be execute:
+When `MyBudget.run()` is called, all the `precomp` functions will be
+executed, e.g.:
 ```python
 precomp_foo(self.freq, self.ifo)
 precomp_bar(self.freq, self.ifo)
 ```
-But the `precomp_foo` function will only be calculated once per budget
-update() call, even though it's specified as needed by both `Noise0`
-and `Noise1`.
+But the `precomp_foo` function will only be calculated once even
+though it's specified as needed by both `Noise0` and `Noise1`.
 
 
 ### extracting single noise terms
@@ -399,10 +412,9 @@ interface.  The most straightforward way is to run the full budget,
 and extract the noise data the output traces dictionary:
 
 ```python
-Budget = load_budget('/path/to/MyBudget')
-budget = Budget(freq)
-traces = budget.calc_traces()
-data, plot_style = traces['QuantumVacuum']
+budget = load_budget('/path/to/MyBudget', freq)
+trace = budget.run()
+quantum_trace = trace['QuantumVacuum']
 ```
 
 You can also calculate the final calibrated output noise for just a
@@ -420,7 +432,7 @@ data = budget['QuantumVacuum'].calc()
 ```
 
 
-# figures of merit
+# inspiral range
 
 The [`inspiral_range`](https://git.ligo.org/gwinc/inspiral-range)
 package can be used to calculate various common "inspiral range"
@@ -433,18 +445,15 @@ import inspiral_range
 import numpy as np
 
 freq = np.logspace(1, 3, 1000)
-Budget = gwinc.load_budget('Aplus')
-traces = Budget(freq).run()
+budget = gwinc.load_budget('Aplus', freq)
+trace = budget.run()
 
 range = inspiral_range.range(
-    freq, traces['Total'][0],
+    freq, trace.psd,
     m1=30, m2=30,
 )
 ```
 
-Note you need to extract the zeroth element of the `traces['Total']`
-tuple, which is the actual PSD data.
-
 See the [`inspiral_range`](https://git.ligo.org/gwinc/inspiral-range)
 package for more details.
 
diff --git a/gwinc/__init__.py b/gwinc/__init__.py
index 0c1592dae9a73522424c4640b8a575109639959b..134bc3740319cc201aafaf5a2c1d53e6d7355fc3 100644
--- a/gwinc/__init__.py
+++ b/gwinc/__init__.py
@@ -7,6 +7,7 @@ import numpy as np
 
 from .ifo import IFOS
 from .struct import Struct
+from .plot import plot_budget
 from .plot import plot_noise
 
 
@@ -37,24 +38,24 @@ def _load_module(name_or_path):
     return mod, path
 
 
-def load_budget(name_or_path):
-    """Load GWINC IFO Budget by name or from path.
+def load_budget(name_or_path, freq=None):
+    """Load GWINC Budget
 
-    Named IFOs should correspond to one of the IFOs available in the
-    gwinc package (see gwinc.IFOS).  If a path is provided it should
-    either be a budget package (directory) or module (ending in .py),
-    or an IFO struct definition (see gwinc.Struct).
+    Accepts either the name of a built-in canonical budget (see
+    gwinc.IFOS), the path to a budget package (directory) or module
+    (ending in .py), or the path to an IFO struct definition file (see
+    gwinc.Struct).
 
-    If a budget package path is provided, and the package includes an
-    'ifo.yaml' file, that file will be loaded into a Struct and
-    assigned as an attribute to the returned Budget class.
+    If the budget is a package directory which includes an 'ifo.yaml'
+    file the ifo Struct will be loaded from that file and assigned to
+    the budget.ifo attribute.  If a struct definition file is provided
+    the base aLIGO budget definition and ifo will be assumed.
 
-    If a bare struct is provided the base aLIGO budget definition will
-    be assumed.
-
-    Returns a Budget class with 'ifo', 'freq', and 'plot_style', ifo
-    structure, frequency array, and plot style dictionary, with the
-    last three being None if they are not defined in the budget.
+    Returns a Budget object instantiated with the provided frequency
+    array (if specified), and with any included ifo assigned as an
+    object attribute.  If a frequency array is not provided and the
+    budget class does not define it's own, the frequency array must be
+    provided at budget update() or run() time.
 
     """
     ifo = None
@@ -68,11 +69,9 @@ def load_budget(name_or_path):
             ifo = Struct.from_file(path)
             bname = 'aLIGO'
             modname = 'gwinc.ifo.aLIGO'
-            logger.info("loading budget {}...".format(modname))
 
         else:
             modname = path
-            logger.info("loading module path {}...".format(modname))
 
     else:
         if name_or_path not in IFOS:
@@ -82,17 +81,14 @@ def load_budget(name_or_path):
             ))
         bname = name_or_path
         modname = 'gwinc.ifo.'+name_or_path
-        logger.info("loading module {}...".format(modname))
 
+    logger.info("loading module {}...".format(modname))
     mod, modpath = _load_module(modname)
-
     Budget = getattr(mod, bname)
     ifopath = os.path.join(modpath, 'ifo.yaml')
     if not ifo and os.path.exists(ifopath):
         ifo = Struct.from_file(ifopath)
-    Budget.ifo = ifo
-
-    return Budget
+    return Budget(freq=freq, ifo=ifo)
 
 
 def gwinc(freq, ifo, source=None, plot=False, PRfixed=True):
@@ -114,15 +110,16 @@ def gwinc(freq, ifo, source=None, plot=False, PRfixed=True):
     # assume generic aLIGO configuration
     # FIXME: how do we allow adding arbitrary addtional noise sources
     # from just ifo description, without having to specify full budget
-    Budget = load_budget('aLIGO')
-    traces = Budget(freq, ifo=ifo).run()
-    plot_style = getattr(Budget, 'plot_style', {})
+    budget = load_budget('aLIGO', freq)
+    traces = budget.run()
+    plot_style = getattr(budget, 'plot_style', {})
 
     # construct matgwinc-compatible noises structure
     noises = {}
-    for name, (data, style) in traces.items():
-        noises[style.get('label', name)] = data
-    noises['Freq'] = freq
+    for name, trace in traces.items():
+        noises[name] = trace.psd
+    noises['Total'] = traces.psd
+    noises['Freq'] = traces.freq
 
     pbs = ifo.gwinc.pbs
     parm = ifo.gwinc.parm
@@ -169,6 +166,6 @@ def gwinc(freq, ifo, source=None, plot=False, PRfixed=True):
             logger.info('BBH Inspiral Range:     ' + str(score.effr0bh) + ' Mpc/ z = ' + str(score.zHorizonBH))
             logger.info('Stochastic Omega: %4.1g Universes' % score.Omega)
 
-        plot_noise(ifo, traces, **plot_style)
+        plot_budget(traces, **plot_style)
 
     return score, noises, ifo
diff --git a/gwinc/__main__.py b/gwinc/__main__.py
index 6b6142bedb1b5b58bc6edc81c596f1e6116cf1d3..e2ab196698075e130bc2b1cb62016a124e06dfcb 100644
--- a/gwinc/__main__.py
+++ b/gwinc/__main__.py
@@ -5,10 +5,10 @@ import logging
 import argparse
 import numpy as np
 
-from . import IFOS, load_budget, plot_noise, logger
+from . import IFOS, load_budget, plot_budget, logger
 
 logger.setLevel(os.getenv('LOG_LEVEL', 'WARNING').upper())
-formatter = logging.Formatter('%(name)s: %(message)s')
+formatter = logging.Formatter('%(message)s')
 handler = logging.StreamHandler()
 handler.setFormatter(formatter)
 logger.addHandler(handler)
@@ -61,7 +61,7 @@ parser = argparse.ArgumentParser(
     formatter_class=argparse.RawDescriptionHelpFormatter)
 parser.add_argument(
     '--freq', '-f', metavar='FLO:[NPOINTS:]FHI',
-    help="frequency array specification in Hz [{}]".format(FREQ))
+    help="logarithmic frequency array specification in Hz [{}]".format(FREQ))
 parser.add_argument(
     '--ifo', '-o', metavar='PARAM=VAL',
     #nargs='+', action='extend',
@@ -71,7 +71,7 @@ parser.add_argument(
     '--title', '-t',
     help="plot title")
 parser.add_argument(
-    '--fom', metavar='FUNC[:PARAM=VAL,...]',
+    '--fom', metavar='FUNC[:PARAM=VAL,...]', default=FOM,
     help="use inspiral_range.FUNC to calculate range figure-of-merit on resultant spectrum")
 group = parser.add_mutually_exclusive_group()
 group.add_argument(
@@ -118,29 +118,28 @@ def main():
 
     if os.path.splitext(os.path.basename(args.IFO))[1] in DATA_SAVE_FORMATS:
         if args.freq:
-            parser.exit(2, "Can not specify frequency array when loading traces from file.\n")
+            parser.exit(2, "Frequency specification not allowed when loading traces from file.\n")
         if args.ifo:
-            parser.exit(2, "Can not override ifo parameters when loading traces from file.\n")
+            parser.exit(2, "IFO parameter specification not allowed when loading traces from file.\n")
         from .io import load_hdf5
-        Budget = None
-        freq, traces, attrs = load_hdf5(args.IFO)
-        ifo = attrs.get('ifo')
-        # FIXME: deprecate 'IFO'
-        ifo = attrs.get('IFO', ifo)
-        plot_style = attrs
+        budget = None
+        trace = load_hdf5(args.IFO)
+        freq = trace.freq
+        ifo = trace.ifo
+        plot_style = trace.plot_style
 
     else:
-        Budget = load_budget(args.IFO)
-        ifo = Budget.ifo
+        budget = load_budget(args.IFO)
+        ifo = budget.ifo
         if args.freq:
             try:
                 freq = freq_from_spec(args.freq)
             except IndexError:
-                parser.error("improper frequency specification '{}'".format(args.freq))
+                parser.exit(2, "Improper frequency specification: {}\n".format(args.freq))
         else:
-            freq = getattr(Budget, 'freq', freq_from_spec(FREQ))
-        plot_style = getattr(Budget, 'plot_style', {})
-        traces = None
+            freq = getattr(budget, 'freq', freq_from_spec(FREQ))
+        plot_style = getattr(budget, 'plot_style', {})
+        trace = None
 
     if args.ifo:
         for paramval in args.ifo:
@@ -149,19 +148,19 @@ def main():
 
     if args.yaml:
         if not ifo:
-            parser.exit(2, "No 'ifo' structure available.\n")
+            parser.exit(2, "IFO structure not provided.\n")
         print(ifo.to_yaml(), end='')
         return
     if args.text:
         if not ifo:
-            parser.exit(2, "No 'ifo' structure available.\n")
+            parser.exit(2, "IFO structure not provided.\n")
         print(ifo.to_txt(), end='')
         return
     if args.diff:
         if not ifo:
-            parser.exit(2, "No 'ifo' structure available.\n")
-        Budget = load_budget(args.diff)
-        diffs = ifo.diff(Budget.ifo)
+            parser.exit(2, "IFO structure not provided.\n")
+        dbudget = load_budget(args.diff)
+        diffs = ifo.diff(dbudget.ifo)
         if diffs:
             w = max([len(d[0]) for d in diffs])
             fmt = '{{:{}}} {{:>20}} {{:>20}}'.format(w)
@@ -204,22 +203,21 @@ def main():
         import inspiral_range
         logger_ir = logging.getLogger('inspiral_range')
         logger_ir.setLevel(logger.getEffectiveLevel())
-        logger_ir.removeHandler(logger_ir.handlers[0])
-        logger_ir.addHandler(logger.handlers[0])
-        if not args.fom:
-            args.fom = FOM
+        handler = logging.StreamHandler()
+        handler.setFormatter(logging.Formatter('%(name)s: %(message)s'))
+        logger_ir.addHandler(handler)
+
     except ModuleNotFoundError:
-        if args.fom:
-            raise
-        logger.warning("inspiral_range package not available, figure of merit will not be calculated...")
+        logger.warning("WARNING: inspiral_range package not available, figure of merit will not be calculated.")
+        args.fom = None
     if args.fom:
         try:
-            range_func, fargs = args.fom.split(':')
+            range_func, range_func_args = args.fom.split(':')
         except ValueError:
             range_func = args.fom
-            fargs = ''
+            range_func_args = ''
         range_params = {}
-        for param in fargs.split(','):
+        for param in range_func_args.split(','):
             if not param:
                 continue
             p, v = param.split('=')
@@ -234,37 +232,33 @@ def main():
     ##########
     # main calculations
 
-    if not traces:
+    if not trace:
         logger.info("calculating budget...")
-        traces = Budget(freq=freq, ifo=ifo).run()
-
-    # logger.info('recycling factor: {: >0.3f}'.format(ifo.gwinc.prfactor))
-    # logger.info('BS power:         {: >0.3f} W'.format(ifo.gwinc.pbs))
-    # logger.info('arm finesse:      {: >0.3f}'.format(ifo.gwinc.finesse))
-    # logger.info('arm power:        {: >0.3f} kW'.format(ifo.gwinc.parm/1000))
+        trace = budget.run(freq=freq)
 
     if args.title:
         plot_style['title'] = args.title
     elif 'title' in plot_style:
         pass
-    elif Budget:
-        plot_style['title'] = "GWINC Noise Budget: {}".format(Budget.name)
+    elif budget:
+        plot_style['title'] = "GWINC Noise Budget: {}".format(budget.name)
     else:
         plot_style['title'] = "GWINC Noise Budget: {}".format(args.IFO)
 
     if args.fom:
         logger.info("calculating inspiral {}...".format(range_func))
         H = inspiral_range.CBCWaveform(freq, **range_params)
-        logger.debug("params: {}".format(H.params))
-        fom = eval('inspiral_range.{}'.format(range_func))(freq, traces['Total'][0], H=H)
-        logger.info("{}({}) = {:.2f} Mpc".format(range_func, fargs, fom))
-        fom_title = 'inspiral {func} {m1}/{m2} $\mathrm{{M}}_\odot$: {fom:.0f} Mpc'.format(
+        logger.debug("waveform params: {}".format(H.params))
+        fom = eval('inspiral_range.{}'.format(range_func))(freq, trace.psd, H=H)
+        logger.info("{}({}) = {:.2f} Mpc".format(range_func, range_func_args, fom))
+        subtitle = 'inspiral {func} {m1}/{m2} $\mathrm{{M}}_\odot$: {fom:.0f} Mpc'.format(
             func=range_func,
             m1=H.params['m1'],
             m2=H.params['m2'],
             fom=fom,
             )
-        plot_style['title'] += '\n{}'.format(fom_title)
+    else:
+        subtitle = None
 
     ##########
     # interactive
@@ -273,14 +267,14 @@ def main():
     if args.interactive:
         banner = """GWINC interactive shell
 
-The 'ifo' Struct and 'traces' data are available for inspection.
-Use the 'whos' command to view the workspace.
+The 'ifo' Struct and 'budget' trace data objects are available for
+inspection.  Use the 'whos' command to view the workspace.
 """
         if not args.plot:
             banner += """
-You may plot the budget using the 'plot_noise()' function:
+You may plot the budget using the 'plot_budget()' function:
 
-In [.]: plot_noise(freq, traces, **plot_style)
+In [.]: plot_budget(budget, **plot_style)
 """
         banner += """
 You may interact with the plot using the 'plt' functions, e.g.:
@@ -292,34 +286,31 @@ In [.]: plt.savefig("foo.pdf")
         ipshell = InteractiveShellEmbed(
             banner1=banner,
             user_ns={
-                'freq': freq,
-                'traces': traces,
+                'budget': trace,
                 'ifo': ifo,
                 'plot_style': plot_style,
-                'plot_noise': plot_noise,
+                'plot_budget': plot_budget,
             },
         )
         ipshell.enable_pylab()
         if args.plot:
-            ipshell.ex("fig = plot_noise(freq, traces, **plot_style)")
-            ipshell.ex("plt.title('{}')".format(plot_style['title']))
+            ipshell.ex("fig = plot_budget(budget, **plot_style)")
+            ipshell.ex("plt.title(plot_style['title'])")
         ipshell()
 
     ##########
     # output
 
-    # save noise traces to HDF5 file
+    # save noise trace to HDF5 file
     if out_data_files:
         from .io import save_hdf5
-        attrs = dict(plot_style)
         for path in out_data_files:
-            logger.info("saving budget traces: {}".format(path))
+            logger.info("saving budget trace: {}".format(path))
             save_hdf5(
                 path=path,
-                freq=freq,
-                traces=traces,
+                trace=trace,
                 ifo=ifo,
-                **attrs,
+                plot_style=plot_style,
             )
 
     # standard plotting
@@ -327,10 +318,10 @@ In [.]: plt.savefig("foo.pdf")
         logger.debug("plotting noises...")
         fig = plt.figure()
         ax = fig.add_subplot(1, 1, 1)
-        plot_noise(
-            freq,
-            traces,
+        plot_budget(
+            trace,
             ax=ax,
+            subtitle=subtitle,
             **plot_style
         )
         fig.tight_layout()
diff --git a/gwinc/ifo/CE2/__init__.py b/gwinc/ifo/CE2/__init__.py
index 0d0f11eea2e9fc10b5053cdc9d12e6cf53b88ab0..f4e0e69d0008982b6b01d346141f2ac4a10b9fc7 100644
--- a/gwinc/ifo/CE2/__init__.py
+++ b/gwinc/ifo/CE2/__init__.py
@@ -73,7 +73,6 @@ class Substrate(nb.Budget):
 
     noises = [
         ITMThermoRefractive,
-        ITMCarrierDensity,
         SubstrateBrownian,
         SubstrateThermoElastic,
     ]
diff --git a/gwinc/ifo/CE2/ifo.yaml b/gwinc/ifo/CE2/ifo.yaml
index 3c65f15b46e88ac9294a243267eb85dd7e76ec59..97f5f0d70a4c2ab7b8ce3c230acd42fcff23f373 100644
--- a/gwinc/ifo/CE2/ifo.yaml
+++ b/gwinc/ifo/CE2/ifo.yaml
@@ -227,15 +227,6 @@ Materials:
     RefractiveIndex: 3.5      # 3.38 * (1 + 4e-5 * T)   (ioffe)
     dndT: 1e-4                # ~123K & 1900 nm : http://arxiv.org/abs/physics/0606168
     Temp: 123                 # mirror temperature [K]
-    ## parameters for semiconductor optics
-    isSemiConductor: True     # we are doing semiconductor optics
-    CarrierDensity: 1e19      # 1/m^3; carrier density for phosphorous-doped silicon
-    ElectronDiffusion: 9.7e-3 # m^2/s; electron diffusion coefficient for silicon at 120 K
-    HoleDiffusion: 3.5e-3     # m^2/s; hole diffusion coefficient for silicon at 120 K
-    ElectronEffMass: 9.747e-31 # kg; effective mass of each electron 1.07*m_e
-    HoleEffMass: 8.016e-31    # kg; effective mass of each hole 0.88*m_e
-    ElectronIndexGamma: -8.8e-28 # m**3; dependence of index of refraction on electron carrier density
-    HoleIndexGamma: -1.02e-27 # m**3; dependence of index of refraction on hole carrier density
 
   MassRadius: 0.4 # m; 80 cm mCZ silicon
   MassThickness: 0.286
@@ -257,7 +248,6 @@ Optics:
   # zz = loadmat('CryogenicLIGO/Sensitivity/GWINC/optRuns/' + qopt_mat)
   ITM:
     SubstrateAbsorption: 1e-3     # 1/m; 10 ppm/cm for MCZ Si
-    BeamRadius: 0.141             # m; 1/e^2 power radius w1
     CoatingAbsorption: 0.5e-6     # absorption of ITM
     Transmittance: 0.014          # zz['x'][0][3]
     #CoatingThicknessLown: 0.308
@@ -278,7 +268,6 @@ Optics:
       - 0.3867382
       - 0.08814237
   ETM:
-    BeamRadius: 0.141                  # m; 1/e^2 power radius w2
     Transmittance: 5e-6                # Transmittance of ETM
     #CoatingThicknessLown: 0.27
     #CoatingThicknessCap: 0.5
diff --git a/gwinc/ifo/Voyager/__init__.py b/gwinc/ifo/Voyager/__init__.py
index 933a7828b72c7dd0cd8de8fb5dcb7414b93ce5b1..eaa433506e907bb55a355c5642bcdfed6e6e60c8 100644
--- a/gwinc/ifo/Voyager/__init__.py
+++ b/gwinc/ifo/Voyager/__init__.py
@@ -14,7 +14,6 @@ class Voyager(nb.Budget):
         CoatingBrownian,
         CoatingThermoOptic,
         ITMThermoRefractive,
-        ITMCarrierDensity,
         SubstrateBrownian,
         SubstrateThermoElastic,
         ExcessGas,
diff --git a/gwinc/ifo/Voyager/ifo.yaml b/gwinc/ifo/Voyager/ifo.yaml
index 67f06660e5b11575ac3fd36a6d4a950ebb2a3fdf..81125d1594b1c0169a9fbe77f45ad56a8cc18d9a 100644
--- a/gwinc/ifo/Voyager/ifo.yaml
+++ b/gwinc/ifo/Voyager/ifo.yaml
@@ -252,15 +252,6 @@ Materials:
     RefractiveIndex: 3.5 # 3.38 * (1 + 4e-5 * T)   (ioffe)
     dndT: 1e-4           # ~123K & 1900 nm : http://arxiv.org/abs/physics/0606168
     Temp: 123            # mirror temperature [K]
-    ## parameters for semiconductor optics
-    isSemiConductor: True     # we are doing semiconductor optics
-    CarrierDensity: 1e19      # 1/m^3; carrier density for phosphorous-doped silicon
-    ElectronDiffusion: 9.7e-3 # m^2/s; electron diffusion coefficient for silicon at 120 K
-    HoleDiffusion: 3.5e-3     # m^2/s; hole diffusion coefficient for silicon at 120 K
-    ElectronEffMass: 9.747e-31 # kg; effective mass of each electron 1.07*m_e
-    HoleEffMass: 8.016e-31    # kg; effective mass of each hole 0.88*m_e
-    ElectronIndexGamma: -8.8e-28 # m**3; dependence of index of refraction on electron carrier density
-    HoleIndexGamma: -1.02e-27 # m**3; dependence of index of refraction on hole carrier density
 
   MassRadius: 0.225 # m; 45 cm mCZ silicon
   MassThickness: 0.55
@@ -282,7 +273,6 @@ Optics:
   # zz = loadmat('CryogenicLIGO/Sensitivity/GWINC/optRuns/' + qopt_mat)
   ITM:
     SubstrateAbsorption: 1e-3   # 1/m; 10 ppm/cm for MCZ Si
-    BeamRadius: 0.0585          # m; 1/e^2 power radius w1
     CoatingAbsorption: 1e-6     # absorption of ITM
     Transmittance: 2e-3         # zz['x'][0][3]
     #CoatingThicknessLown: 0.308
@@ -303,7 +293,6 @@ Optics:
       - 0.386738199718736
       - 0.088142365969070
   ETM:
-    BeamRadius: 0.0835                 # m; 1/e^2 power radius w2
     Transmittance: 5e-6                # Transmittance of ETM
     #CoatingThicknessLown: 0.27
     #CoatingThicknessCap: 0.5
diff --git a/gwinc/ifo/__main__.py b/gwinc/ifo/__main__.py
index 1da5c7c0a65ce61ce665c1d3af6b6d40324c01fd..a049331ecd84f152e59a39caeeea618b26a443d0 100644
--- a/gwinc/ifo/__main__.py
+++ b/gwinc/ifo/__main__.py
@@ -29,18 +29,17 @@ def main():
     budgets = {}
     range_pad = 0
     for ifo in IFOS:
-        budget = load_budget(ifo)(freq)
+        budget = load_budget(ifo, freq)
         name = budget.name
         budgets[name] = budget
         range_pad = max(len(name), range_pad)
 
     for name, budget in budgets.items():
-        budget.update()
-        data = budget.calc()
+        trace = budget.run()
         try:
             import inspiral_range
             label_range = ' {:>6.0f} Mpc'.format(
-                inspiral_range.range(freq, data),
+                inspiral_range.range(freq, trace.psd),
             )
         except ModuleNotFoundError:
             label_range = ''
@@ -50,7 +49,7 @@ def main():
             pad=range_pad,
             range=label_range,
         )
-        ax.loglog(freq, np.sqrt(data), label=label, lw=2)
+        ax.loglog(freq, trace.asd, label=label, lw=2)
 
     ax.grid(
         True,
diff --git a/gwinc/ifo/aLIGO/ifo.yaml b/gwinc/ifo/aLIGO/ifo.yaml
index 8005a969d50db68839d9a2a02f8aabdf7cea912b..9ffde7798870a2c68454dae4972bcd34d39deaa0 100644
--- a/gwinc/ifo/aLIGO/ifo.yaml
+++ b/gwinc/ifo/aLIGO/ifo.yaml
@@ -188,7 +188,7 @@ Suspension:
 
 ## Optic Material -------------------------------------------------------
 Materials:
-  MassRadius: 0.17                # m; 
+  MassRadius: 0.17                # m;
   MassThickness: 0.200            # m; Peter F 8/11/2005
 
   ## Dielectric coating material parameters----------------------------------
@@ -251,13 +251,11 @@ Optics:
     dc: 1.5707963                 # pi/2 # demod/detection/homodyne phase
 
   ITM:
-    # BeamRadius: 0.055             # m, 1/e^2 power radius, now in precompIFO
     Transmittance: 0.014
     CoatingThicknessLown: 0.308
     CoatingThicknessCap: 0.5
     CoatingAbsorption: 0.5e-6
   ETM:
-    # BeamRadius: 0.062             # m, 1/e^2 power radius, now in precompIFO
     Transmittance: 5e-6
     CoatingThicknessLown: 0.27
     CoatingThicknessCap: 0.5
diff --git a/gwinc/ifo/noises.py b/gwinc/ifo/noises.py
index b760e7ae01ea9535a11d00895567724e6a3d9fb8..f78821ce1bc4cab96ebaf2d629daad0cf49433cd 100644
--- a/gwinc/ifo/noises.py
+++ b/gwinc/ifo/noises.py
@@ -1,3 +1,4 @@
+import copy
 import numpy as np
 from numpy import pi, sin, exp, sqrt
 
@@ -20,7 +21,26 @@ def coating_thickness(ifo, optic):
     T = optic.Transmittance
     dL = optic.CoatingThicknessLown
     dCap = optic.CoatingThicknessCap
-    return noise.coatingthermal.getCoatDopt(ifo.Materials, T, dL, dCap=dCap)
+    return noise.coatingthermal.getCoatDopt(materials, T, dL, dCap=dCap)
+
+
+def mirror_struct(ifo, tm):
+    """Create a "mirror" Struct for a LIGO core optic
+
+    This is a copy of the ifo.Materials Struct, containing Substrate
+    and Coating sub-Structs, as well as some basic geometrical
+    properties of the optic.
+
+    """
+    # NOTE: we deepcopy this struct since we'll be modifying it (and
+    # it would otherwise be stored by reference)
+    mirror = copy.deepcopy(ifo.Materials)
+    optic = ifo.Optics.get(tm)
+    mirror.Coating.dOpt = coating_thickness(ifo.Materials, optic)
+    mirror.update(optic)
+    mirror.MassVolume = pi * mirror.MassRadius**2 * mirror.MassThickness
+    mirror.MirrorMass = mirror.MassVolume * mirror.Substrate.MassDensity
+    return mirror
 
 
 def arm_cavity(ifo):
@@ -384,7 +404,7 @@ class Seismic(nb.Noise):
         else:
             nt, nr = noise.seismic.seismic_BSC_ISI(self.freq)
         n, nh, nv = noise.seismic.seismic_suspension_fitered(
-            self.ifo.Suspension, nt)
+            self.ifo.Suspension, sustf, nt)
         return n * 4
 
 
diff --git a/gwinc/io.py b/gwinc/io.py
index fb407486d18a48d133240555c0fa1bcfe99e99ab..98b900e5bd02b4099d982fe9dc8f3b2aa1e2a65d 100644
--- a/gwinc/io.py
+++ b/gwinc/io.py
@@ -4,25 +4,23 @@ import datetime
 
 from . import logger
 from . import Struct
+from .trace import BudgetTrace
 
 
 SCHEMA = 'GWINC noise budget'
-SCHEMA_VERSION = 1
 
 
-def _write_trace_recursive(grp, traces):
-    for name, trace in traces.items():
-        if isinstance(trace, dict):
-            tgrp = grp.create_group(name)
-            _write_trace_recursive(tgrp, trace)
-        else:
-            data, style = trace
-            dset = grp.create_dataset(name, data=data)
-            for key, val in style.items():
-                dset.attrs[key] = val
+def _write_trace_recursive(f, trace):
+    f.attrs['style'] = yaml.dump(trace.style)
+    f.create_dataset('PSD', data=trace.psd)
+    if trace.budget:
+        bgrp = f.create_group('budget')
+    for t in trace:
+        tgrp = bgrp.create_group(t.name)
+        _write_trace_recursive(tgrp, t)
 
 
-def save_hdf5(path, freq, traces, **kwargs):
+def save_hdf5(path, trace, ifo=None, plot_style=None, **kwargs):
     """Save GWINC budget data to an HDF5 file.
 
     The `freq` argument should be the frequency array, and `traces`
@@ -36,46 +34,107 @@ def save_hdf5(path, freq, traces, **kwargs):
     """
     with h5py.File(path, 'w') as f:
         f.attrs['SCHEMA'] = SCHEMA
-        f.attrs['SCHEMA_VERSION'] = SCHEMA_VERSION
+        f.attrs['SCHEMA_VERSION'] = 2
         # FIXME: add budget code hash or something
         f.attrs['date'] = datetime.datetime.now().isoformat()
+        if ifo:
+            f.attrs['ifo'] = ifo.to_yaml()
+        if plot_style:
+            f.attrs['plot_style'] = yaml.dump(plot_style)
         for key, val in kwargs.items():
-            if key == 'ifo':
-                f.attrs['ifo'] = val.to_yaml()
+            f.attrs[key] = val
+        f.create_dataset('Freq', data=trace.freq)
+        tgrp = f.create_group(trace.name)
+        _write_trace_recursive(tgrp, trace)
+
+
+def _load_hdf5_v1(f):
+    def read_recursive(element):
+        budget = []
+        for name, item in element.items():
+            if name == 'Total':
+                total = item[:]
+                continue
+            if isinstance(item, h5py.Group):
+                trace = read_recursive(item)
+                trace.name = name
             else:
-                f.attrs[key] = val
-        f.create_dataset('Freq', data=freq)
-        tgrp = f.create_group('traces')
-        _write_trace_recursive(tgrp, traces)
+                trace = BudgetTrace(
+                    name=name,
+                    style=dict(item.attrs),
+                    psd=item[:],
+                    budget=[],
+                )
+            budget.append(trace)
+        return BudgetTrace(
+            psd=total,
+            budget=budget,
+        )
+    trace = read_recursive(f['/traces'])
+    trace.name = 'Total'
+    trace._freq = f['Freq'][:]
+    attrs = dict(f.attrs)
+    if 'ifo' in attrs:
+        try:
+            ifo = Struct.from_yaml(attrs['ifo'])
+            del attrs['ifo']
+        except yaml.constructor.ConstructorError:
+            logger.warning("HDF5 load warning: Could not de-serialize 'ifo' YAML attribute.")
+            ifo = None
+    trace.style = attrs
+    trace.ifo = ifo
+    return trace
 
 
-def _read_trace_recursive(element):
-    trace = {}
-    for name, item in element.items():
-        if isinstance(item, h5py.Group):
-            trace[name] = _read_trace_recursive(item)
+def _load_hdf5_v2(f):
+    def read_recursive(element):
+        psd = element['PSD'][:]
+        style = yaml.safe_load(element.attrs['style'])
+        budget = []
+        if 'budget' in element:
+            for name, item in element['budget'].items():
+                trace = read_recursive(item)
+                trace.name = name
+                budget.append(trace)
+        return BudgetTrace(
+            psd=psd,
+            budget=budget,
+            style=style,
+        )
+    for name, item in f.items():
+        if name == 'Freq':
+            freq = item[:]
         else:
-            trace[name] = item[:], dict(item.attrs.items())
+            trace = read_recursive(item)
+            trace.name = name
+    trace._freq = freq
+    trace.ifo = None
+    attrs = dict(f.attrs)
+    ifo = attrs.get('ifo')
+    if ifo:
+        try:
+            trace.ifo = Struct.from_yaml(ifo)
+            del attrs['ifo']
+        except yaml.constructor.ConstructorError:
+            logger.warning("HDF5 load warning: Could not de-serialize 'ifo' YAML attribute.")
+    trace.plot_style = yaml.safe_load(attrs['plot_style'])
     return trace
 
 
 def load_hdf5(path):
     """Load GWINC budget data from an HDF5 file.
 
-    Returns (freq, traces, attrs).  An 'ifo' attr will be
-    de-serialized from YAML into a Struct object.
+    Returns BudgetTrace.  An 'ifo' attr will be de-serialized from
+    YAML into a Struct object and assigned as an attribute to the
+    BudgetTrace.
 
     See HDF5_SCHEMA.
 
     """
+    loaders = {
+        1: _load_hdf5_v1,
+        2: _load_hdf5_v2,
+    }
     with h5py.File(path, 'r') as f:
-        # FIXME: check SCHEMA name/version
-        freq = f['Freq'][:]
-        traces = _read_trace_recursive(f['/traces'])
-        attrs = dict(f.attrs)
-        if 'ifo' in attrs:
-            try:
-                attrs['ifo'] = Struct.from_yaml(attrs['ifo'])
-            except yaml.constructor.ConstructorError:
-                logger.warning("HDF5 load warning: Could not de-serialize 'ifo' YAML attribute.")
-        return freq, traces, attrs
+        version = f.attrs.get('SCHEMA_VERSION', 1)
+        return loaders[version](f)
diff --git a/gwinc/nb.py b/gwinc/nb.py
index 2680862aceeb7c2e751672a0f352674c0d14e749..54391b881c460c34bed8cb4bbbaf7fa6f8dda6ad 100644
--- a/gwinc/nb.py
+++ b/gwinc/nb.py
@@ -1,11 +1,77 @@
-import operator
 import itertools
 import collections
 import numpy as np
 import scipy.interpolate
-from functools import reduce
 
 from . import logger
+from .trace import BudgetTrace
+
+
+def precomp(*precomp_funcs, **precomp_fmaps):
+    """BudgetItem.calc decorator to add pre-computed functions
+
+    This is intended to decorate BudgetItem.calc() methods with common
+    functions whose return value are cached for later use.  The
+    functions are supplied with the `freq` array and `ifo` Struct
+    attributes as arguments, and their return values are provided as
+    keyword arguments to calc().
+
+    For example, if a calc method is defined as:
+
+      @precomp(foo=precomp_foo)
+      @precomp(bar=precomp_bar)
+      def calc(self, foo, bar):
+          ...
+
+    then when the budget is run the precomp functions will be executed
+    before calc(), roughly the equivalent of:
+
+      foo = precomp_foo(self.freq, self.ifo)
+      bar = precomp_bar(self.freq, self.ifo)
+      psd = calc(foo=foo, bar=bar)
+
+    The execution state of each precomp function is cached so that the
+    same function is not needlessly executed multiple times.
+
+    """
+    def decorator(func):
+        if precomp_funcs:
+            try:
+                func._precomp_list.extend(precomp_funcs)
+            except AttributeError:
+                func._precomp_list = list(precomp_funcs)
+
+        if precomp_fmaps:
+            try:
+                func._precomp_mapped.update(precomp_fmaps)
+            except AttributeError:
+                func._precomp_mapped = dict(precomp_fmaps)
+        return func
+    return decorator
+
+
+def _precomp_recurse_mapping(func, freq, ifo, _precomp):
+    """Recursively execute @precomp decorator functions
+
+    Recurses down functions which may themselves have precomp
+    decorators, building a **kwargs mapping to pass to the wrapped
+    function call.
+
+    """
+    for pc_func in itertools.chain(
+            getattr(func, '_precomp_list', []),
+            getattr(func, '_precomp_mapped', {}).values(),
+    ):
+        if pc_func in _precomp:
+            continue
+        pc_map = _precomp_recurse_mapping(pc_func, freq, ifo, _precomp=_precomp)
+        logger.debug("precomp {}".format(pc_func))
+        _precomp[pc_func] = pc_func(freq, ifo, **pc_map)
+
+    kwargs = {
+        name: _precomp[pc_func] for name, pc_func in getattr(func, '_precomp_mapped', {}).items()
+    }
+    return kwargs
 
 
 def quadsum(data):
@@ -20,7 +86,6 @@ def quadsum(data):
     return np.nansum(data, 0)
 
 
-
 class BudgetItem:
     """GWINC BudgetItem class
 
@@ -38,25 +103,10 @@ class BudgetItem:
         provided are written directly as attribute variables to the
         class (as with __init__).
 
-        Second, after attribute update, all functions listed in the
-        `precomp` attribute are executed, supplied with the `freq` and
-        `ifo` attributes.  So if the `precomp` attribute is defined
-        as:
-
-          precomp = [precomp_foo, precomp_bar]
-
-        then this method will execute the following after attribute
-        update:
+        When overloading this method it is recommended to execute the
+        method from the base class with e.g.:
 
-          precomp_foo(self.freq, self.ifo)
-          precomp_bar(self.freq, self.ifo)
-
-        These functions are intended to update the `ifo` Struct
-        attribute with derived values cached for later usage.  If the
-        `_precomp` argument is provided to this method then it is
-        assumed to be a set of previously executed precomp functions,
-        and any function already listed there will not be re-executed,
-        and it will be updated with any newly executed functions.
+          super().update(**kwargs)
 
         """
         for key, val in kwargs.items():
@@ -79,6 +129,12 @@ class BudgetItem:
         """
         return None
 
+    def _calc(self, _precomp=None):
+        """internal function to call calc with precomp evaluation"""
+        pcmap = _precomp_recurse_mapping(self.calc, self.freq, self.ifo, _precomp)
+        logger.debug("calc {}".format(self.name))
+        return self.calc(**pcmap)
+
     ##########
 
     def __init__(self, freq=None, **kwargs):
@@ -95,10 +151,10 @@ class BudgetItem:
         if freq is not None:
             assert isinstance(freq, np.ndarray)
             self.freq = freq
-        elif not hasattr(self, 'freq'):
-            raise AttributeError("Frequency array not provided or defined.")
         for key, val in kwargs.items():
             setattr(self, key, val)
+        self._loaded = False
+        self._precomp = dict()
 
     @property
     def name(self):
@@ -144,7 +200,7 @@ class Calibration(BudgetItem):
         e.g. point-by-point product of data and calibration arrays.
 
         """
-        cal = self.calc()
+        cal = self._calc()
         assert data.shape == cal.shape, \
             "data shape does not match calibration ({} != {})".format(data.shape, cal.shape)
         return data * cal
@@ -163,38 +219,75 @@ class Noise(BudgetItem):
     style = {}
     """Trace plot style dictionary"""
 
-    def calc_trace(self, calibrations=None, calc=True):
-        """Returns noise (PSD, style) tuple.
+    def _make_trace(self, psd=None, budget=None):
+        return BudgetTrace(
+            name=self.name,
+            style=self.style,
+            freq=self.freq,
+            psd=psd,
+            budget=budget,
+        )
+
+    def calc_trace(self, calibration=1, calc=True, _precomp=None):
+        """Calculate noise and return BudgetTrace object
 
-        If `calibrations` is not None it is assumed to be a list of
-        len(self.freq) arrays that will be multiplied to the output
-        PSD.
+        `calibration` should either be a scalar or a len(self.freq)
+        array that will be multiplied to the output PSD of the budget
+        and all sub noises.
 
-        If calc=False, the noise will not be calculated and the PSD
-        will be None.  This is useful for just getting the style.
+        If `calc` is False, the noise will not be calculated and the
+        trace PSD will be None.  This is useful for just getting the
+        trace style info.
 
         """
+        if _precomp is None:
+            _precomp = dict()
+
+        total = None
         if calc:
-            data = self.calc()
-            if calibrations:
-                data *= reduce(
-                    operator.mul,
-                    calibrations,
-                )
-        else:
-            data = None
-        return data, self.style
+            total = self._calc(_precomp) * calibration
+
+        return self._make_trace(psd=total)
 
     def run(self, **kwargs):
-        """Convenience method to load, update, and return calc traces.
+        """Run full budget and return BudgetTrace object.
+
+        Roughly the equivalent running load(), update(), and
+        calc_trace() in sequence.  Keyword arguments are passed to the
+        update() method.
 
-        Equivalent of load(), update(), calc_traces() run in sequence.
-        Keyword arguments are passed to update().
+        NOTE: The load status is cached such that subsequent calls to
+        this method will not re-execute the load() method.
+
+        NOTE: The update() method is only run if keyword arguments
+        (`kwargs`) are supplied, or if the `ifo` attribute has
+        changed.
 
         """
-        self.load()
-        self.update(**kwargs)
-        return self.calc_trace()
+        if not self._loaded:
+            self.load()
+            self._loaded = True
+
+        ifo = kwargs.get('ifo', getattr(self, 'ifo'))
+        if ifo:
+            if not hasattr(ifo, '_orig_keys'):
+                logger.debug("new ifo detected")
+                ifo._orig_keys = tuple(k for k, v in ifo.walk())
+                ifo_hash = ifo.hash()
+                kwargs['ifo'] = ifo
+            else:
+                ifo_hash = ifo.hash(ifo._orig_keys)
+                if ifo_hash != getattr(self, '_ifo_hash', 0):
+                    logger.debug("ifo hash change")
+                    kwargs['ifo'] = self.ifo
+            self._ifo_hash = ifo_hash
+
+        if kwargs:
+            self.update(**kwargs)
+            # clear precomp cache
+            self._precomp = dict()
+
+        return self.calc_trace(_precomp=self._precomp)
 
 
 class Budget(Noise):
@@ -391,98 +484,74 @@ class Budget(Noise):
             item.load()
 
     def update(self, _precomp=None, **kwargs):
-        """Update all noise and cal objects with supplied kwargs."""
-        if _precomp is None:
-            _precomp = set()
+        """Recursively update all noise and cal objects with supplied kwargs.
+
+        See BudgetItem.update() for more info.
+
+        """
+        for key, val in kwargs.items():
+            setattr(self, key, val)
+
         for name, item in itertools.chain(
                 self._cal_objs.items(),
                 self._noise_objs.items()):
             logger.debug("update {}".format(item))
             item.update(_precomp=_precomp, **kwargs)
 
-    def calc_noise(self, name):
-        """Return calibrated individual noise term.
+    def calc_noise(self, name, calibration=1, calc=True, _cals=None, _precomp=None):
+        """Return calibrated individual noise BudgetTrace.
 
-        The noise PSD and calibration transfer functions are
-        calculated, and the calibrated noise array is returned.
+        The noise and calibration transfer functions are calculated,
+        and the calibrated noise BudgetTrace is returned.
+        `calibration` is an overall calculated calibration to apply to
+        the noise.
 
         """
+        if _precomp is None:
+            _precomp = dict()
+        for cal in self._noise_cals[name]:
+            if _cals:
+                calibration *= _cals[cal]
+            else:
+                obj = self._cal_objs[cal]
+                calibration *= obj._calc(_precomp)
         noise = self._noise_objs[name]
-        cals = [self._cal_objs[cal].calc() for cal in self._noise_cals[name]]
-        data = noise.calc_trace(cals)
-        if isinstance(data, dict):
-            return data['Total'][0]
-        else:
-            return data[0]
-
-    def calc(self):
-        """Calculate sum of all noises.
-
-        """
-        data = [self.calc_noise(name) for name in self._noise_objs.keys() if name in self._budget_noises]
-        return quadsum(data)
-
-    def calc_trace(self, calibrations=None, calc=True):
-        """Returns a dictionary of noises traces, keyed by noise names.
+        return noise.calc_trace(
+            calibration=calibration,
+            calc=calc,
+            _precomp=_precomp,
+        )
 
-        Values are (data, style) trace tuples (see Noise.calc_trace).
-        The key of the budget sum total is 'Total'.  The values of sub
-        budgets are themselves dictionaries returned from
-        calc_trace() of the sub budget.
+    def calc_trace(self, calibration=1, calc=True, _precomp=None):
+        """Calculate all budget noises and return BudgetTrace object
 
-        If `calibrations` is not None it is assumed to be a list of
-        len(self.freq) array that will be multiplied to the output PSD
-        of the budget and all sub noises.
+        `calibration` should either be a scalar or a len(self.freq)
+        array that will be multiplied to the output PSD of the budget
+        and all sub noises.
 
-        If calc=False, the noise will not be calculated and the PSD
-        will be None.  This is useful for just getting style the
-        style.
+        If `calc` is False, the noise will not be calculated and the
+        trace PSD will be None.  This is useful for just getting the
+        trace style info.
 
         """
-        # start by creating an empty OrderedDict used for outputing trace data
-        # or style info with the following order:
-        #   references
-        #   total
-        #   constituents
-        d = collections.OrderedDict()
-        # allocate references
-        for name, noise in self._noise_objs.items():
-            if name in self._budget_noises:
-                continue
-            d[name] = noise.calc_trace(calc=False)
-        # allocate total
-        if self._budget_noises:
-            d['Total'] = None, self.style
-        # allocate constituent
-        for name, noise in self._noise_objs.items():
-            if name not in self._budget_noises:
-                continue
-            d[name] = noise.calc_trace(calc=False)
-        # if we're not calc'ing, just return the dict now
-        if not calc:
-            return d
-
-        # calc all calibrations
-        c = {}
-        for name, cal in self._cal_objs.items():
-            logger.debug("calc {}".format(name))
-            c[name] = cal.calc()
-        # calc all noises
-        for name, noise in self._noise_objs.items():
-            cals = [c[cal] for cal in self._noise_cals[name]]
-            if calibrations:
-                cals += calibrations
-            logger.debug("calc {}".format(name))
-            d[name] = noise.calc_trace(
-                calibrations=cals,
+        if _precomp is None:
+            _precomp = dict()
+
+        _cals = {}
+        if calc:
+            for name, cal in self._cal_objs.items():
+                _cals[name] = cal._calc(_precomp)
+        budget = []
+        for name in self._noise_objs:
+            trace = self.calc_noise(
+                name,
+                calibration=calibration,
+                calc=calc,
+                _cals=_cals,
+                _precomp=_precomp,
             )
-        # calc budget total
-        constituent_data = []
-        for name in self._budget_noises:
-            if isinstance(d[name], dict):
-                data = d[name]['Total'][0]
-            else:
-                data = d[name][0]
-            constituent_data.append(data)
-        d['Total'] = quadsum(constituent_data), self.style
-        return d
+            budget.append(trace)
+        total = quadsum([trace.psd for trace in budget])
+        return self._make_trace(
+            psd=total, budget=budget
+        )
diff --git a/gwinc/noise/coatingthermal.py b/gwinc/noise/coatingthermal.py
index 4de77536050d5b7eaae55b1f21282a91767d7de6..a8c191f5cd38876cfdd3470032f11b5fa46ecc21 100644
--- a/gwinc/noise/coatingthermal.py
+++ b/gwinc/noise/coatingthermal.py
@@ -10,57 +10,104 @@ from ..const import BESSEL_ZEROS as zeta
 from ..const import J0M as j0m
 
 
-def coating_brownian(f, materials, wavelength, wBeam, dOpt):
-    """Optical coating Brownian thermal displacement noise spectrum
+def coating_brownian(f, mirror, wavelength, wBeam, power):
+    """Coating brownian noise for a given collection of coating layers
 
-    :f: frequency array in Hz
-    :materials: gwinc optic materials structure
-    :wavelength: laser wavelength
-    :wBeam: beam radius (at 1 / e^2 power)
-    :dOpt: coating layer thickness array (Nlayer x 1)
+    This function calculates Coating Brownian noise using
+    Hong et al . PRD 87, 082001 (2013).
+    All references to 'the paper', 'Eq' and 'Sec' are to this paper.
+
+    ***Important Note***
+    Inside this function phi is used for denoting the phase shift suffered
+    by light in one way propagation through a layer. This is in conflict
+    with present nomenclature everywhere else where it is used as loss angle.
 
     The layers are assumed to be alernating low-n high-n layers, with
     low-n first.
 
-    :returns: displacement noise power spectrum at :f:
-
-    Added by G Harry 8/3/02 from work by Nakagawa, Gretarsson, et al.
-    Expanded to reduce approximation, GMH 8/03
-    Modified to return strain noise, PF 4/07
-    Modified to accept coating with non-quater-wave layers, mevans 25 Apr 2008
+    Inputs:
+             f = frequency vector in Hz
+        mirror = mirror properties Struct
+    wavelength = laser wavelength
+         wBeam = beam radius (at 1 / e**2 power)
+         power = laser power falling on the mirror (W)
+
+    If the mirror.Coating.IncCoatBrAmpNoise parameter is present and
+    evaluates to True the amplitude noise due to coating brownian
+    noise will be calculated and its effect on the phase noise will be
+    added.  In that case the following new optional arguments should
+    be made available in the Materials object to provide separate Bulk
+    and Shear loss angles and to observe effect of photoelasticity:*
+     lossBlown = Coating Bulk Loss Angle of Low Refrac.Index layer @ 100Hz
+     lossSlown = Coating Shear Loss Angle of Low Refrac. Index layer @ 100Hz
+    lossBhighn = Coating Bulk Loss Angle of High Refrac. Index layer @ 100Hz
+    lossShighn = Coating Shear Loss Angle of High Refrac. Index layer @ 100Hz
+  lossBlown_slope = Coating Bulk Loss Angle Slope of Low Refrac. Index layer
+  lossSlown_slope = Coating Shear Loss Angle Slope of Low Refrac. Index layer
+  lossBhighn_slope = Coating Bulk Loss Angle Slope of High Refrac. Index layer
+  lossShighn_slope = Coating Shear Loss Angle Slope of High Refrac. Index layer
+       PETlown = Relevant component of Photoelastic Tensor of High n layer*
+      PEThighn = Relevant component of Photoelastic Tensor of Low n layer*
+
+    Returns:
+      SbrZ = Brownian noise spectra for one mirror in m**2 / Hz
+
+    *
+    Choice of PETlown and PEThighn can be inspired from sec. A.1. of the paper.
+    There, values are chosen to get the longitudnal coefficent of
+    photoelasticity as -0.5 for Tantala and -0.27 for Silica.
+    These values also need to be added in Materials object.
+    *
+    If the optional arguments are not present, Phihighn and Philown will be
+    used as both Bulk and Shear loss angles and PET coefficients will be set
+    to 0.
 
     """
     # extract substructures
-    sub = materials.Substrate
-    coat = materials.Coating
+    sub = mirror.Substrate
+    coat = mirror.Coating
 
     # Constants
     kBT = const.kB * sub.Temp
+    c = const.c
 
     # substrate properties
-    Ysub = sub.MirrorY         # Young's Modulous
-    pratsub = sub.MirrorSigma  # Poisson Ratio
+    Ysub = sub.MirrorY            # Young's Modulous
+    pratsub = sub.MirrorSigma     # Poisson Ratio
+    nsub = sub.RefractiveIndex    # Refractive Index
 
     # coating properties
+    dOpt = mirror.Coating.dOpt
     Yhighn = coat.Yhighn
     sigmahighn = coat.Sigmahighn
-    phihighn = coat.Phihighn
     nH = coat.Indexhighn
+    if 'PEThighn' in coat:
+        PEThighn = coat.PEThighn
+    else:
+        PEThighn = 0.0
 
     Ylown = coat.Ylown
     sigmalown = coat.Sigmalown
-    philown = coat.Philown
     nL = coat.Indexlown
+    if 'PETlown' in coat:
+        PETlown = coat.PETlown
+    else:
+        PETlown = 0.0
+
+    # Loss Angles
+    lossBhighn, lossShighn, lossBlown, lossSlown = interpretLossAngles(coat)
 
     # make vectors of material properties
-    nN = np.zeros(len(dOpt))
-    yN = np.zeros(len(dOpt))
-    pratN = np.zeros(len(dOpt))
-    phiN = np.zeros(len(dOpt))
+    nol = len(dOpt)       # Number of layers
+    nN = np.zeros(nol)
+    yN = np.zeros(nol)
+    pratN = np.zeros(nol)
+    CPE = np.zeros(nol)
 
     # make simple alternating structure (low-index, high-index doublets)
     # (adapted from the more general calculation in
-    #  Yam, W., Gras, S., & Evans, M. Multimaterial coatings with reduced thermal noise.
+    #  Yam, W., Gras, S., & Evans, M. Multimaterial coatings with reduced
+    #  thermal noise.
     #  Physical Review D, 91(4), 042002.  (2015).
     #  http://doi.org/10.1103/PhysRevD.91.042002 )
     nN[::2] = nL
@@ -72,59 +119,147 @@ def coating_brownian(f, materials, wavelength, wBeam, dOpt):
     pratN[::2] = sigmalown
     pratN[1::2] = sigmahighn
 
-    phiN[::2] = philown
-    phiN[1::2] = phihighn
+    # Coefficient of photoelastic effect
+    # PRD 87, 082001 Eq (A6)
+    CPE[::2] = -0.5*PETlown*nL**3
+    CPE[1::2] = -0.5*PEThighn*nH**3
 
     # geometrical thickness of each layer and total
     dGeo = wavelength * np.asarray(dOpt) / nN
-    #dCoat = np.sum(dGeo)
-
-    ###################################
-    # Brownian
-    ###################################
-    # coating reflectivity
-    dcdp = getCoatRefl(materials, dOpt)[1]
-
-    # Z-dir (1 => away from the substrate, -1 => into the substrate)
-    zdir = -1
-    dcdp_z = zdir * dcdp  # z-dir only matters here
-
-    # layer contributions, b_j (eq 1) from doi:10.1103/PhysRevD.91.042002, errors corrected
-    brLayer = ( 1/(1-pratN) *
-                ( (1-nN*dcdp_z)**2 * (1-2*pratN)*(1+pratN)*Ysub / ((1-2*pratsub)*(1+pratsub)*yN) +
-                  (1-2*pratsub)*(1+pratsub)*yN / ((1+pratN)*Ysub) ) )
 
-    # sum them up for total
-    w = 2 * pi * f
-
-    is_low_slope = 'Philown_slope' in coat
-    is_high_slope = 'Phihighn_slope' in coat
-
-    if (not is_low_slope) and (not is_high_slope):
-        # this is the old code for frequency independent loss
-        SbrZ = (4 * kBT / (pi * wBeam**2 * w)) * \
-               sum(dGeo * brLayer * phiN) * (1 - pratsub - 2 * pratsub**2) / Ysub
+    # WaveLength of light in each layer
+    lambdaN = wavelength / nN
+
+    # Calculate rho and derivatives of rho
+    # with respect to both phi_k and r_j
+    rho, dLogRho_dPhik, dLogRho_dRk, r = getCoatReflAndDer(nN, nsub, dOpt)
+
+    # Define the function epsilon as per Eq (25)
+    # Split epsilon function as:
+    # Epsilon = Ep1 - Ep2 * cos(2k0n(z-zjp1)) - Ep3 * sin(2k0n(z-zjp1))
+
+    # Part 1 of epsilon function
+    Ep1 = (nN + CPE) * dLogRho_dPhik[:-1]
+    # Part 2 of epsilon function (Prefactor of cosine term)
+    Ep2 = CPE * (dLogRho_dPhik[:-1] * (1 - r[:-1]**2) / (2*r[:-1])
+                 - (dLogRho_dPhik[1:] * (1 + r[:-1]**2) / (2 * r[:-1])))
+    # Part 3 of epsilon function (Prefactor of sine term)
+    Ep3 = (1 - r[:-1]**2) * CPE * dLogRho_dRk[:-1]
+
+    # Define (1 - Im(epsilon)/2)
+    Ip1 = 1 - imag(Ep1) / 2  # First part of (1 - Im(epsilon)/2)
+    Ip2 = imag(Ep2) / 2      # Prefactor to cosine in (1 - Im(epsilon)/2)
+    Ip3 = imag(Ep3) / 2      # Prefactor to sine in (1 - Im(epsilon)/2)
+
+    # Define transfer functions from bulk and shear noise fields to layer
+    # thickness and surface height as per Table I in paper
+    C_B = np.sqrt(0.5*(1+pratN))
+    C_SA = np.sqrt(1 - 2*pratN)
+    D_B = ((1 - pratsub - 2*pratsub**2)*yN/(np.sqrt(2*(1+pratN))*Ysub))
+    D_SA = -((1 - pratsub - 2*pratsub**2)*yN/(2*np.sqrt(1-2*pratN)*Ysub))
+    D_SB = (np.sqrt(3)*(1-pratN)*(1 - pratsub - 2*pratsub**2)*yN
+            / (2*np.sqrt(1-2*pratN)*(1+pratN)*Ysub))
+
+    # Calculating effective beam area on each layer
+    # Assuming the beam radius does not change significantly through the
+    # depth of the mirror.
+    Aeff = pi*(wBeam**2)
+
+    # PSD at single layer with thickness equal to WaveLength
+    # in the medium Eq (96)
+    S_Bk = np.zeros((nol, len(f)))
+    S_Bk[::2, :] = (4 * kBT * lambdaN[0] * lossBlown(f)
+                    * (1 - pratN[0] - 2 * pratN[0]**2)
+                    / (3 * pi * f * yN[0] * ((1 - pratN[0])**2) * Aeff))
+    S_Bk[1::2, :] = (4 * kBT * lambdaN[1] * lossBhighn(f)
+                     * (1 - pratN[1] - 2 * pratN[1]**2)
+                     / (3 * pi * f * yN[1] * ((1 - pratN[1])**2) * Aeff))
+
+    # Shear
+    S_Sk = np.zeros((nol, len(f)))
+    S_Sk[::2, :] = (4 * kBT * lambdaN[0] * lossSlown(f)
+                    * (1 - pratN[0] - 2 * pratN[0]**2)
+                    / (3 * pi * f * yN[0] * ((1 - pratN[0])**2) * Aeff))
+    S_Sk[1::2, :] = (4 * kBT * lambdaN[1] * lossShighn(f)
+                     * (1 - pratN[1] - 2 * pratN[1]**2)
+                     / (3 * pi * f * yN[1] * ((1 - pratN[1])**2) * Aeff))
+
+    # Coefficients q_j from Eq (94
+    # See https://dcc.ligo.org/T2000552 for derivation
+    k0 = 2 * pi / wavelength
+    q_Bk = (+ 8 * C_B * (D_B + C_B * Ip1) * Ip3
+            + 2 * C_B**2 * Ip2 * Ip3
+            + 4 * (2 * D_B**2 + 4 * C_B * D_B * Ip1
+                   + C_B**2 * (2 * Ip1**2 + Ip2**2 + Ip3**2)
+                   ) * k0 * nN * dGeo
+            - 8 * C_B * (D_B + C_B * Ip1) * Ip3 * np.cos(2 * k0 * nN * dGeo)
+            - 2 * C_B**2 * Ip2 * Ip3 * np.cos(4 * k0 * nN * dGeo)
+            + 8 * C_B * (D_B + C_B * Ip1) * Ip2 * np.sin(2 * k0 * nN * dGeo)
+            + C_B**2 * (Ip2 - Ip3) * (Ip2 + Ip3) * np.sin(4 * k0 * nN * dGeo)
+            ) / (8 * k0 * lambdaN * nN)
+
+    q_Sk = (D_SB**2 * 8 * k0 * nN * dGeo
+            + 8 * C_SA * (D_SA + C_SA * Ip1) * Ip3
+            + 2 * C_SA**2 * Ip2 * Ip3
+            + 4 * (2 * D_SA**2 + 4 * C_SA * D_SA * Ip1
+                   + C_SA**2 * (2 * Ip1**2 + Ip2**2 + Ip3**2)
+                   ) * k0 * nN * dGeo
+            - 8 * C_SA * (D_SA + C_SA * Ip1) * Ip3 * np.cos(2 * k0 * nN * dGeo)
+            - 2 * C_SA**2 * Ip2 * Ip3 * np.cos(4 * k0 * nN * dGeo)
+            + 8 * C_SA * (D_SA + C_SA * Ip1) * Ip2 * np.sin(2 * k0 * nN * dGeo)
+            + C_SA**2 * (Ip2 - Ip3) * (Ip2 + Ip3) * np.sin(4 * k0 * nN * dGeo)
+            ) / (8 * k0 * lambdaN * nN)
+
+    # S_Xi as per Eq(94)
+    S_Xi = (np.tensordot(q_Bk, S_Bk, axes=1)
+            + np.tensordot(q_Sk, S_Sk, axes=1))
+
+    # From Sec II.E. Eq.(41)
+    # Conversion of brownian amplitude noise to displacement noise
+    if coat.get('IncCoatBrAmpNoise'):
+
+        # get/calculate optic transmittance
+        mTi = mirror.get('Transmittance', 1-np.abs(rho)**2)
+
+        # Define Re(epsilon)/2
+        Rp1 = np.real(Ep1) / 2   # First part of Re(epsilon)/2
+        Rp2 = -np.real(Ep2) / 2  # Prefactor to cosine in Re(epsilon)/2
+        Rp3 = -np.real(Ep3) / 2  # Prefactor to sine in Re(epsilon)/2
+        # Coefficients p_j from Eq (95)
+        # See https://dcc.ligo.org/T2000552 for derivation
+        p_BkbyC = (+ 8 * Rp1 * Rp3
+                   + 2 * Rp2 * Rp3
+                   + 4 * (2 * Rp1**2 + Rp2**2 + Rp3**2) * k0 * nN * dGeo
+                   - 8 * Rp1 * Rp3 * np.cos(2 * k0 * nN * dGeo)
+                   - 2 * Rp2 * Rp3 * np.cos(4 * k0 * nN * dGeo)
+                   + 8 * Rp1 * Rp2 * np.sin(2 * k0 * nN * dGeo)
+                   + (Rp2 - Rp3) * (Rp2 + Rp3) * np.sin(4 * k0 * nN * dGeo)
+                   ) / (8 * k0 * lambdaN * nN)
+        p_Bk = p_BkbyC * C_B**2
+        p_Sk = p_BkbyC * C_SA**2
+
+        # S_Zeta as per Eq(95)
+        S_Zeta = (np.tensordot(p_Bk, S_Bk, axes=1)
+                  + np.tensordot(p_Sk, S_Sk, axes=1))
+
+        AmpToDispConvFac = ((32 * power)
+                            / (mirror.MirrorMass * wavelength
+                               * f**2 * c * 2 * pi * sqrt(mTi)))
+        # Adding the two pathways of noise contribution as correlated noise
+        SbrZ = (sqrt(S_Xi) + AmpToDispConvFac * sqrt(S_Zeta))**2
     else:
-        SbrZ = (4 * kBT / (pi * wBeam**2 * w)) * \
-               (1 - pratsub - 2 * pratsub**2) / Ysub
-        SbrZ *= (np.sum(dGeo[::2] * brLayer[::2] * phiN[::2]) * (f / 100)**(coat.Philown_slope) +
-                 np.sum(dGeo[1::2] * brLayer[1::2] * phiN[1::2]) * (f / 100)**(coat.Phihighn_slope))
-
-    # for the record: evaluate summation in eq 1 of PhysRevD.91.042002
-    # normalized by total coating thickness to make it unitless
-    #cCoat = np.sum(dGeo * brLayer * phiN) / dCoat
+        SbrZ = S_Xi
 
     return SbrZ
 
 
-def coating_thermooptic(f, materials, wavelength, wBeam, dOpt):
+def coating_thermooptic(f, mirror, wavelength, wBeam):
     """Optical coating thermo-optic displacement noise spectrum
 
     :f: frequency array in Hz
-    :materials: gwinc optic materials structure
+    :mirror: mirror parameter Struct
     :wavelength: laser wavelength
-    :wBeam: beam radius (at 1 / e^2 power)
-    :dOpt: coating layer thickness array (Nlayer x 1)
+    :wBeam: beam radius (at 1 / e**2 power)
 
     :returns: tuple of:
     StoZ = displacement noise power spectrum at :f:
@@ -134,15 +269,15 @@ def coating_thermooptic(f, materials, wavelength, wBeam, dOpt):
 
     """
     # compute coefficients
-    dTO, dTR, dTE, T, junk = getCoatTOPos(materials, wavelength, wBeam, dOpt)
+    dTO, dTR, dTE, T, junk = getCoatTOPos(mirror, wavelength, wBeam)
 
     # compute correction factors
-    gTO = getCoatThickCorr(f, materials, wavelength, dOpt, dTE, dTR)
-    gTE = getCoatThickCorr(f, materials, wavelength, dOpt, dTE, 0)
-    gTR = getCoatThickCorr(f, materials, wavelength, dOpt, 0, dTR)
+    gTO = getCoatThickCorr(f, mirror, wavelength, dTE, dTR)
+    gTE = getCoatThickCorr(f, mirror, wavelength, dTE, 0)
+    gTR = getCoatThickCorr(f, mirror, wavelength, 0, dTR)
 
     # compute thermal source spectrum
-    SsurfT, junk = getCoatThermal(f, materials, wBeam)
+    SsurfT, junk = getCoatThermal(f, mirror, wBeam)
 
     StoZ = SsurfT * gTO * dTO**2
     SteZ = SsurfT * gTE * dTE**2
@@ -151,13 +286,12 @@ def coating_thermooptic(f, materials, wavelength, wBeam, dOpt):
     return (StoZ, SteZ, StrZ, T)
 
 
-def getCoatTOPos(materials, wavelength, wBeam, dOpt):
+def getCoatTOPos(mirror, wavelength, wBeam):
     """Mirror position derivative wrt thermal fluctuations
 
-    :materials: gwinc optic materials structure
+    :mirror: mirror parameter Struct
     :wavelength: laser wavelength
-    :wBeam: beam radius (at 1 / e^2 power)
-    :dOpt: coating layer thickness array (Nlayer x 1)
+    :wBeam: beam radius (at 1 / e**2 power)
 
     :returns: tuple of:
     dTO = total thermo-optic dz/dT
@@ -172,13 +306,14 @@ def getCoatTOPos(materials, wavelength, wBeam, dOpt):
 
     """
     # parameters
-    nS = materials.Substrate.RefractiveIndex
+    nS = mirror.Substrate.RefractiveIndex
+    dOpt = mirror.Coating.dOpt
 
     # compute refractive index, effective alpha and beta
-    nLayer, aLayer, bLayer, dLayer, sLayer = getCoatLayers(materials, wavelength, dOpt)
+    nLayer, aLayer, bLayer, dLayer, sLayer = getCoatLayers(mirror, wavelength)
 
     # compute coating average parameters
-    dc, Cc, Kc, aSub = getCoatAvg(materials, wavelength, dOpt)
+    dc, Cc, Kc, aSub = getCoatAvg(mirror, wavelength)
 
     # compute reflectivity and parameters
     dphi_dT, dphi_TE, dphi_TR, rCoat = getCoatTOPhase(1, nS, nLayer, dOpt, aLayer, bLayer, sLayer)
@@ -193,7 +328,7 @@ def getCoatTOPos(materials, wavelength, wBeam, dOpt):
     dTE = dphi_TE * wavelength / (4 * pi) - aSub * dc
 
     # mirror finite size correction
-    Cfsm = getCoatFiniteCorr(materials, wavelength, wBeam, dOpt)
+    Cfsm = getCoatFiniteCorr(mirror, wavelength, wBeam)
     dTE = dTE * Cfsm
 
     # add TE and TR effects (sign is already included)
@@ -202,14 +337,13 @@ def getCoatTOPos(materials, wavelength, wBeam, dOpt):
     return dTO, dTR, dTE, T, R
 
 
-def getCoatThickCorr(f, materials, wavelength, dOpt, dTE, dTR):
+def getCoatThickCorr(f, mirror, wavelength, dTE, dTR):
     """Finite coating thickness correction
 
     :f: frequency array in Hz
-    :materials: gwinc optic materials structure
+    :mirror: gwinc optic mirror structure
     :wavelength: laser wavelength
-    :wBeam: beam radius (at 1 / e^2 power)
-    :dOpt: coating layer thickness array (Nlayer x 1)
+    :wBeam: beam radius (at 1 / e**2 power)
 
     Uses correction factor from LIGO-T080101, "Thick Coating
     Correction" (Evans).
@@ -221,18 +355,18 @@ def getCoatThickCorr(f, materials, wavelength, dOpt, dTE, dTR):
     # For comparison in the bTR = 0 limit, the
     # equation from Fejer (PRD70, 2004)
     # modified so that gFC -> 1 as xi -> 0
-    #  gTC = (2 ./ (R * xi.^2)) .* (sh - s + R .* (ch - c)) ./ ...
-    #    (ch + c + 2 * R * sh + R^2 * (ch - c));
+    #  gTC = (2 ./ (R * xi.**2)) .* (sh - s + R .* (ch - c)) ./ ...
+    #    (ch + c + 2 * R * sh + R**2 * (ch - c));
     # which in the limit of xi << 1 becomes
     #  gTC = 1 - xi * (R - 1 / (3 * R));
 
     # parameter extraction
-    pS = materials.Substrate
+    pS = mirror.Substrate
     Cs = pS.MassCM * pS.MassDensity
     Ks = pS.MassKappa
 
     # compute coating average parameters
-    dc, Cc, Kc, junk = getCoatAvg(materials, wavelength, dOpt)
+    dc, Cc, Kc, junk = getCoatAvg(mirror, wavelength)
 
     # R and xi (from T080101, Thick Coating Correction)
     w = 2 * pi * f
@@ -261,19 +395,19 @@ def getCoatThickCorr(f, materials, wavelength, dOpt, dTE, dTR):
     return gTC
 
 
-def getCoatThermal(f, materials, wBeam):
+def getCoatThermal(f, mirror, wBeam):
     """Thermal noise spectra for a surface layer
 
     :f: frequency array in Hz
-    :materials: gwinc optic material structure
-    :wBeam: beam radius (at 1 / e^2 power)
+    :mirror: mirror parameter Struct
+    :wBeam: beam radius (at 1 / e**2 power)
 
     :returns: tuple of:
-    SsurfT = power spectra of thermal fluctuations in K^2 / Hz
+    SsurfT = power spectra of thermal fluctuations in K**2 / Hz
     rdel = thermal diffusion length at each frequency in m
 
     """
-    pS = materials.Substrate
+    pS = mirror.Substrate
     C_S = pS.MassCM * pS.MassDensity
     K_S = pS.MassKappa
     kBT2 = const.kB * pS.Temp**2
@@ -290,12 +424,11 @@ def getCoatThermal(f, materials, wBeam):
     return SsurfT, rdel
 
 
-def getCoatLayers(materials, wavelength, dOpt):
+def getCoatLayers(mirror, wavelength):
     """Layer vectors for refractive index, effective alpha and beta and geometrical thickness
 
-    :materials: gwinc optic materials structure
+    :mirror: mirror parameter Struct
     :wavelength: laser wavelength
-    :dOpt: coating layer thickness array (Nlayer x 1)
 
     :returns: tuple of:
     nLayer = refractive index of each layer, ordered input to output (N x 1)
@@ -309,8 +442,9 @@ def getCoatLayers(materials, wavelength, dOpt):
 
     """
     # coating parameters
-    pS = materials.Substrate
-    pC = materials.Coating
+    pS = mirror.Substrate
+    pC = mirror.Coating
+    dOpt = mirror.Coating.dOpt
 
     Y_S = pS.MirrorY
     sigS = pS.MirrorSigma
@@ -364,12 +498,11 @@ def getCoatLayers(materials, wavelength, dOpt):
     return nLayer, aLayer, bLayer, dLayer, sLayer
 
 
-def getCoatAvg(materials, wavelength, dOpt):
+def getCoatAvg(mirror, wavelength):
     """Coating average properties
 
-    :materials: gwinc optic materials structure
+    :mirror: gwinc optic mirror structure
     :wavelength: laser wavelength
-    :dOpt: coating layer thickness array (Nlayer x 1)
 
     :returns: tuple of:
     dc = total thickness (meters)
@@ -379,8 +512,9 @@ def getCoatAvg(materials, wavelength, dOpt):
 
     """
     # coating parameters
-    pS = materials.Substrate
-    pC = materials.Coating
+    pS = mirror.Substrate
+    pC = mirror.Coating
+    dOpt = mirror.Coating.dOpt
 
     alphaS = pS.MassAlpha
     C_S = pS.MassCM * pS.MassDensity
@@ -393,7 +527,7 @@ def getCoatAvg(materials, wavelength, dOpt):
     K_H = pC.ThermalDiffusivityhighn
 
     # compute refractive index, effective alpha and beta
-    junk1, junk2, junk3, dLayer, junk4 = getCoatLayers(materials, wavelength, dOpt)
+    junk1, junk2, junk3, dLayer, junk4 = getCoatLayers(mirror, wavelength)
 
     # heat capacity
     dc = np.sum(dLayer)
@@ -423,7 +557,7 @@ def getCoatTOPhase(nIn, nOut, nLayer, dOpt, aLayer, bLayer, sLayer):
     :aLayer: change in geometrical thickness with temperature
              = the effective thermal expansion coeffient of the coating layer
     :bLayer: change in refractive index with temperature
-             = dn/dT 
+             = dn/dT
              = dd/dT - n * a
 
     :returns: tuple of:
@@ -463,13 +597,12 @@ def getCoatTOPhase(nIn, nOut, nLayer, dOpt, aLayer, bLayer, sLayer):
     return dphi_dT, dphi_TE, dphi_TR, rCoat
 
 
-def getCoatFiniteCorr(materials, wavelength, wBeam, dOpt):
+def getCoatFiniteCorr(mirror, wavelength, wBeam):
     """Finite mirror size correction
 
-    :materials: gwinc optic materials structure
+    :mirror: mirror parameter Struct
     :wavelength: laser wavelength
-    :wBeam: beam radius (at 1 / e^2 power)
-    :dOpt: coating layer thickness array (Nlayer x 1)
+    :wBeam: beam radius (at 1 / e**2 power)
 
     Uses correction factor from PLA 2003 vol 312 pg 244-255
     "Thermodynamical fluctuations in optical mirror coatings"
@@ -482,25 +615,26 @@ def getCoatFiniteCorr(materials, wavelength, wBeam, dOpt):
 
     """
     # parameter extraction
-    R = materials.MassRadius
-    H = materials.MassThickness
-
-    alphaS = materials.Substrate.MassAlpha
-    C_S = materials.Substrate.MassCM * materials.Substrate.MassDensity
-    Y_S = materials.Substrate.MirrorY
-    sigS = materials.Substrate.MirrorSigma
-
-    alphaL = materials.Coating.Alphalown
-    C_L = materials.Coating.CVlown
-    Y_L = materials.Coating.Ylown
-    sigL = materials.Coating.Sigmalown
-    nL = materials.Coating.Indexlown
-
-    alphaH = materials.Coating.Alphahighn
-    C_H = materials.Coating.CVhighn
-    Y_H = materials.Coating.Yhighn
-    sigH = materials.Coating.Sigmahighn
-    nH = materials.Coating.Indexhighn
+    R = mirror.MassRadius
+    H = mirror.MassThickness
+    dOpt = mirror.Coating.dOpt
+
+    alphaS = mirror.Substrate.MassAlpha
+    C_S = mirror.Substrate.MassCM * mirror.Substrate.MassDensity
+    Y_S = mirror.Substrate.MirrorY
+    sigS = mirror.Substrate.MirrorSigma
+
+    alphaL = mirror.Coating.Alphalown
+    C_L = mirror.Coating.CVlown
+    Y_L = mirror.Coating.Ylown
+    sigL = mirror.Coating.Sigmalown
+    nL = mirror.Coating.Indexlown
+
+    alphaH = mirror.Coating.Alphahighn
+    C_H = mirror.Coating.CVhighn
+    Y_H = mirror.Coating.Yhighn
+    sigH = mirror.Coating.Sigmahighn
+    nH = mirror.Coating.Indexhighn
 
     # coating sums
     dL = wavelength * np.sum(dOpt[::2]) / nL
@@ -536,7 +670,7 @@ def getCoatFiniteCorr(materials, wavelength, wBeam, dOpt):
     # between eq 77 and 78
     km = zeta / R
     Qm = exp(-2 * km * H)
-    pm = exp(-km**2 * r0**2 / 4) / j0m # left out factor of pi * R^2 in denominator
+    pm = exp(-km**2 * r0**2 / 4) / j0m # left out factor of pi * R**2 in denominator
 
     # eq 88
     Lm = Xr - Zf * (1 + sigS) + (Yr * (1 - 2 * sigS) + Zf - 2 * Cr) * \
@@ -754,3 +888,141 @@ def getCoatRefl2(nIn, nOut, nLayer, dOpt):
     dcdp = -imag(dr_dphi / rCoat)  ### Where did this minus come from???
 
     return rCoat, dcdp, rbar, r
+
+
+def getCoatReflAndDer(nN, nsub, dOpt):
+    '''
+    Helper function for coating_brownian_hong().
+    Follows Hong et al . PRD 87, 082001 (2013) Sec V.A.
+    This function calculates derivatives of complex reflectivity of Coating
+    with respect to phase shifts through each layer and reflectivities of
+    each interface
+    Input:
+
+      nN = Refractive indices of coatings layers
+    nsub = Refractive Index of Substrate
+    dOpt = optical thickness / lambda of each layer,
+           geometrical thickness * refractive index / lambda
+
+    Returns:
+     delLogRho_delPhik = Partial derivative of log of total effective
+                         reflectivity of coating with respect to phase shifts
+                         in each layer.
+    delLogRho_delReflk = Partial derivative of log of total effective
+                         reflectivity of coating with respect to reflectivity
+                         of each interface.
+    '''
+    nol = len(dOpt)  # Number of layers in coating
+    # Reflectivities and transmitivities
+    # r[j] is reflectivity from (j-1)th and (j)th layer interface
+    # Here r[0] is reflectivity from air and 0th layer
+    # and r[-1] is reflectivity between last layer and substrate
+    Refl = np.zeros(nol+1)
+    Refl[0] = (1 - nN[0]) / (1 + nN[0])
+    Refl[1:-1] = (nN[:-1] - nN[1:]) / (nN[:-1] + nN[1:])
+    Refl[-1] = (nN[-1] - nsub) / (nN[-1] + nsub)
+    # Note the shift from nomenclature
+    # Phi is reserved for denoting one-way phase shift suffered by light
+    # during propagation through a layer
+    Phi = np.asarray(dOpt) * 2 * pi
+
+    # Define rho_k as reflectivity of
+    # k layers starting from (N-k-1)th lyer to (N-1)th layer
+    # So rhoN[-1] is reflectivity for  no layers but interface from
+    #                                              last layer to substrate
+    # rhoN[0] is total complex reflectivity of the coating stack.
+    rhoN = np.zeros_like(Refl, np.complex128)
+
+    phiNmkm1 = np.flip(Phi)             # phi_{N-k-1}
+    rNmkm1 = np.flip(Refl[:-1])              # r_{N-k-1}
+    exp2iphiNmkm1 = np.exp(2j*phiNmkm1)      # exp(2i phi_{N-k-1})
+
+    # Recursion relation for complex reflectivity
+    # See https://dcc.ligo.org/T2000552 for derivation
+    rhoN[0] = Refl[-1]
+    for k in range(len(Refl)-1):
+        rhoN[k+1] = ((rNmkm1[k] + exp2iphiNmkm1[k] * rhoN[k])
+                     / (1 + exp2iphiNmkm1[k] * rNmkm1[k] * rhoN[k]))
+
+    denTerm = (1 + exp2iphiNmkm1 * rNmkm1 * rhoN[:-1])**2
+
+    # Derivatives of rho_{k+1} wrt to rho_{k}, r_{N-k-1} and phi_{N-k-1}
+    delRhokp1_delRhok = exp2iphiNmkm1 * (1 - rNmkm1**2) / denTerm
+    delRhokp1_delRNmkm1 = np.append(1, ((1 - (exp2iphiNmkm1*rhoN[:-1])**2)
+                                        / denTerm))
+    delRhokp1_delPhiNmkm1 = np.append(0, -2j * rhoN[:-1] * delRhokp1_delRhok)
+
+    # Derivative of rho_{N} wrt to rho_{N-j}
+    delRhoN_delRhoNmj = np.append(1, np.cumprod(np.flip(delRhokp1_delRhok)))
+
+    # Derivative of rho_{N} wrt to r_k and phi_k
+    delRho_delRk = - delRhoN_delRhoNmj * np.flip(delRhokp1_delRNmkm1)
+    delRho_delPhik = - delRhoN_delRhoNmj * np.flip(delRhokp1_delPhiNmkm1)
+    delLogRho_delReflk = delRho_delRk / rhoN[-1]
+    delLogRho_delPhik = delRho_delPhik / rhoN[-1]
+    delLogRho_delPhik[-1] = 0        # Define this as per Eq (26)
+
+    return rhoN[-1], delLogRho_delPhik, delLogRho_delReflk, Refl
+
+
+def interpretLossAngles(coat):
+    '''
+    Helper function for coating_brownian().
+
+    Creates function from 100 Hz value of loss angle and is logarithmic
+    slope.
+
+    if separate bulk and shear loss angles are not provided as
+    lossBhighn, lossShighn, lossBlown and lossSlown
+    then earlier version names of Phihighn and Philown are searched for and
+    used as Bulk loss angle while setting Shear loss angles to zero.
+
+    Input argument:
+    coat = Coating object containing loss angle values or expressions.
+    Returns:
+    lossBlown = Coating Bulk Loss Angle of Low Refractive Index layer
+    lossSlown = Coating Shear Loss Angle of Low Refractive Index layer
+    lossBhighn = Coating Bulk Loss Angle of High Refractive Index layer
+    lossShighn = Coating Shear Loss Angle of High Refractive Index layer
+    '''
+    if 'lossBhighn' in coat and 'lossShighn' in coat:
+        if 'lossBhighn_slope' in coat:
+            def lossBhighn(f):
+                return coat.lossBhighn * (f / 100)**coat.lossBhighn_slope
+        else:
+            def lossBhighn(f): return coat.lossBhighn
+        if 'lossShighn_slope' in coat:
+            def lossShighn(f):
+                return coat.lossShighn * (f / 100)**coat.lossShighn_slope
+        else:
+            def lossShighn(f): return coat.lossShighn
+    else:
+        # Use Phihighn if specific Bulk & Shear loss angles not provided
+        if 'Phihighn_slope' in coat:
+            def Phihighn(f):
+                return coat.Phihighn * (f / 100)**coat.Phihighn_slope
+            lossBhighn = lossShighn = Phihighn
+        else:
+            lossBhighn = lossShighn = lambda f: coat.Phihighn
+
+    if 'lossBlown' in coat and 'lossSlown' in coat:
+        if 'lossBlown_slope' in coat:
+            def lossBlown(f):
+                return coat.lossBlown * (f / 100)**coat.lossBlown_slope
+        else:
+            def lossBlown(f): return coat.lossBlown
+        if 'lossSlown_slope' in coat:
+            def lossSlown(f):
+                return coat.lossSlown * (f / 100)**coat.lossSlown_slope
+        else:
+            def lossSlown(f): return coat.lossSlown
+    else:
+        # Use Philown if specific Bulk & Shear loss angles not provided
+        if 'Philown_slope' in coat:
+            def Philown(f):
+                return coat.Philown * (f / 100)**coat.Philown_slope
+            lossBlown = lossSlown = Philown
+        else:
+            lossBlown = lossSlown = lambda f: coat.Philown
+
+    return lossBhighn, lossShighn, lossBlown, lossSlown
diff --git a/gwinc/noise/quantum.py b/gwinc/noise/quantum.py
index e474ff30eeb8c08ea0556a01aad8dc2863dc953a..df5f54f8bf77e318dc84969816e8d41543f86867 100644
--- a/gwinc/noise/quantum.py
+++ b/gwinc/noise/quantum.py
@@ -93,7 +93,8 @@ def shotrad(f, ifo):
     """Quantum noise noise strain spectrum
 
     :f: frequency array in Hz
-    :ifo: gwinc IFO structure
+    :ifo: gwinc IFO Struct
+    :power: gwinc power Struct
 
     :returns: displacement noise power spectrum at :f:
 
@@ -327,7 +328,7 @@ def shotradSignalRecycled(f, ifo):
     L = ifo.Infrastructure.Length                # Length of arm cavities [m]
     l = ifo.Optics.SRM.CavityLength              # SRC Length [m]
     T = ifo.Optics.ITM.Transmittance             # ITM Transmittance [Power]
-    m = ifo.Materials.MirrorMass                 # Mirror mass [kg]
+    m = mirror_mass                              # Mirror mass [kg]
 
     # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     bsloss = ifo.Optics.BSLoss                   # BS Loss [Power]
@@ -349,7 +350,7 @@ def shotradSignalRecycled(f, ifo):
 
     R = 1 - T - ifo.Optics.Loss                  # ITM Reflectivity [Power]
 
-    P = ifo.gwinc.parm                           # use precomputed value
+    P = power.parm                               # use precomputed value
 
     # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 
@@ -476,7 +477,7 @@ def shotradSignalRecycled(f, ifo):
     return coeff, Mifo, Msig, Mnoise
 
 
-def shotradSignalRecycledBnC(f, ifo):
+def shotradSignalRecycledBnC(f, ifo, mirror_mass, power):
     """Quantum noise model for signal recycled IFO
 
     See shotrad for more info.
@@ -508,7 +509,7 @@ def shotradSignalRecycledBnC(f, ifo):
     L = ifo.Infrastructure.Length                # Length of arm cavities [m]
     l = ifo.Optics.SRM.CavityLength              # SRC Length [m]
     T = ifo.Optics.ITM.Transmittance             # ITM Transmittance [Power]
-    m = ifo.Materials.MirrorMass                 # Mirror mass [kg]
+    m = mirror_mass                              # Mirror mass [kg]
 
     # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
     bsloss = ifo.Optics.BSLoss                   # BS Loss [Power]
@@ -530,7 +531,7 @@ def shotradSignalRecycledBnC(f, ifo):
     gamma_ac = T*c/(4*L)                         # [KLMTV-PRD2001] Arm cavity half bandwidth [1/s]
     epsilon = lambda_arm/(2*gamma_ac*L/c)        # [BnC, after 5.2] Loss coefficent for arm cavity
 
-    I_0 = ifo.gwinc.pbs                          # [BnC, Table 1] Power at BS (Power*prfactor) [W]
+    I_0 = power.pbs                              # [BnC, Table 1] Power at BS (Power*prfactor) [W]
     I_SQL = (m*L**2*gamma_ac**4)/(4*omega_0)     # [BnC, 2.14] Power to reach free mass SQL
     Kappa = 2*((I_0/I_SQL)*gamma_ac**4)/ \
               (Omega**2*(gamma_ac**2+Omega**2))  # [BnC 2.13] Effective Radiation Pressure Coupling
diff --git a/gwinc/noise/seismic.py b/gwinc/noise/seismic.py
index ac856f713b1f183a1a83e1f9082443779e61f913..fe8f0f720d78a9cdf059f10357c3ce74dd9564ec 100644
--- a/gwinc/noise/seismic.py
+++ b/gwinc/noise/seismic.py
@@ -6,20 +6,21 @@ import numpy as np
 from scipy.interpolate import PchipInterpolator as interp1d
 
 
-def seismic_suspension_fitered(sus, in_trans):
+def seismic_suspension_fitered(sus, sustf, in_trans):
     """Seismic displacement noise for single suspended test mass.
 
-    :sus: gwinc suspension structure
+    :sus: suspension Struct
+    :sustf: sus transfer function Struct
     :in_trans: input translational displacement spectrum
 
     :returns: tuple of displacement noise power spectrum at :f:, and
     horizontal and vertical components.
 
     """
-    hTable = sus.hTable
-    vTable = sus.vTable
+    hTable = sustf.hTable
+    vTable = sustf.vTable
 
-    theta = sus.VHCoupling.theta
+    theta = sustf.VHCoupling.theta
 
     # horizontal noise total
     nh = (abs(hTable)**2) * in_trans**2
diff --git a/gwinc/noise/substratethermal.py b/gwinc/noise/substratethermal.py
index 0b9e86ebaf8931da1e8888a511457bc89a027b6f..a263eb7ae3c783127a4130b80316568cb9a77b08 100644
--- a/gwinc/noise/substratethermal.py
+++ b/gwinc/noise/substratethermal.py
@@ -12,52 +12,6 @@ from ..const import BESSEL_ZEROS as zeta
 from ..const import J0M as j0m
 
 
-def substrate_carrierdensity(f, materials, wBeam, exact=False):
-    """Substrate thermal displacement noise spectrum from charge carrier density fluctuations
-
-    For semiconductor substrates.
-
-    :f: frequency array in Hz
-    :materials: gwinc optic materials structure
-    :wBeam: beam radius (at 1 / e^2 power)
-    :exact: whether to use adiabatic approximation or exact calculation (False)
-
-    :returns: displacement noise power spectrum at :f:, in meters
-
-    """
-    H = materials.MassThickness
-    diffElec = materials.Substrate.ElectronDiffusion
-    diffHole = materials.Substrate.HoleDiffusion
-    mElec = materials.Substrate.ElectronEffMass
-    mHole = materials.Substrate.HoleEffMass
-    cdDens = materials.Substrate.CarrierDensity
-    gammaElec = materials.Substrate.ElectronIndexGamma
-    gammaHole = materials.Substrate.HoleIndexGamma
-    r0 = wBeam/np.sqrt(2)
-    omega = 2*pi*f
-
-    if exact:
-        def integrand(k, om, D):
-            return D * k**3 * exp(-k**2 * wBeam**2/4) / (D**2 * k**4 + om**2)
-    
-        integralElec = np.array([scipy.integrate.quad(lambda k: integrand(k, om, diffElec), 0, inf)[0] for om in omega])
-        integralHole = np.array([scipy.integrate.quad(lambda k: integrand(k, om, diffHole), 0, inf)[0] for om in omega])
-
-        # From P1400084 Heinert et al. Eq. 15
-        #psdCD = @(gamma,m,int) 2*(3/pi^7)^(1/3)*kBT*H*gamma^2*m/hbar^2*cdDens^(1/3)*int; %units are meters
-        # FIXME: why the unused argument here?
-        def psdCD(gamma, m, int_):
-            return 2/pi * H * gamma**2 * cdDens * int_
-
-        psdElec = psdCD(gammaElec, mElec, integralElec)
-        psdHole = psdCD(gammaHole, mHole, integralHole)
-    else:
-        psdElec = 4*H*gammaElec**2*cdDens*diffElec/(pi*r0**4*omega**2)
-        psdHole = 4*H*gammaHole**2*cdDens*diffHole/(pi*r0**4*omega**2)
-
-    return psdElec + psdHole
-
-
 def substrate_thermorefractive(f, materials, wBeam, exact=False):
     """Substrate thermal displacement noise spectrum from thermorefractive fluctuations
 
@@ -87,7 +41,7 @@ def substrate_thermorefractive(f, materials, wBeam, exact=False):
 
         # From P1400084 Heinert et al. Eq. 15
         #psdCD = @(gamma,m,int) 2*(3/pi^7)^(1/3)*kBT*H*gamma^2*m/hbar^2*cdDens^(1/3)*int; %units are meters
-        psdTR = lambda int_: 2/pi * H * beta**2 * kBT * Temp / (rho*C) * int_;
+        psdTR = lambda int_: 2/pi * H * beta**2 * kBT * Temp / (rho*C) * int_
 
         psd = psdTR(inte)
         psd = 2/pi * H * beta**2 * kBT * Temp / (rho*C) * inte
diff --git a/gwinc/noise/suspensionthermal.py b/gwinc/noise/suspensionthermal.py
index 984c6bdf5bdc46ad4a0d441832cfb10a5562c572..f144a97311e09e1a57fe2da5807bfc8143ff8a91 100644
--- a/gwinc/noise/suspensionthermal.py
+++ b/gwinc/noise/suspensionthermal.py
@@ -9,11 +9,12 @@ from ..const import kB
 from ..suspension import getJointParams
 
 
-def suspension_thermal(f, sus):
+def suspension_thermal(f, sus, sustf):
     """Suspension thermal noise.
 
     :f: frequency array in Hz
     :sus: gwinc suspension structure
+    :sustf: sus transfer function Struct
 
     :returns: displacement noise power spectrum at :f:
 
@@ -25,23 +26,14 @@ def suspension_thermal(f, sus):
     pre-calculated and populated into the relevant `sus` fields.
 
     """
-
+    # suspension TFs
+    hForce = sustf.hForce
+    vForce = sustf.vForce
     # and vertical to beamline coupling angle
-    theta = sus.VHCoupling.theta
+    theta = sustf.VHCoupling.theta
 
     noise = np.zeros_like(f)
 
-    ##########################################################
-    # Suspension TFs
-    ##########################################################
-
-    hForce = sus.hForce
-    vForce = sus.vForce
-
-    ##########################################################
-    # Thermal Noise Calculation
-    ##########################################################
-
     # Here the suspension stage list is reversed so that the last stage
     # in the list is the test mass
     stages = sus.Stage[::-1]
diff --git a/gwinc/plot.py b/gwinc/plot.py
index 3f296ab550bede1268378f22ef74276d5f4952d7..1753108d36102db91ee83d897b03853754e27fa3 100644
--- a/gwinc/plot.py
+++ b/gwinc/plot.py
@@ -1,14 +1,9 @@
-from numpy import sqrt
-from collections.abc import Mapping
-
-
-def plot_noise(
-        freq,
-        traces,
+def plot_budget(
+        budget,
         ax=None,
         **kwargs
 ):
-    """Plot a GWINC noise budget from calculated noises
+    """Plot a GWINC BudgetTrace noise budget from calculated noises
 
     If an axis handle is provided it will be used for the plot.
 
@@ -22,36 +17,29 @@ def plot_noise(
     else:
         fig = ax.figure
 
-    ylim = kwargs.get('ylim')
-
-    for name, trace in traces.items():
-        if isinstance(trace, Mapping):
-            trace = trace['Total']
+    total = budget.asd
+    ylim = [min(total)/10, max(total)]
+    style = dict(
+        color='#000000',
+        alpha=0.6,
+        lw=4,
+    )
+    style.update(getattr(budget, 'style', {}))
+    if 'label' in style:
+        style['label'] = 'Total ' + style['label']
+    else:
+        style['label'] = 'Total'
+    ax.loglog(budget.freq, total, **style)
 
-        try:
-            data = trace[0]
-            style = dict(**trace[1])
-        except TypeError:
-            data = trace
-            style = {}
-        # assuming all data is PSD
-        data = sqrt(data)
-        if name == 'Total' and not style:
-            style = dict(
-                color='#000000',
-                alpha=0.6,
-                lw=4,
-            )
-            if ylim is None:
-                ylim = [min(data)/10, max(data)]
+    for name, trace in budget.items():
+        style = trace.style
         if 'label' not in style:
-            style['label'] = name
+            style['label'] = budget.name
         if 'linewidth' in style:
             style['lw'] = style['linewidth']
         elif 'lw' not in style:
             style['lw'] = 3
-
-        ax.loglog(freq, data, **style)
+        ax.loglog(budget.freq, trace.asd, **style)
 
     ax.grid(
         True,
@@ -67,14 +55,19 @@ def plot_noise(
     )
 
     ax.autoscale(enable=True, axis='y', tight=True)
-    if ylim:
-        ax.set_ylim(ylim)
-    ax.set_xlim(freq[0], freq[-1])
-
+    ax.set_ylim(kwargs.get('ylim', ylim))
+    ax.set_xlim(budget.freq[0], budget.freq[-1])
     ax.set_xlabel('Frequency [Hz]')
     if 'ylabel' in kwargs:
         ax.set_ylabel(kwargs['ylabel'])
     if 'title' in kwargs:
-        ax.set_title(kwargs['title'])
+        title = kwargs['title']
+        if 'subtitle' in kwargs:
+            title += '\n' + kwargs['subtitle']
+        ax.set_title(title)
 
     return fig
+
+
+# FIXME: deprecate
+plot_noise = plot_budget
diff --git a/gwinc/struct.py b/gwinc/struct.py
index 85e63921616ebb4c95e56b1de8c1005cca043913..2de5efef366cee6ad04ac379eea92500c9db0a36 100644
--- a/gwinc/struct.py
+++ b/gwinc/struct.py
@@ -173,7 +173,9 @@ class Struct(object):
 
         """
         d = {}
-        for k,v in self.__dict__.items():
+        for k, v in self.__dict__.items():
+            if k[0] == '_':
+                continue
             if isinstance(v, Struct):
                 d[k] = v.to_dict(array=array)
             else:
@@ -222,6 +224,8 @@ class Struct(object):
 
         """
         for k,v in self.__dict__.items():
+            if k[0] == '_':
+                continue
             if isinstance(v, type(self)):
                 for sk,sv in v.walk():
                     yield k+'.'+sk, sv
@@ -233,6 +237,25 @@ class Struct(object):
                 except (AttributeError, TypeError):
                     yield k, v
 
+    def hash(self, keys=None):
+        """Hash of Struct.walk() data (recursive)
+
+        """
+        def filter_keys(kv):
+            k, v = kv
+            if keys:
+                return k in keys
+            else:
+                return True
+        def map_tuple(kv):
+            k, v = kv
+            if isinstance(v, list):
+                return k, tuple(v)
+            else:
+                return k, v
+        return hash(tuple(sorted(
+            map(map_tuple, filter(filter_keys, self.walk()))
+        )))
 
     def diff(self, other):
         """Return tuple of differences between target IFO.
diff --git a/gwinc/suspension.py b/gwinc/suspension.py
index 984f868b94cdb078d102f04633779ffe3ce94a95..b71cf7b4f5018d80e55e74ef7c4a54a975690d91 100644
--- a/gwinc/suspension.py
+++ b/gwinc/suspension.py
@@ -420,10 +420,8 @@ def suspQuad(f, sus):
     # Complex spring constants
     khr = np.zeros([len(stages), len(w)])
     khi = np.zeros([len(stages), 2, len(w)])
-    kh  = np.zeros([len(stages), len(w)], dtype=np.complex_)
     kvr = np.zeros([len(stages), len(w)])
     kvi = np.zeros([len(stages), 2, len(w)])
-    kv  = np.zeros([len(stages), len(w)], dtype=np.complex_)
 
     for n, stage in enumerate(stages):
 
@@ -570,25 +568,20 @@ def suspQuad(f, sus):
 
     for m in range(2*len(stages)):
         # turn on only the loss of the current joint
-        lossy_region_lower = np.zeros((len(stages), 1))
-        lossy_region_upper = np.zeros((len(stages), 1))
         n = int(m/2)  # stage number
-        if m % 2:
-            lossy_region_upper[n] = 1
-        else:
-            lossy_region_lower[n] = 1
+        isLower = m % 2
+        stage_selection = np.zeros((len(stages), 1))
+        stage_selection[n] = 1
 
         # horizontal
-        # only the imaginary part due to the specified region is used.
-        k = khr + 1j*(khi[:,0,:]*lossy_region_upper +
-                      khi[:,1,:]*lossy_region_lower)
+        # only the imaginary part due to the specified joint is used.
+        k = khr + 1j*khi[:,isLower,:]*stage_selection
         # calculate TFs
         hForce[m,:] = tst_force_to_tst_displ(k, masses, f)
 
         # vertical
-        # only the imaginary part due to the specified stage is used
-        k = kvr + 1j*(kvi[:,0,:]*lossy_region_upper +
-                      kvi[:,1,:]*lossy_region_lower)
+        # only the imaginary part due to the specified joint is used
+        k = kvr + 1j*kvi[:,isLower,:]*stage_selection
         # calculate TFs
         vForce[m,:] = tst_force_to_tst_displ(k, masses, f)
 
diff --git a/gwinc/test/__main__.py b/gwinc/test/__main__.py
index 19a702ece823e0b94db3b69e20f86c091c32c123..24a546792c604d54a939484d115c8d607514804a 100644
--- a/gwinc/test/__main__.py
+++ b/gwinc/test/__main__.py
@@ -6,10 +6,8 @@ import logging
 import tempfile
 import argparse
 import subprocess
-import numpy as np
 import matplotlib.pyplot as plt
 from collections import OrderedDict
-from collections.abc import Mapping
 from PyPDF2 import PdfFileReader, PdfFileWriter
 
 from .. import IFOS, load_budget
@@ -120,81 +118,45 @@ def load_cache(path):
     return cache
 
 
-def walk_traces(traces, root=()):
-    """recursively walk through traces
-
-    yields (key_tuple, value), where key_tuple is a tuple of nested
-    dict keys of the traces dict locating the given value.
-
-    """
-    for key, val in traces.items():
-        r = root+(key,)
-        if isinstance(val, Mapping):
-            for k, v in walk_traces(val, root=r):
-                yield k, v
-            continue
-        else:
-            yield r, val
-
-
-def zip_noises(tracesA, tracesB, skip):
+def zip_noises(traceA, traceB, skip):
     """zip matching noises from traces"""
-    for keys, (noiseA, _) in walk_traces(tracesA):
-        # keys is a tuple of nested keys for noise
-        name = keys[-1]
-        # skip keys we'll add at the end
-        if name in ['Total', 'int73']:
-            continue
+    B_dict = dict(traceB.walk())
+    for name, tA in traceA.walk():
         if skip and name in skip:
             logging.warning("SKIPPING TEST: '{}'".format(name))
             continue
-
         try:
-            t = tracesB
-            for key in keys:
-                t = t[key]
-            noiseB, style = t
+            tB = B_dict[name]
         except (KeyError, TypeError):
             logging.warning("MISSING B TRACE: '{}'".format(name))
             continue
+        yield name, tA, tB
 
-        yield name, noiseA, noiseB
-
-    yield 'Total', tracesA['Total'][0], tracesB['Total'][0]
 
-    if 'int73' in tracesA:
-        yield 'int73', tracesA['int73'][0], tracesB['int73'][0]
-
-
-def compare_traces(tracesA, tracesB, tolerance=TOLERANCE, skip=None):
-    """Compare two gwinc trace dictionaries
+def compare_traces(traceA, traceB, tolerance=TOLERANCE, skip=None):
+    """Compare two gwinc traces
 
     Noises listed in `skip` will not be compared.
 
     Returns a dictionary of noises that differ fractionally (on a
-    point-by-point basis) by more that `tolerance` between `tracesA`
-    and `tracesB`.
+    point-by-point basis) by more than `tolerance` between the traces
+    in `traceA` and `traceB`.
 
     """
     #name_width = max([len(n[0][-1]) for n in walk_traces(tracesA)])
     name_width = 15
     diffs = OrderedDict()
-    for name, noiseA, noiseB in zip_noises(tracesA, tracesB, skip):
+    for name, tA, tB in zip_noises(traceA, traceB, skip):
         logging.debug("comparing {}...".format(name))
-
-        ampA = np.sqrt(noiseA)
-        ampB = np.sqrt(noiseB)
+        ampA = tA.asd
+        ampB = tB.asd
         diff = ampB - ampA
         frac = abs(diff / ampA)
-
         if max(frac) < tolerance:
             continue
-
         logging.warning("EXCESSIVE DIFFERENCE: {:{w}} {:6.1f} ppm".format(
             name, max(frac)*1e6, w=name_width))
-
-        diffs[name] = (noiseA, noiseB, frac)
-
+        diffs[name] = (ampA, ampB, frac)
     return diffs
 
 
@@ -202,11 +164,11 @@ def plot_diffs(freq, diffs, styleA, styleB):
     spec = (len(diffs)+1, 2)
     sharex = None
     for i, nname in enumerate(diffs):
-        noiseA, noiseB, frac = diffs[nname]
+        ampA, ampB, frac = diffs[nname]
 
         axl = plt.subplot2grid(spec, (i, 0), sharex=None)
-        axl.loglog(freq, np.sqrt(noiseA), **styleA)
-        axl.loglog(freq, np.sqrt(noiseB), **styleB)
+        axl.loglog(freq, ampA, **styleA)
+        axl.loglog(freq, ampB, **styleB)
         axl.grid()
         axl.legend(loc='upper right')
         axl.set_ylabel(nname)
@@ -334,14 +296,17 @@ gwinc/test/cache/<SHA1>.  Old caches are automatically pruned.""",
             fail |= True
             continue
 
-        freq, traces_ref, attrs = load_hdf5(path)
-
-        Budget = load_budget(name)
-        traces_cur = Budget(freq).run()
-
-        if inspiral_range:
-            total_ref = traces_ref['Total'][0]
-            total_cur = traces_cur['Total'][0]
+        traces_ref = load_hdf5(path)
+        traces_ref.name = 'Total'
+        freq = traces_ref.freq
+        budget = load_budget(name, freq)
+        traces_cur = budget.run()
+        traces_cur.name = 'Total'
+
+        # FIXME: add this back
+        if False: #inspiral_range:
+            total_ref = traces_ref.psd
+            total_cur = traces_cur.psd
             range_func = inspiral_range.range
             H = inspiral_range.waveform.CBCWaveform(freq)
             fom_ref = range_func(freq, total_ref, H=H)
diff --git a/gwinc/trace.py b/gwinc/trace.py
new file mode 100644
index 0000000000000000000000000000000000000000..175d5e4628d89de2f2379dd948588cff7d3c5946
--- /dev/null
+++ b/gwinc/trace.py
@@ -0,0 +1,79 @@
+import numpy as np
+
+
+class BudgetTrace:
+    """Budget trace data calculated from a Noise or Budget
+
+
+    """
+    def __init__(self, name=None, style=None, freq=None, psd=None, budget=None):
+        self.name = name
+        self.style = style or {}
+        self._freq = freq
+        self._psd = psd
+        self.budget = budget or []
+
+    def __repr__(self):
+        if self.budget:
+            bs = ' [{}]'.format(', '.join([str(b.name) for b in self]))
+        else:
+            bs = ''
+        return '<{} {}{}>'.format(
+            self.__class__.__name__,
+            self.name,
+            bs,
+        )
+
+    @property
+    def freq(self):
+        """trace frequency array, in Hz"""
+        return self._freq
+
+    @property
+    def psd(self):
+        """trace power spectral density array"""
+        return self._psd
+
+    @property
+    def asd(self):
+        """trace amplitude spectral density array"""
+        return np.sqrt(self._psd)
+
+    def len(self):
+        """Length of data"""
+        return len(self._freq)
+
+    def __iter__(self):
+        """iterator of budget traces"""
+        return iter(self.budget)
+
+    @property
+    def _bdict(self):
+        bdict = {trace.name: trace for trace in self.budget}
+        return bdict
+
+    def __getattr__(self, name):
+        return self._bdict[name]
+
+    def __getitem__(self, name):
+        """get budget trace by name"""
+        return self._bdict[name]
+
+    def items(self):
+        """iterator of budget (name, trace) tuples"""
+        return self._bdict.items()
+
+    def keys(self):
+        """iterator of budget trace names"""
+        return self._bdict.keys()
+
+    def values(self):
+        """iterator of budget traces"""
+        return self._bdict.values()
+
+    def walk(self):
+        """walk recursively through all traces"""
+        yield self.name, self
+        for trace in self:
+            for t in trace.walk():
+                yield t