diff --git a/gwinc/ifo/aLIGO.yaml b/gwinc/ifo/aLIGO.yaml index ea588e5a3e1a994295f863f149186b519f78c5d8..75b3a6110286ca006a1e6aea490cf39dc85eb198 100644 --- a/gwinc/ifo/aLIGO.yaml +++ b/gwinc/ifo/aLIGO.yaml @@ -38,6 +38,18 @@ Infrastructure: polarizability: 7.8e-31 # m^3 TCS: + # The presumably dominant effect of a thermal lens in the ITMs is an increased + # mode mismatch into the SRC, and thus an increased effective loss of the SRC. + # The increase is estimated by calculating the round-trip loss S in the SRC as + # 1-S = |<Psi|exp(i*phi)|Psi>|^2, where + # |Psi> is the beam hitting the ITM and + # phi = P_coat*phi_coat + P_subs*phi_subs + # with phi_coat & phi_subs the specific lensing profiles + # and P_coat & P_subst the power absorbed in coating and substrate + # + # This expression can be expanded to 2nd order and is given by + # S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 + # s_cc, s_cs and s_ss were calculated analytically by Phil Willems (4/2007) s_cc: 7.024 # Watt^-2 s_cs: 7.321 # Watt^-2 s_ss: 7.631 # Watt^-2 @@ -56,6 +68,7 @@ TCS: Seismic: Site: 'LHO' # LHO or LLO (only used for Newtonian noise) + # darmSeiSusFile: 'seismic.mat' # .mat file containing predictions for darm displacement KneeFrequency: 10 # Hz; freq where 'flat' noise rolls off LowFrequencyLevel: 1e-9 # m/rtHz; seismic noise level below f_knee Gamma: 0.8 # abruptness of change at f_knee @@ -68,20 +81,20 @@ Seismic: Suspension: Type: 'Quad' - FiberType: 'Round' + FiberType: 'Tapered' BreakStress: 750e6 # Pa; ref. K. Strain Temp: 290 - VHCoupling: - theta: 1e-3 # vertical-horizontal x-coupling + # VHCoupling: + # theta: 1e-3 # vertical-horizontal x-coupling (computed in precompIFO) Silica: - Rho : 2200 # Kg/m^3; + Rho : 2.2e3 # Kg/m^3; C : 772 # J/Kg/K; K : 1.38 # W/m/kg; Alpha : 3.9e-7 # 1/K; dlnEdT: 1.52e-4 # (1/K), dlnE/dT Phi : 4.1e-10 # from G Harry e-mail to NAR 27April06 dimensionless units - Y : 72e9 # Pa; Youngs Modulus + Y : 7.2e10 # Pa; Youngs Modulus Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06 C70Steel: @@ -102,18 +115,18 @@ Suspension: Phi: 1e-4 Y: 187e9 - # ref ---- http://design.caltech.edu/Research/MEMS/siliconprop.html - # all properties should be for T ~ 20 K + # ref http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html + # all properties should be for T ~ 120 K Silicon: - Rho: 2330 # Kg/m^3; density - C: 772 # J/kg/K heat capacity - K: 4980 # W/m/K thermal conductivity - Alpha: 1e-9 # 1/K thermal expansion coeff + Rho: 2329 # Kg/m^3; density + C: 300 # J/kg/K heat capacity + K: 700 # W/m/K thermal conductivity + Alpha: 1e-10 # 1/K thermal expansion coeff # from Gysin, et. al. PRB (2004) E(T): E0 - B*T*exp(-T0/T) # E0: 167.5e9 Pa T0: 317 K B: 15.8e6 Pa/K - dlnEdT: 2.5e-10 # (1/K) dlnE/dT T=20K + dlnEdT: -2e-5 # (1/K) dlnE/dT T=120K Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q - Y: 150e9 # Pa Youngs Modulus + Y: 155.8e9 # Pa Youngs Modulus Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010)) # Note stage numbering: mirror is at beginning of stack, not end @@ -124,6 +137,9 @@ Suspension: Stage: # Stage1 - Mass: 39.6 # kg; current numbers May 2006 NAR + # length adjusted for d = 10mm and d_bend = 4mm + # (since 602mm is the CoM separation, and d_bend is accounted for + # in suspQuad, so including it here would double count) Length: 0.59 # m Dilution: .nan # K: .nan # N/m; vertical spring constant @@ -164,7 +180,11 @@ Suspension: Fiber: Radius: 205e-6 # m - Blade: 4300e-6 + # for tapered fibers + # EndRadius is tuned to cancel thermo-elastic noise (delta_h in suspQuad) + # EndLength is tuned to match bounce mode frequency + EndRadius: 400e-6 # m; nominal 400um + EndLength: 45e-3 # m; nominal 20mm ## Optic Material ------------------------------------------------------- Materials: @@ -174,14 +194,15 @@ Materials: ## Dielectric coating material parameters---------------------------------- Coating: ## high index material: tantala - Yhighn: 140e9 - Sigmahighn: 0.23 + Yhighn: 124e9 # LMA (Granata at LVC) 2017 (was 140) + Sigmahighn: 0.28 # LMA (Granata at LVC) 2017 (was 0.23) CVhighn: 2.1e6 # Crooks et al, Fejer et al Alphahighn: 3.6e-6 # 3.6e-6 Fejer et al, 5e-6 from Braginsky Betahighn: 1.4e-5 # dn/dT, value Gretarrson (G070161) ThermalDiffusivityhighn: 33 # Fejer et al - Phihighn: 3.6e-4 # tantala mechanical loss Indexhighn: 2.06539 + Phihighn: 3.6e-4 # loss angle at 100Hz (Gras 2018) + Phihighn_slope: 0.1 ## low index material: silica Ylown: 72e9 @@ -190,11 +211,13 @@ Materials: Alphalown: 5.1e-7 # Fejer et al Betalown: 8e-6 # dn/dT, (ref. 14) ThermalDiffusivitylown: 1.38 # Fejer et al - Philown: 5.0e-5 # silica mechanical loss Indexlown: 1.45 + Philown: 5.0e-5 # loss angle at 100Hz (was 4.0e-5) + Philown_slope: 0.4 ## Substrate Material parameters-------------------------------------------- Substrate: + Temp: 295 c2 : 7.6e-12 # Coeff of freq depend. term for bulk mechanical loss, 7.15e-12 for Sup2 MechanicalLossExponent: 0.77 # Exponent for freq dependence of silica loss, 0.822 for Sup2 Alphas: 5.2e-12 # Surface loss limit (ref. 12) @@ -215,25 +238,23 @@ Laser: Optics: Type: 'SignalRecycled' PhotoDetectorEfficiency: 0.9 # photo-detector quantum efficiency - Loss: 37.5e-6 # average per mirror power loss + Loss: 40e-6 # average per mirror power loss BSLoss: 0.5e-3 # power loss near beamsplitter coupling: 1.0 # mismatch btwn arms & SRC modes; used to - - #SubstrateAbsorption: 0.5e-4 # 1/m; bulk absorption coef (ref. 2) - SubstrateAbsorption: 0.3e-4 # 1/m; 0.3 ppm/cm for Hereaus + # calculate an effective r_srm + SubstrateAbsorption: 0.5e-4 # 1/m; bulk absorption coef (ref. 2) pcrit: 10 # W; tolerable heating power (factor 1 ATC) Quadrature: dc: 1.5707963 # pi/2 # demod/detection/homodyne phase ITM: - BeamRadius: 0.055 # m, 1/e^2 power radius + # BeamRadius: 0.055 # m, 1/e^2 power radius, now in precompIFO Transmittance: 0.014 CoatingThicknessLown: 0.308 CoatingThicknessCap: 0.5 CoatingAbsorption: 0.5e-6 - SubstrateAbsorption: 0.3e-4 # 1/m, 0.3 ppm/cm for Hereaus ETM: - BeamRadius: 0.062 # m, 1/e^2 power radius + # BeamRadius: 0.062 # m, 1/e^2 power radius, now in precompIFO Transmittance: 5e-6 CoatingThicknessLown: 0.27 CoatingThicknessCap: 0.5 @@ -247,40 +268,3 @@ Optics: Curvature: # ROC ITM: 1970 ETM: 2192 - -## Squeezer Parameters------------------------------------------------------ -# Define the squeezing you want: -# None: ignore the squeezer settings -# Freq Independent: nothing special (no filter cavties) -# Freq Dependent = applies the specified filter cavites -# Optimal = find the best squeeze angle, assuming no output filtering -# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase -Squeezer: - Type: 'None' - AmplitudedB: 10 # SQZ amplitude [dB] - InjectionLoss: 0.05 # power loss to sqz - SQZAngle: 0 # SQZ phase [radians] - - # Parameters for frequency dependent squeezing - FilterCavity: - fdetune: -14.5 # detuning [Hz] - L: 100 # cavity length - Ti: 0.12e-3 # input mirror trasmission [Power] - Te: 0 # end mirror trasmission - Lrt: 100e-6 # round-trip loss in the cavity - Rot: 0 # phase rotation after cavity - -## Variational Output Parameters-------------------------------------------- -# Define the output filter cavity chain -# None = ignore the output filter settings -# Chain = apply filter cavity chain -# Optimal = find the best readout phase -OutputFilter: - Type: 'None' - FilterCavity: - fdetune: -30 # detuning [Hz] - L: 4000 # cavity length - Ti: 10e-3 # input mirror trasmission [Power] - Te: 0 # end mirror trasmission - Lrt: 100e-6 # round-trip loss in the cavity - Rot: 0 # phase rotation after cavity