Commit 95bfb2a8 authored by Christopher Wipf's avatar Christopher Wipf

aLIGO.yaml: updated parameters from matgwinc IFOModel

(addresses #23)
parent 070abb18
Pipeline #27982 passed with stages
in 56 seconds
......@@ -38,6 +38,18 @@ Infrastructure:
polarizability: 7.8e-31 # m^3
TCS:
# The presumably dominant effect of a thermal lens in the ITMs is an increased
# mode mismatch into the SRC, and thus an increased effective loss of the SRC.
# The increase is estimated by calculating the round-trip loss S in the SRC as
# 1-S = |<Psi|exp(i*phi)|Psi>|^2, where
# |Psi> is the beam hitting the ITM and
# phi = P_coat*phi_coat + P_subs*phi_subs
# with phi_coat & phi_subs the specific lensing profiles
# and P_coat & P_subst the power absorbed in coating and substrate
#
# This expression can be expanded to 2nd order and is given by
# S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2
# s_cc, s_cs and s_ss were calculated analytically by Phil Willems (4/2007)
s_cc: 7.024 # Watt^-2
s_cs: 7.321 # Watt^-2
s_ss: 7.631 # Watt^-2
......@@ -56,6 +68,7 @@ TCS:
Seismic:
Site: 'LHO' # LHO or LLO (only used for Newtonian noise)
# darmSeiSusFile: 'seismic.mat' # .mat file containing predictions for darm displacement
KneeFrequency: 10 # Hz; freq where 'flat' noise rolls off
LowFrequencyLevel: 1e-9 # m/rtHz; seismic noise level below f_knee
Gamma: 0.8 # abruptness of change at f_knee
......@@ -68,20 +81,20 @@ Seismic:
Suspension:
Type: 'Quad'
FiberType: 'Round'
FiberType: 'Tapered'
BreakStress: 750e6 # Pa; ref. K. Strain
Temp: 290
VHCoupling:
theta: 1e-3 # vertical-horizontal x-coupling
# VHCoupling:
# theta: 1e-3 # vertical-horizontal x-coupling (computed in precompIFO)
Silica:
Rho : 2200 # Kg/m^3;
Rho : 2.2e3 # Kg/m^3;
C : 772 # J/Kg/K;
K : 1.38 # W/m/kg;
Alpha : 3.9e-7 # 1/K;
dlnEdT: 1.52e-4 # (1/K), dlnE/dT
Phi : 4.1e-10 # from G Harry e-mail to NAR 27April06 dimensionless units
Y : 72e9 # Pa; Youngs Modulus
Y : 7.2e10 # Pa; Youngs Modulus
Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06
C70Steel:
......@@ -102,18 +115,18 @@ Suspension:
Phi: 1e-4
Y: 187e9
# ref ---- http://design.caltech.edu/Research/MEMS/siliconprop.html
# all properties should be for T ~ 20 K
# ref http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
# all properties should be for T ~ 120 K
Silicon:
Rho: 2330 # Kg/m^3; density
C: 772 # J/kg/K heat capacity
K: 4980 # W/m/K thermal conductivity
Alpha: 1e-9 # 1/K thermal expansion coeff
Rho: 2329 # Kg/m^3; density
C: 300 # J/kg/K heat capacity
K: 700 # W/m/K thermal conductivity
Alpha: 1e-10 # 1/K thermal expansion coeff
# from Gysin, et. al. PRB (2004) E(T): E0 - B*T*exp(-T0/T)
# E0: 167.5e9 Pa T0: 317 K B: 15.8e6 Pa/K
dlnEdT: 2.5e-10 # (1/K) dlnE/dT T=20K
dlnEdT: -2e-5 # (1/K) dlnE/dT T=120K
Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q
Y: 150e9 # Pa Youngs Modulus
Y: 155.8e9 # Pa Youngs Modulus
Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010))
# Note stage numbering: mirror is at beginning of stack, not end
......@@ -124,6 +137,9 @@ Suspension:
Stage:
# Stage1
- Mass: 39.6 # kg; current numbers May 2006 NAR
# length adjusted for d = 10mm and d_bend = 4mm
# (since 602mm is the CoM separation, and d_bend is accounted for
# in suspQuad, so including it here would double count)
Length: 0.59 # m
Dilution: .nan #
K: .nan # N/m; vertical spring constant
......@@ -164,7 +180,11 @@ Suspension:
Fiber:
Radius: 205e-6 # m
Blade: 4300e-6
# for tapered fibers
# EndRadius is tuned to cancel thermo-elastic noise (delta_h in suspQuad)
# EndLength is tuned to match bounce mode frequency
EndRadius: 400e-6 # m; nominal 400um
EndLength: 45e-3 # m; nominal 20mm
## Optic Material -------------------------------------------------------
Materials:
......@@ -174,14 +194,15 @@ Materials:
## Dielectric coating material parameters----------------------------------
Coating:
## high index material: tantala
Yhighn: 140e9
Sigmahighn: 0.23
Yhighn: 124e9 # LMA (Granata at LVC) 2017 (was 140)
Sigmahighn: 0.28 # LMA (Granata at LVC) 2017 (was 0.23)
CVhighn: 2.1e6 # Crooks et al, Fejer et al
Alphahighn: 3.6e-6 # 3.6e-6 Fejer et al, 5e-6 from Braginsky
Betahighn: 1.4e-5 # dn/dT, value Gretarrson (G070161)
ThermalDiffusivityhighn: 33 # Fejer et al
Phihighn: 3.6e-4 # tantala mechanical loss
Indexhighn: 2.06539
Phihighn: 3.6e-4 # loss angle at 100Hz (Gras 2018)
Phihighn_slope: 0.1
## low index material: silica
Ylown: 72e9
......@@ -190,11 +211,13 @@ Materials:
Alphalown: 5.1e-7 # Fejer et al
Betalown: 8e-6 # dn/dT, (ref. 14)
ThermalDiffusivitylown: 1.38 # Fejer et al
Philown: 5.0e-5 # silica mechanical loss
Indexlown: 1.45
Philown: 5.0e-5 # loss angle at 100Hz (was 4.0e-5)
Philown_slope: 0.4
## Substrate Material parameters--------------------------------------------
Substrate:
Temp: 295
c2 : 7.6e-12 # Coeff of freq depend. term for bulk mechanical loss, 7.15e-12 for Sup2
MechanicalLossExponent: 0.77 # Exponent for freq dependence of silica loss, 0.822 for Sup2
Alphas: 5.2e-12 # Surface loss limit (ref. 12)
......@@ -215,25 +238,23 @@ Laser:
Optics:
Type: 'SignalRecycled'
PhotoDetectorEfficiency: 0.9 # photo-detector quantum efficiency
Loss: 37.5e-6 # average per mirror power loss
Loss: 40e-6 # average per mirror power loss
BSLoss: 0.5e-3 # power loss near beamsplitter
coupling: 1.0 # mismatch btwn arms & SRC modes; used to
#SubstrateAbsorption: 0.5e-4 # 1/m; bulk absorption coef (ref. 2)
SubstrateAbsorption: 0.3e-4 # 1/m; 0.3 ppm/cm for Hereaus
# calculate an effective r_srm
SubstrateAbsorption: 0.5e-4 # 1/m; bulk absorption coef (ref. 2)
pcrit: 10 # W; tolerable heating power (factor 1 ATC)
Quadrature:
dc: 1.5707963 # pi/2 # demod/detection/homodyne phase
ITM:
BeamRadius: 0.055 # m, 1/e^2 power radius
# BeamRadius: 0.055 # m, 1/e^2 power radius, now in precompIFO
Transmittance: 0.014
CoatingThicknessLown: 0.308
CoatingThicknessCap: 0.5
CoatingAbsorption: 0.5e-6
SubstrateAbsorption: 0.3e-4 # 1/m, 0.3 ppm/cm for Hereaus
ETM:
BeamRadius: 0.062 # m, 1/e^2 power radius
# BeamRadius: 0.062 # m, 1/e^2 power radius, now in precompIFO
Transmittance: 5e-6
CoatingThicknessLown: 0.27
CoatingThicknessCap: 0.5
......@@ -247,40 +268,3 @@ Optics:
Curvature: # ROC
ITM: 1970
ETM: 2192
## Squeezer Parameters------------------------------------------------------
# Define the squeezing you want:
# None: ignore the squeezer settings
# Freq Independent: nothing special (no filter cavties)
# Freq Dependent = applies the specified filter cavites
# Optimal = find the best squeeze angle, assuming no output filtering
# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
Squeezer:
Type: 'None'
AmplitudedB: 10 # SQZ amplitude [dB]
InjectionLoss: 0.05 # power loss to sqz
SQZAngle: 0 # SQZ phase [radians]
# Parameters for frequency dependent squeezing
FilterCavity:
fdetune: -14.5 # detuning [Hz]
L: 100 # cavity length
Ti: 0.12e-3 # input mirror trasmission [Power]
Te: 0 # end mirror trasmission
Lrt: 100e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
## Variational Output Parameters--------------------------------------------
# Define the output filter cavity chain
# None = ignore the output filter settings
# Chain = apply filter cavity chain
# Optimal = find the best readout phase
OutputFilter:
Type: 'None'
FilterCavity:
fdetune: -30 # detuning [Hz]
L: 4000 # cavity length
Ti: 10e-3 # input mirror trasmission [Power]
Te: 0 # end mirror trasmission
Lrt: 100e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment