Commit f4a551c1 authored by Evan Hall's avatar Evan Hall

Tune up CE2 parameter file

Thermal noise still needs attention
parent 7c850f50
# GWINC CE interferometer parameters (cryogenic)
# GWINC CE2 interferometer parameters
# parameters for quad pendulum suspension updated 3rd May 2006, NAR
# References:
......@@ -28,7 +28,7 @@
# * 14. Braginsky
Infrastructure:
Length: 39950 # m; whoa
Length: 40000 # m
Temp: 295 # K; Temperature of the Vacuum
ResidualGas:
pressure: 4.0e-7 # Pa
......@@ -72,7 +72,7 @@ Seismic:
LowFrequencyLevel: 1e-9 # m/rtHz; seismic noise level below f_knee
Gamma: 0.8 # abruptness of change at f_knee
Rho: 1.8e3 # kg/m^3; density of the ground nearby
Beta: 0.8 # quiet times beta = 0.35-0.60; noisy times beta = 0.15-1.4
Beta: 0.6 # quiet times beta = 0.35-0.60; noisy times beta = 0.15-1.4
Omicron: 10 # Feedforward cancellation factor
TestMassHeight: 1.5 # m
RayleighWaveSpeed: 250 # m/s
......@@ -80,19 +80,13 @@ Seismic:
Suspension:
Type: 'BQuad'
# Suspension fiber temperatures [TOP UIM PUM TST]
Temp:
- 300.0
- 300.0
- 300.0
- 123.0
VHCoupling:
theta: 1e-3 # vertical-horizontal x-coupling
theta: 6.2e-3 # 6.2e-3 # vertical-horizontal x-coupling
FiberType: 'Ribbon'
# For Ribbon suspension
Ribbon:
Thickness: 115e-6 # m
Width: 1150e-6 # m
Thickness: 325e-6 # 130e-6 # m
Width: 3250e-6 # 1300e-6 # m
Fiber:
Radius: 205e-6 # m
BreakStress: 750e6 # Pa; ref. K. Strain
......@@ -101,38 +95,38 @@ Suspension:
Stage:
# Load saved file with otpimized mass. Masses are optimized for longitudinal isolation assuming the PUM has springs
#susmat = loadmat('CryogenicLIGO/QuadModel/quad_optimized_masses_for_PUM_with_springs.mat')
- Mass: 200.0 # kg; susmat['testmass_mass'][0,0]
Length: 0.4105 # m
- Mass: 316.8 # kg; susmat['testmass_mass'][0,0]
Length: 1.18 # m
Temp: 123.0
Dilution: .nan
K: .nan
K: 8000 # .nan
WireRadius: .nan
Blade: .nan # blade thickness
Blade: 0.0042 # .nan # blade thickness
NWires: 4
Temp: 300
- Mass: 65.9 # kg; susmat['PUMmass'][0,0]
Length: 0.4105 # m
- Mass: 316.8 # kg; susmat['PUMmass'][0,0]
Length: 0.682 # m
Temp: 123.0
Dilution: 106.0
K: 5200.0 # N/m; vertical spring constant
WireRadius: 310e-6
Blade: 4200e-6
K: 41600 # 17300.0 # N/m; vertical spring constant
WireRadius: 877e-6
Blade: 0.0119
NWires: 4
Temp: 300
- Mass: 87.6 # kg; susmat['UIMmass'][0,0]
Length: 0.4105 # m
- Mass: 174.4 # kg; susmat['UIMmass'][0,0]
Length: 0.554 # m
Temp: 300.0
Dilution: 80.0
K: 3900.0 # N/m; vertical spring constant
WireRadius: 350e-6
Blade: 4600e-6
K: 31200 # 13500.0 # N/m; vertical spring constant
WireRadius: 990e-6
Blade: 0.0130
NWires: 4
Temp: 300
- Mass: 116.5 # kg; susmat['topmass_mass'][0,0]
Length: 0.4105 # m
- Mass: 176.8 # kg; susmat['topmass_mass'][0,0]
Length: 0.832 # m
Temp: 300.0
Dilution: 87.0
K: 3400.0 # N/m; vertical spring constant
WireRadius: 520e-6
Blade: 4300e-6
K: 27200.0 # N/m; vertical spring constant
WireRadius: 1471e-6
Blade: 0.0121
NWires: 2
Temp: 123
Silicon:
# http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
# all properties should be for T ~ 120 K
......@@ -148,7 +142,6 @@ Suspension:
Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q
Y: 155.8e9 # Pa Youngs Modulus
Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010))
FiberType: 1 # 0 = round, 1 = ribbons
Silica:
Rho: 2200.0 # Kg/m^3
C: 772.0 # J/Kg/K
......@@ -230,12 +223,12 @@ Materials:
ElectronIndexGamma: -8.8e-28 # m**3; dependence of index of refraction on electron carrier density
HoleIndexGamma: -1.02e-27 # m**3; dependence of index of refraction on hole carrier density
MassRadius: 0.225 # m; 45 cm mCZ silicon
MassThickness: 0.55
MassRadius: 0.4 # m; 80 cm mCZ silicon
MassThickness: 0.286
Laser:
Wavelength: 1550e-9 # m
Power: 400 # W zz['x'][0][0]
Power: 220 # W zz['x'][0][0]
Optics:
Type: 'SignalRecycled'
......@@ -250,9 +243,9 @@ Optics:
# zz = loadmat('CryogenicLIGO/Sensitivity/GWINC/optRuns/' + qopt_mat)
ITM:
SubstrateAbsorption: 1e-3 # 1/m; 10 ppm/cm for MCZ Si
BeamRadius: 0.16 # m; 1/e^2 power radius w1
CoatingAbsorption: 1e-6 # absorption of ITM
Transmittance: 1.2436875e-3 # zz['x'][0][3]
BeamRadius: 0.141 # m; 1/e^2 power radius w1
CoatingAbsorption: 0.5e-6 # absorption of ITM
Transmittance: 0.014 # zz['x'][0][3]
#CoatingThicknessLown: 0.308
#CoatingThicknessCap: 0.5
#itm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ITM_layers_151221_2237.mat')
......@@ -271,7 +264,7 @@ Optics:
- 0.3867382
- 0.08814237
ETM:
BeamRadius: 0.16 # m; 1/e^2 power radius w2
BeamRadius: 0.141 # m; 1/e^2 power radius w2
Transmittance: 5e-6 # Transmittance of ETM
#CoatingThicknessLown: 0.27
#CoatingThicknessCap: 0.5
......@@ -301,18 +294,18 @@ Optics:
Transmittance: 0.02 # zz['x'][0][4]
#ifo.Optics.SRM.Tunephase = 0.23; % SRM tuning, 795 Hz narrowband
Tunephase: 0.0 # SRM tuning [radians]
PhotoDetectorEfficiency: 0.95 # photo-detector quantum efficiency
Loss: 10e-6 # average per mirror power loss
PhotoDetectorEfficiency: 0.96 # photo-detector quantum efficiency
Loss: 20e-6 # average per mirror power loss
# factor of 4 for 1064 -> 2000
BSLoss: 0.5e-3 # power loss near beamsplitter
BSLoss: 0.1e-3 # power loss near beamsplitter
coupling: 1.0 # mismatch btwn arms & SRC modes; used to calculate an effective r_srm
Curvature:
ITM: 30000 # RoC of ITM
ETM: 30000 # RoC of ETM
SubstrateAbsorption: 0.3e-4 # 1/m; 0.3 ppm/cm for Hereaus
ITM: 34783 # RoC of ITM
ETM: 34783 # RoC of ETM
SubstrateAbsorption: 0.5e-4 # 1/m; 0.3 ppm/cm for Hereaus
pcrit: 10 # W; tolerable heating power (factor 1 ATC)
Quadrature:
dc: 1.556827 # homoDyne phase [radians] zz['x'][0][5]
dc: 1.5708 # homoDyne phase [radians] zz['x'][0][5]
Squeezer:
# Define the squeezing you want:
......@@ -322,17 +315,17 @@ Squeezer:
# Optimal = find the best squeeze angle, assuming no output filtering
# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
Type: 'Freq Dependent'
AmplitudedB: 10 # SQZ amplitude [dB]
InjectionLoss: 0.05 # power loss to sqz
AmplitudedB: 15 # SQZ amplitude [dB]
InjectionLoss: 0.02 # power loss to sqz
SQZAngle: 0 # SQZ phase [radians]
# Parameters for frequency dependent squeezing
FilterCavity:
fdetune: -36.44897 # detuning [Hz] zz['x'][0][1]
L: 300 # cavity length [m]
Ti: 0.00090274 # input mirror trasmission [Power] zz['x'][0][2]
Te: 0e-6 # end mirror trasmission
Lrt: 10e-6 # round-trip loss in the cavity
fdetune: -4.9993 # detuning [Hz] zz['x'][0][1]
L: 4000 # cavity length [m]
Ti: 0.0016836 # input mirror trasmission [Power] zz['x'][0][2]
Te: 5e-6 # end mirror trasmission
Lrt: 150e-6 # round-trip loss in the cavity
Rot: 0 # phase rotation after cavity
## Variational Output Parameters
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment