diff --git a/gwinc/ifo/CEcryo.yaml b/gwinc/ifo/CEcryo.yaml new file mode 100644 index 0000000000000000000000000000000000000000..cda2758f9ce503e69897a319af0d185fdebca76a --- /dev/null +++ b/gwinc/ifo/CEcryo.yaml @@ -0,0 +1,350 @@ +# GWINC CE interferometer parameters (cryogenic) + +# parameters for quad pendulum suspension updated 3rd May 2006, NAR +# References: +# LIGO-T000012-00-D +# * Differentiate between silica and sapphire substrate absorption +# * Change ribbon suspension aspect ratio +# * Change pendulum frequency +# * References: +# * 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993) +# * 2. LIGO/GEO data/experience +# * 3. Suspension reference design, LIGO-T000012-00 +# * 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet, +# * numbers for suprasil +# * 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter +# * (IFI/Plenum,1970) +# * 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology, +# * Vol 4, Pt 2 +# * 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press +# * 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker, +# * 1991 +# * 9. Rai Weiss, electronic log from 5/10/2006 +# * 10. Wikipedia online encyclopedia, 2006 +# * 11. D.K. Davies, The Generation and Dissipation of Static Charge on +# * dielectrics in a Vacuum, page 29 +# * 12. Gretarsson & Harry, Gretarsson thesis +# * 13. Fejer +# * 14. Braginsky + +Constants: + Temp: 295 # K; Temperature of the Vacuum + +Infrastructure: + Length: 39950 # m; whoa + ResidualGas: + pressure: 4.0e-7 # Pa + mass: 3.35e-27 # kg, Mass of H_2 (ref. 10) + polarizability: 0.81e-30 # m^3 (H_2, DOI: 10.1116/1.1479360) + +TCS: + ## Parameter describing thermal lensing + # The presumably dominant effect of a thermal lens in the ITMs is an increased + # mode mismatch into the SRC, and thus an increased effective loss of the SRC. + # This increase is estimated by calculating the round-trip loss S in the SRC as + # 1-S = |<Psi|exp(i*phi)|Psi>|^2, where + # |Psi> is the beam hitting the ITM and + # phi = P_coat*phi_coat + P_subs*phi_subs + # with phi_coat & phi__subs the specific lensing profiles + # and P_coat & P_subst the power absorbed in coating and substrate + # + # This expression can be expanded to 2nd order and is given by + # S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 + # s_cc, s_cs and s_ss where calculated analytically by Phil Wilems (4/2007) + s_cc: 7.024 # Watt^-2 + s_cs: 7.321 # Watt^-2 + s_ss: 7.631 # Watt^-2 + # The hardest part to model is how efficient the TCS system is in + # compensating this loss. Thus as a simple Ansatz we define the + # TCS efficiency TCSeff as the reduction in effective power that produces + # a phase distortion. E.g. TCSeff=0.99 means that the compensated distortion + # of 1 Watt absorbed is eqivalent to the uncompensated distortion of 10mWatt. + # The above formula thus becomes: + # S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 * (1-TCSeff)^2 + # + # To avoid iterative calculation we define TCS.SCRloss = S as an input + # and calculate TCSeff as an output. + # TCS.SRCloss is incorporated as an additional loss in the SRC + SRCloss: 0.00 + +Seismic: + ## Seismic and Gravity Gradient Parameters + Site: 'LHO' # LHO or LLO (only used for Newtonian noise) + KneeFrequency: 10 # Hz; freq where 'flat' noise rolls off + LowFrequencyLevel: 1e-9 # m/rtHz; seismic noise level below f_knee + Gamma: .8 # abruptness of change at f_knee + Rho: 1.8e3 # kg/m^3; density of the ground nearby + Beta: 1 # quiet times beta = 0.35-0.60; noisy times beta = 0.15-1.4 + Omicron: 10 # Feedforward cancellation factor + #darmSeiSusFile: 'CryogenicLIGO/Sensitivity/GWINC/seismic.mat' + +Suspension: + Type: 'BQuad' + # Suspension fiber temperatures [TOP UIM PUM TST] + Temp: + - 300.0 + - 300.0 + - 300.0 + - 123.0 + VHCoupling: + theta: 1e-3 # vertical-horizontal x-coupling + FiberType: 1 # 0 = round, 1 = ribbons + # For Ribbon suspension + Ribbon: + Thickness: 115e-6 # m + Width: 1150e-6 # m + Fiber: + Radius: 205e-6 # m + BreakStress: 750e6 # Pa; ref. K. Strain + # Note stage numbering: mirror is at beginning of stack, not end + # these mass numbers are from v8 of the Voyager design doc + Stage: + # Load saved file with otpimized mass. Masses are optimized for longitudinal isolation assuming the PUM has springs + #susmat = loadmat('CryogenicLIGO/QuadModel/quad_optimized_masses_for_PUM_with_springs.mat') + - Mass: 200.0 # kg; susmat['testmass_mass'][0,0] + Length: 0.4105 # m + Dilution: .nan + K: .nan + WireRadius: .nan + Blade: .nan # blade thickness + NWires: 4 + - Mass: 65.9 # kg; susmat['PUMmass'][0,0] + Length: 0.4105 # m + Dilution: 106.0 + K: 5200.0 # N/m; vertical spring constant + WireRadius: 310e-6 + Blade: 4200e-6 + NWires: 4 + - Mass: 87.6 # kg; susmat['UIMmass'][0,0] + Length: 0.4105 # m + Dilution: 80.0 + K: 3900.0 # N/m; vertical spring constant + WireRadius: 350e-6 + Blade: 4600e-6 + NWires: 4 + - Mass: 116.5 # kg; susmat['topmass_mass'][0,0] + Length: 0.4105 # m + Dilution: 87.0 + K: 3400.0 # N/m; vertical spring constant + WireRadius: 520e-6 + Blade: 4300e-6 + NWires: 2 + Silicon: + # http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html + # all properties should be for T ~ 120 K + Rho: 2329.0 # Kg/m^3 density + C: 300.0 # J/kg/K heat capacity + K: 700.0 # W/m/K thermal conductivity + Alpha: 1e-10 # 1/K thermal expansion coeff + + # from Gysin, et. al. PRB (2004) E(T) = E0 - B*T*exp(-T0/T) + # E0 = 167.5e9 Pa T0 = 317 K B = 15.8e6 Pa/K + dlnEdT: -2e-5 # (1/K) dlnE/dT T = 120K + + Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q + Y: 155.8e9 # Pa Youngs Modulus + Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010)) + FiberType: 1 # 0 = round, 1 = ribbons + Silica: + Rho: 2200.0 # Kg/m^3 + C: 772.0 # J/Kg/K + K: 1.38 # W/m/kg + Alpha: 3.9e-7 # 1/K + dlnEdT: 1.52e-4 # (1/K), dlnE/dT + Phi: 4.1e-10 # from G Harry e-mail to NAR 27April06 + Y: 72e9 # Pa; Youngs Modulus + Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06 + C70Steel: + Rho: 7800.0 + C: 486.0 + K: 49.0 + Alpha: 12e-6 + dlnEdT: -2.5e-4 + Phi: 2e-4 + Y: 212e9 # measured by MB for one set of wires + MaragingSteel: + Rho: 7800.0 + C: 460.0 + K: 20.0 + Alpha: 11e-6 + dlnEdT: 0.0 + Phi: 1.0e-4 + Y: 187e9 + # consistent with measured blade spring constants NAR + +Materials: + ## Amorphous Silicon / Silica coating + Coating: + # high index material: a-Si + # https://wiki.ligo.org/OPT/AmorphousSilicon + Yhighn: 80e9 + Sigmahighn: 0.22 + CVhighn: 7.776e5 # volume-specific heat capacity (J/K/m^3); 345.6*2250 http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.96.055902 + Alphahighn: 1e-9 # zero crossing at 123 K + Betahighn: 1.4e-4 # dn/dT + ThermalDiffusivityhighn: 1 # W/m/K (this is a misnomer, meant to be thermal conductivity not diffusivity) + Phihighn: 3e-5 # just a guess (depends on prep) + Indexhighn: 3.5 + + # low index material: silica + # https://wiki.ligo.org/OPT/SilicaCoatingProp + Ylown: 72e9 # Young's modulus (Pa) + Sigmalown: 0.17 # Poisson's ratio + CVlown: 1.6412e6 # volume-specific heat capacity (J/K/m^3); Crooks et al, Fejer et al + Alphalown: 5.1e-7 # Fejer et al + Betalown: 8e-6 # dn/dT, (ref. 14) + ThermalDiffusivitylown: 1.38 # Fejer et al (this is a misnomer, meant to be thermal conductivity not diffusivity) + Philown: 1e-4 # ? + + # calculated for 123 K and 2000 nm following + # Ghosh, et al (1994): http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=317500 + Indexlown: 1.436 # calculated (RXA) + + ## Substrate Material parameters + # Silicon @ 120K (http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html) + Substrate: + # phi_sub = c2 * f^(MechLossExp) + c2: 3e-13 # Coeff of freq dep. term for bulk loss (Lam & Douglass, 1981) + MechanicalLossExponent: 1 # Exponent for freq dependence of silicon loss + Alphas: 5.2e-12 # Surface loss limit ??? + MirrorY: 155.8e9 # N/m^2; Youngs modulus (ioffe) -- what about anisotropy?? + MirrorSigma: 0.27 # kg/m^3; Poisson ratio (ioffe) -- what about anisotropy?? + MassDensity: 2329 # kg/m^3; (ioffe) + MassAlpha: 1e-9 # 1/K; CTE = 0 @ 120 K + MassCM: 300 # J/kg/K; specific heat (ioffe @ 120K) + MassKappa: 700 # W/(m*K); thermal conductivity (ioffe @ 120) + RefractiveIndex: 3.5 # 3.38 * (1 + 4e-5 * T) (ioffe) + dndT: 1e-4 # ~123K & 1900 nm : http://arxiv.org/abs/physics/0606168 + Temp: 123 # mirror temperature [K] + ## parameters for semiconductor optics + isSemiConductor: True # we are doing semiconductor optics + CarrierDensity: 1e19 # 1/m^3; carrier density for phosphorous-doped silicon + ElectronDiffusion: 9.7e-3 # m^2/s; electron diffusion coefficient for silicon at 120 K + HoleDiffusion: 3.5e-3 # m^2/s; hole diffusion coefficient for silicon at 120 K + ElectronEffMass: 9.747e-31 # kg; effective mass of each electron 1.07*m_e + HoleEffMass: 8.016e-31 # kg; effective mass of each hole 0.88*m_e + ElectronIndexGamma: -8.8e-28 # m**3; dependence of index of refraction on electron carrier density + HoleIndexGamma: -1.02e-27 # m**3; dependence of index of refraction on hole carrier density + + MassRadius: 0.225 # m; 45 cm mCZ silicon + MassThickness: 0.55 + +Laser: + Wavelength: 1550e-9 # m + Power: 400 # W zz['x'][0][0] + +Optics: + Type: 'SignalRecycled' + + # calculate arm cavity spot sizes + # L = ifo.Infrastructure.Length + # w1,w2,junk = SpotSizes(1 - L / ifo.Optics.Curvature.ITM, + # 1 - L / ifo.Optics.Curvature.ETM, + # L, ifo.Laser.Wavelength) + # load quantum PSO + # qopt_mat = sorted(os.listdir('CryogenicLIGO/Sensitivity/GWINC/optRuns'))[-1] + # zz = loadmat('CryogenicLIGO/Sensitivity/GWINC/optRuns/' + qopt_mat) + ITM: + SubstrateAbsorption: 1e-3 # 1/m; 10 ppm/cm for MCZ Si + BeamRadius: 0.16 # m; 1/e^2 power radius w1 + CoatingAbsorption: 1e-6 # absorption of ITM + Transmittance: 1.2436875e-3 # zz['x'][0][3] + #CoatingThicknessLown: 0.308 + #CoatingThicknessCap: 0.5 + #itm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ITM_layers_151221_2237.mat') + CoatLayerOpticalThickness: #itm['TNout']['L'][0][0].T + - 0.01054715 + - 0.28787195 + - 0.10285996 + - 0.40016914 + - 0.09876197 + - 0.39463506 + - 0.1054613 + - 0.37612136 + - 0.12181482 + - 0.35883931 + - 0.13570767 + - 0.3867382 + - 0.08814237 + ETM: + BeamRadius: 0.16 # m; 1/e^2 power radius w2 + Transmittance: 5e-6 # Transmittance of ETM + #CoatingThicknessLown: 0.27 + #CoatingThicknessCap: 0.5 + #etm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ETM_layers_151221_2150.mat') + CoatLayerOpticalThickness: #etm['TNout']['L'][0][0].T + - 0.01000241 + - 0.27121433 + - 0.16417485 + - 0.33598991 + - 0.16123195 + - 0.33587683 + - 0.16150012 + - 0.33620725 + - 0.16381275 + - 0.33382231 + - 0.16041712 + - 0.33544017 + - 0.1664314 + - 0.33324722 + - 0.16319734 + - 0.33497111 + - 0.15838689 + PRM: + Transmittance: 0.03 + SRM: + CavityLength: 55 # m; ITM to SRM distance + Transmittance: 0.02 # zz['x'][0][4] + #ifo.Optics.SRM.Tunephase = 0.23; % SRM tuning, 795 Hz narrowband + Tunephase: 0.0 # SRM tuning [radians] + PhotoDetectorEfficiency: 0.95 # photo-detector quantum efficiency + Loss: 10e-6 # average per mirror power loss + # factor of 4 for 1064 -> 2000 + BSLoss: 0.5e-3 # power loss near beamsplitter + coupling: 1.0 # mismatch btwn arms & SRC modes; used to calculate an effective r_srm + Curvature: + ITM: 30000 # RoC of ITM + ETM: 30000 # RoC of ETM + SubstrateAbsorption: 0.3e-4 # 1/m; 0.3 ppm/cm for Hereaus + pcrit: 10 # W; tolerable heating power (factor 1 ATC) + Quadrature: + dc: 1.556827 # homoDyne phase [radians] zz['x'][0][5] + +Squeezer: + # Define the squeezing you want: + # None = ignore the squeezer settings + # Freq Independent = nothing special (no filter cavties) + # Freq Dependent = applies the specified filter cavites + # Optimal = find the best squeeze angle, assuming no output filtering + # OptimalOptimal = optimal squeeze angle, assuming optimal readout phase + Type: 'Freq Dependent' + AmplitudedB: 10 # SQZ amplitude [dB] + InjectionLoss: 0.05 # power loss to sqz + SQZAngle: 0 # SQZ phase [radians] + + # Parameters for frequency dependent squeezing + FilterCavity: + fdetune: -36.44897 # detuning [Hz] zz['x'][0][1] + L: 300 # cavity length [m] + Ti: 0.00090274 # input mirror trasmission [Power] zz['x'][0][2] + Te: 0e-6 # end mirror trasmission + Lrt: 10e-6 # round-trip loss in the cavity + Rot: 0 # phase rotation after cavity + + ## Variational Output Parameters + # Define the output filter cavity chain + # None = ignore the output filter settings + # Chain = apply filter cavity chain + # Optimal = find the best readout phase + OutputFilter: + Type: 'None' + FilterCavity: + fdetune: -30 # detuning [Hz] + L: 4000 # cavity length + Ti: 10e-3 # input mirror trasmission [Power] + Te: 0 # end mirror trasmission + Lrt: 100e-6 # round-trip loss in the cavity + Rot: 0 # phase rotation after cavity + + +