diff --git a/gwinc/ifo/CEcryo.yaml b/gwinc/ifo/CEcryo.yaml
new file mode 100644
index 0000000000000000000000000000000000000000..cda2758f9ce503e69897a319af0d185fdebca76a
--- /dev/null
+++ b/gwinc/ifo/CEcryo.yaml
@@ -0,0 +1,350 @@
+# GWINC CE interferometer parameters (cryogenic)
+
+# parameters for quad pendulum suspension updated 3rd May 2006, NAR
+# References:
+# LIGO-T000012-00-D
+# 	* Differentiate between silica and sapphire substrate absorption
+# 	* Change ribbon suspension aspect ratio
+# 	* Change pendulum frequency
+# * References:
+# * 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993)
+# * 2. LIGO/GEO data/experience
+# * 3. Suspension reference design, LIGO-T000012-00
+# * 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet,
+# *    numbers for suprasil
+# * 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter 
+# *    (IFI/Plenum,1970)
+# * 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology, 
+# *    Vol 4, Pt 2
+# * 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press
+# * 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker, 
+# *    1991
+# * 9. Rai Weiss, electronic log from 5/10/2006
+# * 10. Wikipedia online encyclopedia, 2006
+# * 11. D.K. Davies, The Generation and Dissipation of Static Charge on
+# * dielectrics in a Vacuum, page 29
+# * 12. Gretarsson & Harry, Gretarsson thesis
+# * 13. Fejer
+# * 14. Braginsky
+
+Constants:
+  Temp: 295 # K; Temperature of the Vacuum
+  
+Infrastructure:
+  Length: 39950 # m; whoa
+  ResidualGas:
+    pressure: 4.0e-7         # Pa
+    mass: 3.35e-27           # kg,   Mass of H_2 (ref. 10)
+    polarizability: 0.81e-30 # m^3  (H_2, DOI: 10.1116/1.1479360)
+
+TCS:
+  ## Parameter describing thermal lensing
+  # The presumably dominant effect of a thermal lens in the ITMs is an increased
+  # mode mismatch into the SRC, and thus an increased effective loss of the SRC.
+  # This increase is estimated by calculating the round-trip loss S in the SRC as
+  # 1-S = |<Psi|exp(i*phi)|Psi>|^2, where
+  # |Psi> is the beam hitting the ITM and
+  # phi = P_coat*phi_coat + P_subs*phi_subs
+  # with phi_coat & phi__subs the specific lensing profiles
+  # and P_coat & P_subst the power absorbed in coating and substrate
+  #
+  # This expression can be expanded to 2nd order and is given by
+  # S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2
+  # s_cc, s_cs and s_ss where calculated analytically by Phil Wilems (4/2007)
+  s_cc: 7.024 # Watt^-2
+  s_cs: 7.321 # Watt^-2
+  s_ss: 7.631 # Watt^-2
+  # The hardest part to model is how efficient the TCS system is in
+  # compensating this loss. Thus as a simple Ansatz we define the
+  # TCS efficiency TCSeff as the reduction in effective power that produces
+  # a phase distortion. E.g. TCSeff=0.99 means that the compensated distortion
+  # of 1 Watt absorbed is eqivalent to the uncompensated distortion of 10mWatt.
+  # The above formula thus becomes:
+  # S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 * (1-TCSeff)^2
+  #
+  # To avoid iterative calculation we define TCS.SCRloss = S as an input
+  # and calculate TCSeff as an output.
+  # TCS.SRCloss is incorporated as an additional loss in the SRC
+  SRCloss: 0.00
+
+Seismic:
+  ## Seismic and Gravity Gradient Parameters
+  Site: 'LHO'                      # LHO or LLO (only used for Newtonian noise)
+  KneeFrequency: 10                # Hz; freq where 'flat' noise rolls off
+  LowFrequencyLevel: 1e-9          # m/rtHz; seismic noise level below f_knee
+  Gamma: .8                        # abruptness of change at f_knee
+  Rho: 1.8e3                       # kg/m^3; density of the ground nearby
+  Beta: 1                          # quiet times beta = 0.35-0.60; noisy times beta = 0.15-1.4
+  Omicron: 10                      # Feedforward cancellation factor
+  #darmSeiSusFile: 'CryogenicLIGO/Sensitivity/GWINC/seismic.mat'
+
+Suspension:
+  Type: 'BQuad'
+  # Suspension fiber temperatures [TOP UIM PUM TST]
+  Temp:
+    - 300.0
+    - 300.0
+    - 300.0
+    - 123.0
+  VHCoupling:
+    theta: 1e-3 # vertical-horizontal x-coupling
+  FiberType: 1        # 0 = round, 1 = ribbons
+  # For Ribbon suspension
+  Ribbon:
+    Thickness: 115e-6 # m
+    Width: 1150e-6    # m
+  Fiber:
+    Radius: 205e-6    # m
+  BreakStress: 750e6 # Pa; ref. K. Strain
+  # Note stage numbering: mirror is at beginning of stack, not end
+  # these mass numbers are from v8 of the Voyager design doc
+  Stage:
+    # Load saved file with otpimized mass. Masses are optimized for longitudinal isolation assuming the PUM has springs
+    #susmat = loadmat('CryogenicLIGO/QuadModel/quad_optimized_masses_for_PUM_with_springs.mat')
+    - Mass: 200.0 # kg; susmat['testmass_mass'][0,0]
+      Length: 0.4105 # m
+      Dilution: .nan
+      K: .nan
+      WireRadius: .nan
+      Blade: .nan # blade thickness
+      NWires: 4
+    - Mass: 65.9 # kg; susmat['PUMmass'][0,0]
+      Length: 0.4105 # m
+      Dilution: 106.0
+      K: 5200.0 # N/m; vertical spring constant
+      WireRadius: 310e-6
+      Blade: 4200e-6
+      NWires: 4
+    - Mass: 87.6 # kg; susmat['UIMmass'][0,0]
+      Length: 0.4105 # m
+      Dilution: 80.0
+      K: 3900.0 # N/m; vertical spring constant
+      WireRadius: 350e-6
+      Blade: 4600e-6
+      NWires: 4
+    - Mass: 116.5 # kg; susmat['topmass_mass'][0,0]
+      Length: 0.4105 # m
+      Dilution: 87.0
+      K: 3400.0 # N/m; vertical spring constant
+      WireRadius: 520e-6
+      Blade: 4300e-6
+      NWires: 2
+  Silicon:
+    # http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
+    # all properties should be for T ~ 120 K
+    Rho: 2329.0       # Kg/m^3   density
+    C: 300.0          # J/kg/K   heat capacity
+    K: 700.0          # W/m/K    thermal conductivity
+    Alpha: 1e-10      # 1/K      thermal expansion coeff
+
+    # from Gysin, et. al. PRB (2004)  E(T) = E0 - B*T*exp(-T0/T)
+    # E0 = 167.5e9 Pa   T0 = 317 K   B = 15.8e6 Pa/K
+    dlnEdT: -2e-5     # (1/K)    dlnE/dT  T = 120K
+
+    Phi: 2e-9         # Nawrodt (2010)      loss angle  1/Q
+    Y: 155.8e9        # Pa       Youngs Modulus
+    Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010))
+    FiberType: 1      # 0 = round, 1 = ribbons
+  Silica:
+    Rho: 2200.0       # Kg/m^3
+    C: 772.0          # J/Kg/K
+    K: 1.38           # W/m/kg
+    Alpha: 3.9e-7     # 1/K
+    dlnEdT: 1.52e-4   # (1/K), dlnE/dT
+    Phi: 4.1e-10      # from G Harry e-mail to NAR 27April06
+    Y: 72e9           # Pa; Youngs Modulus
+    Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06
+  C70Steel:
+    Rho: 7800.0
+    C: 486.0
+    K: 49.0
+    Alpha: 12e-6
+    dlnEdT: -2.5e-4
+    Phi: 2e-4
+    Y: 212e9 # measured by MB for one set of wires
+  MaragingSteel:
+    Rho: 7800.0
+    C: 460.0
+    K: 20.0
+    Alpha: 11e-6
+    dlnEdT: 0.0
+    Phi: 1.0e-4
+    Y: 187e9
+    # consistent with measured blade spring constants NAR
+
+Materials:
+  ## Amorphous Silicon / Silica coating
+  Coating:
+    # high index material: a-Si
+    # https://wiki.ligo.org/OPT/AmorphousSilicon
+    Yhighn: 80e9
+    Sigmahighn: 0.22
+    CVhighn: 7.776e5  # volume-specific heat capacity (J/K/m^3); 345.6*2250 http://journals.aps.org/prl/pdf/10.1103/PhysRevLett.96.055902
+    Alphahighn: 1e-9  # zero crossing at 123 K
+    Betahighn: 1.4e-4 # dn/dT
+    ThermalDiffusivityhighn: 1 # W/m/K (this is a misnomer, meant to be thermal conductivity not diffusivity)
+    Phihighn: 3e-5    # just a guess (depends on prep)
+    Indexhighn: 3.5
+
+    # low index material: silica
+    # https://wiki.ligo.org/OPT/SilicaCoatingProp
+    Ylown: 72e9       # Young's modulus (Pa)
+    Sigmalown: 0.17   # Poisson's ratio
+    CVlown: 1.6412e6  # volume-specific heat capacity (J/K/m^3); Crooks et al, Fejer et al
+    Alphalown: 5.1e-7 # Fejer et al
+    Betalown: 8e-6    # dn/dT,  (ref. 14)
+    ThermalDiffusivitylown: 1.38 # Fejer et al (this is a misnomer, meant to be thermal conductivity not diffusivity)
+    Philown: 1e-4     # ?
+
+    # calculated for 123 K and 2000 nm following 
+    # Ghosh, et al (1994):  http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=317500
+    Indexlown: 1.436  # calculated (RXA)
+
+  ## Substrate Material parameters
+  # Silicon @ 120K (http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html)
+  Substrate:
+    #  phi_sub = c2 * f^(MechLossExp)
+    c2: 3e-13            # Coeff of freq dep. term for bulk loss (Lam & Douglass, 1981)
+    MechanicalLossExponent: 1 # Exponent for freq dependence of silicon loss
+    Alphas: 5.2e-12      # Surface loss limit ???
+    MirrorY: 155.8e9     # N/m^2; Youngs modulus (ioffe) -- what about anisotropy??
+    MirrorSigma: 0.27    # kg/m^3; Poisson ratio (ioffe) -- what about anisotropy??
+    MassDensity: 2329    # kg/m^3; (ioffe)
+    MassAlpha: 1e-9      # 1/K; CTE = 0 @ 120 K
+    MassCM: 300          # J/kg/K; specific heat (ioffe @ 120K)
+    MassKappa: 700       # W/(m*K); thermal conductivity (ioffe @ 120)
+    RefractiveIndex: 3.5 # 3.38 * (1 + 4e-5 * T)   (ioffe)
+    dndT: 1e-4           # ~123K & 1900 nm : http://arxiv.org/abs/physics/0606168
+    Temp: 123            # mirror temperature [K]
+    ## parameters for semiconductor optics
+    isSemiConductor: True     # we are doing semiconductor optics
+    CarrierDensity: 1e19      # 1/m^3; carrier density for phosphorous-doped silicon
+    ElectronDiffusion: 9.7e-3 # m^2/s; electron diffusion coefficient for silicon at 120 K
+    HoleDiffusion: 3.5e-3     # m^2/s; hole diffusion coefficient for silicon at 120 K
+    ElectronEffMass: 9.747e-31 # kg; effective mass of each electron 1.07*m_e
+    HoleEffMass: 8.016e-31    # kg; effective mass of each hole 0.88*m_e
+    ElectronIndexGamma: -8.8e-28 # m**3; dependence of index of refraction on electron carrier density
+    HoleIndexGamma: -1.02e-27 # m**3; dependence of index of refraction on hole carrier density
+
+  MassRadius: 0.225 # m; 45 cm mCZ silicon
+  MassThickness: 0.55
+
+Laser:
+  Wavelength: 1550e-9 # m
+  Power: 400     # W zz['x'][0][0]
+
+Optics:
+  Type: 'SignalRecycled'
+
+  # calculate arm cavity spot sizes
+  # L = ifo.Infrastructure.Length
+  # w1,w2,junk = SpotSizes(1 - L / ifo.Optics.Curvature.ITM,
+  #                        1 - L / ifo.Optics.Curvature.ETM,
+  #                        L, ifo.Laser.Wavelength)
+  # load quantum PSO
+  # qopt_mat = sorted(os.listdir('CryogenicLIGO/Sensitivity/GWINC/optRuns'))[-1]
+  # zz = loadmat('CryogenicLIGO/Sensitivity/GWINC/optRuns/' + qopt_mat)
+  ITM:
+    SubstrateAbsorption: 1e-3   # 1/m; 10 ppm/cm for MCZ Si
+    BeamRadius: 0.16            # m; 1/e^2 power radius w1
+    CoatingAbsorption: 1e-6     # absorption of ITM
+    Transmittance: 1.2436875e-3 # zz['x'][0][3]
+    #CoatingThicknessLown: 0.308
+    #CoatingThicknessCap: 0.5
+    #itm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ITM_layers_151221_2237.mat')
+    CoatLayerOpticalThickness: #itm['TNout']['L'][0][0].T
+      - 0.01054715
+      - 0.28787195
+      - 0.10285996
+      - 0.40016914
+      - 0.09876197
+      - 0.39463506
+      - 0.1054613
+      - 0.37612136
+      - 0.12181482
+      - 0.35883931
+      - 0.13570767
+      - 0.3867382
+      - 0.08814237
+  ETM:
+    BeamRadius: 0.16                   # m; 1/e^2 power radius w2
+    Transmittance: 5e-6                # Transmittance of ETM
+    #CoatingThicknessLown: 0.27
+    #CoatingThicknessCap: 0.5
+    #etm = loadmat('CryogenicLIGO/Sensitivity/coating/aSi/Data/ETM_layers_151221_2150.mat')
+    CoatLayerOpticalThickness: #etm['TNout']['L'][0][0].T
+      - 0.01000241
+      - 0.27121433
+      - 0.16417485
+      - 0.33598991
+      - 0.16123195
+      - 0.33587683
+      - 0.16150012
+      - 0.33620725
+      - 0.16381275
+      - 0.33382231
+      - 0.16041712
+      - 0.33544017
+      - 0.1664314
+      - 0.33324722
+      - 0.16319734
+      - 0.33497111
+      - 0.15838689
+  PRM:
+    Transmittance: 0.03
+  SRM:
+    CavityLength: 55           # m; ITM to SRM distance
+    Transmittance: 0.02        # zz['x'][0][4]
+    #ifo.Optics.SRM.Tunephase = 0.23;           % SRM tuning, 795 Hz narrowband
+    Tunephase: 0.0             # SRM tuning [radians]
+  PhotoDetectorEfficiency: 0.95 # photo-detector quantum efficiency
+  Loss: 10e-6                  # average per mirror power loss
+  # factor of 4 for 1064 -> 2000
+  BSLoss: 0.5e-3               # power loss near beamsplitter
+  coupling: 1.0                # mismatch btwn arms & SRC modes; used to calculate an effective r_srm
+  Curvature:
+    ITM: 30000                 # RoC of ITM
+    ETM: 30000                 # RoC of ETM
+  SubstrateAbsorption: 0.3e-4  # 1/m; 0.3 ppm/cm for Hereaus
+  pcrit: 10                    # W; tolerable heating power (factor 1 ATC)
+  Quadrature:
+    dc: 1.556827               # homoDyne phase [radians] zz['x'][0][5]
+
+Squeezer:
+  # Define the squeezing you want:
+  #   None = ignore the squeezer settings
+  #   Freq Independent = nothing special (no filter cavties)
+  #   Freq Dependent = applies the specified filter cavites
+  #   Optimal = find the best squeeze angle, assuming no output filtering
+  #   OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
+  Type: 'Freq Dependent'
+  AmplitudedB: 10                  # SQZ amplitude [dB]
+  InjectionLoss: 0.05              # power loss to sqz
+  SQZAngle: 0                      # SQZ phase [radians]
+
+  # Parameters for frequency dependent squeezing
+  FilterCavity:
+    fdetune: -36.44897 # detuning [Hz] zz['x'][0][1]
+    L: 300            # cavity length [m]
+    Ti: 0.00090274    # input mirror trasmission [Power] zz['x'][0][2]
+    Te: 0e-6          # end mirror trasmission
+    Lrt: 10e-6        # round-trip loss in the cavity
+    Rot: 0            # phase rotation after cavity
+
+  ## Variational Output Parameters
+  # Define the output filter cavity chain
+  #   None = ignore the output filter settings
+  #   Chain = apply filter cavity chain
+  #   Optimal = find the best readout phase
+  OutputFilter:
+    Type: 'None'
+    FilterCavity:
+      fdetune: -30   # detuning [Hz]
+      L: 4000        # cavity length
+      Ti: 10e-3      # input mirror trasmission [Power]
+      Te: 0          # end mirror trasmission
+      Lrt: 100e-6    # round-trip loss in the cavity
+      Rot: 0         # phase rotation after cavity
+
+
+