From 0c9bed4383ef4faa2ecb5662bb81945506c4b146 Mon Sep 17 00:00:00 2001 From: Jameson Graef Rollins <jrollins@finestructure.net> Date: Sat, 12 May 2018 11:56:25 -0700 Subject: [PATCH] Add A+ model --- gwinc/ifo/A+.yaml | 272 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 272 insertions(+) create mode 100644 gwinc/ifo/A+.yaml diff --git a/gwinc/ifo/A+.yaml b/gwinc/ifo/A+.yaml new file mode 100644 index 0000000..f99c953 --- /dev/null +++ b/gwinc/ifo/A+.yaml @@ -0,0 +1,272 @@ +# GWINC aLIGO interferometer parameters +# +# parameters for quad pendulum suspension updated 3rd May 2006, NAR +# References: +# LIGO-T000012-00-D +# * Differentiate between silica and sapphire substrate absorption +# * Change ribbon suspension aspect ratio +# * Change pendulum frequency +# References: +# 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993) +# 2. LIGO/GEO data/experience +# 3. Suspension reference design, LIGO-T000012-00 +# 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet, +# numbers for suprasil +# 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter +# (IFI/Plenum,1970) +# 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology, +# Vol 4, Pt 2 +# 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press +# 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker, +# 1991 +# 9. Rai Weiss, electronic log from 5/10/2006 +# 10. Wikipedia online encyclopedia, 2006 +# 11. D.K. Davies, The Generation and Dissipation of Static Charge on +# dielectrics in a Vacuum, page 29 +# 12. Gretarsson & Harry, Gretarsson thesis +# 13. Fejer +# 14. Braginsky +# +# Updated numbers March 2018: LIGO-T1800044 + +Constants: + # earth radius + R_earth: 6.3781e6 + # Temperature of the Vacuum + Temp: 290 # K + +Infrastructure: + Length: 3995 # m + ResidualGas: + pressure: 4.0e-7 # Pa + mass: 3.35e-27 # kg; Mass of H_2 (ref. 10) + polarizability: 7.8e-31 # m^3 + +TCS: + s_cc: 7.024 # Watt^-2 + s_cs: 7.321 # Watt^-2 + s_ss: 7.631 # Watt^-2 + # The hardest part to model is how efficient the TCS system is in + # compensating this loss. Thus as a simple Ansatz we define the + # TCS efficiency TCSeff as the reduction in effective power that produces + # a phase distortion. E.g. TCSeff=0.99 means that the compensated distortion + # of 1 Watt absorbed is eqivalent to the uncompensated distortion of 10mWatt. + # The above formula thus becomes: + # S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 * (1-TCSeff)^2 + # + # To avoid iterative calculation we define TCS.SCRloss = S as an input + # and calculate TCSeff as an output. + # TCS.SRCloss is incorporated as an additional loss in the SRC + SRCloss: 0.00 + +Seismic: + Site: 'LHO' # LHO or LLO (only used for Newtonian noise) + KneeFrequency: 10 # Hz; freq where 'flat' noise rolls off + LowFrequencyLevel: 1e-9 # m/rtHz; seismic noise level below f_knee + Gamma: .8 # abruptness of change at f_knee + Rho: 1.8e3 # kg/m^3; density of the ground nearby + Beta: 0.6 # quiet times beta: 0.35-0.60 + # noisy times beta: 0.15-1.4 + Omicron: 1 # Feedforward cancellation factor + +Suspension: + # 0 for cylindrical suspension + #Type: 'Quad' + Type: 2 + # 0: round, 1: ribbons, 2: tapered + FiberType: 2 + BreakStress: 750e6 # Pa; ref. K. Strain + Temp: 290 + + Silica: + Rho : 2200 # Kg/m^3; + C : 772 # J/Kg/K; + K : 1.38 # W/m/kg; + Alpha : 3.9e-7 # 1/K; + dlnEdT: 1.52e-4 # (1/K), dlnE/dT + Phi : 4.1e-10 # from G Harry e-mail to NAR 27April06 dimensionless units + Y : 72e9 # Pa; Youngs Modulus + Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06 + + C70Steel: + Rho: 7800 + C: 486 + K: 49 + Alpha: 12e-6 + dlnEdT: -2.5e-4 + Phi: 2e-4 + Y: 212e9 # measured by MB for one set of wires + + MaragingSteel: + Rho: 7800 + C: 460 + K: 20 + Alpha: 11e-6 + dlnEdT: 0 + Phi: 1e-4 + Y: 187e9 + + # ref ---- http://design.caltech.edu/Research/MEMS/siliconprop.html + # all properties should be for T ~ 20 K + Silicon: + Rho: 2329 # Kg/m^3; density + C: 300 # J/kg/K heat capacity + K: 700 # W/m/K thermal conductivity + Alpha: 1e-10 # 1/K thermal expansion coeff + # from Gysin, et. al. PRB (2004) E(T): E0 - B*T*exp(-T0/T) + # E0: 167.5e9 Pa T0: 317 K B: 15.8e6 Pa/K + dlnEdT: -2.0e-5 # (1/K) dlnE/dT T=20K + Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q + Y: 1.558e11 # Pa Youngs Modulus + Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010)) + + # Note stage numbering: mirror is at beginning of stack, not end + # + # last stage length adjusted for d: 10mm and and d_bend = 4mm + # (since 602mm is the CoM separation, and d_bend is accounted for + # in suspQuad, so including it here would double count) + Stage: + # Stage1 + - Mass: 39.6 # kg; current numbers May 2006 NAR + Length: 0.59 # m + Dilution: .nan # + K: .nan # N/m; vertical spring constant + WireRadius: .nan # m + Blade: .nan # blade thickness + NWires: 4 + + # Stage2 + - Mass: 39.6 + Length: 0.341 + Dilution: 106 + K: 5200 + WireRadius: 310e-6 + Blade: 4200e-6 + NWires: 4 + + # Stage3 + - Mass: 21.8 + Length: 0.277 + Dilution: 80 + K: 3900 + WireRadius: 350e-6 + Blade: 4600e-6 + NWires: 4 + + # Stage4 + - Mass: 22.1 + Length: 0.416 + Dilution: 87 + K: 3400 + WireRadius: 520e-6 + Blade: 4300e-6 + NWires: 2 + + Ribbon: + Thickness: 115e-6 # m + Width: 1150e-6 # m + + Fiber: + EndLength: 4.5e-02 + EndRadius: 4e-04 + Radius: 2.05e-04 + +## Optic Material ------------------------------------------------------- +Materials: + MassRadius: 0.17 # m; + MassThickness: 0.200 # m; Peter F 8/11/2005 + + ## Dielectric coating material parameters---------------------------------- + Coating: + ## high index material: tantala + Yhighn: 124e9 + Sigmahighn: 0.28 + CVhighn: 2.1e6 # Crooks et al, Fejer et al + Alphahighn: 3.6e-6 # 3.6e-6 Fejer et al, 5e-6 from Braginsky + Betahighn: 1.4e-5 # dn/dT, value Gretarrson (G070161) + ThermalDiffusivityhighn: 33 # Fejer et al + Phihighn: 9.0e-5 # tantala mechanical loss + Indexhighn: 2.06539 + + ## low index material: silica + Ylown: 72e9 + Sigmalown: 0.17 + CVlown: 1.6412e6 # Crooks et al, Fejer et al + Alphalown: 5.1e-7 # Fejer et al + Betalown: 8e-6 # dn/dT, (ref. 14) + ThermalDiffusivitylown: 1.38 # Fejer et al + Philown: 1.25e-5 # silica mechanical loss + Indexlown: 1.45 + + ## Substrate Material parameters-------------------------------------------- + Substrate: + Temp: 295 + c2: 7.6e-12 # Coeff of freq depend. term for bulk mechanical loss, 7.15e-12 for Sup2 + MechanicalLossExponent: 0.77 # Exponent for freq dependence of silica loss, 0.822 for Sup2 + Alphas: 5.2e-12 # Surface loss limit (ref. 12) + MirrorY: 7.27e10 # N/m^2; Youngs modulus (ref. 4) + MirrorSigma: 0.167 # Kg/m^3; Poisson ratio (ref. 4) + MassDensity: 2.2e3 # Kg/m^3; (ref. 4) + MassAlpha: 3.9e-7 # 1/K; thermal expansion coeff. (ref. 4) + MassCM: 739 # J/Kg/K; specific heat (ref. 4) + MassKappa: 1.38 # J/m/s/K; thermal conductivity (ref. 4) + RefractiveIndex: 1.45 # mevans 25 Apr 2008 + +## Laser------------------------------------------------------------------- +Laser: + Wavelength: 1.064e-6 # m + Power: 125 # W + +## Optics------------------------------------------------------------------ +Optics: + PhotoDetectorEfficiency: 0.9 # photo-detector quantum efficiency + Loss: 37.5e-6 # average per mirror power loss + BSLoss: 0.5e-3 # power loss near beamsplitter + coupling: 1.0 # mismatch btwn arms & SRC modes; used to + + SubstrateAbsorption: 0.5e-4 # 1/m; bulk absorption coef (ref. 2) + pcrit: 10 # W; tolerable heating power (factor 1 ATC) + Quadrature: + dc: 1.5707963 # pi/2 # demod/detection/homodyne phase + + ITM: + Transmittance: 0.014 + CoatingThicknessLown: 0.308 + CoatingThicknessCap: 0.5 + CoatingAbsorption: 0.5e-6 + ETM: + Transmittance: 5e-6 + CoatingThicknessLown: 0.27 + CoatingThicknessCap: 0.5 + PRM: + Transmittance: 0.03 + SRM: + Transmittance: 0.325 + CavityLength: 55 # m, ITM to SRM distance + Tunephase: 0.0 # SEC tuning + + Curvature: # ROC + ITM: 1970 + ETM: 2192 + +## Squeezer Parameters------------------------------------------------------ +# Define the squeezing you want: +# None: ignore the squeezer settings +# Freq Independent: nothing special (no filter cavties) +# Freq Dependent = applies the specified filter cavites +# Optimal = find the best squeeze angle, assuming no output filtering +# OptimalOptimal = optimal squeeze angle, assuming optimal readout phase +Squeezer: + Type: 'Freq Dependent' + AmplitudedB: 12 # SQZ amplitude [dB] + InjectionLoss: 0.05 # power loss to sqz + SQZAngle: 0 # SQZ phase [radians] + + # Parameters for frequency dependent squeezing + FilterCavity: + L: 300 # cavity length + Te: 1e-6 # end mirror trasmission + Lrt: 60e-6 # round-trip loss in the cavity + Rot: 0 # phase rotation after cavity + fdetune: -45.78 # detuning [Hz] + Ti: 1.2e-3 # input mirror trasmission [Power] -- GitLab