# GWINC aLIGO interferometer parameters
#
# parameters for quad pendulum suspension updated 3rd May 2006, NAR
# References:
# LIGO-T000012-00-D
# 	* Differentiate between silica and sapphire substrate absorption
# 	* Change ribbon suspension aspect ratio
# 	* Change pendulum frequency
# References:
# 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993)
# 2. LIGO/GEO data/experience
# 3. Suspension reference design, LIGO-T000012-00
# 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet,
#    numbers for suprasil
# 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter
#    (IFI/Plenum,1970)
# 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology,
#    Vol 4, Pt 2
# 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press
# 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker,
#    1991
# 9. Rai Weiss, electronic log from 5/10/2006
# 10. Wikipedia online encyclopedia, 2006
# 11. D.K. Davies, The Generation and Dissipation of Static Charge on
# dielectrics in a Vacuum, page 29
# 12. Gretarsson & Harry, Gretarsson thesis
# 13. Fejer
# 14. Braginsky
#
# Updated numbers March 2018: LIGO-T1800044

Infrastructure:
  Length: 3995                    # m
  Temp: 290                       # K
  ResidualGas:
    pressure: 4.0e-7              # Pa
    mass: 3.35e-27                # kg; Mass of H_2 (ref. 10)
    polarizability: 7.8e-31       # m^3

TCS:
  # The presumably dominant effect of a thermal lens in the ITMs is an increased
  # mode mismatch into the SRC, and thus an increased effective loss of the SRC.
  # The increase is estimated by calculating the round-trip loss S in the SRC as
  # 1-S = |<Psi|exp(i*phi)|Psi>|^2, where
  # |Psi> is the beam hitting the ITM and
  # phi = P_coat*phi_coat + P_subs*phi_subs
  # with phi_coat & phi_subs the specific lensing profiles
  # and P_coat & P_subst the power absorbed in coating and substrate
  #
  # This expression can be expanded to 2nd order and is given by
  # S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2
  # s_cc, s_cs and s_ss were calculated analytically by Phil Willems (4/2007)
  s_cc: 7.024                     # Watt^-2
  s_cs: 7.321                     # Watt^-2
  s_ss: 7.631                     # Watt^-2
  # The hardest part to model is how efficient the TCS system is in
  # compensating this loss. Thus as a simple Ansatz we define the
  # TCS efficiency TCSeff as the reduction in effective power that produces
  # a phase distortion. E.g. TCSeff=0.99 means that the compensated distortion
  # of 1 Watt absorbed is equivalent to the uncompensated distortion of 10mWatt.
  # The above formula thus becomes:
  # S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 * (1-TCSeff)^2
  #
  # To avoid iterative calculation we define TCS.SCRloss = S as an input
  # and calculate TCSeff as an output.
  # TCS.SRCloss is incorporated as an additional loss in the SRC
  SRCloss: 0.00

Seismic:
  Site: 'LHO'                     # LHO or LLO (only used for Newtonian noise)
  KneeFrequency: 10               # Hz; freq where 'flat' noise rolls off
  LowFrequencyLevel: 1e-9         # m/rtHz; seismic noise level below f_knee
  Gamma: 0.8                      # abruptness of change at f_knee
  Rho: 1.8e3                      # kg/m^3; density of the ground nearby
  Beta: 0.8                       # quiet times beta: 0.35-0.60
                                  # noisy times beta: 0.15-1.4
  Omicron: 1                      # Feedforward cancellation factor
  TestMassHeight: 1.5             # m
  RayleighWaveSpeed: 250          # m/s

Suspension:
  Type: 'Quad'
  FiberType: 'Tapered'
  BreakStress: 750e6              # Pa; ref. K. Strain
  Temp: 290
  # VHCoupling:
  #   theta: 1e-3                   # vertical-horizontal x-coupling (computed in precompIFO)

  Silica:
    Rho   : 2.2e3                 # Kg/m^3;
    C     : 772                   # J/Kg/K;
    K     : 1.38                  # W/m/kg;
    Alpha : 3.9e-7                # 1/K;
    dlnEdT: 1.52e-4               # (1/K), dlnE/dT
    Phi   : 4.1e-10               # from G Harry e-mail to NAR 27April06 dimensionless units
    Y     : 7.2e10                # Pa; Youngs Modulus
    Dissdepth: 1.5e-2             # from G Harry e-mail to NAR 27April06

  C70Steel:
    Rho: 7800
    C: 486
    K: 49
    Alpha: 12e-6
    dlnEdT: -2.5e-4
    Phi: 2e-4
    Y: 212e9                      # measured by MB for one set of wires

  MaragingSteel:
    Rho: 7800
    C: 460
    K: 20
    Alpha: 11e-6
    dlnEdT: 0
    Phi: 1e-4
    Y: 187e9

  # ref http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html
  # all properties should be for T ~ 120 K
  Silicon:
    Rho: 2329                     # Kg/m^3;  density
    C: 300                        # J/kg/K   heat capacity
    K: 700                        # W/m/K    thermal conductivity
    Alpha: 1e-10                  # 1/K      thermal expansion coeff
    # from Gysin, et. al. PRB (2004)  E(T): E0 - B*T*exp(-T0/T)
    # E0: 167.5e9 Pa   T0: 317 K   B: 15.8e6 Pa/K
    dlnEdT: -2e-5                 # (1/K)    dlnE/dT  T=120K
    Phi: 2e-9                     # Nawrodt (2010)      loss angle  1/Q
    Y: 155.8e9                    # Pa       Youngs Modulus
    Dissdepth: 1.5e-3             # 10x smaller surface loss depth (Nawrodt (2010))

  # Note stage numbering: mirror is at beginning of stack, not end
  #
  # last stage length adjusted for d: 10mm and and d_bend = 4mm
  # (since 602mm is the CoM separation, and d_bend is accounted for
  # in suspQuad, so including it here would double count)
  Stage:
    # Stage1
    - Mass: 39.6                  # kg; current numbers May 2006 NAR
      # length adjusted for d = 10mm and d_bend = 4mm
      # (since 602mm is the CoM separation, and d_bend is accounted for
      # in suspQuad, so including it here would double count)
      Length: 0.59                # m
      Dilution: .nan              #
      K: .nan                     # N/m; vertical spring constant
      WireRadius: .nan            # m
      Blade: .nan                 # blade thickness
      NWires: 4

    # Stage2
    - Mass: 39.6
      Length: 0.341
      Dilution: 106
      K: 5200
      WireRadius: 310e-6
      Blade: 4200e-6
      NWires: 4

    # Stage3
    - Mass: 21.8
      Length: 0.277
      Dilution: 80
      K: 3900
      WireRadius: 350e-6
      Blade: 4600e-6
      NWires: 4

    # Stage4
    - Mass: 22.1
      Length: 0.416
      Dilution: 87
      K: 3400
      WireRadius: 520e-6
      Blade: 4300e-6
      NWires: 2

  Ribbon:
    Thickness: 115e-6             # m
    Width: 1150e-6                # m

  Fiber:
    Radius: 205e-6                # m
    # for tapered fibers
    # EndRadius is tuned to cancel thermo-elastic noise (delta_h in suspQuad)
    # EndLength is tuned to match bounce mode frequency
    EndRadius: 400e-6             # m; nominal 400um
    EndLength: 45e-3              # m; nominal 20mm

## Optic Material -------------------------------------------------------
Materials:
  MassRadius: 0.17                # m; 
  MassThickness: 0.200            # m; Peter F 8/11/2005

  ## Dielectric coating material parameters----------------------------------
  Coating:
    ## high index material: tantala
    Yhighn: 120e9                 # Ta2O5-TiO2 from 2020 LMA https://iopscience.iop.org/article/10.1088/1361-6382/ab77e9
    Sigmahighn: 0.29              # 2020 LMA
    CVhighn: 2.1e6                # Crooks et al, Fejer et al
    Alphahighn: 3.6e-6            # 3.6e-6 Fejer et al, 5e-6 from Braginsky
    Betahighn: 1.4e-5             # dn/dT, value Gretarrson (G070161)
    ThermalDiffusivityhighn: 33   # Fejer et al
    Indexhighn: 2.09              # 2020 LMA
    Phihighn: 9.0e-5              # tantala mechanical loss
    Phihighn_slope: 0.1

    ## low index material: silica
    Ylown: 70e9                   # 2020 LMA
    Sigmalown: 0.19               # 2020 LMA
    CVlown: 1.6412e6              # Crooks et al, Fejer et al
    Alphalown: 5.1e-7             # Fejer et al
    Betalown: 8e-6                # dn/dT,  (ref. 14)
    ThermalDiffusivitylown: 1.38  # Fejer et al
    Indexlown: 1.45
    Philown: 1.25e-5              # silica mechanical loss
    Philown_slope: 0              # G1600641 and arXiv:1712.05701 suggest
                                  # slopes between 0 and 0.3, depending on
                                  # deposition method. Slawek's analysis in
                                  # 10.1103/PhysRevD.98.122001 assumes zero slope.


  ## Substrate Material parameters--------------------------------------------
  Substrate:
    Temp: 295
    c2: 7.6e-12                   # Coeff of freq depend. term for bulk mechanical loss, 7.15e-12 for Sup2
    MechanicalLossExponent: 0.77  # Exponent for freq dependence of silica loss, 0.822 for Sup2
    Alphas: 5.2e-12               # Surface loss limit (ref. 12)
    MirrorY: 7.27e10              # N/m^2; Youngs modulus (ref. 4)
    MirrorSigma: 0.167            # Kg/m^3; Poisson ratio (ref. 4)
    MassDensity: 2.2e3            # Kg/m^3; (ref. 4)
    MassAlpha: 3.9e-7             # 1/K; thermal expansion coeff. (ref. 4)
    MassCM: 739                   # J/Kg/K; specific heat (ref. 4)
    MassKappa: 1.38               # J/m/s/K; thermal conductivity (ref. 4)
    RefractiveIndex: 1.45         # mevans 25 Apr 2008

## Laser-------------------------------------------------------------------
Laser:
  Wavelength: 1.064e-6            # m
  Power: 125                      # W

## Optics------------------------------------------------------------------
Optics:
  Type: 'SignalRecycled'
  PhotoDetectorEfficiency: 0.9    # photo-detector quantum efficiency
  Loss: 37.5e-6                   # average per mirror power loss
  BSLoss: 0.5e-3                  # power loss near beamsplitter
  coupling: 1.0                   # mismatch btwn arms & SRC modes; used to
                                  # calculate an effective r_srm
  SubstrateAbsorption: 0.5e-4     # 1/m; bulk absorption coef (ref. 2)
  pcrit: 10                       # W; tolerable heating power (factor 1 ATC)
  Quadrature:
    dc: 1.5707963                 # pi/2 # demod/detection/homodyne phase

  ITM:
    Transmittance: 0.014
    CoatingThicknessLown: 0.308
    CoatingThicknessCap: 0.5
    CoatingAbsorption: 0.5e-6
  ETM:
    Transmittance: 5e-6
    CoatingThicknessLown: 0.27
    CoatingThicknessCap: 0.5
  PRM:
    Transmittance: 0.03
  SRM:
    Transmittance: 0.325
    CavityLength: 55              # m, ITM to SRM distance
    Tunephase: 0.0                # SEC tuning

  Curvature:                      # ROC
    ITM: 1970
    ETM: 2192

## Squeezer Parameters------------------------------------------------------
# Define the squeezing you want:
#   None: ignore the squeezer settings
#   Freq Independent: nothing special (no filter cavities)
#   Freq Dependent = applies the specified filter cavities
#   Optimal = find the best squeeze angle, assuming no output filtering
#   OptimalOptimal = optimal squeeze angle, assuming optimal readout phase
Squeezer:
  Type: 'Freq Dependent'
  AmplitudedB: 12                 # SQZ amplitude [dB]
  InjectionLoss: 0.05             # power loss to sqz
  SQZAngle: 0                     # SQZ phase [radians]
  LOAngleRMS: 30e-3               # quadrature noise [radians]

  # Parameters for frequency dependent squeezing
  FilterCavity:
    L: 300                        # cavity length
    Te: 1e-6                      # end mirror transmission
    Lrt: 60e-6                    # round-trip loss in the cavity
    Rot: 0                        # phase rotation after cavity
    fdetune: -45.78               # detuning [Hz]
    Ti: 1.2e-3                    # input mirror transmission [Power]