# GWINC aLIGO interferometer parameters # # parameters for quad pendulum suspension updated 3rd May 2006, NAR # References: # LIGO-T000012-00-D # * Differentiate between silica and sapphire substrate absorption # * Change ribbon suspension aspect ratio # * Change pendulum frequency # References: # 1. Electro-Optic Handbook, Waynant & Ediger (McGraw-Hill: 1993) # 2. LIGO/GEO data/experience # 3. Suspension reference design, LIGO-T000012-00 # 4. Quartz Glass for Optics Data and Properties, Heraeus data sheet, # numbers for suprasil # 5. Y.S. Touloukian (ed), Thermophysical Properties of Matter # (IFI/Plenum,1970) # 6. Marvin J. Weber (ed) CRC Handbook of laser science and technology, # Vol 4, Pt 2 # 7. R.S. Krishnan et al.,Thermal Expansion of Crystals, Pergamon Press # 8. P. Klocek, Handbook of infrared and optical materials, Marcel Decker, # 1991 # 9. Rai Weiss, electronic log from 5/10/2006 # 10. Wikipedia online encyclopedia, 2006 # 11. D.K. Davies, The Generation and Dissipation of Static Charge on # dielectrics in a Vacuum, page 29 # 12. Gretarsson & Harry, Gretarsson thesis # 13. Fejer # 14. Braginsky # # Updated numbers March 2018: LIGO-T1800044 Infrastructure: Length: 3995 # m Temp: 290 # K ResidualGas: pressure: 4.0e-7 # Pa mass: 3.35e-27 # kg; Mass of H_2 (ref. 10) polarizability: 7.8e-31 # m^3 TCS: # The presumably dominant effect of a thermal lens in the ITMs is an increased # mode mismatch into the SRC, and thus an increased effective loss of the SRC. # The increase is estimated by calculating the round-trip loss S in the SRC as # 1-S = |<Psi|exp(i*phi)|Psi>|^2, where # |Psi> is the beam hitting the ITM and # phi = P_coat*phi_coat + P_subs*phi_subs # with phi_coat & phi_subs the specific lensing profiles # and P_coat & P_subst the power absorbed in coating and substrate # # This expression can be expanded to 2nd order and is given by # S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 # s_cc, s_cs and s_ss were calculated analytically by Phil Willems (4/2007) s_cc: 7.024 # Watt^-2 s_cs: 7.321 # Watt^-2 s_ss: 7.631 # Watt^-2 # The hardest part to model is how efficient the TCS system is in # compensating this loss. Thus as a simple Ansatz we define the # TCS efficiency TCSeff as the reduction in effective power that produces # a phase distortion. E.g. TCSeff=0.99 means that the compensated distortion # of 1 Watt absorbed is equivalent to the uncompensated distortion of 10mWatt. # The above formula thus becomes: # S= s_cc P_coat^2 + 2*s_cs*P_coat*P_subst + s_ss*P_subst^2 * (1-TCSeff)^2 # # To avoid iterative calculation we define TCS.SCRloss = S as an input # and calculate TCSeff as an output. # TCS.SRCloss is incorporated as an additional loss in the SRC SRCloss: 0.00 Seismic: Site: 'LHO' # LHO or LLO (only used for Newtonian noise) KneeFrequency: 10 # Hz; freq where 'flat' noise rolls off LowFrequencyLevel: 1e-9 # m/rtHz; seismic noise level below f_knee Gamma: 0.8 # abruptness of change at f_knee Rho: 1.8e3 # kg/m^3; density of the ground nearby Beta: 0.8 # quiet times beta: 0.35-0.60 # noisy times beta: 0.15-1.4 Omicron: 1 # Feedforward cancellation factor TestMassHeight: 1.5 # m RayleighWaveSpeed: 250 # m/s Suspension: Type: 'Quad' FiberType: 'Tapered' BreakStress: 750e6 # Pa; ref. K. Strain Temp: 290 # VHCoupling: # theta: 1e-3 # vertical-horizontal x-coupling (computed in precompIFO) Silica: Rho : 2.2e3 # Kg/m^3; C : 772 # J/Kg/K; K : 1.38 # W/m/kg; Alpha : 3.9e-7 # 1/K; dlnEdT: 1.52e-4 # (1/K), dlnE/dT Phi : 4.1e-10 # from G Harry e-mail to NAR 27April06 dimensionless units Y : 7.2e10 # Pa; Youngs Modulus Dissdepth: 1.5e-2 # from G Harry e-mail to NAR 27April06 C70Steel: Rho: 7800 C: 486 K: 49 Alpha: 12e-6 dlnEdT: -2.5e-4 Phi: 2e-4 Y: 212e9 # measured by MB for one set of wires MaragingSteel: Rho: 7800 C: 460 K: 20 Alpha: 11e-6 dlnEdT: 0 Phi: 1e-4 Y: 187e9 # ref http://www.ioffe.ru/SVA/NSM/Semicond/Si/index.html # all properties should be for T ~ 120 K Silicon: Rho: 2329 # Kg/m^3; density C: 300 # J/kg/K heat capacity K: 700 # W/m/K thermal conductivity Alpha: 1e-10 # 1/K thermal expansion coeff # from Gysin, et. al. PRB (2004) E(T): E0 - B*T*exp(-T0/T) # E0: 167.5e9 Pa T0: 317 K B: 15.8e6 Pa/K dlnEdT: -2e-5 # (1/K) dlnE/dT T=120K Phi: 2e-9 # Nawrodt (2010) loss angle 1/Q Y: 155.8e9 # Pa Youngs Modulus Dissdepth: 1.5e-3 # 10x smaller surface loss depth (Nawrodt (2010)) # Note stage numbering: mirror is at beginning of stack, not end # # last stage length adjusted for d: 10mm and and d_bend = 4mm # (since 602mm is the CoM separation, and d_bend is accounted for # in suspQuad, so including it here would double count) Stage: # Stage1 - Mass: 39.6 # kg; current numbers May 2006 NAR # length adjusted for d = 10mm and d_bend = 4mm # (since 602mm is the CoM separation, and d_bend is accounted for # in suspQuad, so including it here would double count) Length: 0.59 # m Dilution: .nan # K: .nan # N/m; vertical spring constant WireRadius: .nan # m Blade: .nan # blade thickness NWires: 4 # Stage2 - Mass: 39.6 Length: 0.341 Dilution: 106 K: 5200 WireRadius: 310e-6 Blade: 4200e-6 NWires: 4 # Stage3 - Mass: 21.8 Length: 0.277 Dilution: 80 K: 3900 WireRadius: 350e-6 Blade: 4600e-6 NWires: 4 # Stage4 - Mass: 22.1 Length: 0.416 Dilution: 87 K: 3400 WireRadius: 520e-6 Blade: 4300e-6 NWires: 2 Ribbon: Thickness: 115e-6 # m Width: 1150e-6 # m Fiber: Radius: 205e-6 # m # for tapered fibers # EndRadius is tuned to cancel thermo-elastic noise (delta_h in suspQuad) # EndLength is tuned to match bounce mode frequency EndRadius: 400e-6 # m; nominal 400um EndLength: 45e-3 # m; nominal 20mm ## Optic Material ------------------------------------------------------- Materials: MassRadius: 0.17 # m; MassThickness: 0.200 # m; Peter F 8/11/2005 ## Dielectric coating material parameters---------------------------------- Coating: ## high index material: tantala Yhighn: 120e9 # Ta2O5-TiO2 from 2020 LMA https://iopscience.iop.org/article/10.1088/1361-6382/ab77e9 Sigmahighn: 0.29 # 2020 LMA CVhighn: 2.1e6 # Crooks et al, Fejer et al Alphahighn: 3.6e-6 # 3.6e-6 Fejer et al, 5e-6 from Braginsky Betahighn: 1.4e-5 # dn/dT, value Gretarrson (G070161) ThermalDiffusivityhighn: 33 # Fejer et al Indexhighn: 2.09 # 2020 LMA Phihighn: 9.0e-5 # tantala mechanical loss Phihighn_slope: 0.1 ## low index material: silica Ylown: 70e9 # 2020 LMA Sigmalown: 0.19 # 2020 LMA CVlown: 1.6412e6 # Crooks et al, Fejer et al Alphalown: 5.1e-7 # Fejer et al Betalown: 8e-6 # dn/dT, (ref. 14) ThermalDiffusivitylown: 1.38 # Fejer et al Indexlown: 1.45 Philown: 1.25e-5 # silica mechanical loss Philown_slope: 0 # G1600641 and arXiv:1712.05701 suggest # slopes between 0 and 0.3, depending on # deposition method. Slawek's analysis in # 10.1103/PhysRevD.98.122001 assumes zero slope. ## Substrate Material parameters-------------------------------------------- Substrate: Temp: 295 c2: 7.6e-12 # Coeff of freq depend. term for bulk mechanical loss, 7.15e-12 for Sup2 MechanicalLossExponent: 0.77 # Exponent for freq dependence of silica loss, 0.822 for Sup2 Alphas: 5.2e-12 # Surface loss limit (ref. 12) MirrorY: 7.27e10 # N/m^2; Youngs modulus (ref. 4) MirrorSigma: 0.167 # Kg/m^3; Poisson ratio (ref. 4) MassDensity: 2.2e3 # Kg/m^3; (ref. 4) MassAlpha: 3.9e-7 # 1/K; thermal expansion coeff. (ref. 4) MassCM: 739 # J/Kg/K; specific heat (ref. 4) MassKappa: 1.38 # J/m/s/K; thermal conductivity (ref. 4) RefractiveIndex: 1.45 # mevans 25 Apr 2008 ## Laser------------------------------------------------------------------- Laser: Wavelength: 1.064e-6 # m Power: 125 # W ## Optics------------------------------------------------------------------ Optics: Type: 'SignalRecycled' PhotoDetectorEfficiency: 0.9 # photo-detector quantum efficiency Loss: 37.5e-6 # average per mirror power loss BSLoss: 0.5e-3 # power loss near beamsplitter coupling: 1.0 # mismatch btwn arms & SRC modes; used to # calculate an effective r_srm SubstrateAbsorption: 0.5e-4 # 1/m; bulk absorption coef (ref. 2) pcrit: 10 # W; tolerable heating power (factor 1 ATC) Quadrature: dc: 1.5707963 # pi/2 # demod/detection/homodyne phase ITM: Transmittance: 0.014 CoatingThicknessLown: 0.308 CoatingThicknessCap: 0.5 CoatingAbsorption: 0.5e-6 ETM: Transmittance: 5e-6 CoatingThicknessLown: 0.27 CoatingThicknessCap: 0.5 PRM: Transmittance: 0.03 SRM: Transmittance: 0.325 CavityLength: 55 # m, ITM to SRM distance Tunephase: 0.0 # SEC tuning Curvature: # ROC ITM: 1970 ETM: 2192 ## Squeezer Parameters------------------------------------------------------ # Define the squeezing you want: # None: ignore the squeezer settings # Freq Independent: nothing special (no filter cavities) # Freq Dependent = applies the specified filter cavities # Optimal = find the best squeeze angle, assuming no output filtering # OptimalOptimal = optimal squeeze angle, assuming optimal readout phase Squeezer: Type: 'Freq Dependent' AmplitudedB: 12 # SQZ amplitude [dB] InjectionLoss: 0.05 # power loss to sqz SQZAngle: 0 # SQZ phase [radians] LOAngleRMS: 30e-3 # quadrature noise [radians] # Parameters for frequency dependent squeezing FilterCavity: L: 300 # cavity length Te: 1e-6 # end mirror transmission Lrt: 60e-6 # round-trip loss in the cavity Rot: 0 # phase rotation after cavity fdetune: -45.78 # detuning [Hz] Ti: 1.2e-3 # input mirror transmission [Power]