result.py 58.2 KB
Newer Older
Colm Talbot's avatar
Colm Talbot committed
1 2
from __future__ import division

3
import os
4
from distutils.version import LooseVersion
5
from collections import OrderedDict, namedtuple
Gregory Ashton's avatar
Gregory Ashton committed
6
from itertools import product
Matthew David Pitkin's avatar
Matthew David Pitkin committed
7
from functools import reduce
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
8

9 10
import numpy as np
import pandas as pd
11
import corner
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
12
import json
13
import scipy.stats
14
import matplotlib
15
import matplotlib.pyplot as plt
16
from matplotlib import lines as mpllines
17

18
from . import utils
Colm Talbot's avatar
Colm Talbot committed
19
from .utils import (logger, infer_parameters_from_function,
Colm Talbot's avatar
Colm Talbot committed
20 21
                    check_directory_exists_and_if_not_mkdir,
                    BilbyJsonEncoder, decode_bilby_json)
Colm Talbot's avatar
Colm Talbot committed
22
from .prior import Prior, PriorDict, DeltaFunction
23

24

25
def result_file_name(outdir, label, extension='json', gzip=False):
26 27 28 29 30 31 32 33
    """ Returns the standard filename used for a result file

    Parameters
    ----------
    outdir: str
        Name of the output directory
    label: str
        Naming scheme of the output file
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
34 35
    extension: str, optional
        Whether to save as `hdf5` or `json`
36 37
    gzip: bool, optional
        Set to True to append `.gz` to the extension for saving in gzipped format
38 39 40 41 42

    Returns
    -------
    str: File name of the output file
    """
43
    if extension in ['json', 'hdf5']:
44 45 46 47
        if extension == 'json' and gzip:
            return '{}/{}_result.{}.gz'.format(outdir, label, extension)
        else:
            return '{}/{}_result.{}'.format(outdir, label, extension)
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
48
    else:
49
        raise ValueError("Extension type {} not understood".format(extension))
50 51


52
def _determine_file_name(filename, outdir, label, extension, gzip):
53 54 55 56 57 58 59
    """ Helper method to determine the filename """
    if filename is not None:
        return filename
    else:
        if (outdir is None) and (label is None):
            raise ValueError("No information given to load file")
        else:
60
            return result_file_name(outdir, label, extension, gzip)
61 62


63
def read_in_result(filename=None, outdir=None, label=None, extension='json', gzip=False):
64 65 66 67 68 69 70 71 72 73 74
    """ Reads in a stored bilby result object

    Parameters
    ----------
    filename: str
        Path to the file to be read (alternative to giving the outdir and label)
    outdir, label, extension: str
        Name of the output directory, label and extension used for the default
        naming scheme.

    """
75
    filename = _determine_file_name(filename, outdir, label, extension, gzip)
76 77 78

    # Get the actual extension (may differ from the default extension if the filename is given)
    extension = os.path.splitext(filename)[1].lstrip('.')
79 80 81
    if extension == 'gz':  # gzipped file
        extension = os.path.splitext(os.path.splitext(filename)[0])[1].lstrip('.')

82 83 84 85 86 87 88 89
    if 'json' in extension:
        result = Result.from_json(filename=filename)
    elif ('hdf5' in extension) or ('h5' in extension):
        result = Result.from_hdf5(filename=filename)
    elif extension is None:
        raise ValueError("No filetype extension provided")
    else:
        raise ValueError("Filetype {} not understood".format(extension))
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
90
    return result
91 92 93 94 95


class Result(object):
    def __init__(self, label='no_label', outdir='.', sampler=None,
                 search_parameter_keys=None, fixed_parameter_keys=None,
Colm Talbot's avatar
Colm Talbot committed
96 97
                 constraint_parameter_keys=None, priors=None,
                 sampler_kwargs=None, injection_parameters=None,
98 99 100 101
                 meta_data=None, posterior=None, samples=None,
                 nested_samples=None, log_evidence=np.nan,
                 log_evidence_err=np.nan, log_noise_evidence=np.nan,
                 log_bayes_factor=np.nan, log_likelihood_evaluations=None,
102
                 log_prior_evaluations=None, sampling_time=None, nburn=None,
103
                 walkers=None, max_autocorrelation_time=None, use_ratio=None,
104
                 parameter_labels=None, parameter_labels_with_unit=None,
105
                 gzip=False, version=None):
106
        """ A class to store the results of the sampling run
107 108 109

        Parameters
        ----------
110 111
        label, outdir, sampler: str
            The label, output directory, and sampler used
Colm Talbot's avatar
Colm Talbot committed
112 113 114 115
        search_parameter_keys, fixed_parameter_keys, constraint_parameter_keys: list
            Lists of the search, constraint, and fixed parameter keys.
            Elements of the list should be of type `str` and match the keys
            of the `prior`
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        priors: dict, bilby.core.prior.PriorDict
            A dictionary of the priors used in the run
        sampler_kwargs: dict
            Key word arguments passed to the sampler
        injection_parameters: dict
            A dictionary of the injection parameters
        meta_data: dict
            A dictionary of meta data to store about the run
        posterior: pandas.DataFrame
            A pandas data frame of the posterior
        samples, nested_samples: array_like
            An array of the output posterior samples and the unweighted samples
        log_evidence, log_evidence_err, log_noise_evidence, log_bayes_factor: float
            Natural log evidences
        log_likelihood_evaluations: array_like
            The evaluations of the likelihood for each sample point
132 133
        log_prior_evaluations: array_like
            The evaluations of the prior for each sample point
134 135 136 137 138 139 140 141
        sampling_time: float
            The time taken to complete the sampling
        nburn: int
            The number of burn-in steps discarded for MCMC samplers
        walkers: array_like
            The samplers taken by a ensemble MCMC samplers
        max_autocorrelation_time: float
            The estimated maximum autocorrelation time for MCMC samplers
142 143 144
        use_ratio: bool
            A boolean stating whether the likelihood ratio, as opposed to the
            likelihood was used during sampling
145 146
        parameter_labels, parameter_labels_with_unit: list
            Lists of the latex-formatted parameter labels
147 148
        gzip: bool
            Set to True to gzip the results file (if using json format)
149 150 151
        version: str,
            Version information for software used to generate the result. Note,
            this information is generated when the result object is initialized
152

153 154 155 156
        Note
        ---------
        All sampling output parameters, e.g. the samples themselves are
        typically not given at initialisation, but set at a later stage.
157 158

        """
159

160 161 162 163 164
        self.label = label
        self.outdir = os.path.abspath(outdir)
        self.sampler = sampler
        self.search_parameter_keys = search_parameter_keys
        self.fixed_parameter_keys = fixed_parameter_keys
Colm Talbot's avatar
Colm Talbot committed
165
        self.constraint_parameter_keys = constraint_parameter_keys
166 167 168 169 170 171 172 173 174 175 176
        self.parameter_labels = parameter_labels
        self.parameter_labels_with_unit = parameter_labels_with_unit
        self.priors = priors
        self.sampler_kwargs = sampler_kwargs
        self.meta_data = meta_data
        self.injection_parameters = injection_parameters
        self.posterior = posterior
        self.samples = samples
        self.nested_samples = nested_samples
        self.walkers = walkers
        self.nburn = nburn
177
        self.use_ratio = use_ratio
178 179 180 181 182
        self.log_evidence = log_evidence
        self.log_evidence_err = log_evidence_err
        self.log_noise_evidence = log_noise_evidence
        self.log_bayes_factor = log_bayes_factor
        self.log_likelihood_evaluations = log_likelihood_evaluations
183
        self.log_prior_evaluations = log_prior_evaluations
184
        self.sampling_time = sampling_time
185
        self.version = version
Colm Talbot's avatar
Colm Talbot committed
186
        self.max_autocorrelation_time = max_autocorrelation_time
187

188 189 190
        self.prior_values = None
        self._kde = None

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    @classmethod
    def from_hdf5(cls, filename=None, outdir=None, label=None):
        """ Read in a saved .h5 data file

        Parameters
        ----------
        filename: str
            If given, try to load from this filename
        outdir, label: str
            If given, use the default naming convention for saved results file

        Returns
        -------
        result: bilby.core.result.Result

        Raises
        -------
        ValueError: If no filename is given and either outdir or label is None
                    If no bilby.core.result.Result is found in the path

        """
212
        import deepdish
213
        filename = _determine_file_name(filename, outdir, label, 'hdf5', False)
214

215
        if os.path.isfile(filename):
Moritz Huebner's avatar
Moritz Huebner committed
216 217
            dictionary = deepdish.io.load(filename)
            # Some versions of deepdish/pytables return the dictionanary as
218
            # a dictionary with a key 'data'
Moritz Huebner's avatar
Moritz Huebner committed
219 220 221
            if len(dictionary) == 1 and 'data' in dictionary:
                dictionary = dictionary['data']
            try:
222 223
                if isinstance(dictionary.get('posterior', None), dict):
                    dictionary['posterior'] = pd.DataFrame(dictionary['posterior'])
Moritz Huebner's avatar
Moritz Huebner committed
224 225 226
                return cls(**dictionary)
            except TypeError as e:
                raise IOError("Unable to load dictionary, error={}".format(e))
227 228 229
        else:
            raise IOError("No result '{}' found".format(filename))

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
230
    @classmethod
231
    def from_json(cls, filename=None, outdir=None, label=None, gzip=False):
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        """ Read in a saved .json data file

        Parameters
        ----------
        filename: str
            If given, try to load from this filename
        outdir, label: str
            If given, use the default naming convention for saved results file

        Returns
        -------
        result: bilby.core.result.Result

        Raises
        -------
        ValueError: If no filename is given and either outdir or label is None
                    If no bilby.core.result.Result is found in the path

        """
251
        filename = _determine_file_name(filename, outdir, label, 'json', gzip)
252

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
253
        if os.path.isfile(filename):
254 255 256 257 258 259 260 261
            if gzip or os.path.splitext(filename)[1].lstrip('.') == 'gz':
                import gzip
                with gzip.GzipFile(filename, 'r') as file:
                    json_str = file.read().decode('utf-8')
                dictionary = json.loads(json_str, object_hook=decode_bilby_json)
            else:
                with open(filename, 'r') as file:
                    dictionary = json.load(file, object_hook=decode_bilby_json)
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
262 263 264 265 266 267 268 269 270 271 272 273 274
            for key in dictionary.keys():
                # Convert the loaded priors to bilby prior type
                if key == 'priors':
                    for param in dictionary[key].keys():
                        dictionary[key][param] = str(dictionary[key][param])
                    dictionary[key] = PriorDict(dictionary[key])
            try:
                return cls(**dictionary)
            except TypeError as e:
                raise IOError("Unable to load dictionary, error={}".format(e))
        else:
            raise IOError("No result '{}' found".format(filename))

275
    def __str__(self):
276
        """Print a summary """
277 278
        if getattr(self, 'posterior', None) is not None:
            if getattr(self, 'log_noise_evidence', None) is not None:
279 280 281 282
                return ("nsamples: {:d}\n"
                        "log_noise_evidence: {:6.3f}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
                        "log_bayes_factor: {:6.3f} +/- {:6.3f}\n"
283
                        .format(len(self.posterior), self.log_noise_evidence, self.log_evidence,
284 285 286 287 288
                                self.log_evidence_err, self.log_bayes_factor,
                                self.log_evidence_err))
            else:
                return ("nsamples: {:d}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
289
                        .format(len(self.posterior), self.log_evidence, self.log_evidence_err))
290 291
        else:
            return ''
292

293 294 295 296 297 298
    @property
    def priors(self):
        if self._priors is not None:
            return self._priors
        else:
            raise ValueError('Result object has no priors')
299

300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    @priors.setter
    def priors(self, priors):
        if isinstance(priors, dict):
            self._priors = PriorDict(priors)
            if self.parameter_labels is None:
                self.parameter_labels = [self.priors[k].latex_label for k in
                                         self.search_parameter_keys]
            if self.parameter_labels_with_unit is None:
                self.parameter_labels_with_unit = [
                    self.priors[k].latex_label_with_unit for k in
                    self.search_parameter_keys]

        elif priors is None:
            self._priors = priors
            self.parameter_labels = self.search_parameter_keys
            self.parameter_labels_with_unit = self.search_parameter_keys
        else:
            raise ValueError("Input priors not understood")
318

319 320 321 322 323
    @property
    def samples(self):
        """ An array of samples """
        if self._samples is not None:
            return self._samples
324
        else:
325
            raise ValueError("Result object has no stored samples")
326

327 328 329
    @samples.setter
    def samples(self, samples):
        self._samples = samples
330

331 332 333 334 335 336 337
    @property
    def nested_samples(self):
        """" An array of unweighted samples """
        if self._nested_samples is not None:
            return self._nested_samples
        else:
            raise ValueError("Result object has no stored nested samples")
338

339 340 341
    @nested_samples.setter
    def nested_samples(self, nested_samples):
        self._nested_samples = nested_samples
342

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    @property
    def walkers(self):
        """" An array of the ensemble walkers """
        if self._walkers is not None:
            return self._walkers
        else:
            raise ValueError("Result object has no stored walkers")

    @walkers.setter
    def walkers(self, walkers):
        self._walkers = walkers

    @property
    def nburn(self):
        """" An array of the ensemble walkers """
        if self._nburn is not None:
            return self._nburn
        else:
            raise ValueError("Result object has no stored nburn")

    @nburn.setter
    def nburn(self, nburn):
        self._nburn = nburn

    @property
    def posterior(self):
        """ A pandas data frame of the posterior """
        if self._posterior is not None:
            return self._posterior
        else:
            raise ValueError("Result object has no stored posterior")

    @posterior.setter
    def posterior(self, posterior):
        self._posterior = posterior

379 380 381 382 383 384 385 386 387 388 389
    @property
    def version(self):
        return self._version

    @version.setter
    def version(self, version):
        if version is None:
            self._version = 'bilby={}'.format(utils.get_version_information())
        else:
            self._version = version

390
    def _get_save_data_dictionary(self):
391
        # This list defines all the parameters saved in the result object
392 393 394 395
        save_attrs = [
            'label', 'outdir', 'sampler', 'log_evidence', 'log_evidence_err',
            'log_noise_evidence', 'log_bayes_factor', 'priors', 'posterior',
            'injection_parameters', 'meta_data', 'search_parameter_keys',
Colm Talbot's avatar
Colm Talbot committed
396
            'fixed_parameter_keys', 'constraint_parameter_keys',
397
            'sampling_time', 'sampler_kwargs', 'use_ratio',
398 399
            'log_likelihood_evaluations', 'log_prior_evaluations', 'samples',
            'nested_samples', 'walkers', 'nburn', 'parameter_labels',
400
            'parameter_labels_with_unit', 'version']
401 402 403 404 405 406 407 408
        dictionary = OrderedDict()
        for attr in save_attrs:
            try:
                dictionary[attr] = getattr(self, attr)
            except ValueError as e:
                logger.debug("Unable to save {}, message: {}".format(attr, e))
                pass
        return dictionary
409

410
    def save_to_file(self, overwrite=False, outdir=None, extension='json', gzip=False):
Colm Talbot's avatar
Colm Talbot committed
411
        """
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
412
        Writes the Result to a json or deepdish h5 file
Colm Talbot's avatar
Colm Talbot committed
413 414 415 416 417 418

        Parameters
        ----------
        overwrite: bool, optional
            Whether or not to overwrite an existing result file.
            default=False
419 420
        outdir: str, optional
            Path to the outdir. Default is the one stored in the result object.
Gregory Ashton's avatar
Gregory Ashton committed
421 422 423
        extension: str, optional {json, hdf5, True}
            Determines the method to use to store the data (if True defaults
            to json)
424 425 426
        gzip: bool, optional
            If true, and outputing to a json file, this will gzip the resulting
            file and add '.gz' to the file extension.
Colm Talbot's avatar
Colm Talbot committed
427
        """
Gregory Ashton's avatar
Gregory Ashton committed
428 429 430 431

        if extension is True:
            extension = "json"

432
        outdir = self._safe_outdir_creation(outdir, self.save_to_file)
433
        file_name = result_file_name(outdir, self.label, extension, gzip)
434

435
        if os.path.isfile(file_name):
Colm Talbot's avatar
Colm Talbot committed
436 437 438 439 440 441 442 443
            if overwrite:
                logger.debug('Removing existing file {}'.format(file_name))
                os.remove(file_name)
            else:
                logger.debug(
                    'Renaming existing file {} to {}.old'.format(file_name,
                                                                 file_name))
                os.rename(file_name, file_name + '.old')
444

Gregory Ashton's avatar
Gregory Ashton committed
445
        logger.debug("Saving result to {}".format(file_name))
446 447

        # Convert the prior to a string representation for saving on disk
448
        dictionary = self._get_save_data_dictionary()
449 450 451
        if dictionary.get('priors', False):
            dictionary['priors'] = {key: str(self.priors[key]) for key in self.priors}

452
        # Convert callable sampler_kwargs to strings
453 454 455 456
        if dictionary.get('sampler_kwargs', None) is not None:
            for key in dictionary['sampler_kwargs']:
                if hasattr(dictionary['sampler_kwargs'][key], '__call__'):
                    dictionary['sampler_kwargs'][key] = str(dictionary['sampler_kwargs'])
457

Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
458
        try:
459
            if extension == 'json':
460 461 462 463 464 465 466 467 468
                if gzip:
                    import gzip
                    # encode to a string
                    json_str = json.dumps(dictionary, cls=BilbyJsonEncoder).encode('utf-8')
                    with gzip.GzipFile(file_name, 'w') as file:
                        file.write(json_str)
                else:
                    with open(file_name, 'w') as file:
                        json.dump(dictionary, file, indent=2, cls=BilbyJsonEncoder)
469
            elif extension == 'hdf5':
470
                import deepdish
471 472 473
                for key in dictionary:
                    if isinstance(dictionary[key], pd.DataFrame):
                        dictionary[key] = dictionary[key].to_dict()
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
474 475
                deepdish.io.save(file_name, dictionary)
            else:
476
                raise ValueError("Extension type {} not understood".format(extension))
Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
477
        except Exception as e:
Gregory Ashton's avatar
Gregory Ashton committed
478
            logger.error("\n\n Saving the data has failed with the "
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
479
                         "following message:\n {} \n\n".format(e))
Gregory Ashton's avatar
Gregory Ashton committed
480

481
    def save_posterior_samples(self, outdir=None):
482
        """Saves posterior samples to a file"""
483 484
        outdir = self._safe_outdir_creation(outdir, self.save_posterior_samples)
        filename = '{}/{}_posterior_samples.txt'.format(outdir, self.label)
485 486
        self.posterior.to_csv(filename, index=False, header=True)

Gregory Ashton's avatar
Gregory Ashton committed
487
    def get_latex_labels_from_parameter_keys(self, keys):
488 489 490 491 492 493 494 495 496 497 498 499 500
        """ Returns a list of latex_labels corresponding to the given keys

        Parameters
        ----------
        keys: list
            List of strings corresponding to the desired latex_labels

        Returns
        -------
        list: The desired latex_labels

        """
        latex_labels = []
Gregory Ashton's avatar
Gregory Ashton committed
501 502 503
        for k in keys:
            if k in self.search_parameter_keys:
                idx = self.search_parameter_keys.index(k)
504
                latex_labels.append(self.parameter_labels_with_unit[idx])
Gregory Ashton's avatar
Gregory Ashton committed
505
            elif k in self.parameter_labels:
506
                latex_labels.append(k)
Gregory Ashton's avatar
Gregory Ashton committed
507
            else:
Colm Talbot's avatar
Colm Talbot committed
508
                logger.debug(
509 510
                    'key {} not a parameter label or latex label'.format(k))
                latex_labels.append(' '.join(k.split('_')))
511
        return latex_labels
Gregory Ashton's avatar
Gregory Ashton committed
512

Gregory Ashton's avatar
Gregory Ashton committed
513 514 515 516 517 518 519 520 521
    @property
    def covariance_matrix(self):
        """ The covariance matrix of the samples the posterior """
        samples = self.posterior[self.search_parameter_keys].values
        return np.cov(samples.T)

    @property
    def posterior_volume(self):
        """ The posterior volume """
Gregory Ashton's avatar
Gregory Ashton committed
522 523 524
        if self.covariance_matrix.ndim == 0:
            return np.sqrt(self.covariance_matrix)
        else:
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
525 526
            return 1 / np.sqrt(np.abs(np.linalg.det(
                1 / self.covariance_matrix)))
Gregory Ashton's avatar
Gregory Ashton committed
527

528 529
    @staticmethod
    def prior_volume(priors):
Gregory Ashton's avatar
Gregory Ashton committed
530 531 532 533 534 535
        """ The prior volume, given a set of priors """
        return np.prod([priors[k].maximum - priors[k].minimum for k in priors])

    def occam_factor(self, priors):
        """ The Occam factor,

536 537 538
        See Chapter 28, `Mackay "Information Theory, Inference, and Learning
        Algorithms" <http://www.inference.org.uk/itprnn/book.html>`_ Cambridge
        University Press (2003).
Gregory Ashton's avatar
Gregory Ashton committed
539 540 541 542

        """
        return self.posterior_volume / self.prior_volume(priors)

543
    def get_one_dimensional_median_and_error_bar(self, key, fmt='.2f',
544
                                                 quantiles=(0.16, 0.84)):
545 546 547 548 549 550 551 552
        """ Calculate the median and error bar for a given key

        Parameters
        ----------
        key: str
            The parameter key for which to calculate the median and error bar
        fmt: str, ('.2f')
            A format string
553 554
        quantiles: list, tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
555 556 557 558
            the errors bars for.

        Returns
        -------
559 560
        summary: namedtuple
            An object with attributes, median, lower, upper and string
561 562

        """
563 564
        summary = namedtuple('summary', ['median', 'lower', 'upper', 'string'])

565 566 567 568 569
        if len(quantiles) != 2:
            raise ValueError("quantiles must be of length 2")

        quants_to_compute = np.array([quantiles[0], 0.5, quantiles[1]])
        quants = np.percentile(self.posterior[key], quants_to_compute * 100)
570 571 572
        summary.median = quants[1]
        summary.plus = quants[2] - summary.median
        summary.minus = summary.median - quants[0]
573 574

        fmt = "{{0:{0}}}".format(fmt).format
575 576 577 578 579
        string_template = r"${{{0}}}_{{-{1}}}^{{+{2}}}$"
        summary.string = string_template.format(
            fmt(summary.median), fmt(summary.minus), fmt(summary.plus))
        return summary

Colm Talbot's avatar
Colm Talbot committed
580 581 582
    def plot_single_density(self, key, prior=None, cumulative=False,
                            title=None, truth=None, save=True,
                            file_base_name=None, bins=50, label_fontsize=16,
583 584
                            title_fontsize=16, quantiles=(0.16, 0.84), dpi=300):
        """ Plot a 1D marginal density, either probability or cumulative.
Colm Talbot's avatar
Colm Talbot committed
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

        Parameters
        ----------
        key: str
            Name of the parameter to plot
        prior: {bool (True), bilby.core.prior.Prior}
            If true, add the stored prior probability density function to the
            one-dimensional marginal distributions. If instead a Prior
            is provided, this will be plotted.
        cumulative: bool
            If true plot the CDF
        title: bool
            If true, add 1D title of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        truth: {bool, float}
            If true, plot self.injection_parameters[parameter].
            If float, plot this value.
        save: bool:
            If true, save plot to disk.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
            The fontsizes for the labels and titles
613 614
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
Colm Talbot's avatar
Colm Talbot committed
615 616 617 618 619 620 621 622 623 624 625 626
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot

        Returns
        -------
        figure: matplotlib.pyplot.figure
            A matplotlib figure object
        """
        logger.info('Plotting {} marginal distribution'.format(key))
        label = self.get_latex_labels_from_parameter_keys([key])[0]
        fig, ax = plt.subplots()
627 628 629 630 631 632 633 634
        try:
            ax.hist(self.posterior[key].values, bins=bins, density=True,
                    histtype='step', cumulative=cumulative)
        except ValueError as e:
            logger.info(
                'Failed to generate 1d plot for {}, error message: {}'
                .format(key, e))
            return
Colm Talbot's avatar
Colm Talbot committed
635 636 637 638 639 640 641 642 643 644 645 646 647
        ax.set_xlabel(label, fontsize=label_fontsize)
        if truth is not None:
            ax.axvline(truth, ls='-', color='orange')

        summary = self.get_one_dimensional_median_and_error_bar(
            key, quantiles=quantiles)
        ax.axvline(summary.median - summary.minus, ls='--', color='C0')
        ax.axvline(summary.median + summary.plus, ls='--', color='C0')
        if title:
            ax.set_title(summary.string, fontsize=title_fontsize)

        if isinstance(prior, Prior):
            theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
648
            ax.plot(theta, prior.prob(theta), color='C2')
Colm Talbot's avatar
Colm Talbot committed
649 650 651 652 653 654 655 656

        if save:
            fig.tight_layout()
            if cumulative:
                file_name = file_base_name + key + '_cdf'
            else:
                file_name = file_base_name + key + '_pdf'
            fig.savefig(file_name, dpi=dpi)
657 658 659
            plt.close(fig)
        else:
            return fig
Colm Talbot's avatar
Colm Talbot committed
660

661 662
    def plot_marginals(self, parameters=None, priors=None, titles=True,
                       file_base_name=None, bins=50, label_fontsize=16,
663 664
                       title_fontsize=16, quantiles=(0.16, 0.84), dpi=300,
                       outdir=None):
665 666 667 668 669 670 671
        """ Plot 1D marginal distributions

        Parameters
        ----------
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
672
        priors: {bool (False), bilby.core.prior.PriorDict}
673
            If true, add the stored prior probability density functions to the
674
            one-dimensional marginal distributions. If instead a PriorDict
675 676 677 678 679 680 681 682 683 684 685 686
            is provided, this will be plotted.
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
687 688 689
            The font sizes for the labels and titles
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
690 691 692
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot
693 694
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
695 696 697 698 699 700

        Returns
        -------
        """
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
Colm Talbot's avatar
Colm Talbot committed
701
            truths = parameters
702
        elif parameters is None:
Colm Talbot's avatar
Colm Talbot committed
703 704 705 706 707
            plot_parameter_keys = self.posterior.keys()
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
708 709
        else:
            plot_parameter_keys = list(parameters)
Colm Talbot's avatar
Colm Talbot committed
710 711 712 713
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
714 715

        if file_base_name is None:
716 717
            outdir = self._safe_outdir_creation(outdir, self.plot_marginals)
            file_base_name = '{}/{}_1d/'.format(outdir, self.label)
Colm Talbot's avatar
Colm Talbot committed
718
            check_directory_exists_and_if_not_mkdir(file_base_name)
719 720

        if priors is True:
Colm Talbot's avatar
Colm Talbot committed
721 722
            priors = getattr(self, 'priors', dict())
        elif isinstance(priors, dict):
723
            pass
Colm Talbot's avatar
Colm Talbot committed
724 725
        elif priors in [False, None]:
            priors = dict()
726 727 728 729
        else:
            raise ValueError('Input priors={} not understood'.format(priors))

        for i, key in enumerate(plot_parameter_keys):
Colm Talbot's avatar
Colm Talbot committed
730 731
            if not isinstance(self.posterior[key].values[0], float):
                continue
Colm Talbot's avatar
Colm Talbot committed
732 733
            prior = priors.get(key, None)
            truth = truths.get(key, None)
Colm Talbot's avatar
Colm Talbot committed
734
            for cumulative in [False, True]:
735
                self.plot_single_density(
Colm Talbot's avatar
Colm Talbot committed
736 737
                    key, prior=prior, cumulative=cumulative, title=titles,
                    truth=truth, save=True, file_base_name=file_base_name,
Colm Talbot's avatar
Colm Talbot committed
738 739
                    bins=bins, label_fontsize=label_fontsize, dpi=dpi,
                    title_fontsize=title_fontsize, quantiles=quantiles)
740

741 742 743
    def plot_corner(self, parameters=None, priors=None, titles=True, save=True,
                    filename=None, dpi=300, **kwargs):
        """ Plot a corner-plot
Gregory Ashton's avatar
Gregory Ashton committed
744 745 746

        Parameters
        ----------
747 748 749
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
750
        priors: {bool (False), bilby.core.prior.PriorDict}
751
            If true, add the stored prior probability density functions to the
752
            one-dimensional marginal distributions. If instead a PriorDict
753
            is provided, this will be plotted.
754 755 756 757 758
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
759 760 761 762 763 764
        save: bool, optional
            If true, save the image using the given label and outdir
        filename: str, optional
            If given, overwrite the default filename
        dpi: int, optional
            Dots per inch resolution of the plot
765 766 767
        **kwargs:
            Other keyword arguments are passed to `corner.corner`. We set some
            defaults to improve the basic look and feel, but these can all be
768 769
            overridden. Also optional an 'outdir' argument which can be used
            to override the outdir set by the absolute path of the result object.
Gregory Ashton's avatar
Gregory Ashton committed
770

771 772 773 774 775 776
        Notes
        -----
            The generation of the corner plot themselves is done by the corner
            python module, see https://corner.readthedocs.io for more
            information.

Gregory Ashton's avatar
Gregory Ashton committed
777 778 779 780
        Returns
        -------
        fig:
            A matplotlib figure instance
781

Gregory Ashton's avatar
Gregory Ashton committed
782
        """
783 784

        # If in testing mode, not corner plots are generated
785 786
        if utils.command_line_args.test:
            return
Gregory Ashton's avatar
Gregory Ashton committed
787

Colm Talbot's avatar
Colm Talbot committed
788
        # bilby default corner kwargs. Overwritten by anything passed to kwargs
789 790 791
        defaults_kwargs = dict(
            bins=50, smooth=0.9, label_kwargs=dict(fontsize=16),
            title_kwargs=dict(fontsize=16), color='#0072C1',
792
            truth_color='tab:orange', quantiles=[0.16, 0.84],
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
793
            levels=(1 - np.exp(-0.5), 1 - np.exp(-2), 1 - np.exp(-9 / 2.)),
794
            plot_density=False, plot_datapoints=True, fill_contours=True,
795 796 797 798 799 800
            max_n_ticks=3)

        if LooseVersion(matplotlib.__version__) < "2.1":
            defaults_kwargs['hist_kwargs'] = dict(normed=True)
        else:
            defaults_kwargs['hist_kwargs'] = dict(density=True)
801

802 803 804 805
        if 'lionize' in kwargs and kwargs['lionize'] is True:
            defaults_kwargs['truth_color'] = 'tab:blue'
            defaults_kwargs['color'] = '#FF8C00'

806 807 808
        defaults_kwargs.update(kwargs)
        kwargs = defaults_kwargs

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
        # Handle if truths was passed in
        if 'truth' in kwargs:
            kwargs['truths'] = kwargs.pop('truth')
        if kwargs.get('truths'):
            truths = kwargs.get('truths')
            if isinstance(parameters, list) and isinstance(truths, list):
                if len(parameters) != len(truths):
                    raise ValueError(
                        "Length of parameters and truths don't match")
            elif isinstance(truths, dict) and parameters is None:
                parameters = kwargs.pop('truths')
            else:
                raise ValueError(
                    "Combination of parameters and truths not understood")

Gregory Ashton's avatar
Gregory Ashton committed
824 825 826 827 828 829 830 831
        # If injection parameters where stored, use these as parameter values
        # but do not overwrite input parameters (or truths)
        cond1 = getattr(self, 'injection_parameters', None) is not None
        cond2 = parameters is None
        if cond1 and cond2:
            parameters = {key: self.injection_parameters[key] for key in
                          self.search_parameter_keys}

832 833 834 835 836 837 838 839 840
        # If parameters is a dictionary, use the keys to determine which
        # parameters to plot and the values as truths.
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
            kwargs['truths'] = list(parameters.values())
        elif parameters is None:
            plot_parameter_keys = self.search_parameter_keys
        else:
            plot_parameter_keys = list(parameters)
841

842
        # Get latex formatted strings for the plot labels
843 844
        kwargs['labels'] = kwargs.get(
            'labels', self.get_latex_labels_from_parameter_keys(
845
                plot_parameter_keys))
846

847 848 849 850
        # Unless already set, set the range to include all samples
        # This prevents ValueErrors being raised for parameters with no range
        kwargs['range'] = kwargs.get('range', [1] * len(plot_parameter_keys))

851 852
        # Create the data array to plot and pass everything to corner
        xs = self.posterior[plot_parameter_keys].values
853
        fig = corner.corner(xs, **kwargs)
854
        axes = fig.get_axes()
855 856 857

        #  Add the titles
        if titles and kwargs.get('quantiles', None) is not None:
858 859
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
860 861
                if ax.title.get_text() == '':
                    ax.set_title(self.get_one_dimensional_median_and_error_bar(
862
                        par, quantiles=kwargs['quantiles']).string,
863 864 865
                        **kwargs['title_kwargs'])

        #  Add priors to the 1D plots
866 867 868
        if priors is True:
            priors = getattr(self, 'priors', False)
        if isinstance(priors, dict):
869 870
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
871 872
                theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
                ax.plot(theta, priors[par].prob(theta), color='C2')
873 874 875 876
        elif priors in [False, None]:
            pass
        else:
            raise ValueError('Input priors={} not understood'.format(priors))
877

878
        if save:
879
            if filename is None:
880 881
                outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_corner)
                filename = '{}/{}_corner.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
882
            logger.debug('Saving corner plot to {}'.format(filename))
883
            fig.savefig(filename, dpi=dpi)
884
            plt.close(fig)
885

886
        return fig
887

Gregory Ashton's avatar
Gregory Ashton committed
888
    def plot_walkers(self, **kwargs):
MoritzThomasHuebner's avatar
A typo  
MoritzThomasHuebner committed
889
        """ Method to plot the trace of the walkers in an ensemble MCMC plot """
890
        if hasattr(self, 'walkers') is False:
Gregory Ashton's avatar
Gregory Ashton committed
891
            logger.warning("Cannot plot_walkers as no walkers are saved")
892
            return
893 894 895

        if utils.command_line_args.test:
            return
896 897 898

        nwalkers, nsteps, ndim = self.walkers.shape
        idxs = np.arange(nsteps)
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
899
        fig, axes = plt.subplots(nrows=ndim, figsize=(6, 3 * ndim))
900 901
        walkers = self.walkers[:, :, :]
        for i, ax in enumerate(axes):
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
902
            ax.plot(idxs[:self.nburn + 1], walkers[:, :self.nburn + 1, i].T,
903 904 905 906 907 908 909 910 911
                    lw=0.1, color='r')
            ax.set_ylabel(self.parameter_labels[i])

        for i, ax in enumerate(axes):
            ax.plot(idxs[self.nburn:], walkers[:, self.nburn:, i].T, lw=0.1,
                    color='k')
            ax.set_ylabel(self.parameter_labels[i])

        fig.tight_layout()
912 913
        outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_walkers)
        filename = '{}/{}_walkers.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
914
        logger.debug('Saving walkers plot to {}'.format('filename'))
915
        fig.savefig(filename)
916
        plt.close(fig)
917

918 919 920
    def plot_with_data(self, model, x, y, ndraws=1000, npoints=1000,
                       xlabel=None, ylabel=None, data_label='data',
                       data_fmt='o', draws_label=None, filename=None,
921
                       maxl_label='max likelihood', dpi=300, outdir=None):
922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
        """ Generate a figure showing the data and fits to the data

        Parameters
        ----------
        model: function
            A python function which when called as `model(x, **kwargs)` returns
            the model prediction (here `kwargs` is a dictionary of key-value
            pairs of the model parameters.
        x, y: np.ndarray
            The independent and dependent data to plot
        ndraws: int
            Number of draws from the posterior to plot
        npoints: int
            Number of points used to plot the smoothed fit to the data
        xlabel, ylabel: str
            Labels for the axes
        data_label, draws_label, maxl_label: str
            Label for the data, draws, and max likelihood legend
        data_fmt: str
            Matpltolib fmt code, defaults to `'-o'`
        dpi: int
            Passed to `plt.savefig`
        filename: str
            If given, the filename to use. Otherwise, the filename is generated
            from the outdir and label attributes.
947 948
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
949 950

        """
951 952 953 954 955 956

        # Determine model_posterior, the subset of the full posterior which
        # should be passed into the model
        model_keys = infer_parameters_from_function(model)
        model_posterior = self.posterior[model_keys]

957 958 959 960
        xsmooth = np.linspace(np.min(x), np.max(x), npoints)
        fig, ax = plt.subplots()
        logger.info('Plotting {} draws'.format(ndraws))
        for _ in range(ndraws):
961
            s = model_posterior.sample().to_dict('records')[0]
962 963
            ax.plot(xsmooth, model(xsmooth, **s), alpha=0.25, lw=0.1, color='r',
                    label=draws_label)
964 965 966
        try:
            if all(~np.isnan(self.posterior.log_likelihood)):
                logger.info('Plotting maximum likelihood')
Colm Talbot's avatar
Colm Talbot committed
967
                s = model_posterior.iloc[self.posterior.log_likelihood.idxmax()]
968 969
                ax.plot(xsmooth, model(xsmooth, **s), lw=1, color='k',
                        label=maxl_label)
970
        except (AttributeError, TypeError):
971 972
            logger.debug(
                "No log likelihood values stored, unable to plot max")
973 974 975 976 977 978 979 980 981 982 983 984 985 986

        ax.plot(x, y, data_fmt, markersize=2, label=data_label)

        if xlabel is not None:
            ax.set_xlabel(xlabel)
        if ylabel is not None:
            ax.set_ylabel(ylabel)

        handles, labels = plt.gca().get_legend_handles_labels()
        by_label = OrderedDict(zip(labels, handles))
        plt.legend(by_label.values(), by_label.keys())
        ax.legend(numpoints=3)
        fig.tight_layout()
        if filename is None:
987 988
            outdir = self._safe_outdir_creation(outdir, self.plot_with_data)
            filename = '{}/{}_plot_with_data'.format(outdir, self.label)
989
        fig.savefig(filename, dpi=dpi)
990
        plt.close(fig)
991

992 993 994 995 996 997 998 999 1000 1001 1002
    @staticmethod
    def _add_prior_fixed_values_to_posterior(posterior, priors):
        if priors is None:
            return posterior
        for key in priors:
            if isinstance(priors[key], DeltaFunction):
                posterior[key] = priors[key].peak
            elif isinstance(priors[key], float):
                posterior[key] = priors[key]
        return posterior

1003 1004
    def samples_to_posterior(self, likelihood=None, priors=None,
                             conversion_function=None):