result.py 47.4 KB
Newer Older
Colm Talbot's avatar
Colm Talbot committed
1 2
from __future__ import division

3
import os
4
from distutils.version import LooseVersion
5
from collections import OrderedDict, namedtuple
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
6

7
import numpy as np
8
import deepdish
9
import pandas as pd
10
import corner
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
11
import json
12
import scipy.stats
13
import matplotlib
14
import matplotlib.pyplot as plt
15
from matplotlib import lines as mpllines
16

17
from . import utils
Colm Talbot's avatar
Colm Talbot committed
18 19 20
from .utils import (logger, infer_parameters_from_function,
                    check_directory_exists_and_if_not_mkdir)
from .prior import Prior, PriorDict, DeltaFunction
21

22

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
23
def result_file_name(outdir, label, extension='json'):
24 25 26 27 28 29 30 31
    """ Returns the standard filename used for a result file

    Parameters
    ----------
    outdir: str
        Name of the output directory
    label: str
        Naming scheme of the output file
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
32 33
    extension: str, optional
        Whether to save as `hdf5` or `json`
34 35 36 37 38

    Returns
    -------
    str: File name of the output file
    """
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
39 40 41 42
    if extension == 'hdf5':
        return '{}/{}_result.h5'.format(outdir, label)
    else:
        return '{}/{}_result.json'.format(outdir, label)
43 44


45
def read_in_result(filename=None, outdir=None, label=None):
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
46 47 48 49 50 51 52
    """ Wrapper to bilby.core.result.Result.from_hdf5
        or bilby.core.result.Result.from_json """
    try:
        result = Result.from_json(filename=filename, outdir=outdir, label=label)
    except (IOError, ValueError):
        result = Result.from_hdf5(filename=filename, outdir=outdir, label=label)
    return result
53 54 55 56 57 58 59 60 61 62


class Result(object):
    def __init__(self, label='no_label', outdir='.', sampler=None,
                 search_parameter_keys=None, fixed_parameter_keys=None,
                 priors=None, sampler_kwargs=None, injection_parameters=None,
                 meta_data=None, posterior=None, samples=None,
                 nested_samples=None, log_evidence=np.nan,
                 log_evidence_err=np.nan, log_noise_evidence=np.nan,
                 log_bayes_factor=np.nan, log_likelihood_evaluations=None,
63 64 65 66
                 log_prior_evaluations=None, sampling_time=None, nburn=None,
                 walkers=None, max_autocorrelation_time=None,
                 parameter_labels=None, parameter_labels_with_unit=None,
                 version=None):
67
        """ A class to store the results of the sampling run
68 69 70

        Parameters
        ----------
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        label, outdir, sampler: str
            The label, output directory, and sampler used
        search_parameter_keys, fixed_parameter_keys: list
            Lists of the search and fixed parameter keys. Elemenents of the
            list should be of type `str` and matchs the keys of the `prior`
        priors: dict, bilby.core.prior.PriorDict
            A dictionary of the priors used in the run
        sampler_kwargs: dict
            Key word arguments passed to the sampler
        injection_parameters: dict
            A dictionary of the injection parameters
        meta_data: dict
            A dictionary of meta data to store about the run
        posterior: pandas.DataFrame
            A pandas data frame of the posterior
        samples, nested_samples: array_like
            An array of the output posterior samples and the unweighted samples
        log_evidence, log_evidence_err, log_noise_evidence, log_bayes_factor: float
            Natural log evidences
        log_likelihood_evaluations: array_like
            The evaluations of the likelihood for each sample point
92 93
        log_prior_evaluations: array_like
            The evaluations of the prior for each sample point
94 95 96 97 98 99 100 101 102 103
        sampling_time: float
            The time taken to complete the sampling
        nburn: int
            The number of burn-in steps discarded for MCMC samplers
        walkers: array_like
            The samplers taken by a ensemble MCMC samplers
        max_autocorrelation_time: float
            The estimated maximum autocorrelation time for MCMC samplers
        parameter_labels, parameter_labels_with_unit: list
            Lists of the latex-formatted parameter labels
104 105 106
        version: str,
            Version information for software used to generate the result. Note,
            this information is generated when the result object is initialized
107

108 109 110 111
        Note
        ---------
        All sampling output parameters, e.g. the samples themselves are
        typically not given at initialisation, but set at a later stage.
112 113

        """
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
        self.label = label
        self.outdir = os.path.abspath(outdir)
        self.sampler = sampler
        self.search_parameter_keys = search_parameter_keys
        self.fixed_parameter_keys = fixed_parameter_keys
        self.parameter_labels = parameter_labels
        self.parameter_labels_with_unit = parameter_labels_with_unit
        self.priors = priors
        self.sampler_kwargs = sampler_kwargs
        self.meta_data = meta_data
        self.injection_parameters = injection_parameters
        self.posterior = posterior
        self.samples = samples
        self.nested_samples = nested_samples
        self.walkers = walkers
        self.nburn = nburn
        self.log_evidence = log_evidence
        self.log_evidence_err = log_evidence_err
        self.log_noise_evidence = log_noise_evidence
        self.log_bayes_factor = log_bayes_factor
        self.log_likelihood_evaluations = log_likelihood_evaluations
136
        self.log_prior_evaluations = log_prior_evaluations
137
        self.sampling_time = sampling_time
138
        self.version = version
Colm Talbot's avatar
Colm Talbot committed
139
        self.max_autocorrelation_time = max_autocorrelation_time
140

141 142 143
        self.prior_values = None
        self._kde = None

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    @classmethod
    def from_hdf5(cls, filename=None, outdir=None, label=None):
        """ Read in a saved .h5 data file

        Parameters
        ----------
        filename: str
            If given, try to load from this filename
        outdir, label: str
            If given, use the default naming convention for saved results file

        Returns
        -------
        result: bilby.core.result.Result

        Raises
        -------
        ValueError: If no filename is given and either outdir or label is None
                    If no bilby.core.result.Result is found in the path

        """
        if filename is None:
            if (outdir is None) and (label is None):
                raise ValueError("No information given to load file")
            else:
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
169
                filename = result_file_name(outdir, label, extension='hdf5')
170
        if os.path.isfile(filename):
Moritz Huebner's avatar
Moritz Huebner committed
171 172 173 174 175 176 177 178 179
            dictionary = deepdish.io.load(filename)
            # Some versions of deepdish/pytables return the dictionanary as
            # a dictionary with a kay 'data'
            if len(dictionary) == 1 and 'data' in dictionary:
                dictionary = dictionary['data']
            try:
                return cls(**dictionary)
            except TypeError as e:
                raise IOError("Unable to load dictionary, error={}".format(e))
180 181 182
        else:
            raise IOError("No result '{}' found".format(filename))

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    @classmethod
    def from_json(cls, filename=None, outdir=None, label=None):
        """ Read in a saved .json data file

        Parameters
        ----------
        filename: str
            If given, try to load from this filename
        outdir, label: str
            If given, use the default naming convention for saved results file

        Returns
        -------
        result: bilby.core.result.Result

        Raises
        -------
        ValueError: If no filename is given and either outdir or label is None
                    If no bilby.core.result.Result is found in the path

        """
        if filename is None:
            if (outdir is None) and (label is None):
                raise ValueError("No information given to load file")
            else:
                filename = result_file_name(outdir, label)
        if os.path.isfile(filename):
            dictionary = json.load(open(filename, 'r'))
            for key in dictionary.keys():
                # Convert some dictionaries back to DataFrames
                if key in ['posterior', 'nested_samples']:
                    dictionary[key] = pd.DataFrame.from_dict(dictionary[key])
                # Convert the loaded priors to bilby prior type
                if key == 'priors':
                    for param in dictionary[key].keys():
                        dictionary[key][param] = str(dictionary[key][param])
                    dictionary[key] = PriorDict(dictionary[key])
            try:
                return cls(**dictionary)
            except TypeError as e:
                raise IOError("Unable to load dictionary, error={}".format(e))
        else:
            raise IOError("No result '{}' found".format(filename))

227
    def __str__(self):
228
        """Print a summary """
229 230
        if getattr(self, 'posterior', None) is not None:
            if getattr(self, 'log_noise_evidence', None) is not None:
231 232 233 234
                return ("nsamples: {:d}\n"
                        "log_noise_evidence: {:6.3f}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
                        "log_bayes_factor: {:6.3f} +/- {:6.3f}\n"
235
                        .format(len(self.posterior), self.log_noise_evidence, self.log_evidence,
236 237 238 239 240
                                self.log_evidence_err, self.log_bayes_factor,
                                self.log_evidence_err))
            else:
                return ("nsamples: {:d}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
241
                        .format(len(self.posterior), self.log_evidence, self.log_evidence_err))
242 243
        else:
            return ''
244

245 246 247 248 249 250
    @property
    def priors(self):
        if self._priors is not None:
            return self._priors
        else:
            raise ValueError('Result object has no priors')
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    @priors.setter
    def priors(self, priors):
        if isinstance(priors, dict):
            self._priors = PriorDict(priors)
            if self.parameter_labels is None:
                self.parameter_labels = [self.priors[k].latex_label for k in
                                         self.search_parameter_keys]
            if self.parameter_labels_with_unit is None:
                self.parameter_labels_with_unit = [
                    self.priors[k].latex_label_with_unit for k in
                    self.search_parameter_keys]

        elif priors is None:
            self._priors = priors
            self.parameter_labels = self.search_parameter_keys
            self.parameter_labels_with_unit = self.search_parameter_keys
        else:
            raise ValueError("Input priors not understood")
270

271 272 273 274 275
    @property
    def samples(self):
        """ An array of samples """
        if self._samples is not None:
            return self._samples
276
        else:
277
            raise ValueError("Result object has no stored samples")
278

279 280 281
    @samples.setter
    def samples(self, samples):
        self._samples = samples
282

283 284 285 286 287 288 289
    @property
    def nested_samples(self):
        """" An array of unweighted samples """
        if self._nested_samples is not None:
            return self._nested_samples
        else:
            raise ValueError("Result object has no stored nested samples")
290

291 292 293
    @nested_samples.setter
    def nested_samples(self, nested_samples):
        self._nested_samples = nested_samples
294

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    @property
    def walkers(self):
        """" An array of the ensemble walkers """
        if self._walkers is not None:
            return self._walkers
        else:
            raise ValueError("Result object has no stored walkers")

    @walkers.setter
    def walkers(self, walkers):
        self._walkers = walkers

    @property
    def nburn(self):
        """" An array of the ensemble walkers """
        if self._nburn is not None:
            return self._nburn
        else:
            raise ValueError("Result object has no stored nburn")

    @nburn.setter
    def nburn(self, nburn):
        self._nburn = nburn

    @property
    def posterior(self):
        """ A pandas data frame of the posterior """
        if self._posterior is not None:
            return self._posterior
        else:
            raise ValueError("Result object has no stored posterior")

    @posterior.setter
    def posterior(self, posterior):
        self._posterior = posterior

331 332 333 334 335 336 337 338 339 340 341
    @property
    def version(self):
        return self._version

    @version.setter
    def version(self, version):
        if version is None:
            self._version = 'bilby={}'.format(utils.get_version_information())
        else:
            self._version = version

342
    def _get_save_data_dictionary(self):
343
        # This list defines all the parameters saved in the result object
344 345 346 347 348
        save_attrs = [
            'label', 'outdir', 'sampler', 'log_evidence', 'log_evidence_err',
            'log_noise_evidence', 'log_bayes_factor', 'priors', 'posterior',
            'injection_parameters', 'meta_data', 'search_parameter_keys',
            'fixed_parameter_keys', 'sampling_time', 'sampler_kwargs',
349 350
            'log_likelihood_evaluations', 'log_prior_evaluations', 'samples',
            'nested_samples', 'walkers', 'nburn', 'parameter_labels',
351
            'parameter_labels_with_unit', 'version']
352 353 354 355 356 357 358 359
        dictionary = OrderedDict()
        for attr in save_attrs:
            try:
                dictionary[attr] = getattr(self, attr)
            except ValueError as e:
                logger.debug("Unable to save {}, message: {}".format(attr, e))
                pass
        return dictionary
360

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
361
    def save_to_file(self, overwrite=False, outdir=None, extension='json'):
Colm Talbot's avatar
Colm Talbot committed
362
        """
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
363
        Writes the Result to a json or deepdish h5 file
Colm Talbot's avatar
Colm Talbot committed
364 365 366 367 368 369

        Parameters
        ----------
        overwrite: bool, optional
            Whether or not to overwrite an existing result file.
            default=False
370 371
        outdir: str, optional
            Path to the outdir. Default is the one stored in the result object.
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
372 373
        extension: str, optional
            Whether to save as hdf5 instead of json
Colm Talbot's avatar
Colm Talbot committed
374
        """
375
        outdir = self._safe_outdir_creation(outdir, self.save_to_file)
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
376
        file_name = result_file_name(outdir, self.label, extension)
377

378
        if os.path.isfile(file_name):
Colm Talbot's avatar
Colm Talbot committed
379 380 381 382 383 384 385 386
            if overwrite:
                logger.debug('Removing existing file {}'.format(file_name))
                os.remove(file_name)
            else:
                logger.debug(
                    'Renaming existing file {} to {}.old'.format(file_name,
                                                                 file_name))
                os.rename(file_name, file_name + '.old')
387

Gregory Ashton's avatar
Gregory Ashton committed
388
        logger.debug("Saving result to {}".format(file_name))
389 390

        # Convert the prior to a string representation for saving on disk
391
        dictionary = self._get_save_data_dictionary()
392 393 394
        if dictionary.get('priors', False):
            dictionary['priors'] = {key: str(self.priors[key]) for key in self.priors}

395 396 397 398 399
        # Convert callable sampler_kwargs to strings to avoid pickling issues
        if dictionary.get('sampler_kwargs', None) is not None:
            for key in dictionary['sampler_kwargs']:
                if hasattr(dictionary['sampler_kwargs'][key], '__call__'):
                    dictionary['sampler_kwargs'][key] = str(dictionary['sampler_kwargs'])
400

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
401 402 403 404 405 406 407 408
        # Convert to json saveable format
        if extension != 'hdf5':
            for key in dictionary.keys():
                if isinstance(dictionary[key], pd.core.frame.DataFrame):
                    dictionary[key] = dictionary[key].to_dict()
                elif isinstance(dictionary[key], np.ndarray):
                    dictionary[key] = dictionary[key].tolist()

Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
409
        try:
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
410 411 412 413
            if extension == 'hdf5':
                deepdish.io.save(file_name, dictionary)
            else:
                json.dump(dictionary, open(file_name, 'w'), indent=2)
Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
414
        except Exception as e:
Gregory Ashton's avatar
Gregory Ashton committed
415
            logger.error("\n\n Saving the data has failed with the "
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
416
                         "following message:\n {} \n\n".format(e))
Gregory Ashton's avatar
Gregory Ashton committed
417

418
    def save_posterior_samples(self, outdir=None):
419
        """Saves posterior samples to a file"""
420 421
        outdir = self._safe_outdir_creation(outdir, self.save_posterior_samples)
        filename = '{}/{}_posterior_samples.txt'.format(outdir, self.label)
422 423
        self.posterior.to_csv(filename, index=False, header=True)

Gregory Ashton's avatar
Gregory Ashton committed
424
    def get_latex_labels_from_parameter_keys(self, keys):
425 426 427 428 429 430 431 432 433 434 435 436 437
        """ Returns a list of latex_labels corresponding to the given keys

        Parameters
        ----------
        keys: list
            List of strings corresponding to the desired latex_labels

        Returns
        -------
        list: The desired latex_labels

        """
        latex_labels = []
Gregory Ashton's avatar
Gregory Ashton committed
438 439 440
        for k in keys:
            if k in self.search_parameter_keys:
                idx = self.search_parameter_keys.index(k)
441
                latex_labels.append(self.parameter_labels_with_unit[idx])
Gregory Ashton's avatar
Gregory Ashton committed
442
            elif k in self.parameter_labels:
443
                latex_labels.append(k)
Gregory Ashton's avatar
Gregory Ashton committed
444
            else:
Colm Talbot's avatar
Colm Talbot committed
445
                logger.debug(
446 447
                    'key {} not a parameter label or latex label'.format(k))
                latex_labels.append(' '.join(k.split('_')))
448
        return latex_labels
Gregory Ashton's avatar
Gregory Ashton committed
449

Gregory Ashton's avatar
Gregory Ashton committed
450 451 452 453 454 455 456 457 458
    @property
    def covariance_matrix(self):
        """ The covariance matrix of the samples the posterior """
        samples = self.posterior[self.search_parameter_keys].values
        return np.cov(samples.T)

    @property
    def posterior_volume(self):
        """ The posterior volume """
Gregory Ashton's avatar
Gregory Ashton committed
459 460 461
        if self.covariance_matrix.ndim == 0:
            return np.sqrt(self.covariance_matrix)
        else:
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
462 463
            return 1 / np.sqrt(np.abs(np.linalg.det(
                1 / self.covariance_matrix)))
Gregory Ashton's avatar
Gregory Ashton committed
464

465 466
    @staticmethod
    def prior_volume(priors):
Gregory Ashton's avatar
Gregory Ashton committed
467 468 469 470 471 472
        """ The prior volume, given a set of priors """
        return np.prod([priors[k].maximum - priors[k].minimum for k in priors])

    def occam_factor(self, priors):
        """ The Occam factor,

473 474 475
        See Chapter 28, `Mackay "Information Theory, Inference, and Learning
        Algorithms" <http://www.inference.org.uk/itprnn/book.html>`_ Cambridge
        University Press (2003).
Gregory Ashton's avatar
Gregory Ashton committed
476 477 478 479

        """
        return self.posterior_volume / self.prior_volume(priors)

480
    def get_one_dimensional_median_and_error_bar(self, key, fmt='.2f',
481
                                                 quantiles=(0.16, 0.84)):
482 483 484 485 486 487 488 489
        """ Calculate the median and error bar for a given key

        Parameters
        ----------
        key: str
            The parameter key for which to calculate the median and error bar
        fmt: str, ('.2f')
            A format string
490 491
        quantiles: list, tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
492 493 494 495
            the errors bars for.

        Returns
        -------
496 497
        summary: namedtuple
            An object with attributes, median, lower, upper and string
498 499

        """
500 501
        summary = namedtuple('summary', ['median', 'lower', 'upper', 'string'])

502 503 504 505 506
        if len(quantiles) != 2:
            raise ValueError("quantiles must be of length 2")

        quants_to_compute = np.array([quantiles[0], 0.5, quantiles[1]])
        quants = np.percentile(self.posterior[key], quants_to_compute * 100)
507 508 509
        summary.median = quants[1]
        summary.plus = quants[2] - summary.median
        summary.minus = summary.median - quants[0]
510 511

        fmt = "{{0:{0}}}".format(fmt).format
512 513 514 515 516
        string_template = r"${{{0}}}_{{-{1}}}^{{+{2}}}$"
        summary.string = string_template.format(
            fmt(summary.median), fmt(summary.minus), fmt(summary.plus))
        return summary

Colm Talbot's avatar
Colm Talbot committed
517 518 519
    def plot_single_density(self, key, prior=None, cumulative=False,
                            title=None, truth=None, save=True,
                            file_base_name=None, bins=50, label_fontsize=16,
520 521
                            title_fontsize=16, quantiles=(0.16, 0.84), dpi=300):
        """ Plot a 1D marginal density, either probability or cumulative.
Colm Talbot's avatar
Colm Talbot committed
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549

        Parameters
        ----------
        key: str
            Name of the parameter to plot
        prior: {bool (True), bilby.core.prior.Prior}
            If true, add the stored prior probability density function to the
            one-dimensional marginal distributions. If instead a Prior
            is provided, this will be plotted.
        cumulative: bool
            If true plot the CDF
        title: bool
            If true, add 1D title of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        truth: {bool, float}
            If true, plot self.injection_parameters[parameter].
            If float, plot this value.
        save: bool:
            If true, save plot to disk.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
            The fontsizes for the labels and titles
550 551
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
Colm Talbot's avatar
Colm Talbot committed
552 553 554 555 556 557 558 559 560 561 562 563
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot

        Returns
        -------
        figure: matplotlib.pyplot.figure
            A matplotlib figure object
        """
        logger.info('Plotting {} marginal distribution'.format(key))
        label = self.get_latex_labels_from_parameter_keys([key])[0]
        fig, ax = plt.subplots()
564 565 566 567 568 569 570 571
        try:
            ax.hist(self.posterior[key].values, bins=bins, density=True,
                    histtype='step', cumulative=cumulative)
        except ValueError as e:
            logger.info(
                'Failed to generate 1d plot for {}, error message: {}'
                .format(key, e))
            return
Colm Talbot's avatar
Colm Talbot committed
572 573 574 575 576 577 578 579 580 581 582 583 584
        ax.set_xlabel(label, fontsize=label_fontsize)
        if truth is not None:
            ax.axvline(truth, ls='-', color='orange')

        summary = self.get_one_dimensional_median_and_error_bar(
            key, quantiles=quantiles)
        ax.axvline(summary.median - summary.minus, ls='--', color='C0')
        ax.axvline(summary.median + summary.plus, ls='--', color='C0')
        if title:
            ax.set_title(summary.string, fontsize=title_fontsize)

        if isinstance(prior, Prior):
            theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
585
            ax.plot(theta, prior.prob(theta), color='C2')
Colm Talbot's avatar
Colm Talbot committed
586 587 588 589 590 591 592 593

        if save:
            fig.tight_layout()
            if cumulative:
                file_name = file_base_name + key + '_cdf'
            else:
                file_name = file_base_name + key + '_pdf'
            fig.savefig(file_name, dpi=dpi)
594 595 596
            plt.close(fig)
        else:
            return fig
Colm Talbot's avatar
Colm Talbot committed
597

598 599
    def plot_marginals(self, parameters=None, priors=None, titles=True,
                       file_base_name=None, bins=50, label_fontsize=16,
600 601
                       title_fontsize=16, quantiles=(0.16, 0.84), dpi=300,
                       outdir=None):
602 603 604 605 606 607 608
        """ Plot 1D marginal distributions

        Parameters
        ----------
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
609
        priors: {bool (False), bilby.core.prior.PriorDict}
610
            If true, add the stored prior probability density functions to the
611
            one-dimensional marginal distributions. If instead a PriorDict
612 613 614 615 616 617 618 619 620 621 622 623
            is provided, this will be plotted.
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
624 625 626
            The font sizes for the labels and titles
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
627 628 629
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot
630 631
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
632 633 634 635 636 637

        Returns
        -------
        """
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
Colm Talbot's avatar
Colm Talbot committed
638
            truths = parameters
639
        elif parameters is None:
Colm Talbot's avatar
Colm Talbot committed
640 641 642 643 644
            plot_parameter_keys = self.posterior.keys()
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
645 646
        else:
            plot_parameter_keys = list(parameters)
Colm Talbot's avatar
Colm Talbot committed
647 648 649 650
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
651 652

        if file_base_name is None:
653 654
            outdir = self._safe_outdir_creation(outdir, self.plot_marginals)
            file_base_name = '{}/{}_1d/'.format(outdir, self.label)
Colm Talbot's avatar
Colm Talbot committed
655
            check_directory_exists_and_if_not_mkdir(file_base_name)
656 657

        if priors is True:
Colm Talbot's avatar
Colm Talbot committed
658 659
            priors = getattr(self, 'priors', dict())
        elif isinstance(priors, dict):
660
            pass
Colm Talbot's avatar
Colm Talbot committed
661 662
        elif priors in [False, None]:
            priors = dict()
663 664 665 666
        else:
            raise ValueError('Input priors={} not understood'.format(priors))

        for i, key in enumerate(plot_parameter_keys):
Colm Talbot's avatar
Colm Talbot committed
667 668
            if not isinstance(self.posterior[key].values[0], float):
                continue
Colm Talbot's avatar
Colm Talbot committed
669 670
            prior = priors.get(key, None)
            truth = truths.get(key, None)
Colm Talbot's avatar
Colm Talbot committed
671
            for cumulative in [False, True]:
672
                self.plot_single_density(
Colm Talbot's avatar
Colm Talbot committed
673 674
                    key, prior=prior, cumulative=cumulative, title=titles,
                    truth=truth, save=True, file_base_name=file_base_name,
Colm Talbot's avatar
Colm Talbot committed
675 676
                    bins=bins, label_fontsize=label_fontsize, dpi=dpi,
                    title_fontsize=title_fontsize, quantiles=quantiles)
677

678 679 680
    def plot_corner(self, parameters=None, priors=None, titles=True, save=True,
                    filename=None, dpi=300, **kwargs):
        """ Plot a corner-plot
Gregory Ashton's avatar
Gregory Ashton committed
681 682 683

        Parameters
        ----------
684 685 686
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
687
        priors: {bool (False), bilby.core.prior.PriorDict}
688
            If true, add the stored prior probability density functions to the
689
            one-dimensional marginal distributions. If instead a PriorDict
690
            is provided, this will be plotted.
691 692 693 694 695
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
696 697 698 699 700 701
        save: bool, optional
            If true, save the image using the given label and outdir
        filename: str, optional
            If given, overwrite the default filename
        dpi: int, optional
            Dots per inch resolution of the plot
702 703 704
        **kwargs:
            Other keyword arguments are passed to `corner.corner`. We set some
            defaults to improve the basic look and feel, but these can all be
705 706
            overridden. Also optional an 'outdir' argument which can be used
            to override the outdir set by the absolute path of the result object.
Gregory Ashton's avatar
Gregory Ashton committed
707

708 709 710 711 712 713
        Notes
        -----
            The generation of the corner plot themselves is done by the corner
            python module, see https://corner.readthedocs.io for more
            information.

Gregory Ashton's avatar
Gregory Ashton committed
714 715 716 717
        Returns
        -------
        fig:
            A matplotlib figure instance
718

Gregory Ashton's avatar
Gregory Ashton committed
719
        """
720 721

        # If in testing mode, not corner plots are generated
722 723
        if utils.command_line_args.test:
            return
Gregory Ashton's avatar
Gregory Ashton committed
724

Colm Talbot's avatar
Colm Talbot committed
725
        # bilby default corner kwargs. Overwritten by anything passed to kwargs
726 727 728
        defaults_kwargs = dict(
            bins=50, smooth=0.9, label_kwargs=dict(fontsize=16),
            title_kwargs=dict(fontsize=16), color='#0072C1',
729
            truth_color='tab:orange', quantiles=[0.16, 0.84],
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
730
            levels=(1 - np.exp(-0.5), 1 - np.exp(-2), 1 - np.exp(-9 / 2.)),
731
            plot_density=False, plot_datapoints=True, fill_contours=True,
732 733 734 735 736 737
            max_n_ticks=3)

        if LooseVersion(matplotlib.__version__) < "2.1":
            defaults_kwargs['hist_kwargs'] = dict(normed=True)
        else:
            defaults_kwargs['hist_kwargs'] = dict(density=True)
738

739 740 741 742
        if 'lionize' in kwargs and kwargs['lionize'] is True:
            defaults_kwargs['truth_color'] = 'tab:blue'
            defaults_kwargs['color'] = '#FF8C00'

743 744 745
        defaults_kwargs.update(kwargs)
        kwargs = defaults_kwargs

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
        # Handle if truths was passed in
        if 'truth' in kwargs:
            kwargs['truths'] = kwargs.pop('truth')
        if kwargs.get('truths'):
            truths = kwargs.get('truths')
            if isinstance(parameters, list) and isinstance(truths, list):
                if len(parameters) != len(truths):
                    raise ValueError(
                        "Length of parameters and truths don't match")
            elif isinstance(truths, dict) and parameters is None:
                parameters = kwargs.pop('truths')
            else:
                raise ValueError(
                    "Combination of parameters and truths not understood")

Gregory Ashton's avatar
Gregory Ashton committed
761 762 763 764 765 766 767 768
        # If injection parameters where stored, use these as parameter values
        # but do not overwrite input parameters (or truths)
        cond1 = getattr(self, 'injection_parameters', None) is not None
        cond2 = parameters is None
        if cond1 and cond2:
            parameters = {key: self.injection_parameters[key] for key in
                          self.search_parameter_keys}

769 770 771 772 773 774 775 776 777
        # If parameters is a dictionary, use the keys to determine which
        # parameters to plot and the values as truths.
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
            kwargs['truths'] = list(parameters.values())
        elif parameters is None:
            plot_parameter_keys = self.search_parameter_keys
        else:
            plot_parameter_keys = list(parameters)
778

779
        # Get latex formatted strings for the plot labels
780 781
        kwargs['labels'] = kwargs.get(
            'labels', self.get_latex_labels_from_parameter_keys(
782
                plot_parameter_keys))
783

784 785 786 787
        # Unless already set, set the range to include all samples
        # This prevents ValueErrors being raised for parameters with no range
        kwargs['range'] = kwargs.get('range', [1] * len(plot_parameter_keys))

788 789
        # Create the data array to plot and pass everything to corner
        xs = self.posterior[plot_parameter_keys].values
790
        fig = corner.corner(xs, **kwargs)
791
        axes = fig.get_axes()
792 793 794

        #  Add the titles
        if titles and kwargs.get('quantiles', None) is not None:
795 796
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
797 798
                if ax.title.get_text() == '':
                    ax.set_title(self.get_one_dimensional_median_and_error_bar(
799
                        par, quantiles=kwargs['quantiles']).string,
800 801 802
                        **kwargs['title_kwargs'])

        #  Add priors to the 1D plots
803 804 805
        if priors is True:
            priors = getattr(self, 'priors', False)
        if isinstance(priors, dict):
806 807
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
808 809
                theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
                ax.plot(theta, priors[par].prob(theta), color='C2')
810 811 812 813
        elif priors in [False, None]:
            pass
        else:
            raise ValueError('Input priors={} not understood'.format(priors))
814

815
        if save:
816
            if filename is None:
817 818
                outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_corner)
                filename = '{}/{}_corner.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
819
            logger.debug('Saving corner plot to {}'.format(filename))
820
            fig.savefig(filename, dpi=dpi)
821
            plt.close(fig)
822

823
        return fig
824

Gregory Ashton's avatar
Gregory Ashton committed
825
    def plot_walkers(self, **kwargs):
MoritzThomasHuebner's avatar
A typo  
MoritzThomasHuebner committed
826
        """ Method to plot the trace of the walkers in an ensemble MCMC plot """
827
        if hasattr(self, 'walkers') is False:
Gregory Ashton's avatar
Gregory Ashton committed
828
            logger.warning("Cannot plot_walkers as no walkers are saved")
829
            return
830 831 832

        if utils.command_line_args.test:
            return
833 834 835

        nwalkers, nsteps, ndim = self.walkers.shape
        idxs = np.arange(nsteps)
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
836
        fig, axes = plt.subplots(nrows=ndim, figsize=(6, 3 * ndim))
837 838
        walkers = self.walkers[:, :, :]
        for i, ax in enumerate(axes):
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
839
            ax.plot(idxs[:self.nburn + 1], walkers[:, :self.nburn + 1, i].T,
840 841 842 843 844 845 846 847 848
                    lw=0.1, color='r')
            ax.set_ylabel(self.parameter_labels[i])

        for i, ax in enumerate(axes):
            ax.plot(idxs[self.nburn:], walkers[:, self.nburn:, i].T, lw=0.1,
                    color='k')
            ax.set_ylabel(self.parameter_labels[i])

        fig.tight_layout()
849 850
        outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_walkers)
        filename = '{}/{}_walkers.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
851
        logger.debug('Saving walkers plot to {}'.format('filename'))
852
        fig.savefig(filename)
853
        plt.close(fig)
854

855 856 857
    def plot_with_data(self, model, x, y, ndraws=1000, npoints=1000,
                       xlabel=None, ylabel=None, data_label='data',
                       data_fmt='o', draws_label=None, filename=None,
858
                       maxl_label='max likelihood', dpi=300, outdir=None):
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
        """ Generate a figure showing the data and fits to the data

        Parameters
        ----------
        model: function
            A python function which when called as `model(x, **kwargs)` returns
            the model prediction (here `kwargs` is a dictionary of key-value
            pairs of the model parameters.
        x, y: np.ndarray
            The independent and dependent data to plot
        ndraws: int
            Number of draws from the posterior to plot
        npoints: int
            Number of points used to plot the smoothed fit to the data
        xlabel, ylabel: str
            Labels for the axes
        data_label, draws_label, maxl_label: str
            Label for the data, draws, and max likelihood legend
        data_fmt: str
            Matpltolib fmt code, defaults to `'-o'`
        dpi: int
            Passed to `plt.savefig`
        filename: str
            If given, the filename to use. Otherwise, the filename is generated
            from the outdir and label attributes.
884 885
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
886 887

        """
888 889 890 891 892 893

        # Determine model_posterior, the subset of the full posterior which
        # should be passed into the model
        model_keys = infer_parameters_from_function(model)
        model_posterior = self.posterior[model_keys]

894 895 896 897
        xsmooth = np.linspace(np.min(x), np.max(x), npoints)
        fig, ax = plt.subplots()
        logger.info('Plotting {} draws'.format(ndraws))
        for _ in range(ndraws):
898
            s = model_posterior.sample().to_dict('records')[0]
899 900
            ax.plot(xsmooth, model(xsmooth, **s), alpha=0.25, lw=0.1, color='r',
                    label=draws_label)
901 902 903
        try:
            if all(~np.isnan(self.posterior.log_likelihood)):
                logger.info('Plotting maximum likelihood')
Colm Talbot's avatar
Colm Talbot committed
904
                s = model_posterior.iloc[self.posterior.log_likelihood.idxmax()]
905 906
                ax.plot(xsmooth, model(xsmooth, **s), lw=1, color='k',
                        label=maxl_label)
907
        except (AttributeError, TypeError):
908 909
            logger.debug(
                "No log likelihood values stored, unable to plot max")
910 911 912 913 914 915 916 917 918 919 920 921 922 923

        ax.plot(x, y, data_fmt, markersize=2, label=data_label)

        if xlabel is not None:
            ax.set_xlabel(xlabel)
        if ylabel is not None:
            ax.set_ylabel(ylabel)

        handles, labels = plt.gca().get_legend_handles_labels()
        by_label = OrderedDict(zip(labels, handles))
        plt.legend(by_label.values(), by_label.keys())
        ax.legend(numpoints=3)
        fig.tight_layout()
        if filename is None:
924 925
            outdir = self._safe_outdir_creation(outdir, self.plot_with_data)
            filename = '{}/{}_plot_with_data'.format(outdir, self.label)
926
        fig.savefig(filename, dpi=dpi)
927
        plt.close(fig)
928

929 930
    def samples_to_posterior(self, likelihood=None, priors=None,
                             conversion_function=None):
931
        """
932 933 934
        Convert array of samples to posterior (a Pandas data frame)

        Also applies the conversion function to any stored posterior
935

936 937
        Parameters
        ----------
Colm Talbot's avatar
Colm Talbot committed
938
        likelihood: bilby.likelihood.GravitationalWaveTransient, optional
939 940
            GravitationalWaveTransient likelihood used for sampling.
        priors: dict, optional
941
            Dictionary of prior object, used to fill in delta function priors.
942
        conversion_function: function, optional
943 944
            Function which adds in extra parameters to the data frame,
            should take the data_frame, likelihood and prior as arguments.
945
        """
946 947 948
        try:
            data_frame = self.posterior
        except ValueError:
949 950
            data_frame = pd.DataFrame(
                self.samples, columns=self.search_parameter_keys)
951
            for key in priors:
952
                if isinstance(priors[key], DeltaFunction):
953
                    data_frame[key] = priors[key].peak
954 955 956 957
                elif isinstance(priors[key], float):
                    data_frame[key] = priors[key]
            data_frame['log_likelihood'] = getattr(
                self, 'log_likelihood_evaluations', np.nan)
958 959 960 961 962
            if self.log_prior_evaluations is None:
                data_frame['log_prior'] = self.priors.ln_prob(
                    data_frame[self.search_parameter_keys], axis=0)
            else:
                data_frame['log_prior'] = self.log_prior_evaluations
963
        if conversion_function is not None:
964
            data_frame = conversion_function(data_frame, likelihood, priors)
965
        self.posterior = data_frame
Gregory Ashton's avatar
Gregory Ashton committed
966

Colm Talbot's avatar
Colm Talbot committed
967
    def calculate_prior_values(self, priors):
968 969 970 971 972
        """
        Evaluate prior probability for each parameter for each sample.

        Parameters
        ----------
973
        priors: dict, PriorDict
974 975 976 977 978 979 980 981 982 983 984
            Prior distributions
        """
        self.prior_values = pd.DataFrame()
        for key in priors:
            if key in self.posterior.keys():
                if isinstance(priors[key], DeltaFunction):
                    continue
                else:
                    self.prior_values[key]\
                        = priors[key].prob(self.posterior[key].values)

Colm Talbot's avatar
Colm Talbot committed
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    def get_all_injection_credible_levels(self):
        """
        Get credible levels for all parameters in self.injection_parameters

        Returns
        -------
        credible_levels: dict
            The credible levels at which the injected parameters are found.
        """
        if self.injection_parameters is None:
            raise(TypeError, "Result object has no 'injection_parameters'. "
                             "Cannot copmute credible levels.")
        credible_levels = {key: self.get_injection_credible_level(key)
                           for key in self.search_parameter_keys
                           if isinstance(self.injection_parameters[key], float)}
        return credible_levels

    def get_injection_credible_level(self, parameter):
        """
        Get the credible level of the injected parameter

        Calculated as CDF(injection value)

        Parameters
        ----------
        parameter: str
            Parameter to get credible level for
        Returns
        -------
        float: credible level
        """
        if self.injection_parameters is None:
            raise(TypeError, "Result object has no 'injection_parameters'. "
                             "Cannot copmute credible levels.")
        if parameter in self.posterior and\
                parameter in self.injection_parameters:
            credible_level =\
                sum(self.posterior[parameter].values <
                    self.injection_parameters[parameter]) / len(self.posterior)
            return credible_level
        else:
            return np.nan

1028
    def _check_attribute_match_to_other_object(self, name, other_object):
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
        """ Check attribute name exists in other_object and is the same

        Parameters
        ----------
        name: str
            Name of the attribute in this instance
        other_object: object
            Other object with attributes to compare with

        Returns
        -------
        bool: True if attribute name matches with an attribute of other_object, False otherwise

        """
1043 1044 1045 1046 1047 1048 1049 1050
        a = getattr(self, name, False)
        b = getattr(other_object, name, False)
        logger.debug('Checking {} value: {}=={}'.format(name, a, b))
        if (a is not False) and (b is not False):
            type_a = type(a)
            type_b = type(b)
            if type_a == type_b:
                if type_a in [str, float, int, dict, list]:
Gregory Ashton's avatar
Gregory Ashton committed
1051
                    try:
1052
                        return a == b
Gregory Ashton's avatar
Gregory Ashton committed
1053 1054
                    except ValueError:
                        return False
1055 1056
                elif type_a in [np.ndarray]:
                    return np.all(a == b)
1057
        return False
1058

1059 1060 1061 1062 1063 1064
    @property
    def kde(self):
        """ Kernel density estimate built from the stored posterior

        Uses `scipy.stats.gaussian_kde` to generate the kernel density
        """