result.py 39.4 KB
Newer Older
Colm Talbot's avatar
Colm Talbot committed
1 2
from __future__ import division

3
import os
4
from distutils.version import LooseVersion
5
import numpy as np
6
import deepdish
7
import pandas as pd
8
import corner
9
import matplotlib
10
import matplotlib.pyplot as plt
11
from collections import OrderedDict, namedtuple
12

13
from . import utils
Colm Talbot's avatar
Colm Talbot committed
14 15 16
from .utils import (logger, infer_parameters_from_function,
                    check_directory_exists_and_if_not_mkdir)
from .prior import Prior, PriorDict, DeltaFunction
17

18

19
def result_file_name(outdir, label):
20 21 22 23 24 25 26 27 28 29 30 31 32
    """ Returns the standard filename used for a result file

    Parameters
    ----------
    outdir: str
        Name of the output directory
    label: str
        Naming scheme of the output file

    Returns
    -------
    str: File name of the output file
    """
33 34 35
    return '{}/{}_result.h5'.format(outdir, label)


36
def read_in_result(filename=None, outdir=None, label=None):
Gregory Ashton's avatar
Gregory Ashton committed
37 38 39 40 41 42
    """ Read in a saved .h5 data file

    Parameters
    ----------
    filename: str
        If given, try to load from this filename
43 44
    outdir, label: str
        If given, use the default naming convention for saved results file
Gregory Ashton's avatar
Gregory Ashton committed
45

46 47
    Returns
    -------
Colm Talbot's avatar
Colm Talbot committed
48
    result: bilby.core.result.Result
49

Moritz Huebner's avatar
Moritz Huebner committed
50
    Raises
51 52
    -------
    ValueError: If no filename is given and either outdir or label is None
Colm Talbot's avatar
Colm Talbot committed
53
                If no bilby.core.result.Result is found in the path
Gregory Ashton's avatar
Gregory Ashton committed
54 55 56

    """
    if filename is None:
57 58 59 60
        if (outdir is None) and (label is None):
            raise ValueError("No information given to load file")
        else:
            filename = result_file_name(outdir, label)
61
    if os.path.isfile(filename):
62
        return Result(**deepdish.io.load(filename))
63
    else:
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        raise IOError("No result '{}' found".format(filename))


class Result(object):
    def __init__(self, label='no_label', outdir='.', sampler=None,
                 search_parameter_keys=None, fixed_parameter_keys=None,
                 priors=None, sampler_kwargs=None, injection_parameters=None,
                 meta_data=None, posterior=None, samples=None,
                 nested_samples=None, log_evidence=np.nan,
                 log_evidence_err=np.nan, log_noise_evidence=np.nan,
                 log_bayes_factor=np.nan, log_likelihood_evaluations=None,
                 sampling_time=None, nburn=None, walkers=None,
                 max_autocorrelation_time=None, parameter_labels=None,
                 parameter_labels_with_unit=None):
        """ A class to store the results of the sampling run
79 80 81

        Parameters
        ----------
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        label, outdir, sampler: str
            The label, output directory, and sampler used
        search_parameter_keys, fixed_parameter_keys: list
            Lists of the search and fixed parameter keys. Elemenents of the
            list should be of type `str` and matchs the keys of the `prior`
        priors: dict, bilby.core.prior.PriorDict
            A dictionary of the priors used in the run
        sampler_kwargs: dict
            Key word arguments passed to the sampler
        injection_parameters: dict
            A dictionary of the injection parameters
        meta_data: dict
            A dictionary of meta data to store about the run
        posterior: pandas.DataFrame
            A pandas data frame of the posterior
        samples, nested_samples: array_like
            An array of the output posterior samples and the unweighted samples
        log_evidence, log_evidence_err, log_noise_evidence, log_bayes_factor: float
            Natural log evidences
        log_likelihood_evaluations: array_like
            The evaluations of the likelihood for each sample point
        sampling_time: float
            The time taken to complete the sampling
        nburn: int
            The number of burn-in steps discarded for MCMC samplers
        walkers: array_like
            The samplers taken by a ensemble MCMC samplers
        max_autocorrelation_time: float
            The estimated maximum autocorrelation time for MCMC samplers
        parameter_labels, parameter_labels_with_unit: list
            Lists of the latex-formatted parameter labels

        Note:
            All sampling output parameters, e.g. the samples themselves are
            typically not given at initialisation, but set at a later stage.
117 118

        """
119

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
        self.label = label
        self.outdir = os.path.abspath(outdir)
        self.sampler = sampler
        self.search_parameter_keys = search_parameter_keys
        self.fixed_parameter_keys = fixed_parameter_keys
        self.parameter_labels = parameter_labels
        self.parameter_labels_with_unit = parameter_labels_with_unit
        self.priors = priors
        self.sampler_kwargs = sampler_kwargs
        self.meta_data = meta_data
        self.injection_parameters = injection_parameters
        self.posterior = posterior
        self.samples = samples
        self.nested_samples = nested_samples
        self.walkers = walkers
        self.nburn = nburn
        self.log_evidence = log_evidence
        self.log_evidence_err = log_evidence_err
        self.log_noise_evidence = log_noise_evidence
        self.log_bayes_factor = log_bayes_factor
        self.log_likelihood_evaluations = log_likelihood_evaluations
        self.sampling_time = sampling_time
Colm Talbot's avatar
Colm Talbot committed
142
        self.max_autocorrelation_time = max_autocorrelation_time
143 144

    def __str__(self):
145
        """Print a summary """
146 147
        if getattr(self, 'posterior', None) is not None:
            if getattr(self, 'log_noise_evidence', None) is not None:
148 149 150 151
                return ("nsamples: {:d}\n"
                        "log_noise_evidence: {:6.3f}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
                        "log_bayes_factor: {:6.3f} +/- {:6.3f}\n"
152
                        .format(len(self.posterior), self.log_noise_evidence, self.log_evidence,
153 154 155 156 157
                                self.log_evidence_err, self.log_bayes_factor,
                                self.log_evidence_err))
            else:
                return ("nsamples: {:d}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
158
                        .format(len(self.posterior), self.log_evidence, self.log_evidence_err))
159 160
        else:
            return ''
161

162 163 164 165 166 167
    @property
    def priors(self):
        if self._priors is not None:
            return self._priors
        else:
            raise ValueError('Result object has no priors')
168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    @priors.setter
    def priors(self, priors):
        if isinstance(priors, dict):
            self._priors = PriorDict(priors)
            if self.parameter_labels is None:
                self.parameter_labels = [self.priors[k].latex_label for k in
                                         self.search_parameter_keys]
            if self.parameter_labels_with_unit is None:
                self.parameter_labels_with_unit = [
                    self.priors[k].latex_label_with_unit for k in
                    self.search_parameter_keys]

        elif priors is None:
            self._priors = priors
            self.parameter_labels = self.search_parameter_keys
            self.parameter_labels_with_unit = self.search_parameter_keys
        else:
            raise ValueError("Input priors not understood")
187

188 189 190 191 192
    @property
    def samples(self):
        """ An array of samples """
        if self._samples is not None:
            return self._samples
193
        else:
194
            raise ValueError("Result object has no stored samples")
195

196 197 198
    @samples.setter
    def samples(self, samples):
        self._samples = samples
199

200 201 202 203 204 205 206
    @property
    def nested_samples(self):
        """" An array of unweighted samples """
        if self._nested_samples is not None:
            return self._nested_samples
        else:
            raise ValueError("Result object has no stored nested samples")
207

208 209 210
    @nested_samples.setter
    def nested_samples(self, nested_samples):
        self._nested_samples = nested_samples
211

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    @property
    def walkers(self):
        """" An array of the ensemble walkers """
        if self._walkers is not None:
            return self._walkers
        else:
            raise ValueError("Result object has no stored walkers")

    @walkers.setter
    def walkers(self, walkers):
        self._walkers = walkers

    @property
    def nburn(self):
        """" An array of the ensemble walkers """
        if self._nburn is not None:
            return self._nburn
        else:
            raise ValueError("Result object has no stored nburn")

    @nburn.setter
    def nburn(self, nburn):
        self._nburn = nburn

    @property
    def posterior(self):
        """ A pandas data frame of the posterior """
        if self._posterior is not None:
            return self._posterior
        else:
            raise ValueError("Result object has no stored posterior")

    @posterior.setter
    def posterior(self, posterior):
        self._posterior = posterior

    def _get_save_data_dictionary(self):
        save_attrs = [
            'label', 'outdir', 'sampler', 'log_evidence', 'log_evidence_err',
            'log_noise_evidence', 'log_bayes_factor', 'priors', 'posterior',
            'injection_parameters', 'meta_data', 'search_parameter_keys',
            'fixed_parameter_keys', 'sampling_time', 'sampler_kwargs',
            'log_likelihood_evaluations', 'samples', 'nested_samples',
            'walkers', 'nburn', 'parameter_labels',
            'parameter_labels_with_unit']
        dictionary = OrderedDict()
        for attr in save_attrs:
            try:
                dictionary[attr] = getattr(self, attr)
            except ValueError as e:
                logger.debug("Unable to save {}, message: {}".format(attr, e))
                pass
        return dictionary
265

Colm Talbot's avatar
Colm Talbot committed
266 267 268 269 270 271 272 273 274 275
    def save_to_file(self, overwrite=False):
        """
        Writes the Result to a deepdish h5 file

        Parameters
        ----------
        overwrite: bool, optional
            Whether or not to overwrite an existing result file.
            default=False
        """
276
        file_name = result_file_name(self.outdir, self.label)
277
        utils.check_directory_exists_and_if_not_mkdir(self.outdir)
278
        if os.path.isfile(file_name):
Colm Talbot's avatar
Colm Talbot committed
279 280 281 282 283 284 285 286
            if overwrite:
                logger.debug('Removing existing file {}'.format(file_name))
                os.remove(file_name)
            else:
                logger.debug(
                    'Renaming existing file {} to {}.old'.format(file_name,
                                                                 file_name))
                os.rename(file_name, file_name + '.old')
287

Gregory Ashton's avatar
Gregory Ashton committed
288
        logger.debug("Saving result to {}".format(file_name))
289 290

        # Convert the prior to a string representation for saving on disk
291
        dictionary = self._get_save_data_dictionary()
292 293 294
        if dictionary.get('priors', False):
            dictionary['priors'] = {key: str(self.priors[key]) for key in self.priors}

295 296 297 298 299
        # Convert callable sampler_kwargs to strings to avoid pickling issues
        if dictionary.get('sampler_kwargs', None) is not None:
            for key in dictionary['sampler_kwargs']:
                if hasattr(dictionary['sampler_kwargs'][key], '__call__'):
                    dictionary['sampler_kwargs'][key] = str(dictionary['sampler_kwargs'])
300

Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
301
        try:
302
            deepdish.io.save(file_name, dictionary)
Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
303
        except Exception as e:
Gregory Ashton's avatar
Gregory Ashton committed
304
            logger.error("\n\n Saving the data has failed with the "
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
305
                         "following message:\n {} \n\n".format(e))
Gregory Ashton's avatar
Gregory Ashton committed
306

307
    def save_posterior_samples(self):
308
        """Saves posterior samples to a file"""
309
        filename = '{}/{}_posterior_samples.txt'.format(self.outdir, self.label)
310
        utils.check_directory_exists_and_if_not_mkdir(self.outdir)
311 312
        self.posterior.to_csv(filename, index=False, header=True)

Gregory Ashton's avatar
Gregory Ashton committed
313
    def get_latex_labels_from_parameter_keys(self, keys):
314 315 316 317 318 319 320 321 322 323 324 325 326
        """ Returns a list of latex_labels corresponding to the given keys

        Parameters
        ----------
        keys: list
            List of strings corresponding to the desired latex_labels

        Returns
        -------
        list: The desired latex_labels

        """
        latex_labels = []
Gregory Ashton's avatar
Gregory Ashton committed
327 328 329
        for k in keys:
            if k in self.search_parameter_keys:
                idx = self.search_parameter_keys.index(k)
330
                latex_labels.append(self.parameter_labels_with_unit[idx])
Gregory Ashton's avatar
Gregory Ashton committed
331
            elif k in self.parameter_labels:
332
                latex_labels.append(k)
Gregory Ashton's avatar
Gregory Ashton committed
333
            else:
Colm Talbot's avatar
Colm Talbot committed
334
                logger.debug(
335 336
                    'key {} not a parameter label or latex label'.format(k))
                latex_labels.append(' '.join(k.split('_')))
337
        return latex_labels
Gregory Ashton's avatar
Gregory Ashton committed
338

Gregory Ashton's avatar
Gregory Ashton committed
339 340 341 342 343 344 345 346 347
    @property
    def covariance_matrix(self):
        """ The covariance matrix of the samples the posterior """
        samples = self.posterior[self.search_parameter_keys].values
        return np.cov(samples.T)

    @property
    def posterior_volume(self):
        """ The posterior volume """
Gregory Ashton's avatar
Gregory Ashton committed
348 349 350
        if self.covariance_matrix.ndim == 0:
            return np.sqrt(self.covariance_matrix)
        else:
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
351 352
            return 1 / np.sqrt(np.abs(np.linalg.det(
                1 / self.covariance_matrix)))
Gregory Ashton's avatar
Gregory Ashton committed
353

354 355
    @staticmethod
    def prior_volume(priors):
Gregory Ashton's avatar
Gregory Ashton committed
356 357 358 359 360 361
        """ The prior volume, given a set of priors """
        return np.prod([priors[k].maximum - priors[k].minimum for k in priors])

    def occam_factor(self, priors):
        """ The Occam factor,

362 363 364
        See Chapter 28, `Mackay "Information Theory, Inference, and Learning
        Algorithms" <http://www.inference.org.uk/itprnn/book.html>`_ Cambridge
        University Press (2003).
Gregory Ashton's avatar
Gregory Ashton committed
365 366 367 368

        """
        return self.posterior_volume / self.prior_volume(priors)

369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
    def get_one_dimensional_median_and_error_bar(self, key, fmt='.2f',
                                                 quantiles=[0.16, 0.84]):
        """ Calculate the median and error bar for a given key

        Parameters
        ----------
        key: str
            The parameter key for which to calculate the median and error bar
        fmt: str, ('.2f')
            A format string
        quantiles: list
            A length-2 list of the lower and upper-quantiles to calculate
            the errors bars for.

        Returns
        -------
385 386
        summary: namedtuple
            An object with attributes, median, lower, upper and string
387 388

        """
389 390
        summary = namedtuple('summary', ['median', 'lower', 'upper', 'string'])

391 392 393 394 395
        if len(quantiles) != 2:
            raise ValueError("quantiles must be of length 2")

        quants_to_compute = np.array([quantiles[0], 0.5, quantiles[1]])
        quants = np.percentile(self.posterior[key], quants_to_compute * 100)
396 397 398
        summary.median = quants[1]
        summary.plus = quants[2] - summary.median
        summary.minus = summary.median - quants[0]
399 400

        fmt = "{{0:{0}}}".format(fmt).format
401 402 403 404 405
        string_template = r"${{{0}}}_{{-{1}}}^{{+{2}}}$"
        summary.string = string_template.format(
            fmt(summary.median), fmt(summary.minus), fmt(summary.plus))
        return summary

Colm Talbot's avatar
Colm Talbot committed
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    def plot_single_density(self, key, prior=None, cumulative=False,
                            title=None, truth=None, save=True,
                            file_base_name=None, bins=50, label_fontsize=16,
                            title_fontsize=16, quantiles=[0.16, 0.84], dpi=300):
        """ Plot a 1D marginal density, either probablility or cumulative.

        Parameters
        ----------
        key: str
            Name of the parameter to plot
        prior: {bool (True), bilby.core.prior.Prior}
            If true, add the stored prior probability density function to the
            one-dimensional marginal distributions. If instead a Prior
            is provided, this will be plotted.
        cumulative: bool
            If true plot the CDF
        title: bool
            If true, add 1D title of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        truth: {bool, float}
            If true, plot self.injection_parameters[parameter].
            If float, plot this value.
        save: bool:
            If true, save plot to disk.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
            The fontsizes for the labels and titles
        quantiles: list
            A length-2 list of the lower and upper-quantiles to calculate
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot

        Returns
        -------
        figure: matplotlib.pyplot.figure
            A matplotlib figure object
        """
        logger.info('Plotting {} marginal distribution'.format(key))
        label = self.get_latex_labels_from_parameter_keys([key])[0]
        fig, ax = plt.subplots()
        ax.hist(self.posterior[key].values, bins=bins, density=True,
                histtype='step', cumulative=cumulative)
        ax.set_xlabel(label, fontsize=label_fontsize)
        if truth is not None:
            ax.axvline(truth, ls='-', color='orange')

        summary = self.get_one_dimensional_median_and_error_bar(
            key, quantiles=quantiles)
        ax.axvline(summary.median - summary.minus, ls='--', color='C0')
        ax.axvline(summary.median + summary.plus, ls='--', color='C0')
        if title:
            ax.set_title(summary.string, fontsize=title_fontsize)

        if isinstance(prior, Prior):
            theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
            ax.plot(theta, Prior.prob(theta), color='C2')

        if save:
            fig.tight_layout()
            if cumulative:
                file_name = file_base_name + key + '_cdf'
            else:
                file_name = file_base_name + key + '_pdf'
            fig.savefig(file_name, dpi=dpi)

        return fig

480 481 482 483 484 485 486 487 488 489
    def plot_marginals(self, parameters=None, priors=None, titles=True,
                       file_base_name=None, bins=50, label_fontsize=16,
                       title_fontsize=16, quantiles=[0.16, 0.84], dpi=300):
        """ Plot 1D marginal distributions

        Parameters
        ----------
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
490
        priors: {bool (False), bilby.core.prior.PriorDict}
491
            If true, add the stored prior probability density functions to the
492
            one-dimensional marginal distributions. If instead a PriorDict
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
            is provided, this will be plotted.
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
            The fontsizes for the labels and titles
        quantiles: list
            A length-2 list of the lower and upper-quantiles to calculate
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot

        Returns
        -------
        """
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
            truths = list(parameters.values())
        elif parameters is None:
Colm Talbot's avatar
Colm Talbot committed
519 520 521
            plot_parameter_keys = self.injection_parameters.keys()
            truths = [self.injection_parameters.get(key, None) for key
                      in plot_parameter_keys]
522 523
        else:
            plot_parameter_keys = list(parameters)
Colm Talbot's avatar
Colm Talbot committed
524 525
            truths = [self.injection_parameters.get(key, None) for key
                      in plot_parameter_keys]
526 527

        if file_base_name is None:
Colm Talbot's avatar
Colm Talbot committed
528 529
            file_base_name = '{}/{}_1d/'.format(self.outdir, self.label)
            check_directory_exists_and_if_not_mkdir(file_base_name)
530 531 532

        if priors is True:
            priors = getattr(self, 'priors', False)
Colm Talbot's avatar
Colm Talbot committed
533
        elif isinstance(priors, dict) or priors in [False, None]:
534 535 536 537 538
            pass
        else:
            raise ValueError('Input priors={} not understood'.format(priors))

        for i, key in enumerate(plot_parameter_keys):
Colm Talbot's avatar
Colm Talbot committed
539 540 541 542 543 544 545 546
            if not isinstance(self.posterior[key].values[0], float):
                continue
            for cumulative in [False, True]:
                self.plot_single_density(
                    key, prior=priors[i], cumulative=cumulative, title=titles,
                    truth=truths[i], save=True, file_base_name=file_base_name,
                    bins=bins, label_fontsize=label_fontsize, dpi=dpi,
                    title_fontsize=title_fontsize, quantiles=quantiles)
547

548 549 550
    def plot_corner(self, parameters=None, priors=None, titles=True, save=True,
                    filename=None, dpi=300, **kwargs):
        """ Plot a corner-plot
Gregory Ashton's avatar
Gregory Ashton committed
551 552 553

        Parameters
        ----------
554 555 556
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
557
        priors: {bool (False), bilby.core.prior.PriorDict}
558
            If true, add the stored prior probability density functions to the
559
            one-dimensional marginal distributions. If instead a PriorDict
560
            is provided, this will be plotted.
561 562 563 564 565
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
566 567 568 569 570 571
        save: bool, optional
            If true, save the image using the given label and outdir
        filename: str, optional
            If given, overwrite the default filename
        dpi: int, optional
            Dots per inch resolution of the plot
572 573 574 575
        **kwargs:
            Other keyword arguments are passed to `corner.corner`. We set some
            defaults to improve the basic look and feel, but these can all be
            overridden.
Gregory Ashton's avatar
Gregory Ashton committed
576

577 578 579 580 581 582
        Notes
        -----
            The generation of the corner plot themselves is done by the corner
            python module, see https://corner.readthedocs.io for more
            information.

Gregory Ashton's avatar
Gregory Ashton committed
583 584 585 586
        Returns
        -------
        fig:
            A matplotlib figure instance
587

Gregory Ashton's avatar
Gregory Ashton committed
588
        """
589 590

        # If in testing mode, not corner plots are generated
591 592
        if utils.command_line_args.test:
            return
Gregory Ashton's avatar
Gregory Ashton committed
593

Colm Talbot's avatar
Colm Talbot committed
594
        # bilby default corner kwargs. Overwritten by anything passed to kwargs
595 596 597
        defaults_kwargs = dict(
            bins=50, smooth=0.9, label_kwargs=dict(fontsize=16),
            title_kwargs=dict(fontsize=16), color='#0072C1',
598
            truth_color='tab:orange', quantiles=[0.16, 0.84],
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
599
            levels=(1 - np.exp(-0.5), 1 - np.exp(-2), 1 - np.exp(-9 / 2.)),
600
            plot_density=False, plot_datapoints=True, fill_contours=True,
601 602 603 604 605 606
            max_n_ticks=3)

        if LooseVersion(matplotlib.__version__) < "2.1":
            defaults_kwargs['hist_kwargs'] = dict(normed=True)
        else:
            defaults_kwargs['hist_kwargs'] = dict(density=True)
607

608 609 610 611
        if 'lionize' in kwargs and kwargs['lionize'] is True:
            defaults_kwargs['truth_color'] = 'tab:blue'
            defaults_kwargs['color'] = '#FF8C00'

612 613 614
        defaults_kwargs.update(kwargs)
        kwargs = defaults_kwargs

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
        # Handle if truths was passed in
        if 'truth' in kwargs:
            kwargs['truths'] = kwargs.pop('truth')
        if kwargs.get('truths'):
            truths = kwargs.get('truths')
            if isinstance(parameters, list) and isinstance(truths, list):
                if len(parameters) != len(truths):
                    raise ValueError(
                        "Length of parameters and truths don't match")
            elif isinstance(truths, dict) and parameters is None:
                parameters = kwargs.pop('truths')
            else:
                raise ValueError(
                    "Combination of parameters and truths not understood")

Gregory Ashton's avatar
Gregory Ashton committed
630 631 632 633 634 635 636 637
        # If injection parameters where stored, use these as parameter values
        # but do not overwrite input parameters (or truths)
        cond1 = getattr(self, 'injection_parameters', None) is not None
        cond2 = parameters is None
        if cond1 and cond2:
            parameters = {key: self.injection_parameters[key] for key in
                          self.search_parameter_keys}

638 639 640 641 642 643 644 645 646
        # If parameters is a dictionary, use the keys to determine which
        # parameters to plot and the values as truths.
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
            kwargs['truths'] = list(parameters.values())
        elif parameters is None:
            plot_parameter_keys = self.search_parameter_keys
        else:
            plot_parameter_keys = list(parameters)
647

648
        # Get latex formatted strings for the plot labels
649 650
        kwargs['labels'] = kwargs.get(
            'labels', self.get_latex_labels_from_parameter_keys(
651
                plot_parameter_keys))
652

653 654
        # Create the data array to plot and pass everything to corner
        xs = self.posterior[plot_parameter_keys].values
655
        fig = corner.corner(xs, **kwargs)
656
        axes = fig.get_axes()
657 658 659

        #  Add the titles
        if titles and kwargs.get('quantiles', None) is not None:
660 661
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
662 663
                if ax.title.get_text() == '':
                    ax.set_title(self.get_one_dimensional_median_and_error_bar(
664
                        par, quantiles=kwargs['quantiles']).string,
665 666 667
                        **kwargs['title_kwargs'])

        #  Add priors to the 1D plots
668 669 670
        if priors is True:
            priors = getattr(self, 'priors', False)
        if isinstance(priors, dict):
671 672
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
673 674
                theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
                ax.plot(theta, priors[par].prob(theta), color='C2')
675 676 677 678
        elif priors in [False, None]:
            pass
        else:
            raise ValueError('Input priors={} not understood'.format(priors))
679

680
        if save:
681 682 683
            if filename is None:
                utils.check_directory_exists_and_if_not_mkdir(self.outdir)
                filename = '{}/{}_corner.png'.format(self.outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
684
            logger.debug('Saving corner plot to {}'.format(filename))
685
            fig.savefig(filename, dpi=dpi)
686

687
        return fig
688

Gregory Ashton's avatar
Gregory Ashton committed
689
    def plot_walkers(self, **kwargs):
MoritzThomasHuebner's avatar
A typo  
MoritzThomasHuebner committed
690
        """ Method to plot the trace of the walkers in an ensemble MCMC plot """
691
        if hasattr(self, 'walkers') is False:
Gregory Ashton's avatar
Gregory Ashton committed
692
            logger.warning("Cannot plot_walkers as no walkers are saved")
693
            return
694 695 696

        if utils.command_line_args.test:
            return
697 698 699

        nwalkers, nsteps, ndim = self.walkers.shape
        idxs = np.arange(nsteps)
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
700
        fig, axes = plt.subplots(nrows=ndim, figsize=(6, 3 * ndim))
701 702
        walkers = self.walkers[:, :, :]
        for i, ax in enumerate(axes):
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
703
            ax.plot(idxs[:self.nburn + 1], walkers[:, :self.nburn + 1, i].T,
704 705 706 707 708 709 710 711 712 713
                    lw=0.1, color='r')
            ax.set_ylabel(self.parameter_labels[i])

        for i, ax in enumerate(axes):
            ax.plot(idxs[self.nburn:], walkers[:, self.nburn:, i].T, lw=0.1,
                    color='k')
            ax.set_ylabel(self.parameter_labels[i])

        fig.tight_layout()
        filename = '{}/{}_walkers.png'.format(self.outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
714
        logger.debug('Saving walkers plot to {}'.format('filename'))
715
        utils.check_directory_exists_and_if_not_mkdir(self.outdir)
716 717
        fig.savefig(filename)

718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
    def plot_with_data(self, model, x, y, ndraws=1000, npoints=1000,
                       xlabel=None, ylabel=None, data_label='data',
                       data_fmt='o', draws_label=None, filename=None,
                       maxl_label='max likelihood', dpi=300):
        """ Generate a figure showing the data and fits to the data

        Parameters
        ----------
        model: function
            A python function which when called as `model(x, **kwargs)` returns
            the model prediction (here `kwargs` is a dictionary of key-value
            pairs of the model parameters.
        x, y: np.ndarray
            The independent and dependent data to plot
        ndraws: int
            Number of draws from the posterior to plot
        npoints: int
            Number of points used to plot the smoothed fit to the data
        xlabel, ylabel: str
            Labels for the axes
        data_label, draws_label, maxl_label: str
            Label for the data, draws, and max likelihood legend
        data_fmt: str
            Matpltolib fmt code, defaults to `'-o'`
        dpi: int
            Passed to `plt.savefig`
        filename: str
            If given, the filename to use. Otherwise, the filename is generated
            from the outdir and label attributes.

        """
749 750 751 752 753 754

        # Determine model_posterior, the subset of the full posterior which
        # should be passed into the model
        model_keys = infer_parameters_from_function(model)
        model_posterior = self.posterior[model_keys]

755 756 757 758
        xsmooth = np.linspace(np.min(x), np.max(x), npoints)
        fig, ax = plt.subplots()
        logger.info('Plotting {} draws'.format(ndraws))
        for _ in range(ndraws):
759
            s = model_posterior.sample().to_dict('records')[0]
760 761
            ax.plot(xsmooth, model(xsmooth, **s), alpha=0.25, lw=0.1, color='r',
                    label=draws_label)
762 763 764
        try:
            if all(~np.isnan(self.posterior.log_likelihood)):
                logger.info('Plotting maximum likelihood')
Colm Talbot's avatar
Colm Talbot committed
765
                s = model_posterior.iloc[self.posterior.log_likelihood.idxmax()]
766 767 768 769 770
                ax.plot(xsmooth, model(xsmooth, **s), lw=1, color='k',
                        label=maxl_label)
        except AttributeError:
            logger.debug(
                "No log likelihood values stored, unable to plot max")
771 772 773 774 775 776 777 778 779 780 781 782 783 784

        ax.plot(x, y, data_fmt, markersize=2, label=data_label)

        if xlabel is not None:
            ax.set_xlabel(xlabel)
        if ylabel is not None:
            ax.set_ylabel(ylabel)

        handles, labels = plt.gca().get_legend_handles_labels()
        by_label = OrderedDict(zip(labels, handles))
        plt.legend(by_label.values(), by_label.keys())
        ax.legend(numpoints=3)
        fig.tight_layout()
        if filename is None:
785
            utils.check_directory_exists_and_if_not_mkdir(self.outdir)
786 787 788
            filename = '{}/{}_plot_with_data'.format(self.outdir, self.label)
        fig.savefig(filename, dpi=dpi)

789 790
    def samples_to_posterior(self, likelihood=None, priors=None,
                             conversion_function=None):
791
        """
792 793 794
        Convert array of samples to posterior (a Pandas data frame)

        Also applies the conversion function to any stored posterior
795

796 797
        Parameters
        ----------
Colm Talbot's avatar
Colm Talbot committed
798
        likelihood: bilby.likelihood.GravitationalWaveTransient, optional
799 800
            GravitationalWaveTransient likelihood used for sampling.
        priors: dict, optional
801
            Dictionary of prior object, used to fill in delta function priors.
802
        conversion_function: function, optional
803 804
            Function which adds in extra parameters to the data frame,
            should take the data_frame, likelihood and prior as arguments.
805
        """
806 807 808
        try:
            data_frame = self.posterior
        except ValueError:
809 810
            data_frame = pd.DataFrame(
                self.samples, columns=self.search_parameter_keys)
811
            for key in priors:
812
                if isinstance(priors[key], DeltaFunction):
813
                    data_frame[key] = priors[key].peak
814 815 816 817
                elif isinstance(priors[key], float):
                    data_frame[key] = priors[key]
            data_frame['log_likelihood'] = getattr(
                self, 'log_likelihood_evaluations', np.nan)
818
        if conversion_function is not None:
819
            data_frame = conversion_function(data_frame, likelihood, priors)
820
        self.posterior = data_frame
Gregory Ashton's avatar
Gregory Ashton committed
821

Colm Talbot's avatar
Colm Talbot committed
822
    def calculate_prior_values(self, priors):
823 824 825 826 827
        """
        Evaluate prior probability for each parameter for each sample.

        Parameters
        ----------
828
        priors: dict, PriorDict
829 830 831 832 833 834 835 836 837 838 839
            Prior distributions
        """
        self.prior_values = pd.DataFrame()
        for key in priors:
            if key in self.posterior.keys():
                if isinstance(priors[key], DeltaFunction):
                    continue
                else:
                    self.prior_values[key]\
                        = priors[key].prob(self.posterior[key].values)

Colm Talbot's avatar
Colm Talbot committed
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
    def get_all_injection_credible_levels(self):
        """
        Get credible levels for all parameters in self.injection_parameters

        Returns
        -------
        credible_levels: dict
            The credible levels at which the injected parameters are found.
        """
        if self.injection_parameters is None:
            raise(TypeError, "Result object has no 'injection_parameters'. "
                             "Cannot copmute credible levels.")
        credible_levels = {key: self.get_injection_credible_level(key)
                           for key in self.search_parameter_keys
                           if isinstance(self.injection_parameters[key], float)}
        return credible_levels

    def get_injection_credible_level(self, parameter):
        """
        Get the credible level of the injected parameter

        Calculated as CDF(injection value)

        Parameters
        ----------
        parameter: str
            Parameter to get credible level for
        Returns
        -------
        float: credible level
        """
        if self.injection_parameters is None:
            raise(TypeError, "Result object has no 'injection_parameters'. "
                             "Cannot copmute credible levels.")
        if parameter in self.posterior and\
                parameter in self.injection_parameters:
            credible_level =\
                sum(self.posterior[parameter].values <
                    self.injection_parameters[parameter]) / len(self.posterior)
            return credible_level
        else:
            return np.nan

883
    def _check_attribute_match_to_other_object(self, name, other_object):
884 885 886 887 888 889 890 891 892 893 894 895 896 897
        """ Check attribute name exists in other_object and is the same

        Parameters
        ----------
        name: str
            Name of the attribute in this instance
        other_object: object
            Other object with attributes to compare with

        Returns
        -------
        bool: True if attribute name matches with an attribute of other_object, False otherwise

        """
898
        A = getattr(self, name, False)
899
        B = getattr(other_object, name, False)
Gregory Ashton's avatar
Gregory Ashton committed
900
        logger.debug('Checking {} value: {}=={}'.format(name, A, B))
901 902 903 904 905
        if (A is not False) and (B is not False):
            typeA = type(A)
            typeB = type(B)
            if typeA == typeB:
                if typeA in [str, float, int, dict, list]:
Gregory Ashton's avatar
Gregory Ashton committed
906 907 908 909
                    try:
                        return A == B
                    except ValueError:
                        return False
910 911 912
                elif typeA in [np.ndarray]:
                    return np.all(A == B)
        return False
913 914 915


def plot_multiple(results, filename=None, labels=None, colours=None,
916
                  save=True, evidences=False, **kwargs):
917 918 919 920 921
    """ Generate a corner plot overlaying two sets of results

    Parameters
    ----------
    results: list
Colm Talbot's avatar
Colm Talbot committed
922
        A list of `bilby.core.result.Result` objects containing the samples to
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
        plot.
    filename: str
        File name to save the figure to. If None (default), a filename is
        constructed from the outdir of the first element of results and then
        the labels for all the result files.
    labels: list
        List of strings to use when generating a legend. If None (default), the
        `label` attribute of each result in `results` is used.
    colours: list
        The colours for each result. If None, default styles are applied.
    save: bool
        If true, save the figure
    kwargs: dict
        All other keyword arguments are passed to `result.plot_corner`.
        However, `show_titles` and `truths` are ignored since they would be
        ambiguous on such a plot.
939 940 941
    evidences: bool, optional
        Add the log-evidence calculations to the legend. If available, the
        Bayes factor will be used instead.
942 943 944 945 946 947 948 949 950 951 952 953

    Returns
    -------
    fig:
        A matplotlib figure instance

    """

    kwargs['show_titles'] = False
    kwargs['truths'] = None

    fig = results[0].plot_corner(save=False, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
954
    default_filename = '{}/{}'.format(results[0].outdir, 'combined')
955 956 957 958 959 960 961
    lines = []
    default_labels = []
    for i, result in enumerate(results):
        if colours:
            c = colours[i]
        else:
            c = 'C{}'.format(i)
Gregory Ashton's avatar
Gregory Ashton committed
962 963
        hist_kwargs = kwargs.get('hist_kwargs', dict())
        hist_kwargs['color'] = c
964 965 966 967 968
        fig = result.plot_corner(fig=fig, save=False, color=c, **kwargs)
        default_filename += '_{}'.format(result.label)
        lines.append(matplotlib.lines.Line2D([0], [0], color=c))
        default_labels.append(result.label)

Gregory Ashton's avatar
Gregory Ashton committed
969 970 971 972 973
    # Rescale the axes
    for i, ax in enumerate(fig.axes):
        ax.autoscale()
    plt.draw()

974 975 976
    if labels is None:
        labels = default_labels

977 978
    if evidences:
        if np.isnan(results[0].log_bayes_factor):
979
            template = ' $\mathrm{{ln}}(Z)={lnz:1.3g}$'
980
        else:
981 982 983 984
            template = ' $\mathrm{{ln}}(B)={lnbf:1.3g}$'
        labels = [template.format(lnz=result.log_evidence,
                                  lnbf=result.log_bayes_factor)
                  for ii, result in enumerate(results)]
985

986 987
    axes = fig.get_axes()
    ndim = int(np.sqrt(len(axes)))
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
988
    axes[ndim - 1].legend(lines, labels)
989 990 991 992 993 994 995

    if filename is None:
        filename = default_filename

    if save:
        fig.savefig(filename)
    return fig
Colm Talbot's avatar
Colm Talbot committed
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037


def make_pp_plot(results, filename=None, save=True, **kwargs):
    """
    Make a P-P plot for a set of runs with injected signals.

    Parameters
    ----------
    results: list
        A list of Result objects, each of these should have injected_parameters
    filename: str, optional
        The name of the file to save, the default is "outdir/pp.png"
    save: bool, optional
        Whether to save the file, default=True
    kwargs:
        Additional kwargs to pass to matplotlib.pyplot.plot

    Returns
    -------
    fig:
        Matplotlib figure
    """
    fig = plt.figure()
    credible_levels = pd.DataFrame()
    for result in results:
        credible_levels = credible_levels.append(
            result.get_all_injection_credible_levels(), ignore_index=True)
    n_parameters = len(credible_levels.keys())
    x_values = np.linspace(0, 1, 101)
    for key in credible_levels:
        plt.plot(x_values, [sum(credible_levels[key].values < xx) /
                            len(credible_levels) for xx in x_values],
                 color='k', alpha=min([1, 4 / n_parameters]), **kwargs)
    plt.plot([0, 1], [0, 1], linestyle='--', color='r')
    plt.xlim(0, 1)
    plt.ylim(0, 1)
    plt.tight_layout()
    if save:
        if filename is None:
            filename = 'outdir/pp.png'
        plt.savefig(filename)
    return fig