result.py 49.5 KB
Newer Older
Colm Talbot's avatar
Colm Talbot committed
1 2
from __future__ import division

3
import os
4
from distutils.version import LooseVersion
5
from collections import OrderedDict, namedtuple
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
6

7 8
import numpy as np
import pandas as pd
9
import corner
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
10
import json
11
import scipy.stats
12
import matplotlib
13
import matplotlib.pyplot as plt
14
from matplotlib import lines as mpllines
15

16
from . import utils
Colm Talbot's avatar
Colm Talbot committed
17
from .utils import (logger, infer_parameters_from_function,
Colm Talbot's avatar
Colm Talbot committed
18 19
                    check_directory_exists_and_if_not_mkdir,
                    BilbyJsonEncoder, decode_bilby_json)
Colm Talbot's avatar
Colm Talbot committed
20
from .prior import Prior, PriorDict, DeltaFunction
21

22

23
def result_file_name(outdir, label, extension='json', gzip=False):
24 25 26 27 28 29 30 31
    """ Returns the standard filename used for a result file

    Parameters
    ----------
    outdir: str
        Name of the output directory
    label: str
        Naming scheme of the output file
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
32 33
    extension: str, optional
        Whether to save as `hdf5` or `json`
34 35
    gzip: bool, optional
        Set to True to append `.gz` to the extension for saving in gzipped format
36 37 38 39 40

    Returns
    -------
    str: File name of the output file
    """
41
    if extension in ['json', 'hdf5']:
42 43 44 45
        if extension == 'json' and gzip:
            return '{}/{}_result.{}.gz'.format(outdir, label, extension)
        else:
            return '{}/{}_result.{}'.format(outdir, label, extension)
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
46
    else:
47
        raise ValueError("Extension type {} not understood".format(extension))
48 49


50
def _determine_file_name(filename, outdir, label, extension, gzip):
51 52 53 54 55 56 57
    """ Helper method to determine the filename """
    if filename is not None:
        return filename
    else:
        if (outdir is None) and (label is None):
            raise ValueError("No information given to load file")
        else:
58
            return result_file_name(outdir, label, extension, gzip)
59 60


61
def read_in_result(filename=None, outdir=None, label=None, extension='json', gzip=False):
62 63 64 65 66 67 68 69 70 71 72
    """ Reads in a stored bilby result object

    Parameters
    ----------
    filename: str
        Path to the file to be read (alternative to giving the outdir and label)
    outdir, label, extension: str
        Name of the output directory, label and extension used for the default
        naming scheme.

    """
73
    filename = _determine_file_name(filename, outdir, label, extension, gzip)
74 75 76

    # Get the actual extension (may differ from the default extension if the filename is given)
    extension = os.path.splitext(filename)[1].lstrip('.')
77 78 79
    if extension == 'gz':  # gzipped file
        extension = os.path.splitext(os.path.splitext(filename)[0])[1].lstrip('.')

80 81 82 83 84 85 86 87
    if 'json' in extension:
        result = Result.from_json(filename=filename)
    elif ('hdf5' in extension) or ('h5' in extension):
        result = Result.from_hdf5(filename=filename)
    elif extension is None:
        raise ValueError("No filetype extension provided")
    else:
        raise ValueError("Filetype {} not understood".format(extension))
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
88
    return result
89 90 91 92 93 94 95 96 97 98


class Result(object):
    def __init__(self, label='no_label', outdir='.', sampler=None,
                 search_parameter_keys=None, fixed_parameter_keys=None,
                 priors=None, sampler_kwargs=None, injection_parameters=None,
                 meta_data=None, posterior=None, samples=None,
                 nested_samples=None, log_evidence=np.nan,
                 log_evidence_err=np.nan, log_noise_evidence=np.nan,
                 log_bayes_factor=np.nan, log_likelihood_evaluations=None,
99 100 101
                 log_prior_evaluations=None, sampling_time=None, nburn=None,
                 walkers=None, max_autocorrelation_time=None,
                 parameter_labels=None, parameter_labels_with_unit=None,
102
                 gzip=False, version=None):
103
        """ A class to store the results of the sampling run
104 105 106

        Parameters
        ----------
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        label, outdir, sampler: str
            The label, output directory, and sampler used
        search_parameter_keys, fixed_parameter_keys: list
            Lists of the search and fixed parameter keys. Elemenents of the
            list should be of type `str` and matchs the keys of the `prior`
        priors: dict, bilby.core.prior.PriorDict
            A dictionary of the priors used in the run
        sampler_kwargs: dict
            Key word arguments passed to the sampler
        injection_parameters: dict
            A dictionary of the injection parameters
        meta_data: dict
            A dictionary of meta data to store about the run
        posterior: pandas.DataFrame
            A pandas data frame of the posterior
        samples, nested_samples: array_like
            An array of the output posterior samples and the unweighted samples
        log_evidence, log_evidence_err, log_noise_evidence, log_bayes_factor: float
            Natural log evidences
        log_likelihood_evaluations: array_like
            The evaluations of the likelihood for each sample point
128 129
        log_prior_evaluations: array_like
            The evaluations of the prior for each sample point
130 131 132 133 134 135 136 137 138 139
        sampling_time: float
            The time taken to complete the sampling
        nburn: int
            The number of burn-in steps discarded for MCMC samplers
        walkers: array_like
            The samplers taken by a ensemble MCMC samplers
        max_autocorrelation_time: float
            The estimated maximum autocorrelation time for MCMC samplers
        parameter_labels, parameter_labels_with_unit: list
            Lists of the latex-formatted parameter labels
140 141
        gzip: bool
            Set to True to gzip the results file (if using json format)
142 143 144
        version: str,
            Version information for software used to generate the result. Note,
            this information is generated when the result object is initialized
145

146 147 148 149
        Note
        ---------
        All sampling output parameters, e.g. the samples themselves are
        typically not given at initialisation, but set at a later stage.
150 151

        """
152

153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
        self.label = label
        self.outdir = os.path.abspath(outdir)
        self.sampler = sampler
        self.search_parameter_keys = search_parameter_keys
        self.fixed_parameter_keys = fixed_parameter_keys
        self.parameter_labels = parameter_labels
        self.parameter_labels_with_unit = parameter_labels_with_unit
        self.priors = priors
        self.sampler_kwargs = sampler_kwargs
        self.meta_data = meta_data
        self.injection_parameters = injection_parameters
        self.posterior = posterior
        self.samples = samples
        self.nested_samples = nested_samples
        self.walkers = walkers
        self.nburn = nburn
        self.log_evidence = log_evidence
        self.log_evidence_err = log_evidence_err
        self.log_noise_evidence = log_noise_evidence
        self.log_bayes_factor = log_bayes_factor
        self.log_likelihood_evaluations = log_likelihood_evaluations
174
        self.log_prior_evaluations = log_prior_evaluations
175
        self.sampling_time = sampling_time
176
        self.version = version
Colm Talbot's avatar
Colm Talbot committed
177
        self.max_autocorrelation_time = max_autocorrelation_time
178

179 180 181
        self.prior_values = None
        self._kde = None

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    @classmethod
    def from_hdf5(cls, filename=None, outdir=None, label=None):
        """ Read in a saved .h5 data file

        Parameters
        ----------
        filename: str
            If given, try to load from this filename
        outdir, label: str
            If given, use the default naming convention for saved results file

        Returns
        -------
        result: bilby.core.result.Result

        Raises
        -------
        ValueError: If no filename is given and either outdir or label is None
                    If no bilby.core.result.Result is found in the path

        """
203
        import deepdish
204
        filename = _determine_file_name(filename, outdir, label, 'hdf5', False)
205

206
        if os.path.isfile(filename):
Moritz Huebner's avatar
Moritz Huebner committed
207 208
            dictionary = deepdish.io.load(filename)
            # Some versions of deepdish/pytables return the dictionanary as
209
            # a dictionary with a key 'data'
Moritz Huebner's avatar
Moritz Huebner committed
210 211 212
            if len(dictionary) == 1 and 'data' in dictionary:
                dictionary = dictionary['data']
            try:
213 214
                if isinstance(dictionary.get('posterior', None), dict):
                    dictionary['posterior'] = pd.DataFrame(dictionary['posterior'])
Moritz Huebner's avatar
Moritz Huebner committed
215 216 217
                return cls(**dictionary)
            except TypeError as e:
                raise IOError("Unable to load dictionary, error={}".format(e))
218 219 220
        else:
            raise IOError("No result '{}' found".format(filename))

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
221
    @classmethod
222
    def from_json(cls, filename=None, outdir=None, label=None, gzip=False):
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        """ Read in a saved .json data file

        Parameters
        ----------
        filename: str
            If given, try to load from this filename
        outdir, label: str
            If given, use the default naming convention for saved results file

        Returns
        -------
        result: bilby.core.result.Result

        Raises
        -------
        ValueError: If no filename is given and either outdir or label is None
                    If no bilby.core.result.Result is found in the path

        """
242
        filename = _determine_file_name(filename, outdir, label, 'json', gzip)
243

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
244
        if os.path.isfile(filename):
245 246 247 248 249 250 251 252
            if gzip or os.path.splitext(filename)[1].lstrip('.') == 'gz':
                import gzip
                with gzip.GzipFile(filename, 'r') as file:
                    json_str = file.read().decode('utf-8')
                dictionary = json.loads(json_str, object_hook=decode_bilby_json)
            else:
                with open(filename, 'r') as file:
                    dictionary = json.load(file, object_hook=decode_bilby_json)
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
253 254 255 256 257 258 259 260 261 262 263 264 265
            for key in dictionary.keys():
                # Convert the loaded priors to bilby prior type
                if key == 'priors':
                    for param in dictionary[key].keys():
                        dictionary[key][param] = str(dictionary[key][param])
                    dictionary[key] = PriorDict(dictionary[key])
            try:
                return cls(**dictionary)
            except TypeError as e:
                raise IOError("Unable to load dictionary, error={}".format(e))
        else:
            raise IOError("No result '{}' found".format(filename))

266
    def __str__(self):
267
        """Print a summary """
268 269
        if getattr(self, 'posterior', None) is not None:
            if getattr(self, 'log_noise_evidence', None) is not None:
270 271 272 273
                return ("nsamples: {:d}\n"
                        "log_noise_evidence: {:6.3f}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
                        "log_bayes_factor: {:6.3f} +/- {:6.3f}\n"
274
                        .format(len(self.posterior), self.log_noise_evidence, self.log_evidence,
275 276 277 278 279
                                self.log_evidence_err, self.log_bayes_factor,
                                self.log_evidence_err))
            else:
                return ("nsamples: {:d}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
280
                        .format(len(self.posterior), self.log_evidence, self.log_evidence_err))
281 282
        else:
            return ''
283

284 285 286 287 288 289
    @property
    def priors(self):
        if self._priors is not None:
            return self._priors
        else:
            raise ValueError('Result object has no priors')
290

291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    @priors.setter
    def priors(self, priors):
        if isinstance(priors, dict):
            self._priors = PriorDict(priors)
            if self.parameter_labels is None:
                self.parameter_labels = [self.priors[k].latex_label for k in
                                         self.search_parameter_keys]
            if self.parameter_labels_with_unit is None:
                self.parameter_labels_with_unit = [
                    self.priors[k].latex_label_with_unit for k in
                    self.search_parameter_keys]

        elif priors is None:
            self._priors = priors
            self.parameter_labels = self.search_parameter_keys
            self.parameter_labels_with_unit = self.search_parameter_keys
        else:
            raise ValueError("Input priors not understood")
309

310 311 312 313 314
    @property
    def samples(self):
        """ An array of samples """
        if self._samples is not None:
            return self._samples
315
        else:
316
            raise ValueError("Result object has no stored samples")
317

318 319 320
    @samples.setter
    def samples(self, samples):
        self._samples = samples
321

322 323 324 325 326 327 328
    @property
    def nested_samples(self):
        """" An array of unweighted samples """
        if self._nested_samples is not None:
            return self._nested_samples
        else:
            raise ValueError("Result object has no stored nested samples")
329

330 331 332
    @nested_samples.setter
    def nested_samples(self, nested_samples):
        self._nested_samples = nested_samples
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
    @property
    def walkers(self):
        """" An array of the ensemble walkers """
        if self._walkers is not None:
            return self._walkers
        else:
            raise ValueError("Result object has no stored walkers")

    @walkers.setter
    def walkers(self, walkers):
        self._walkers = walkers

    @property
    def nburn(self):
        """" An array of the ensemble walkers """
        if self._nburn is not None:
            return self._nburn
        else:
            raise ValueError("Result object has no stored nburn")

    @nburn.setter
    def nburn(self, nburn):
        self._nburn = nburn

    @property
    def posterior(self):
        """ A pandas data frame of the posterior """
        if self._posterior is not None:
            return self._posterior
        else:
            raise ValueError("Result object has no stored posterior")

    @posterior.setter
    def posterior(self, posterior):
        self._posterior = posterior

370 371 372 373 374 375 376 377 378 379 380
    @property
    def version(self):
        return self._version

    @version.setter
    def version(self, version):
        if version is None:
            self._version = 'bilby={}'.format(utils.get_version_information())
        else:
            self._version = version

381
    def _get_save_data_dictionary(self):
382
        # This list defines all the parameters saved in the result object
383 384 385 386 387
        save_attrs = [
            'label', 'outdir', 'sampler', 'log_evidence', 'log_evidence_err',
            'log_noise_evidence', 'log_bayes_factor', 'priors', 'posterior',
            'injection_parameters', 'meta_data', 'search_parameter_keys',
            'fixed_parameter_keys', 'sampling_time', 'sampler_kwargs',
388 389
            'log_likelihood_evaluations', 'log_prior_evaluations', 'samples',
            'nested_samples', 'walkers', 'nburn', 'parameter_labels',
390
            'parameter_labels_with_unit', 'version']
391 392 393 394 395 396 397 398
        dictionary = OrderedDict()
        for attr in save_attrs:
            try:
                dictionary[attr] = getattr(self, attr)
            except ValueError as e:
                logger.debug("Unable to save {}, message: {}".format(attr, e))
                pass
        return dictionary
399

400
    def save_to_file(self, overwrite=False, outdir=None, extension='json', gzip=False):
Colm Talbot's avatar
Colm Talbot committed
401
        """
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
402
        Writes the Result to a json or deepdish h5 file
Colm Talbot's avatar
Colm Talbot committed
403 404 405 406 407 408

        Parameters
        ----------
        overwrite: bool, optional
            Whether or not to overwrite an existing result file.
            default=False
409 410
        outdir: str, optional
            Path to the outdir. Default is the one stored in the result object.
411 412
        extension: str, optional {json, hdf5}
            Determines the method to use to store the data
413 414 415
        gzip: bool, optional
            If true, and outputing to a json file, this will gzip the resulting
            file and add '.gz' to the file extension.
Colm Talbot's avatar
Colm Talbot committed
416
        """
417
        outdir = self._safe_outdir_creation(outdir, self.save_to_file)
418
        file_name = result_file_name(outdir, self.label, extension, gzip)
419

420
        if os.path.isfile(file_name):
Colm Talbot's avatar
Colm Talbot committed
421 422 423 424 425 426 427 428
            if overwrite:
                logger.debug('Removing existing file {}'.format(file_name))
                os.remove(file_name)
            else:
                logger.debug(
                    'Renaming existing file {} to {}.old'.format(file_name,
                                                                 file_name))
                os.rename(file_name, file_name + '.old')
429

Gregory Ashton's avatar
Gregory Ashton committed
430
        logger.debug("Saving result to {}".format(file_name))
431 432

        # Convert the prior to a string representation for saving on disk
433
        dictionary = self._get_save_data_dictionary()
434 435 436
        if dictionary.get('priors', False):
            dictionary['priors'] = {key: str(self.priors[key]) for key in self.priors}

437
        # Convert callable sampler_kwargs to strings
438 439 440 441
        if dictionary.get('sampler_kwargs', None) is not None:
            for key in dictionary['sampler_kwargs']:
                if hasattr(dictionary['sampler_kwargs'][key], '__call__'):
                    dictionary['sampler_kwargs'][key] = str(dictionary['sampler_kwargs'])
442

Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
443
        try:
444
            if extension == 'json':
445 446 447 448 449 450 451 452 453
                if gzip:
                    import gzip
                    # encode to a string
                    json_str = json.dumps(dictionary, cls=BilbyJsonEncoder).encode('utf-8')
                    with gzip.GzipFile(file_name, 'w') as file:
                        file.write(json_str)
                else:
                    with open(file_name, 'w') as file:
                        json.dump(dictionary, file, indent=2, cls=BilbyJsonEncoder)
454
            elif extension == 'hdf5':
455
                import deepdish
456 457 458
                for key in dictionary:
                    if isinstance(dictionary[key], pd.DataFrame):
                        dictionary[key] = dictionary[key].to_dict()
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
459 460
                deepdish.io.save(file_name, dictionary)
            else:
461
                raise ValueError("Extension type {} not understood".format(extension))
Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
462
        except Exception as e:
Gregory Ashton's avatar
Gregory Ashton committed
463
            logger.error("\n\n Saving the data has failed with the "
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
464
                         "following message:\n {} \n\n".format(e))
Gregory Ashton's avatar
Gregory Ashton committed
465

466
    def save_posterior_samples(self, outdir=None):
467
        """Saves posterior samples to a file"""
468 469
        outdir = self._safe_outdir_creation(outdir, self.save_posterior_samples)
        filename = '{}/{}_posterior_samples.txt'.format(outdir, self.label)
470 471
        self.posterior.to_csv(filename, index=False, header=True)

Gregory Ashton's avatar
Gregory Ashton committed
472
    def get_latex_labels_from_parameter_keys(self, keys):
473 474 475 476 477 478 479 480 481 482 483 484 485
        """ Returns a list of latex_labels corresponding to the given keys

        Parameters
        ----------
        keys: list
            List of strings corresponding to the desired latex_labels

        Returns
        -------
        list: The desired latex_labels

        """
        latex_labels = []
Gregory Ashton's avatar
Gregory Ashton committed
486 487 488
        for k in keys:
            if k in self.search_parameter_keys:
                idx = self.search_parameter_keys.index(k)
489
                latex_labels.append(self.parameter_labels_with_unit[idx])
Gregory Ashton's avatar
Gregory Ashton committed
490
            elif k in self.parameter_labels:
491
                latex_labels.append(k)
Gregory Ashton's avatar
Gregory Ashton committed
492
            else:
Colm Talbot's avatar
Colm Talbot committed
493
                logger.debug(
494 495
                    'key {} not a parameter label or latex label'.format(k))
                latex_labels.append(' '.join(k.split('_')))
496
        return latex_labels
Gregory Ashton's avatar
Gregory Ashton committed
497

Gregory Ashton's avatar
Gregory Ashton committed
498 499 500 501 502 503 504 505 506
    @property
    def covariance_matrix(self):
        """ The covariance matrix of the samples the posterior """
        samples = self.posterior[self.search_parameter_keys].values
        return np.cov(samples.T)

    @property
    def posterior_volume(self):
        """ The posterior volume """
Gregory Ashton's avatar
Gregory Ashton committed
507 508 509
        if self.covariance_matrix.ndim == 0:
            return np.sqrt(self.covariance_matrix)
        else:
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
510 511
            return 1 / np.sqrt(np.abs(np.linalg.det(
                1 / self.covariance_matrix)))
Gregory Ashton's avatar
Gregory Ashton committed
512

513 514
    @staticmethod
    def prior_volume(priors):
Gregory Ashton's avatar
Gregory Ashton committed
515 516 517 518 519 520
        """ The prior volume, given a set of priors """
        return np.prod([priors[k].maximum - priors[k].minimum for k in priors])

    def occam_factor(self, priors):
        """ The Occam factor,

521 522 523
        See Chapter 28, `Mackay "Information Theory, Inference, and Learning
        Algorithms" <http://www.inference.org.uk/itprnn/book.html>`_ Cambridge
        University Press (2003).
Gregory Ashton's avatar
Gregory Ashton committed
524 525 526 527

        """
        return self.posterior_volume / self.prior_volume(priors)

528
    def get_one_dimensional_median_and_error_bar(self, key, fmt='.2f',
529
                                                 quantiles=(0.16, 0.84)):
530 531 532 533 534 535 536 537
        """ Calculate the median and error bar for a given key

        Parameters
        ----------
        key: str
            The parameter key for which to calculate the median and error bar
        fmt: str, ('.2f')
            A format string
538 539
        quantiles: list, tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
540 541 542 543
            the errors bars for.

        Returns
        -------
544 545
        summary: namedtuple
            An object with attributes, median, lower, upper and string
546 547

        """
548 549
        summary = namedtuple('summary', ['median', 'lower', 'upper', 'string'])

550 551 552 553 554
        if len(quantiles) != 2:
            raise ValueError("quantiles must be of length 2")

        quants_to_compute = np.array([quantiles[0], 0.5, quantiles[1]])
        quants = np.percentile(self.posterior[key], quants_to_compute * 100)
555 556 557
        summary.median = quants[1]
        summary.plus = quants[2] - summary.median
        summary.minus = summary.median - quants[0]
558 559

        fmt = "{{0:{0}}}".format(fmt).format
560 561 562 563 564
        string_template = r"${{{0}}}_{{-{1}}}^{{+{2}}}$"
        summary.string = string_template.format(
            fmt(summary.median), fmt(summary.minus), fmt(summary.plus))
        return summary

Colm Talbot's avatar
Colm Talbot committed
565 566 567
    def plot_single_density(self, key, prior=None, cumulative=False,
                            title=None, truth=None, save=True,
                            file_base_name=None, bins=50, label_fontsize=16,
568 569
                            title_fontsize=16, quantiles=(0.16, 0.84), dpi=300):
        """ Plot a 1D marginal density, either probability or cumulative.
Colm Talbot's avatar
Colm Talbot committed
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597

        Parameters
        ----------
        key: str
            Name of the parameter to plot
        prior: {bool (True), bilby.core.prior.Prior}
            If true, add the stored prior probability density function to the
            one-dimensional marginal distributions. If instead a Prior
            is provided, this will be plotted.
        cumulative: bool
            If true plot the CDF
        title: bool
            If true, add 1D title of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        truth: {bool, float}
            If true, plot self.injection_parameters[parameter].
            If float, plot this value.
        save: bool:
            If true, save plot to disk.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
            The fontsizes for the labels and titles
598 599
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
Colm Talbot's avatar
Colm Talbot committed
600 601 602 603 604 605 606 607 608 609 610 611
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot

        Returns
        -------
        figure: matplotlib.pyplot.figure
            A matplotlib figure object
        """
        logger.info('Plotting {} marginal distribution'.format(key))
        label = self.get_latex_labels_from_parameter_keys([key])[0]
        fig, ax = plt.subplots()
612 613 614 615 616 617 618 619
        try:
            ax.hist(self.posterior[key].values, bins=bins, density=True,
                    histtype='step', cumulative=cumulative)
        except ValueError as e:
            logger.info(
                'Failed to generate 1d plot for {}, error message: {}'
                .format(key, e))
            return
Colm Talbot's avatar
Colm Talbot committed
620 621 622 623 624 625 626 627 628 629 630 631 632
        ax.set_xlabel(label, fontsize=label_fontsize)
        if truth is not None:
            ax.axvline(truth, ls='-', color='orange')

        summary = self.get_one_dimensional_median_and_error_bar(
            key, quantiles=quantiles)
        ax.axvline(summary.median - summary.minus, ls='--', color='C0')
        ax.axvline(summary.median + summary.plus, ls='--', color='C0')
        if title:
            ax.set_title(summary.string, fontsize=title_fontsize)

        if isinstance(prior, Prior):
            theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
633
            ax.plot(theta, prior.prob(theta), color='C2')
Colm Talbot's avatar
Colm Talbot committed
634 635 636 637 638 639 640 641

        if save:
            fig.tight_layout()
            if cumulative:
                file_name = file_base_name + key + '_cdf'
            else:
                file_name = file_base_name + key + '_pdf'
            fig.savefig(file_name, dpi=dpi)
642 643 644
            plt.close(fig)
        else:
            return fig
Colm Talbot's avatar
Colm Talbot committed
645

646 647
    def plot_marginals(self, parameters=None, priors=None, titles=True,
                       file_base_name=None, bins=50, label_fontsize=16,
648 649
                       title_fontsize=16, quantiles=(0.16, 0.84), dpi=300,
                       outdir=None):
650 651 652 653 654 655 656
        """ Plot 1D marginal distributions

        Parameters
        ----------
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
657
        priors: {bool (False), bilby.core.prior.PriorDict}
658
            If true, add the stored prior probability density functions to the
659
            one-dimensional marginal distributions. If instead a PriorDict
660 661 662 663 664 665 666 667 668 669 670 671
            is provided, this will be plotted.
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
672 673 674
            The font sizes for the labels and titles
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
675 676 677
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot
678 679
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
680 681 682 683 684 685

        Returns
        -------
        """
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
Colm Talbot's avatar
Colm Talbot committed
686
            truths = parameters
687
        elif parameters is None:
Colm Talbot's avatar
Colm Talbot committed
688 689 690 691 692
            plot_parameter_keys = self.posterior.keys()
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
693 694
        else:
            plot_parameter_keys = list(parameters)
Colm Talbot's avatar
Colm Talbot committed
695 696 697 698
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
699 700

        if file_base_name is None:
701 702
            outdir = self._safe_outdir_creation(outdir, self.plot_marginals)
            file_base_name = '{}/{}_1d/'.format(outdir, self.label)
Colm Talbot's avatar
Colm Talbot committed
703
            check_directory_exists_and_if_not_mkdir(file_base_name)
704 705

        if priors is True:
Colm Talbot's avatar
Colm Talbot committed
706 707
            priors = getattr(self, 'priors', dict())
        elif isinstance(priors, dict):
708
            pass
Colm Talbot's avatar
Colm Talbot committed
709 710
        elif priors in [False, None]:
            priors = dict()
711 712 713 714
        else:
            raise ValueError('Input priors={} not understood'.format(priors))

        for i, key in enumerate(plot_parameter_keys):
Colm Talbot's avatar
Colm Talbot committed
715 716
            if not isinstance(self.posterior[key].values[0], float):
                continue
Colm Talbot's avatar
Colm Talbot committed
717 718
            prior = priors.get(key, None)
            truth = truths.get(key, None)
Colm Talbot's avatar
Colm Talbot committed
719
            for cumulative in [False, True]:
720
                self.plot_single_density(
Colm Talbot's avatar
Colm Talbot committed
721 722
                    key, prior=prior, cumulative=cumulative, title=titles,
                    truth=truth, save=True, file_base_name=file_base_name,
Colm Talbot's avatar
Colm Talbot committed
723 724
                    bins=bins, label_fontsize=label_fontsize, dpi=dpi,
                    title_fontsize=title_fontsize, quantiles=quantiles)
725

726 727 728
    def plot_corner(self, parameters=None, priors=None, titles=True, save=True,
                    filename=None, dpi=300, **kwargs):
        """ Plot a corner-plot
Gregory Ashton's avatar
Gregory Ashton committed
729 730 731

        Parameters
        ----------
732 733 734
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
735
        priors: {bool (False), bilby.core.prior.PriorDict}
736
            If true, add the stored prior probability density functions to the
737
            one-dimensional marginal distributions. If instead a PriorDict
738
            is provided, this will be plotted.
739 740 741 742 743
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
744 745 746 747 748 749
        save: bool, optional
            If true, save the image using the given label and outdir
        filename: str, optional
            If given, overwrite the default filename
        dpi: int, optional
            Dots per inch resolution of the plot
750 751 752
        **kwargs:
            Other keyword arguments are passed to `corner.corner`. We set some
            defaults to improve the basic look and feel, but these can all be
753 754
            overridden. Also optional an 'outdir' argument which can be used
            to override the outdir set by the absolute path of the result object.
Gregory Ashton's avatar
Gregory Ashton committed
755

756 757 758 759 760 761
        Notes
        -----
            The generation of the corner plot themselves is done by the corner
            python module, see https://corner.readthedocs.io for more
            information.

Gregory Ashton's avatar
Gregory Ashton committed
762 763 764 765
        Returns
        -------
        fig:
            A matplotlib figure instance
766

Gregory Ashton's avatar
Gregory Ashton committed
767
        """
768 769

        # If in testing mode, not corner plots are generated
770 771
        if utils.command_line_args.test:
            return
Gregory Ashton's avatar
Gregory Ashton committed
772

Colm Talbot's avatar
Colm Talbot committed
773
        # bilby default corner kwargs. Overwritten by anything passed to kwargs
774 775 776
        defaults_kwargs = dict(
            bins=50, smooth=0.9, label_kwargs=dict(fontsize=16),
            title_kwargs=dict(fontsize=16), color='#0072C1',
777
            truth_color='tab:orange', quantiles=[0.16, 0.84],
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
778
            levels=(1 - np.exp(-0.5), 1 - np.exp(-2), 1 - np.exp(-9 / 2.)),
779
            plot_density=False, plot_datapoints=True, fill_contours=True,
780 781 782 783 784 785
            max_n_ticks=3)

        if LooseVersion(matplotlib.__version__) < "2.1":
            defaults_kwargs['hist_kwargs'] = dict(normed=True)
        else:
            defaults_kwargs['hist_kwargs'] = dict(density=True)
786

787 788 789 790
        if 'lionize' in kwargs and kwargs['lionize'] is True:
            defaults_kwargs['truth_color'] = 'tab:blue'
            defaults_kwargs['color'] = '#FF8C00'

791 792 793
        defaults_kwargs.update(kwargs)
        kwargs = defaults_kwargs

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
        # Handle if truths was passed in
        if 'truth' in kwargs:
            kwargs['truths'] = kwargs.pop('truth')
        if kwargs.get('truths'):
            truths = kwargs.get('truths')
            if isinstance(parameters, list) and isinstance(truths, list):
                if len(parameters) != len(truths):
                    raise ValueError(
                        "Length of parameters and truths don't match")
            elif isinstance(truths, dict) and parameters is None:
                parameters = kwargs.pop('truths')
            else:
                raise ValueError(
                    "Combination of parameters and truths not understood")

Gregory Ashton's avatar
Gregory Ashton committed
809 810 811 812 813 814 815 816
        # If injection parameters where stored, use these as parameter values
        # but do not overwrite input parameters (or truths)
        cond1 = getattr(self, 'injection_parameters', None) is not None
        cond2 = parameters is None
        if cond1 and cond2:
            parameters = {key: self.injection_parameters[key] for key in
                          self.search_parameter_keys}

817 818 819 820 821 822 823 824 825
        # If parameters is a dictionary, use the keys to determine which
        # parameters to plot and the values as truths.
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
            kwargs['truths'] = list(parameters.values())
        elif parameters is None:
            plot_parameter_keys = self.search_parameter_keys
        else:
            plot_parameter_keys = list(parameters)
826

827
        # Get latex formatted strings for the plot labels
828 829
        kwargs['labels'] = kwargs.get(
            'labels', self.get_latex_labels_from_parameter_keys(
830
                plot_parameter_keys))
831

832 833 834 835
        # Unless already set, set the range to include all samples
        # This prevents ValueErrors being raised for parameters with no range
        kwargs['range'] = kwargs.get('range', [1] * len(plot_parameter_keys))

836 837
        # Create the data array to plot and pass everything to corner
        xs = self.posterior[plot_parameter_keys].values
838
        fig = corner.corner(xs, **kwargs)
839
        axes = fig.get_axes()
840 841 842

        #  Add the titles
        if titles and kwargs.get('quantiles', None) is not None:
843 844
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
845 846
                if ax.title.get_text() == '':
                    ax.set_title(self.get_one_dimensional_median_and_error_bar(
847
                        par, quantiles=kwargs['quantiles']).string,
848 849 850
                        **kwargs['title_kwargs'])

        #  Add priors to the 1D plots
851 852 853
        if priors is True:
            priors = getattr(self, 'priors', False)
        if isinstance(priors, dict):
854 855
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
856 857
                theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
                ax.plot(theta, priors[par].prob(theta), color='C2')
858 859 860 861
        elif priors in [False, None]:
            pass
        else:
            raise ValueError('Input priors={} not understood'.format(priors))
862

863
        if save:
864
            if filename is None:
865 866
                outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_corner)
                filename = '{}/{}_corner.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
867
            logger.debug('Saving corner plot to {}'.format(filename))
868
            fig.savefig(filename, dpi=dpi)
869
            plt.close(fig)
870

871
        return fig
872

Gregory Ashton's avatar
Gregory Ashton committed
873
    def plot_walkers(self, **kwargs):
MoritzThomasHuebner's avatar
A typo  
MoritzThomasHuebner committed
874
        """ Method to plot the trace of the walkers in an ensemble MCMC plot """
875
        if hasattr(self, 'walkers') is False:
Gregory Ashton's avatar
Gregory Ashton committed
876
            logger.warning("Cannot plot_walkers as no walkers are saved")
877
            return
878 879 880

        if utils.command_line_args.test:
            return
881 882 883

        nwalkers, nsteps, ndim = self.walkers.shape
        idxs = np.arange(nsteps)
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
884
        fig, axes = plt.subplots(nrows=ndim, figsize=(6, 3 * ndim))
885 886
        walkers = self.walkers[:, :, :]
        for i, ax in enumerate(axes):
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
887
            ax.plot(idxs[:self.nburn + 1], walkers[:, :self.nburn + 1, i].T,
888 889 890 891 892 893 894 895 896
                    lw=0.1, color='r')
            ax.set_ylabel(self.parameter_labels[i])

        for i, ax in enumerate(axes):
            ax.plot(idxs[self.nburn:], walkers[:, self.nburn:, i].T, lw=0.1,
                    color='k')
            ax.set_ylabel(self.parameter_labels[i])

        fig.tight_layout()
897 898
        outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_walkers)
        filename = '{}/{}_walkers.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
899
        logger.debug('Saving walkers plot to {}'.format('filename'))
900
        fig.savefig(filename)
901
        plt.close(fig)
902

903 904 905
    def plot_with_data(self, model, x, y, ndraws=1000, npoints=1000,
                       xlabel=None, ylabel=None, data_label='data',
                       data_fmt='o', draws_label=None, filename=None,
906
                       maxl_label='max likelihood', dpi=300, outdir=None):
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
        """ Generate a figure showing the data and fits to the data

        Parameters
        ----------
        model: function
            A python function which when called as `model(x, **kwargs)` returns
            the model prediction (here `kwargs` is a dictionary of key-value
            pairs of the model parameters.
        x, y: np.ndarray
            The independent and dependent data to plot
        ndraws: int
            Number of draws from the posterior to plot
        npoints: int
            Number of points used to plot the smoothed fit to the data
        xlabel, ylabel: str
            Labels for the axes
        data_label, draws_label, maxl_label: str
            Label for the data, draws, and max likelihood legend
        data_fmt: str
            Matpltolib fmt code, defaults to `'-o'`
        dpi: int
            Passed to `plt.savefig`
        filename: str
            If given, the filename to use. Otherwise, the filename is generated
            from the outdir and label attributes.
932 933
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
934 935

        """
936 937 938 939 940 941

        # Determine model_posterior, the subset of the full posterior which
        # should be passed into the model
        model_keys = infer_parameters_from_function(model)
        model_posterior = self.posterior[model_keys]

942 943 944 945
        xsmooth = np.linspace(np.min(x), np.max(x), npoints)
        fig, ax = plt.subplots()
        logger.info('Plotting {} draws'.format(ndraws))
        for _ in range(ndraws):
946
            s = model_posterior.sample().to_dict('records')[0]
947 948
            ax.plot(xsmooth, model(xsmooth, **s), alpha=0.25, lw=0.1, color='r',
                    label=draws_label)
949 950 951
        try:
            if all(~np.isnan(self.posterior.log_likelihood)):
                logger.info('Plotting maximum likelihood')
Colm Talbot's avatar
Colm Talbot committed
952
                s = model_posterior.iloc[self.posterior.log_likelihood.idxmax()]
953 954
                ax.plot(xsmooth, model(xsmooth, **s), lw=1, color='k',
                        label=maxl_label)
955
        except (AttributeError, TypeError):
956 957
            logger.debug(
                "No log likelihood values stored, unable to plot max")
958 959 960 961 962 963 964 965 966 967 968 969 970 971

        ax.plot(x, y, data_fmt, markersize=2, label=data_label)

        if xlabel is not None:
            ax.set_xlabel(xlabel)
        if ylabel is not None:
            ax.set_ylabel(ylabel)

        handles, labels = plt.gca().get_legend_handles_labels()
        by_label = OrderedDict(zip(labels, handles))
        plt.legend(by_label.values(), by_label.keys())
        ax.legend(numpoints=3)
        fig.tight_layout()
        if filename is None:
972 973
            outdir = self._safe_outdir_creation(outdir, self.plot_with_data)
            filename = '{}/{}_plot_with_data'.format(outdir, self.label)
974
        fig.savefig(filename, dpi=dpi)
975
        plt.close(fig)
976

977 978
    def samples_to_posterior(self, likelihood=None, priors=None,
                             conversion_function=None):
979
        """
980 981 982
        Convert array of samples to posterior (a Pandas data frame)

        Also applies the conversion function to any stored posterior
983

984 985
        Parameters
        ----------
Colm Talbot's avatar
Colm Talbot committed
986
        likelihood: bilby.likelihood.GravitationalWaveTransient, optional
987 988
            GravitationalWaveTransient likelihood used for sampling.
        priors: dict, optional
989
            Dictionary of prior object, used to fill in delta function priors.
990
        conversion_function: function, optional
991 992
            Function which adds in extra parameters to the data frame,
            should take the data_frame, likelihood and prior as arguments.
993
        """
994 995 996
        try:
            data_frame = self.posterior
        except ValueError:
997 998
            data_frame = pd.DataFrame(
                self.samples, columns=self.search_parameter_keys)
999
            for key in priors:
1000
                if isinstance(priors[key], DeltaFunction):
1001
                    data_frame[key] = priors[key].peak
1002 1003 1004 1005
                elif isinstance(priors[key], float):
                    data_frame[key] = priors[key]
            data_frame['log_likelihood'] = getattr(
                self, 'log_likelihood_evaluations', np.nan)
1006 1007 1008 1009 1010
            if self.log_prior_evaluations is None:
                data_frame['log_prior'] = self.priors.ln_prob(
                    data_frame[self.search_parameter_keys], axis=