result.py 48.5 KB
Newer Older
Colm Talbot's avatar
Colm Talbot committed
1 2
from __future__ import division

3
import os
4
from distutils.version import LooseVersion
5
from collections import OrderedDict, namedtuple
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
6

7
import numpy as np
8
import deepdish
9
import pandas as pd
10
import corner
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
11
import json
12
import scipy.stats
13
import matplotlib
14
import matplotlib.pyplot as plt
15
from matplotlib import lines as mpllines
16

17
from . import utils
Colm Talbot's avatar
Colm Talbot committed
18 19 20
from .utils import (logger, infer_parameters_from_function,
                    check_directory_exists_and_if_not_mkdir)
from .prior import Prior, PriorDict, DeltaFunction
21

22

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
23
def result_file_name(outdir, label, extension='json'):
24 25 26 27 28 29 30 31
    """ Returns the standard filename used for a result file

    Parameters
    ----------
    outdir: str
        Name of the output directory
    label: str
        Naming scheme of the output file
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
32 33
    extension: str, optional
        Whether to save as `hdf5` or `json`
34 35 36 37 38

    Returns
    -------
    str: File name of the output file
    """
39 40
    if extension in ['json', 'hdf5']:
        return '{}/{}_result.{}'.format(outdir, label, extension)
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
41
    else:
42
        raise ValueError("Extension type {} not understood".format(extension))
43 44


45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
def _determine_file_name(filename, outdir, label, extension):
    """ Helper method to determine the filename """
    if filename is not None:
        return filename
    else:
        if (outdir is None) and (label is None):
            raise ValueError("No information given to load file")
        else:
            return result_file_name(outdir, label, extension)


def read_in_result(filename=None, outdir=None, label=None, extension='json'):
    """ Reads in a stored bilby result object

    Parameters
    ----------
    filename: str
        Path to the file to be read (alternative to giving the outdir and label)
    outdir, label, extension: str
        Name of the output directory, label and extension used for the default
        naming scheme.

    """
    filename = _determine_file_name(filename, outdir, label, extension)

    # Get the actual extension (may differ from the default extension if the filename is given)
    extension = os.path.splitext(filename)[1].lstrip('.')
    if 'json' in extension:
        result = Result.from_json(filename=filename)
    elif ('hdf5' in extension) or ('h5' in extension):
        result = Result.from_hdf5(filename=filename)
    elif extension is None:
        raise ValueError("No filetype extension provided")
    else:
        raise ValueError("Filetype {} not understood".format(extension))
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
80
    return result
81 82 83 84 85 86 87 88 89 90


class Result(object):
    def __init__(self, label='no_label', outdir='.', sampler=None,
                 search_parameter_keys=None, fixed_parameter_keys=None,
                 priors=None, sampler_kwargs=None, injection_parameters=None,
                 meta_data=None, posterior=None, samples=None,
                 nested_samples=None, log_evidence=np.nan,
                 log_evidence_err=np.nan, log_noise_evidence=np.nan,
                 log_bayes_factor=np.nan, log_likelihood_evaluations=None,
91 92 93 94
                 log_prior_evaluations=None, sampling_time=None, nburn=None,
                 walkers=None, max_autocorrelation_time=None,
                 parameter_labels=None, parameter_labels_with_unit=None,
                 version=None):
95
        """ A class to store the results of the sampling run
96 97 98

        Parameters
        ----------
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        label, outdir, sampler: str
            The label, output directory, and sampler used
        search_parameter_keys, fixed_parameter_keys: list
            Lists of the search and fixed parameter keys. Elemenents of the
            list should be of type `str` and matchs the keys of the `prior`
        priors: dict, bilby.core.prior.PriorDict
            A dictionary of the priors used in the run
        sampler_kwargs: dict
            Key word arguments passed to the sampler
        injection_parameters: dict
            A dictionary of the injection parameters
        meta_data: dict
            A dictionary of meta data to store about the run
        posterior: pandas.DataFrame
            A pandas data frame of the posterior
        samples, nested_samples: array_like
            An array of the output posterior samples and the unweighted samples
        log_evidence, log_evidence_err, log_noise_evidence, log_bayes_factor: float
            Natural log evidences
        log_likelihood_evaluations: array_like
            The evaluations of the likelihood for each sample point
120 121
        log_prior_evaluations: array_like
            The evaluations of the prior for each sample point
122 123 124 125 126 127 128 129 130 131
        sampling_time: float
            The time taken to complete the sampling
        nburn: int
            The number of burn-in steps discarded for MCMC samplers
        walkers: array_like
            The samplers taken by a ensemble MCMC samplers
        max_autocorrelation_time: float
            The estimated maximum autocorrelation time for MCMC samplers
        parameter_labels, parameter_labels_with_unit: list
            Lists of the latex-formatted parameter labels
132 133 134
        version: str,
            Version information for software used to generate the result. Note,
            this information is generated when the result object is initialized
135

136 137 138 139
        Note
        ---------
        All sampling output parameters, e.g. the samples themselves are
        typically not given at initialisation, but set at a later stage.
140 141

        """
142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        self.label = label
        self.outdir = os.path.abspath(outdir)
        self.sampler = sampler
        self.search_parameter_keys = search_parameter_keys
        self.fixed_parameter_keys = fixed_parameter_keys
        self.parameter_labels = parameter_labels
        self.parameter_labels_with_unit = parameter_labels_with_unit
        self.priors = priors
        self.sampler_kwargs = sampler_kwargs
        self.meta_data = meta_data
        self.injection_parameters = injection_parameters
        self.posterior = posterior
        self.samples = samples
        self.nested_samples = nested_samples
        self.walkers = walkers
        self.nburn = nburn
        self.log_evidence = log_evidence
        self.log_evidence_err = log_evidence_err
        self.log_noise_evidence = log_noise_evidence
        self.log_bayes_factor = log_bayes_factor
        self.log_likelihood_evaluations = log_likelihood_evaluations
164
        self.log_prior_evaluations = log_prior_evaluations
165
        self.sampling_time = sampling_time
166
        self.version = version
Colm Talbot's avatar
Colm Talbot committed
167
        self.max_autocorrelation_time = max_autocorrelation_time
168

169 170 171
        self.prior_values = None
        self._kde = None

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    @classmethod
    def from_hdf5(cls, filename=None, outdir=None, label=None):
        """ Read in a saved .h5 data file

        Parameters
        ----------
        filename: str
            If given, try to load from this filename
        outdir, label: str
            If given, use the default naming convention for saved results file

        Returns
        -------
        result: bilby.core.result.Result

        Raises
        -------
        ValueError: If no filename is given and either outdir or label is None
                    If no bilby.core.result.Result is found in the path

        """
193 194
        filename = _determine_file_name(filename, outdir, label, 'hdf5')

195
        if os.path.isfile(filename):
Moritz Huebner's avatar
Moritz Huebner committed
196 197
            dictionary = deepdish.io.load(filename)
            # Some versions of deepdish/pytables return the dictionanary as
198
            # a dictionary with a key 'data'
Moritz Huebner's avatar
Moritz Huebner committed
199 200 201 202 203 204
            if len(dictionary) == 1 and 'data' in dictionary:
                dictionary = dictionary['data']
            try:
                return cls(**dictionary)
            except TypeError as e:
                raise IOError("Unable to load dictionary, error={}".format(e))
205 206 207
        else:
            raise IOError("No result '{}' found".format(filename))

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    @classmethod
    def from_json(cls, filename=None, outdir=None, label=None):
        """ Read in a saved .json data file

        Parameters
        ----------
        filename: str
            If given, try to load from this filename
        outdir, label: str
            If given, use the default naming convention for saved results file

        Returns
        -------
        result: bilby.core.result.Result

        Raises
        -------
        ValueError: If no filename is given and either outdir or label is None
                    If no bilby.core.result.Result is found in the path

        """
229 230
        filename = _determine_file_name(filename, outdir, label, 'json')

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
231
        if os.path.isfile(filename):
232 233
            with open(filename, 'r') as file:
                dictionary = json.load(file, object_hook=decode_bilby_json_result)
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
234 235 236 237 238 239 240 241 242 243 244 245 246
            for key in dictionary.keys():
                # Convert the loaded priors to bilby prior type
                if key == 'priors':
                    for param in dictionary[key].keys():
                        dictionary[key][param] = str(dictionary[key][param])
                    dictionary[key] = PriorDict(dictionary[key])
            try:
                return cls(**dictionary)
            except TypeError as e:
                raise IOError("Unable to load dictionary, error={}".format(e))
        else:
            raise IOError("No result '{}' found".format(filename))

247
    def __str__(self):
248
        """Print a summary """
249 250
        if getattr(self, 'posterior', None) is not None:
            if getattr(self, 'log_noise_evidence', None) is not None:
251 252 253 254
                return ("nsamples: {:d}\n"
                        "log_noise_evidence: {:6.3f}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
                        "log_bayes_factor: {:6.3f} +/- {:6.3f}\n"
255
                        .format(len(self.posterior), self.log_noise_evidence, self.log_evidence,
256 257 258 259 260
                                self.log_evidence_err, self.log_bayes_factor,
                                self.log_evidence_err))
            else:
                return ("nsamples: {:d}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
261
                        .format(len(self.posterior), self.log_evidence, self.log_evidence_err))
262 263
        else:
            return ''
264

265 266 267 268 269 270
    @property
    def priors(self):
        if self._priors is not None:
            return self._priors
        else:
            raise ValueError('Result object has no priors')
271

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    @priors.setter
    def priors(self, priors):
        if isinstance(priors, dict):
            self._priors = PriorDict(priors)
            if self.parameter_labels is None:
                self.parameter_labels = [self.priors[k].latex_label for k in
                                         self.search_parameter_keys]
            if self.parameter_labels_with_unit is None:
                self.parameter_labels_with_unit = [
                    self.priors[k].latex_label_with_unit for k in
                    self.search_parameter_keys]

        elif priors is None:
            self._priors = priors
            self.parameter_labels = self.search_parameter_keys
            self.parameter_labels_with_unit = self.search_parameter_keys
        else:
            raise ValueError("Input priors not understood")
290

291 292 293 294 295
    @property
    def samples(self):
        """ An array of samples """
        if self._samples is not None:
            return self._samples
296
        else:
297
            raise ValueError("Result object has no stored samples")
298

299 300 301
    @samples.setter
    def samples(self, samples):
        self._samples = samples
302

303 304 305 306 307 308 309
    @property
    def nested_samples(self):
        """" An array of unweighted samples """
        if self._nested_samples is not None:
            return self._nested_samples
        else:
            raise ValueError("Result object has no stored nested samples")
310

311 312 313
    @nested_samples.setter
    def nested_samples(self, nested_samples):
        self._nested_samples = nested_samples
314

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    @property
    def walkers(self):
        """" An array of the ensemble walkers """
        if self._walkers is not None:
            return self._walkers
        else:
            raise ValueError("Result object has no stored walkers")

    @walkers.setter
    def walkers(self, walkers):
        self._walkers = walkers

    @property
    def nburn(self):
        """" An array of the ensemble walkers """
        if self._nburn is not None:
            return self._nburn
        else:
            raise ValueError("Result object has no stored nburn")

    @nburn.setter
    def nburn(self, nburn):
        self._nburn = nburn

    @property
    def posterior(self):
        """ A pandas data frame of the posterior """
        if self._posterior is not None:
            return self._posterior
        else:
            raise ValueError("Result object has no stored posterior")

    @posterior.setter
    def posterior(self, posterior):
        self._posterior = posterior

351 352 353 354 355 356 357 358 359 360 361
    @property
    def version(self):
        return self._version

    @version.setter
    def version(self, version):
        if version is None:
            self._version = 'bilby={}'.format(utils.get_version_information())
        else:
            self._version = version

362
    def _get_save_data_dictionary(self):
363
        # This list defines all the parameters saved in the result object
364 365 366 367 368
        save_attrs = [
            'label', 'outdir', 'sampler', 'log_evidence', 'log_evidence_err',
            'log_noise_evidence', 'log_bayes_factor', 'priors', 'posterior',
            'injection_parameters', 'meta_data', 'search_parameter_keys',
            'fixed_parameter_keys', 'sampling_time', 'sampler_kwargs',
369 370
            'log_likelihood_evaluations', 'log_prior_evaluations', 'samples',
            'nested_samples', 'walkers', 'nburn', 'parameter_labels',
371
            'parameter_labels_with_unit', 'version']
372 373 374 375 376 377 378 379
        dictionary = OrderedDict()
        for attr in save_attrs:
            try:
                dictionary[attr] = getattr(self, attr)
            except ValueError as e:
                logger.debug("Unable to save {}, message: {}".format(attr, e))
                pass
        return dictionary
380

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
381
    def save_to_file(self, overwrite=False, outdir=None, extension='json'):
Colm Talbot's avatar
Colm Talbot committed
382
        """
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
383
        Writes the Result to a json or deepdish h5 file
Colm Talbot's avatar
Colm Talbot committed
384 385 386 387 388 389

        Parameters
        ----------
        overwrite: bool, optional
            Whether or not to overwrite an existing result file.
            default=False
390 391
        outdir: str, optional
            Path to the outdir. Default is the one stored in the result object.
392 393
        extension: str, optional {json, hdf5}
            Determines the method to use to store the data
Colm Talbot's avatar
Colm Talbot committed
394
        """
395
        outdir = self._safe_outdir_creation(outdir, self.save_to_file)
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
396
        file_name = result_file_name(outdir, self.label, extension)
397

398
        if os.path.isfile(file_name):
Colm Talbot's avatar
Colm Talbot committed
399 400 401 402 403 404 405 406
            if overwrite:
                logger.debug('Removing existing file {}'.format(file_name))
                os.remove(file_name)
            else:
                logger.debug(
                    'Renaming existing file {} to {}.old'.format(file_name,
                                                                 file_name))
                os.rename(file_name, file_name + '.old')
407

Gregory Ashton's avatar
Gregory Ashton committed
408
        logger.debug("Saving result to {}".format(file_name))
409 410

        # Convert the prior to a string representation for saving on disk
411
        dictionary = self._get_save_data_dictionary()
412 413 414
        if dictionary.get('priors', False):
            dictionary['priors'] = {key: str(self.priors[key]) for key in self.priors}

415
        # Convert callable sampler_kwargs to strings
416 417 418 419
        if dictionary.get('sampler_kwargs', None) is not None:
            for key in dictionary['sampler_kwargs']:
                if hasattr(dictionary['sampler_kwargs'][key], '__call__'):
                    dictionary['sampler_kwargs'][key] = str(dictionary['sampler_kwargs'])
420

Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
421
        try:
422 423 424 425
            if extension == 'json':
                with open(file_name, 'w') as file:
                    json.dump(dictionary, file, indent=2, cls=BilbyResultJsonEncoder)
            elif extension == 'hdf5':
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
426 427
                deepdish.io.save(file_name, dictionary)
            else:
428
                raise ValueError("Extension type {} not understood".format(extension))
Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
429
        except Exception as e:
Gregory Ashton's avatar
Gregory Ashton committed
430
            logger.error("\n\n Saving the data has failed with the "
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
431
                         "following message:\n {} \n\n".format(e))
Gregory Ashton's avatar
Gregory Ashton committed
432

433
    def save_posterior_samples(self, outdir=None):
434
        """Saves posterior samples to a file"""
435 436
        outdir = self._safe_outdir_creation(outdir, self.save_posterior_samples)
        filename = '{}/{}_posterior_samples.txt'.format(outdir, self.label)
437 438
        self.posterior.to_csv(filename, index=False, header=True)

Gregory Ashton's avatar
Gregory Ashton committed
439
    def get_latex_labels_from_parameter_keys(self, keys):
440 441 442 443 444 445 446 447 448 449 450 451 452
        """ Returns a list of latex_labels corresponding to the given keys

        Parameters
        ----------
        keys: list
            List of strings corresponding to the desired latex_labels

        Returns
        -------
        list: The desired latex_labels

        """
        latex_labels = []
Gregory Ashton's avatar
Gregory Ashton committed
453 454 455
        for k in keys:
            if k in self.search_parameter_keys:
                idx = self.search_parameter_keys.index(k)
456
                latex_labels.append(self.parameter_labels_with_unit[idx])
Gregory Ashton's avatar
Gregory Ashton committed
457
            elif k in self.parameter_labels:
458
                latex_labels.append(k)
Gregory Ashton's avatar
Gregory Ashton committed
459
            else:
Colm Talbot's avatar
Colm Talbot committed
460
                logger.debug(
461 462
                    'key {} not a parameter label or latex label'.format(k))
                latex_labels.append(' '.join(k.split('_')))
463
        return latex_labels
Gregory Ashton's avatar
Gregory Ashton committed
464

Gregory Ashton's avatar
Gregory Ashton committed
465 466 467 468 469 470 471 472 473
    @property
    def covariance_matrix(self):
        """ The covariance matrix of the samples the posterior """
        samples = self.posterior[self.search_parameter_keys].values
        return np.cov(samples.T)

    @property
    def posterior_volume(self):
        """ The posterior volume """
Gregory Ashton's avatar
Gregory Ashton committed
474 475 476
        if self.covariance_matrix.ndim == 0:
            return np.sqrt(self.covariance_matrix)
        else:
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
477 478
            return 1 / np.sqrt(np.abs(np.linalg.det(
                1 / self.covariance_matrix)))
Gregory Ashton's avatar
Gregory Ashton committed
479

480 481
    @staticmethod
    def prior_volume(priors):
Gregory Ashton's avatar
Gregory Ashton committed
482 483 484 485 486 487
        """ The prior volume, given a set of priors """
        return np.prod([priors[k].maximum - priors[k].minimum for k in priors])

    def occam_factor(self, priors):
        """ The Occam factor,

488 489 490
        See Chapter 28, `Mackay "Information Theory, Inference, and Learning
        Algorithms" <http://www.inference.org.uk/itprnn/book.html>`_ Cambridge
        University Press (2003).
Gregory Ashton's avatar
Gregory Ashton committed
491 492 493 494

        """
        return self.posterior_volume / self.prior_volume(priors)

495
    def get_one_dimensional_median_and_error_bar(self, key, fmt='.2f',
496
                                                 quantiles=(0.16, 0.84)):
497 498 499 500 501 502 503 504
        """ Calculate the median and error bar for a given key

        Parameters
        ----------
        key: str
            The parameter key for which to calculate the median and error bar
        fmt: str, ('.2f')
            A format string
505 506
        quantiles: list, tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
507 508 509 510
            the errors bars for.

        Returns
        -------
511 512
        summary: namedtuple
            An object with attributes, median, lower, upper and string
513 514

        """
515 516
        summary = namedtuple('summary', ['median', 'lower', 'upper', 'string'])

517 518 519 520 521
        if len(quantiles) != 2:
            raise ValueError("quantiles must be of length 2")

        quants_to_compute = np.array([quantiles[0], 0.5, quantiles[1]])
        quants = np.percentile(self.posterior[key], quants_to_compute * 100)
522 523 524
        summary.median = quants[1]
        summary.plus = quants[2] - summary.median
        summary.minus = summary.median - quants[0]
525 526

        fmt = "{{0:{0}}}".format(fmt).format
527 528 529 530 531
        string_template = r"${{{0}}}_{{-{1}}}^{{+{2}}}$"
        summary.string = string_template.format(
            fmt(summary.median), fmt(summary.minus), fmt(summary.plus))
        return summary

Colm Talbot's avatar
Colm Talbot committed
532 533 534
    def plot_single_density(self, key, prior=None, cumulative=False,
                            title=None, truth=None, save=True,
                            file_base_name=None, bins=50, label_fontsize=16,
535 536
                            title_fontsize=16, quantiles=(0.16, 0.84), dpi=300):
        """ Plot a 1D marginal density, either probability or cumulative.
Colm Talbot's avatar
Colm Talbot committed
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564

        Parameters
        ----------
        key: str
            Name of the parameter to plot
        prior: {bool (True), bilby.core.prior.Prior}
            If true, add the stored prior probability density function to the
            one-dimensional marginal distributions. If instead a Prior
            is provided, this will be plotted.
        cumulative: bool
            If true plot the CDF
        title: bool
            If true, add 1D title of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        truth: {bool, float}
            If true, plot self.injection_parameters[parameter].
            If float, plot this value.
        save: bool:
            If true, save plot to disk.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
            The fontsizes for the labels and titles
565 566
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
Colm Talbot's avatar
Colm Talbot committed
567 568 569 570 571 572 573 574 575 576 577 578
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot

        Returns
        -------
        figure: matplotlib.pyplot.figure
            A matplotlib figure object
        """
        logger.info('Plotting {} marginal distribution'.format(key))
        label = self.get_latex_labels_from_parameter_keys([key])[0]
        fig, ax = plt.subplots()
579 580 581 582 583 584 585 586
        try:
            ax.hist(self.posterior[key].values, bins=bins, density=True,
                    histtype='step', cumulative=cumulative)
        except ValueError as e:
            logger.info(
                'Failed to generate 1d plot for {}, error message: {}'
                .format(key, e))
            return
Colm Talbot's avatar
Colm Talbot committed
587 588 589 590 591 592 593 594 595 596 597 598 599
        ax.set_xlabel(label, fontsize=label_fontsize)
        if truth is not None:
            ax.axvline(truth, ls='-', color='orange')

        summary = self.get_one_dimensional_median_and_error_bar(
            key, quantiles=quantiles)
        ax.axvline(summary.median - summary.minus, ls='--', color='C0')
        ax.axvline(summary.median + summary.plus, ls='--', color='C0')
        if title:
            ax.set_title(summary.string, fontsize=title_fontsize)

        if isinstance(prior, Prior):
            theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
600
            ax.plot(theta, prior.prob(theta), color='C2')
Colm Talbot's avatar
Colm Talbot committed
601 602 603 604 605 606 607 608

        if save:
            fig.tight_layout()
            if cumulative:
                file_name = file_base_name + key + '_cdf'
            else:
                file_name = file_base_name + key + '_pdf'
            fig.savefig(file_name, dpi=dpi)
609 610 611
            plt.close(fig)
        else:
            return fig
Colm Talbot's avatar
Colm Talbot committed
612

613 614
    def plot_marginals(self, parameters=None, priors=None, titles=True,
                       file_base_name=None, bins=50, label_fontsize=16,
615 616
                       title_fontsize=16, quantiles=(0.16, 0.84), dpi=300,
                       outdir=None):
617 618 619 620 621 622 623
        """ Plot 1D marginal distributions

        Parameters
        ----------
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
624
        priors: {bool (False), bilby.core.prior.PriorDict}
625
            If true, add the stored prior probability density functions to the
626
            one-dimensional marginal distributions. If instead a PriorDict
627 628 629 630 631 632 633 634 635 636 637 638
            is provided, this will be plotted.
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
639 640 641
            The font sizes for the labels and titles
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
642 643 644
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot
645 646
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
647 648 649 650 651 652

        Returns
        -------
        """
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
Colm Talbot's avatar
Colm Talbot committed
653
            truths = parameters
654
        elif parameters is None:
Colm Talbot's avatar
Colm Talbot committed
655 656 657 658 659
            plot_parameter_keys = self.posterior.keys()
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
660 661
        else:
            plot_parameter_keys = list(parameters)
Colm Talbot's avatar
Colm Talbot committed
662 663 664 665
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
666 667

        if file_base_name is None:
668 669
            outdir = self._safe_outdir_creation(outdir, self.plot_marginals)
            file_base_name = '{}/{}_1d/'.format(outdir, self.label)
Colm Talbot's avatar
Colm Talbot committed
670
            check_directory_exists_and_if_not_mkdir(file_base_name)
671 672

        if priors is True:
Colm Talbot's avatar
Colm Talbot committed
673 674
            priors = getattr(self, 'priors', dict())
        elif isinstance(priors, dict):
675
            pass
Colm Talbot's avatar
Colm Talbot committed
676 677
        elif priors in [False, None]:
            priors = dict()
678 679 680 681
        else:
            raise ValueError('Input priors={} not understood'.format(priors))

        for i, key in enumerate(plot_parameter_keys):
Colm Talbot's avatar
Colm Talbot committed
682 683
            if not isinstance(self.posterior[key].values[0], float):
                continue
Colm Talbot's avatar
Colm Talbot committed
684 685
            prior = priors.get(key, None)
            truth = truths.get(key, None)
Colm Talbot's avatar
Colm Talbot committed
686
            for cumulative in [False, True]:
687
                self.plot_single_density(
Colm Talbot's avatar
Colm Talbot committed
688 689
                    key, prior=prior, cumulative=cumulative, title=titles,
                    truth=truth, save=True, file_base_name=file_base_name,
Colm Talbot's avatar
Colm Talbot committed
690 691
                    bins=bins, label_fontsize=label_fontsize, dpi=dpi,
                    title_fontsize=title_fontsize, quantiles=quantiles)
692

693 694 695
    def plot_corner(self, parameters=None, priors=None, titles=True, save=True,
                    filename=None, dpi=300, **kwargs):
        """ Plot a corner-plot
Gregory Ashton's avatar
Gregory Ashton committed
696 697 698

        Parameters
        ----------
699 700 701
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
702
        priors: {bool (False), bilby.core.prior.PriorDict}
703
            If true, add the stored prior probability density functions to the
704
            one-dimensional marginal distributions. If instead a PriorDict
705
            is provided, this will be plotted.
706 707 708 709 710
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
711 712 713 714 715 716
        save: bool, optional
            If true, save the image using the given label and outdir
        filename: str, optional
            If given, overwrite the default filename
        dpi: int, optional
            Dots per inch resolution of the plot
717 718 719
        **kwargs:
            Other keyword arguments are passed to `corner.corner`. We set some
            defaults to improve the basic look and feel, but these can all be
720 721
            overridden. Also optional an 'outdir' argument which can be used
            to override the outdir set by the absolute path of the result object.
Gregory Ashton's avatar
Gregory Ashton committed
722

723 724 725 726 727 728
        Notes
        -----
            The generation of the corner plot themselves is done by the corner
            python module, see https://corner.readthedocs.io for more
            information.

Gregory Ashton's avatar
Gregory Ashton committed
729 730 731 732
        Returns
        -------
        fig:
            A matplotlib figure instance
733

Gregory Ashton's avatar
Gregory Ashton committed
734
        """
735 736

        # If in testing mode, not corner plots are generated
737 738
        if utils.command_line_args.test:
            return
Gregory Ashton's avatar
Gregory Ashton committed
739

Colm Talbot's avatar
Colm Talbot committed
740
        # bilby default corner kwargs. Overwritten by anything passed to kwargs
741 742 743
        defaults_kwargs = dict(
            bins=50, smooth=0.9, label_kwargs=dict(fontsize=16),
            title_kwargs=dict(fontsize=16), color='#0072C1',
744
            truth_color='tab:orange', quantiles=[0.16, 0.84],
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
745
            levels=(1 - np.exp(-0.5), 1 - np.exp(-2), 1 - np.exp(-9 / 2.)),
746
            plot_density=False, plot_datapoints=True, fill_contours=True,
747 748 749 750 751 752
            max_n_ticks=3)

        if LooseVersion(matplotlib.__version__) < "2.1":
            defaults_kwargs['hist_kwargs'] = dict(normed=True)
        else:
            defaults_kwargs['hist_kwargs'] = dict(density=True)
753

754 755 756 757
        if 'lionize' in kwargs and kwargs['lionize'] is True:
            defaults_kwargs['truth_color'] = 'tab:blue'
            defaults_kwargs['color'] = '#FF8C00'

758 759 760
        defaults_kwargs.update(kwargs)
        kwargs = defaults_kwargs

761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
        # Handle if truths was passed in
        if 'truth' in kwargs:
            kwargs['truths'] = kwargs.pop('truth')
        if kwargs.get('truths'):
            truths = kwargs.get('truths')
            if isinstance(parameters, list) and isinstance(truths, list):
                if len(parameters) != len(truths):
                    raise ValueError(
                        "Length of parameters and truths don't match")
            elif isinstance(truths, dict) and parameters is None:
                parameters = kwargs.pop('truths')
            else:
                raise ValueError(
                    "Combination of parameters and truths not understood")

Gregory Ashton's avatar
Gregory Ashton committed
776 777 778 779 780 781 782 783
        # If injection parameters where stored, use these as parameter values
        # but do not overwrite input parameters (or truths)
        cond1 = getattr(self, 'injection_parameters', None) is not None
        cond2 = parameters is None
        if cond1 and cond2:
            parameters = {key: self.injection_parameters[key] for key in
                          self.search_parameter_keys}

784 785 786 787 788 789 790 791 792
        # If parameters is a dictionary, use the keys to determine which
        # parameters to plot and the values as truths.
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
            kwargs['truths'] = list(parameters.values())
        elif parameters is None:
            plot_parameter_keys = self.search_parameter_keys
        else:
            plot_parameter_keys = list(parameters)
793

794
        # Get latex formatted strings for the plot labels
795 796
        kwargs['labels'] = kwargs.get(
            'labels', self.get_latex_labels_from_parameter_keys(
797
                plot_parameter_keys))
798

799 800 801 802
        # Unless already set, set the range to include all samples
        # This prevents ValueErrors being raised for parameters with no range
        kwargs['range'] = kwargs.get('range', [1] * len(plot_parameter_keys))

803 804
        # Create the data array to plot and pass everything to corner
        xs = self.posterior[plot_parameter_keys].values
805
        fig = corner.corner(xs, **kwargs)
806
        axes = fig.get_axes()
807 808 809

        #  Add the titles
        if titles and kwargs.get('quantiles', None) is not None:
810 811
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
812 813
                if ax.title.get_text() == '':
                    ax.set_title(self.get_one_dimensional_median_and_error_bar(
814
                        par, quantiles=kwargs['quantiles']).string,
815 816 817
                        **kwargs['title_kwargs'])

        #  Add priors to the 1D plots
818 819 820
        if priors is True:
            priors = getattr(self, 'priors', False)
        if isinstance(priors, dict):
821 822
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
823 824
                theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
                ax.plot(theta, priors[par].prob(theta), color='C2')
825 826 827 828
        elif priors in [False, None]:
            pass
        else:
            raise ValueError('Input priors={} not understood'.format(priors))
829

830
        if save:
831
            if filename is None:
832 833
                outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_corner)
                filename = '{}/{}_corner.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
834
            logger.debug('Saving corner plot to {}'.format(filename))
835
            fig.savefig(filename, dpi=dpi)
836
            plt.close(fig)
837

838
        return fig
839

Gregory Ashton's avatar
Gregory Ashton committed
840
    def plot_walkers(self, **kwargs):
MoritzThomasHuebner's avatar
A typo  
MoritzThomasHuebner committed
841
        """ Method to plot the trace of the walkers in an ensemble MCMC plot """
842
        if hasattr(self, 'walkers') is False:
Gregory Ashton's avatar
Gregory Ashton committed
843
            logger.warning("Cannot plot_walkers as no walkers are saved")
844
            return
845 846 847

        if utils.command_line_args.test:
            return
848 849 850

        nwalkers, nsteps, ndim = self.walkers.shape
        idxs = np.arange(nsteps)
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
851
        fig, axes = plt.subplots(nrows=ndim, figsize=(6, 3 * ndim))
852 853
        walkers = self.walkers[:, :, :]
        for i, ax in enumerate(axes):
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
854
            ax.plot(idxs[:self.nburn + 1], walkers[:, :self.nburn + 1, i].T,
855 856 857 858 859 860 861 862 863
                    lw=0.1, color='r')
            ax.set_ylabel(self.parameter_labels[i])

        for i, ax in enumerate(axes):
            ax.plot(idxs[self.nburn:], walkers[:, self.nburn:, i].T, lw=0.1,
                    color='k')
            ax.set_ylabel(self.parameter_labels[i])

        fig.tight_layout()
864 865
        outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_walkers)
        filename = '{}/{}_walkers.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
866
        logger.debug('Saving walkers plot to {}'.format('filename'))
867
        fig.savefig(filename)
868
        plt.close(fig)
869

870 871 872
    def plot_with_data(self, model, x, y, ndraws=1000, npoints=1000,
                       xlabel=None, ylabel=None, data_label='data',
                       data_fmt='o', draws_label=None, filename=None,
873
                       maxl_label='max likelihood', dpi=300, outdir=None):
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
        """ Generate a figure showing the data and fits to the data

        Parameters
        ----------
        model: function
            A python function which when called as `model(x, **kwargs)` returns
            the model prediction (here `kwargs` is a dictionary of key-value
            pairs of the model parameters.
        x, y: np.ndarray
            The independent and dependent data to plot
        ndraws: int
            Number of draws from the posterior to plot
        npoints: int
            Number of points used to plot the smoothed fit to the data
        xlabel, ylabel: str
            Labels for the axes
        data_label, draws_label, maxl_label: str
            Label for the data, draws, and max likelihood legend
        data_fmt: str
            Matpltolib fmt code, defaults to `'-o'`
        dpi: int
            Passed to `plt.savefig`
        filename: str
            If given, the filename to use. Otherwise, the filename is generated
            from the outdir and label attributes.
899 900
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
901 902

        """
903 904 905 906 907 908

        # Determine model_posterior, the subset of the full posterior which
        # should be passed into the model
        model_keys = infer_parameters_from_function(model)
        model_posterior = self.posterior[model_keys]

909 910 911 912
        xsmooth = np.linspace(np.min(x), np.max(x), npoints)
        fig, ax = plt.subplots()
        logger.info('Plotting {} draws'.format(ndraws))
        for _ in range(ndraws):
913
            s = model_posterior.sample().to_dict('records')[0]
914 915
            ax.plot(xsmooth, model(xsmooth, **s), alpha=0.25, lw=0.1, color='r',
                    label=draws_label)
916 917 918
        try:
            if all(~np.isnan(self.posterior.log_likelihood)):
                logger.info('Plotting maximum likelihood')
Colm Talbot's avatar
Colm Talbot committed
919
                s = model_posterior.iloc[self.posterior.log_likelihood.idxmax()]
920 921
                ax.plot(xsmooth, model(xsmooth, **s), lw=1, color='k',
                        label=maxl_label)
922
        except (AttributeError, TypeError):
923 924
            logger.debug(
                "No log likelihood values stored, unable to plot max")
925 926 927 928 929 930 931 932 933 934 935 936 937 938

        ax.plot(x, y, data_fmt, markersize=2, label=data_label)

        if xlabel is not None:
            ax.set_xlabel(xlabel)
        if ylabel is not None:
            ax.set_ylabel(ylabel)

        handles, labels = plt.gca().get_legend_handles_labels()
        by_label = OrderedDict(zip(labels, handles))
        plt.legend(by_label.values(), by_label.keys())
        ax.legend(numpoints=3)
        fig.tight_layout()
        if filename is None:
939 940
            outdir = self._safe_outdir_creation(outdir, self.plot_with_data)
            filename = '{}/{}_plot_with_data'.format(outdir, self.label)
941
        fig.savefig(filename, dpi=dpi)
942
        plt.close(fig)
943

944 945
    def samples_to_posterior(self, likelihood=None, priors=None,
                             conversion_function=None):
946
        """
947 948 949
        Convert array of samples to posterior (a Pandas data frame)

        Also applies the conversion function to any stored posterior
950

951 952
        Parameters
        ----------
Colm Talbot's avatar
Colm Talbot committed
953
        likelihood: bilby.likelihood.GravitationalWaveTransient, optional
954 955
            GravitationalWaveTransient likelihood used for sampling.
        priors: dict, optional
956
            Dictionary of prior object, used to fill in delta function priors.
957
        conversion_function: function, optional
958 959
            Function which adds in extra parameters to the data frame,
            should take the data_frame, likelihood and prior as arguments.
960
        """
961 962 963
        try:
            data_frame = self.posterior
        except ValueError:
964 965
            data_frame = pd.DataFrame(
                self.samples, columns=self.search_parameter_keys)
966
            for key in priors:
967
                if isinstance(priors[key], DeltaFunction):
968
                    data_frame[key] = priors[key].peak
969 970 971 972
                elif isinstance(priors[key], float):
                    data_frame[key] = priors[key]
            data_frame['log_likelihood'] = getattr(
                self, 'log_likelihood_evaluations', np.nan)
973 974 975 976 977
            if self.log_prior_evaluations is None:
                data_frame['log_prior'] = self.priors.ln_prob(
                    data_frame[self.search_parameter_keys], axis=0)
            else:
                data_frame['log_prior'] = self.log_prior_evaluations
978
        if conversion_function is not None:
979
            data_frame = conversion_function(data_frame, likelihood, priors)
980
        self.posterior = data_frame
Gregory Ashton's avatar
Gregory Ashton committed
981

Colm Talbot's avatar
Colm Talbot committed
982
    def calculate_prior_values(self, priors):
983 984 985 986 987
        """
        Evaluate prior probability for each parameter for each sample.

        Parameters
        ----------
988
        priors: dict, PriorDict
989 990 991 992 993 994 995 996 997 998 999
            Prior distributions
        """
        self.prior_values = pd.DataFrame()
        for key in priors:
            if key in self.posterior.keys():
                if isinstance(priors[key], DeltaFunction):
                    continue
                else:
                    self.prior_values[key]\
                        = priors[key].prob(self.posterior[key].values)

Colm Talbot's avatar
Colm Talbot committed
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
    def get_all_injection_credible_levels(self):
        """
        Get credible levels for all parameters in self.injection_parameters

        Returns
        -------
        credible_levels: dict
            The credible levels at which the injected parameters are found.
        """
        if self.injection_parameters is None:
            raise(TypeError, "Result object has no 'injection_parameters'. "
                             "Cannot copmute credible levels.")
        credible_levels = {key: self.get_injection_credible_level(key)
                           for key in self.search_parameter_keys
                           if isinstance(self.injection_parameters[key], float)}
        return credible_levels

    def get_injection_credible_level(self, parameter):
        """
        Get the credible level of the injected parameter

        Calculated as CDF(injection value)

        Parameters
        ----------
        parameter: str
            Parameter to get credible level for
        Returns
        -------
        float: credible level
        """
        if self.injection_parameters is None:
            raise(TypeError, "Result object has no 'injection_parameters'. "
                             "Cannot copmute credible levels.")
        if parameter in self.posterior and\
                parameter in self.injection_parameters:
            credible_level =\
                sum(self.posterior[parameter].values <
                    self.injection_parameters[parameter]) / len(self.posterior)
            return credible_level
        else:
            return np.nan

1043
    def _check_attribute_match_to_other_object(self, name, other_object):
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        """ Check attribute name exists in other_object and is the same

        Parameters
        ----------
        name: str
            Name of the attribute in this instance
        other_object: object
            Other object with attributes to compare with

        Returns
        -------
        bool: True if attribute name matches with an attribute of other_object, False otherwise

        """
1058 1059 1060 1061 1062 1063