result.py 44.3 KB
Newer Older
Colm Talbot's avatar
Colm Talbot committed
1 2
from __future__ import division

3
import os
4
from distutils.version import LooseVersion
5
from collections import OrderedDict, namedtuple
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
6

7
import numpy as np
8
import deepdish
9
import pandas as pd
10
import corner
11
import scipy.stats
12
import matplotlib
13
import matplotlib.pyplot as plt
14
from matplotlib import lines as mpllines
15

16
from . import utils
Colm Talbot's avatar
Colm Talbot committed
17 18 19
from .utils import (logger, infer_parameters_from_function,
                    check_directory_exists_and_if_not_mkdir)
from .prior import Prior, PriorDict, DeltaFunction
20

21

22
def result_file_name(outdir, label):
23 24 25 26 27 28 29 30 31 32 33 34 35
    """ Returns the standard filename used for a result file

    Parameters
    ----------
    outdir: str
        Name of the output directory
    label: str
        Naming scheme of the output file

    Returns
    -------
    str: File name of the output file
    """
36 37 38
    return '{}/{}_result.h5'.format(outdir, label)


39
def read_in_result(filename=None, outdir=None, label=None):
40 41
    """ Wrapper to bilby.core.result.Result.from_hdf5 """
    return Result.from_hdf5(filename=filename, outdir=outdir, label=label)
42 43 44 45 46 47 48 49 50 51


class Result(object):
    def __init__(self, label='no_label', outdir='.', sampler=None,
                 search_parameter_keys=None, fixed_parameter_keys=None,
                 priors=None, sampler_kwargs=None, injection_parameters=None,
                 meta_data=None, posterior=None, samples=None,
                 nested_samples=None, log_evidence=np.nan,
                 log_evidence_err=np.nan, log_noise_evidence=np.nan,
                 log_bayes_factor=np.nan, log_likelihood_evaluations=None,
52 53 54 55
                 log_prior_evaluations=None, sampling_time=None, nburn=None,
                 walkers=None, max_autocorrelation_time=None,
                 parameter_labels=None, parameter_labels_with_unit=None,
                 version=None):
56
        """ A class to store the results of the sampling run
57 58 59

        Parameters
        ----------
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
        label, outdir, sampler: str
            The label, output directory, and sampler used
        search_parameter_keys, fixed_parameter_keys: list
            Lists of the search and fixed parameter keys. Elemenents of the
            list should be of type `str` and matchs the keys of the `prior`
        priors: dict, bilby.core.prior.PriorDict
            A dictionary of the priors used in the run
        sampler_kwargs: dict
            Key word arguments passed to the sampler
        injection_parameters: dict
            A dictionary of the injection parameters
        meta_data: dict
            A dictionary of meta data to store about the run
        posterior: pandas.DataFrame
            A pandas data frame of the posterior
        samples, nested_samples: array_like
            An array of the output posterior samples and the unweighted samples
        log_evidence, log_evidence_err, log_noise_evidence, log_bayes_factor: float
            Natural log evidences
        log_likelihood_evaluations: array_like
            The evaluations of the likelihood for each sample point
81 82
        log_prior_evaluations: array_like
            The evaluations of the prior for each sample point
83 84 85 86 87 88 89 90 91 92
        sampling_time: float
            The time taken to complete the sampling
        nburn: int
            The number of burn-in steps discarded for MCMC samplers
        walkers: array_like
            The samplers taken by a ensemble MCMC samplers
        max_autocorrelation_time: float
            The estimated maximum autocorrelation time for MCMC samplers
        parameter_labels, parameter_labels_with_unit: list
            Lists of the latex-formatted parameter labels
93 94 95
        version: str,
            Version information for software used to generate the result. Note,
            this information is generated when the result object is initialized
96

97 98 99 100
        Note
        ---------
        All sampling output parameters, e.g. the samples themselves are
        typically not given at initialisation, but set at a later stage.
101 102

        """
103

104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        self.label = label
        self.outdir = os.path.abspath(outdir)
        self.sampler = sampler
        self.search_parameter_keys = search_parameter_keys
        self.fixed_parameter_keys = fixed_parameter_keys
        self.parameter_labels = parameter_labels
        self.parameter_labels_with_unit = parameter_labels_with_unit
        self.priors = priors
        self.sampler_kwargs = sampler_kwargs
        self.meta_data = meta_data
        self.injection_parameters = injection_parameters
        self.posterior = posterior
        self.samples = samples
        self.nested_samples = nested_samples
        self.walkers = walkers
        self.nburn = nburn
        self.log_evidence = log_evidence
        self.log_evidence_err = log_evidence_err
        self.log_noise_evidence = log_noise_evidence
        self.log_bayes_factor = log_bayes_factor
        self.log_likelihood_evaluations = log_likelihood_evaluations
125
        self.log_prior_evaluations = log_prior_evaluations
126
        self.sampling_time = sampling_time
127
        self.version = version
Colm Talbot's avatar
Colm Talbot committed
128
        self.max_autocorrelation_time = max_autocorrelation_time
129

130 131 132
        self.prior_values = None
        self._kde = None

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    @classmethod
    def from_hdf5(cls, filename=None, outdir=None, label=None):
        """ Read in a saved .h5 data file

        Parameters
        ----------
        filename: str
            If given, try to load from this filename
        outdir, label: str
            If given, use the default naming convention for saved results file

        Returns
        -------
        result: bilby.core.result.Result

        Raises
        -------
        ValueError: If no filename is given and either outdir or label is None
                    If no bilby.core.result.Result is found in the path

        """
        if filename is None:
            if (outdir is None) and (label is None):
                raise ValueError("No information given to load file")
            else:
                filename = result_file_name(outdir, label)
        if os.path.isfile(filename):
            return cls(**deepdish.io.load(filename))
        else:
            raise IOError("No result '{}' found".format(filename))

164
    def __str__(self):
165
        """Print a summary """
166 167
        if getattr(self, 'posterior', None) is not None:
            if getattr(self, 'log_noise_evidence', None) is not None:
168 169 170 171
                return ("nsamples: {:d}\n"
                        "log_noise_evidence: {:6.3f}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
                        "log_bayes_factor: {:6.3f} +/- {:6.3f}\n"
172
                        .format(len(self.posterior), self.log_noise_evidence, self.log_evidence,
173 174 175 176 177
                                self.log_evidence_err, self.log_bayes_factor,
                                self.log_evidence_err))
            else:
                return ("nsamples: {:d}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
178
                        .format(len(self.posterior), self.log_evidence, self.log_evidence_err))
179 180
        else:
            return ''
181

182 183 184 185 186 187
    @property
    def priors(self):
        if self._priors is not None:
            return self._priors
        else:
            raise ValueError('Result object has no priors')
188

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    @priors.setter
    def priors(self, priors):
        if isinstance(priors, dict):
            self._priors = PriorDict(priors)
            if self.parameter_labels is None:
                self.parameter_labels = [self.priors[k].latex_label for k in
                                         self.search_parameter_keys]
            if self.parameter_labels_with_unit is None:
                self.parameter_labels_with_unit = [
                    self.priors[k].latex_label_with_unit for k in
                    self.search_parameter_keys]

        elif priors is None:
            self._priors = priors
            self.parameter_labels = self.search_parameter_keys
            self.parameter_labels_with_unit = self.search_parameter_keys
        else:
            raise ValueError("Input priors not understood")
207

208 209 210 211 212
    @property
    def samples(self):
        """ An array of samples """
        if self._samples is not None:
            return self._samples
213
        else:
214
            raise ValueError("Result object has no stored samples")
215

216 217 218
    @samples.setter
    def samples(self, samples):
        self._samples = samples
219

220 221 222 223 224 225 226
    @property
    def nested_samples(self):
        """" An array of unweighted samples """
        if self._nested_samples is not None:
            return self._nested_samples
        else:
            raise ValueError("Result object has no stored nested samples")
227

228 229 230
    @nested_samples.setter
    def nested_samples(self, nested_samples):
        self._nested_samples = nested_samples
231

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    @property
    def walkers(self):
        """" An array of the ensemble walkers """
        if self._walkers is not None:
            return self._walkers
        else:
            raise ValueError("Result object has no stored walkers")

    @walkers.setter
    def walkers(self, walkers):
        self._walkers = walkers

    @property
    def nburn(self):
        """" An array of the ensemble walkers """
        if self._nburn is not None:
            return self._nburn
        else:
            raise ValueError("Result object has no stored nburn")

    @nburn.setter
    def nburn(self, nburn):
        self._nburn = nburn

    @property
    def posterior(self):
        """ A pandas data frame of the posterior """
        if self._posterior is not None:
            return self._posterior
        else:
            raise ValueError("Result object has no stored posterior")

    @posterior.setter
    def posterior(self, posterior):
        self._posterior = posterior

268 269 270 271 272 273 274 275 276 277 278
    @property
    def version(self):
        return self._version

    @version.setter
    def version(self, version):
        if version is None:
            self._version = 'bilby={}'.format(utils.get_version_information())
        else:
            self._version = version

279
    def _get_save_data_dictionary(self):
280
        # This list defines all the parameters saved in the result object
281 282 283 284 285
        save_attrs = [
            'label', 'outdir', 'sampler', 'log_evidence', 'log_evidence_err',
            'log_noise_evidence', 'log_bayes_factor', 'priors', 'posterior',
            'injection_parameters', 'meta_data', 'search_parameter_keys',
            'fixed_parameter_keys', 'sampling_time', 'sampler_kwargs',
286 287
            'log_likelihood_evaluations', 'log_prior_evaluations', 'samples',
            'nested_samples', 'walkers', 'nburn', 'parameter_labels',
288
            'parameter_labels_with_unit', 'version']
289 290 291 292 293 294 295 296
        dictionary = OrderedDict()
        for attr in save_attrs:
            try:
                dictionary[attr] = getattr(self, attr)
            except ValueError as e:
                logger.debug("Unable to save {}, message: {}".format(attr, e))
                pass
        return dictionary
297

298
    def save_to_file(self, overwrite=False, outdir=None):
Colm Talbot's avatar
Colm Talbot committed
299 300 301 302 303 304 305 306
        """
        Writes the Result to a deepdish h5 file

        Parameters
        ----------
        overwrite: bool, optional
            Whether or not to overwrite an existing result file.
            default=False
307 308
        outdir: str, optional
            Path to the outdir. Default is the one stored in the result object.
Colm Talbot's avatar
Colm Talbot committed
309
        """
310 311 312
        outdir = self._safe_outdir_creation(outdir, self.save_to_file)
        file_name = result_file_name(outdir, self.label)

313
        if os.path.isfile(file_name):
Colm Talbot's avatar
Colm Talbot committed
314 315 316 317 318 319 320 321
            if overwrite:
                logger.debug('Removing existing file {}'.format(file_name))
                os.remove(file_name)
            else:
                logger.debug(
                    'Renaming existing file {} to {}.old'.format(file_name,
                                                                 file_name))
                os.rename(file_name, file_name + '.old')
322

Gregory Ashton's avatar
Gregory Ashton committed
323
        logger.debug("Saving result to {}".format(file_name))
324 325

        # Convert the prior to a string representation for saving on disk
326
        dictionary = self._get_save_data_dictionary()
327 328 329
        if dictionary.get('priors', False):
            dictionary['priors'] = {key: str(self.priors[key]) for key in self.priors}

330 331 332 333 334
        # Convert callable sampler_kwargs to strings to avoid pickling issues
        if dictionary.get('sampler_kwargs', None) is not None:
            for key in dictionary['sampler_kwargs']:
                if hasattr(dictionary['sampler_kwargs'][key], '__call__'):
                    dictionary['sampler_kwargs'][key] = str(dictionary['sampler_kwargs'])
335

Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
336
        try:
337
            deepdish.io.save(file_name, dictionary)
Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
338
        except Exception as e:
Gregory Ashton's avatar
Gregory Ashton committed
339
            logger.error("\n\n Saving the data has failed with the "
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
340
                         "following message:\n {} \n\n".format(e))
Gregory Ashton's avatar
Gregory Ashton committed
341

342
    def save_posterior_samples(self, outdir=None):
343
        """Saves posterior samples to a file"""
344 345
        outdir = self._safe_outdir_creation(outdir, self.save_posterior_samples)
        filename = '{}/{}_posterior_samples.txt'.format(outdir, self.label)
346 347
        self.posterior.to_csv(filename, index=False, header=True)

Gregory Ashton's avatar
Gregory Ashton committed
348
    def get_latex_labels_from_parameter_keys(self, keys):
349 350 351 352 353 354 355 356 357 358 359 360 361
        """ Returns a list of latex_labels corresponding to the given keys

        Parameters
        ----------
        keys: list
            List of strings corresponding to the desired latex_labels

        Returns
        -------
        list: The desired latex_labels

        """
        latex_labels = []
Gregory Ashton's avatar
Gregory Ashton committed
362 363 364
        for k in keys:
            if k in self.search_parameter_keys:
                idx = self.search_parameter_keys.index(k)
365
                latex_labels.append(self.parameter_labels_with_unit[idx])
Gregory Ashton's avatar
Gregory Ashton committed
366
            elif k in self.parameter_labels:
367
                latex_labels.append(k)
Gregory Ashton's avatar
Gregory Ashton committed
368
            else:
Colm Talbot's avatar
Colm Talbot committed
369
                logger.debug(
370 371
                    'key {} not a parameter label or latex label'.format(k))
                latex_labels.append(' '.join(k.split('_')))
372
        return latex_labels
Gregory Ashton's avatar
Gregory Ashton committed
373

Gregory Ashton's avatar
Gregory Ashton committed
374 375 376 377 378 379 380 381 382
    @property
    def covariance_matrix(self):
        """ The covariance matrix of the samples the posterior """
        samples = self.posterior[self.search_parameter_keys].values
        return np.cov(samples.T)

    @property
    def posterior_volume(self):
        """ The posterior volume """
Gregory Ashton's avatar
Gregory Ashton committed
383 384 385
        if self.covariance_matrix.ndim == 0:
            return np.sqrt(self.covariance_matrix)
        else:
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
386 387
            return 1 / np.sqrt(np.abs(np.linalg.det(
                1 / self.covariance_matrix)))
Gregory Ashton's avatar
Gregory Ashton committed
388

389 390
    @staticmethod
    def prior_volume(priors):
Gregory Ashton's avatar
Gregory Ashton committed
391 392 393 394 395 396
        """ The prior volume, given a set of priors """
        return np.prod([priors[k].maximum - priors[k].minimum for k in priors])

    def occam_factor(self, priors):
        """ The Occam factor,

397 398 399
        See Chapter 28, `Mackay "Information Theory, Inference, and Learning
        Algorithms" <http://www.inference.org.uk/itprnn/book.html>`_ Cambridge
        University Press (2003).
Gregory Ashton's avatar
Gregory Ashton committed
400 401 402 403

        """
        return self.posterior_volume / self.prior_volume(priors)

404
    def get_one_dimensional_median_and_error_bar(self, key, fmt='.2f',
405
                                                 quantiles=(0.16, 0.84)):
406 407 408 409 410 411 412 413
        """ Calculate the median and error bar for a given key

        Parameters
        ----------
        key: str
            The parameter key for which to calculate the median and error bar
        fmt: str, ('.2f')
            A format string
414 415
        quantiles: list, tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
416 417 418 419
            the errors bars for.

        Returns
        -------
420 421
        summary: namedtuple
            An object with attributes, median, lower, upper and string
422 423

        """
424 425
        summary = namedtuple('summary', ['median', 'lower', 'upper', 'string'])

426 427 428 429 430
        if len(quantiles) != 2:
            raise ValueError("quantiles must be of length 2")

        quants_to_compute = np.array([quantiles[0], 0.5, quantiles[1]])
        quants = np.percentile(self.posterior[key], quants_to_compute * 100)
431 432 433
        summary.median = quants[1]
        summary.plus = quants[2] - summary.median
        summary.minus = summary.median - quants[0]
434 435

        fmt = "{{0:{0}}}".format(fmt).format
436 437 438 439 440
        string_template = r"${{{0}}}_{{-{1}}}^{{+{2}}}$"
        summary.string = string_template.format(
            fmt(summary.median), fmt(summary.minus), fmt(summary.plus))
        return summary

Colm Talbot's avatar
Colm Talbot committed
441 442 443
    def plot_single_density(self, key, prior=None, cumulative=False,
                            title=None, truth=None, save=True,
                            file_base_name=None, bins=50, label_fontsize=16,
444 445
                            title_fontsize=16, quantiles=(0.16, 0.84), dpi=300):
        """ Plot a 1D marginal density, either probability or cumulative.
Colm Talbot's avatar
Colm Talbot committed
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473

        Parameters
        ----------
        key: str
            Name of the parameter to plot
        prior: {bool (True), bilby.core.prior.Prior}
            If true, add the stored prior probability density function to the
            one-dimensional marginal distributions. If instead a Prior
            is provided, this will be plotted.
        cumulative: bool
            If true plot the CDF
        title: bool
            If true, add 1D title of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        truth: {bool, float}
            If true, plot self.injection_parameters[parameter].
            If float, plot this value.
        save: bool:
            If true, save plot to disk.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
            The fontsizes for the labels and titles
474 475
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
Colm Talbot's avatar
Colm Talbot committed
476 477 478 479 480 481 482 483 484 485 486 487
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot

        Returns
        -------
        figure: matplotlib.pyplot.figure
            A matplotlib figure object
        """
        logger.info('Plotting {} marginal distribution'.format(key))
        label = self.get_latex_labels_from_parameter_keys([key])[0]
        fig, ax = plt.subplots()
488 489 490 491 492 493 494 495
        try:
            ax.hist(self.posterior[key].values, bins=bins, density=True,
                    histtype='step', cumulative=cumulative)
        except ValueError as e:
            logger.info(
                'Failed to generate 1d plot for {}, error message: {}'
                .format(key, e))
            return
Colm Talbot's avatar
Colm Talbot committed
496 497 498 499 500 501 502 503 504 505 506 507 508
        ax.set_xlabel(label, fontsize=label_fontsize)
        if truth is not None:
            ax.axvline(truth, ls='-', color='orange')

        summary = self.get_one_dimensional_median_and_error_bar(
            key, quantiles=quantiles)
        ax.axvline(summary.median - summary.minus, ls='--', color='C0')
        ax.axvline(summary.median + summary.plus, ls='--', color='C0')
        if title:
            ax.set_title(summary.string, fontsize=title_fontsize)

        if isinstance(prior, Prior):
            theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
509
            ax.plot(theta, prior.prob(theta), color='C2')
Colm Talbot's avatar
Colm Talbot committed
510 511 512 513 514 515 516 517

        if save:
            fig.tight_layout()
            if cumulative:
                file_name = file_base_name + key + '_cdf'
            else:
                file_name = file_base_name + key + '_pdf'
            fig.savefig(file_name, dpi=dpi)
518 519 520
            plt.close(fig)
        else:
            return fig
Colm Talbot's avatar
Colm Talbot committed
521

522 523
    def plot_marginals(self, parameters=None, priors=None, titles=True,
                       file_base_name=None, bins=50, label_fontsize=16,
524 525
                       title_fontsize=16, quantiles=(0.16, 0.84), dpi=300,
                       outdir=None):
526 527 528 529 530 531 532
        """ Plot 1D marginal distributions

        Parameters
        ----------
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
533
        priors: {bool (False), bilby.core.prior.PriorDict}
534
            If true, add the stored prior probability density functions to the
535
            one-dimensional marginal distributions. If instead a PriorDict
536 537 538 539 540 541 542 543 544 545 546 547
            is provided, this will be plotted.
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
548 549 550
            The font sizes for the labels and titles
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
551 552 553
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot
554 555
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
556 557 558 559 560 561

        Returns
        -------
        """
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
Colm Talbot's avatar
Colm Talbot committed
562
            truths = parameters
563
        elif parameters is None:
Colm Talbot's avatar
Colm Talbot committed
564 565 566 567 568
            plot_parameter_keys = self.posterior.keys()
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
569 570
        else:
            plot_parameter_keys = list(parameters)
Colm Talbot's avatar
Colm Talbot committed
571 572 573 574
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
575 576

        if file_base_name is None:
577 578
            outdir = self._safe_outdir_creation(outdir, self.plot_marginals)
            file_base_name = '{}/{}_1d/'.format(outdir, self.label)
Colm Talbot's avatar
Colm Talbot committed
579
            check_directory_exists_and_if_not_mkdir(file_base_name)
580 581

        if priors is True:
Colm Talbot's avatar
Colm Talbot committed
582 583
            priors = getattr(self, 'priors', dict())
        elif isinstance(priors, dict):
584
            pass
Colm Talbot's avatar
Colm Talbot committed
585 586
        elif priors in [False, None]:
            priors = dict()
587 588 589 590
        else:
            raise ValueError('Input priors={} not understood'.format(priors))

        for i, key in enumerate(plot_parameter_keys):
Colm Talbot's avatar
Colm Talbot committed
591 592
            if not isinstance(self.posterior[key].values[0], float):
                continue
Colm Talbot's avatar
Colm Talbot committed
593 594
            prior = priors.get(key, None)
            truth = truths.get(key, None)
Colm Talbot's avatar
Colm Talbot committed
595
            for cumulative in [False, True]:
596
                self.plot_single_density(
Colm Talbot's avatar
Colm Talbot committed
597 598
                    key, prior=prior, cumulative=cumulative, title=titles,
                    truth=truth, save=True, file_base_name=file_base_name,
Colm Talbot's avatar
Colm Talbot committed
599 600
                    bins=bins, label_fontsize=label_fontsize, dpi=dpi,
                    title_fontsize=title_fontsize, quantiles=quantiles)
601

602 603 604
    def plot_corner(self, parameters=None, priors=None, titles=True, save=True,
                    filename=None, dpi=300, **kwargs):
        """ Plot a corner-plot
Gregory Ashton's avatar
Gregory Ashton committed
605 606 607

        Parameters
        ----------
608 609 610
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
611
        priors: {bool (False), bilby.core.prior.PriorDict}
612
            If true, add the stored prior probability density functions to the
613
            one-dimensional marginal distributions. If instead a PriorDict
614
            is provided, this will be plotted.
615 616 617 618 619
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
620 621 622 623 624 625
        save: bool, optional
            If true, save the image using the given label and outdir
        filename: str, optional
            If given, overwrite the default filename
        dpi: int, optional
            Dots per inch resolution of the plot
626 627 628
        **kwargs:
            Other keyword arguments are passed to `corner.corner`. We set some
            defaults to improve the basic look and feel, but these can all be
629 630
            overridden. Also optional an 'outdir' argument which can be used
            to override the outdir set by the absolute path of the result object.
Gregory Ashton's avatar
Gregory Ashton committed
631

632 633 634 635 636 637
        Notes
        -----
            The generation of the corner plot themselves is done by the corner
            python module, see https://corner.readthedocs.io for more
            information.

Gregory Ashton's avatar
Gregory Ashton committed
638 639 640 641
        Returns
        -------
        fig:
            A matplotlib figure instance
642

Gregory Ashton's avatar
Gregory Ashton committed
643
        """
644 645

        # If in testing mode, not corner plots are generated
646 647
        if utils.command_line_args.test:
            return
Gregory Ashton's avatar
Gregory Ashton committed
648

Colm Talbot's avatar
Colm Talbot committed
649
        # bilby default corner kwargs. Overwritten by anything passed to kwargs
650 651 652
        defaults_kwargs = dict(
            bins=50, smooth=0.9, label_kwargs=dict(fontsize=16),
            title_kwargs=dict(fontsize=16), color='#0072C1',
653
            truth_color='tab:orange', quantiles=[0.16, 0.84],
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
654
            levels=(1 - np.exp(-0.5), 1 - np.exp(-2), 1 - np.exp(-9 / 2.)),
655
            plot_density=False, plot_datapoints=True, fill_contours=True,
656 657 658 659 660 661
            max_n_ticks=3)

        if LooseVersion(matplotlib.__version__) < "2.1":
            defaults_kwargs['hist_kwargs'] = dict(normed=True)
        else:
            defaults_kwargs['hist_kwargs'] = dict(density=True)
662

663 664 665 666
        if 'lionize' in kwargs and kwargs['lionize'] is True:
            defaults_kwargs['truth_color'] = 'tab:blue'
            defaults_kwargs['color'] = '#FF8C00'

667 668 669
        defaults_kwargs.update(kwargs)
        kwargs = defaults_kwargs

670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
        # Handle if truths was passed in
        if 'truth' in kwargs:
            kwargs['truths'] = kwargs.pop('truth')
        if kwargs.get('truths'):
            truths = kwargs.get('truths')
            if isinstance(parameters, list) and isinstance(truths, list):
                if len(parameters) != len(truths):
                    raise ValueError(
                        "Length of parameters and truths don't match")
            elif isinstance(truths, dict) and parameters is None:
                parameters = kwargs.pop('truths')
            else:
                raise ValueError(
                    "Combination of parameters and truths not understood")

Gregory Ashton's avatar
Gregory Ashton committed
685 686 687 688 689 690 691 692
        # If injection parameters where stored, use these as parameter values
        # but do not overwrite input parameters (or truths)
        cond1 = getattr(self, 'injection_parameters', None) is not None
        cond2 = parameters is None
        if cond1 and cond2:
            parameters = {key: self.injection_parameters[key] for key in
                          self.search_parameter_keys}

693 694 695 696 697 698 699 700 701
        # If parameters is a dictionary, use the keys to determine which
        # parameters to plot and the values as truths.
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
            kwargs['truths'] = list(parameters.values())
        elif parameters is None:
            plot_parameter_keys = self.search_parameter_keys
        else:
            plot_parameter_keys = list(parameters)
702

703
        # Get latex formatted strings for the plot labels
704 705
        kwargs['labels'] = kwargs.get(
            'labels', self.get_latex_labels_from_parameter_keys(
706
                plot_parameter_keys))
707

708 709 710 711
        # Unless already set, set the range to include all samples
        # This prevents ValueErrors being raised for parameters with no range
        kwargs['range'] = kwargs.get('range', [1] * len(plot_parameter_keys))

712 713
        # Create the data array to plot and pass everything to corner
        xs = self.posterior[plot_parameter_keys].values
714
        fig = corner.corner(xs, **kwargs)
715
        axes = fig.get_axes()
716 717 718

        #  Add the titles
        if titles and kwargs.get('quantiles', None) is not None:
719 720
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
721 722
                if ax.title.get_text() == '':
                    ax.set_title(self.get_one_dimensional_median_and_error_bar(
723
                        par, quantiles=kwargs['quantiles']).string,
724 725 726
                        **kwargs['title_kwargs'])

        #  Add priors to the 1D plots
727 728 729
        if priors is True:
            priors = getattr(self, 'priors', False)
        if isinstance(priors, dict):
730 731
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
732 733
                theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
                ax.plot(theta, priors[par].prob(theta), color='C2')
734 735 736 737
        elif priors in [False, None]:
            pass
        else:
            raise ValueError('Input priors={} not understood'.format(priors))
738

739
        if save:
740
            if filename is None:
741 742
                outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_corner)
                filename = '{}/{}_corner.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
743
            logger.debug('Saving corner plot to {}'.format(filename))
744
            fig.savefig(filename, dpi=dpi)
745
            plt.close(fig)
746

747
        return fig
748

Gregory Ashton's avatar
Gregory Ashton committed
749
    def plot_walkers(self, **kwargs):
MoritzThomasHuebner's avatar
A typo  
MoritzThomasHuebner committed
750
        """ Method to plot the trace of the walkers in an ensemble MCMC plot """
751
        if hasattr(self, 'walkers') is False:
Gregory Ashton's avatar
Gregory Ashton committed
752
            logger.warning("Cannot plot_walkers as no walkers are saved")
753
            return
754 755 756

        if utils.command_line_args.test:
            return
757 758 759

        nwalkers, nsteps, ndim = self.walkers.shape
        idxs = np.arange(nsteps)
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
760
        fig, axes = plt.subplots(nrows=ndim, figsize=(6, 3 * ndim))
761 762
        walkers = self.walkers[:, :, :]
        for i, ax in enumerate(axes):
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
763
            ax.plot(idxs[:self.nburn + 1], walkers[:, :self.nburn + 1, i].T,
764 765 766 767 768 769 770 771 772
                    lw=0.1, color='r')
            ax.set_ylabel(self.parameter_labels[i])

        for i, ax in enumerate(axes):
            ax.plot(idxs[self.nburn:], walkers[:, self.nburn:, i].T, lw=0.1,
                    color='k')
            ax.set_ylabel(self.parameter_labels[i])

        fig.tight_layout()
773 774
        outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_walkers)
        filename = '{}/{}_walkers.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
775
        logger.debug('Saving walkers plot to {}'.format('filename'))
776
        fig.savefig(filename)
777
        plt.close(fig)
778

779 780 781
    def plot_with_data(self, model, x, y, ndraws=1000, npoints=1000,
                       xlabel=None, ylabel=None, data_label='data',
                       data_fmt='o', draws_label=None, filename=None,
782
                       maxl_label='max likelihood', dpi=300, outdir=None):
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
        """ Generate a figure showing the data and fits to the data

        Parameters
        ----------
        model: function
            A python function which when called as `model(x, **kwargs)` returns
            the model prediction (here `kwargs` is a dictionary of key-value
            pairs of the model parameters.
        x, y: np.ndarray
            The independent and dependent data to plot
        ndraws: int
            Number of draws from the posterior to plot
        npoints: int
            Number of points used to plot the smoothed fit to the data
        xlabel, ylabel: str
            Labels for the axes
        data_label, draws_label, maxl_label: str
            Label for the data, draws, and max likelihood legend
        data_fmt: str
            Matpltolib fmt code, defaults to `'-o'`
        dpi: int
            Passed to `plt.savefig`
        filename: str
            If given, the filename to use. Otherwise, the filename is generated
            from the outdir and label attributes.
808 809
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
810 811

        """
812 813 814 815 816 817

        # Determine model_posterior, the subset of the full posterior which
        # should be passed into the model
        model_keys = infer_parameters_from_function(model)
        model_posterior = self.posterior[model_keys]

818 819 820 821
        xsmooth = np.linspace(np.min(x), np.max(x), npoints)
        fig, ax = plt.subplots()
        logger.info('Plotting {} draws'.format(ndraws))
        for _ in range(ndraws):
822
            s = model_posterior.sample().to_dict('records')[0]
823 824
            ax.plot(xsmooth, model(xsmooth, **s), alpha=0.25, lw=0.1, color='r',
                    label=draws_label)
825 826 827
        try:
            if all(~np.isnan(self.posterior.log_likelihood)):
                logger.info('Plotting maximum likelihood')
Colm Talbot's avatar
Colm Talbot committed
828
                s = model_posterior.iloc[self.posterior.log_likelihood.idxmax()]
829 830
                ax.plot(xsmooth, model(xsmooth, **s), lw=1, color='k',
                        label=maxl_label)
831
        except (AttributeError, TypeError):
832 833
            logger.debug(
                "No log likelihood values stored, unable to plot max")
834 835 836 837 838 839 840 841 842 843 844 845 846 847

        ax.plot(x, y, data_fmt, markersize=2, label=data_label)

        if xlabel is not None:
            ax.set_xlabel(xlabel)
        if ylabel is not None:
            ax.set_ylabel(ylabel)

        handles, labels = plt.gca().get_legend_handles_labels()
        by_label = OrderedDict(zip(labels, handles))
        plt.legend(by_label.values(), by_label.keys())
        ax.legend(numpoints=3)
        fig.tight_layout()
        if filename is None:
848 849
            outdir = self._safe_outdir_creation(outdir, self.plot_with_data)
            filename = '{}/{}_plot_with_data'.format(outdir, self.label)
850
        fig.savefig(filename, dpi=dpi)
851
        plt.close(fig)
852

853 854
    def samples_to_posterior(self, likelihood=None, priors=None,
                             conversion_function=None):
855
        """
856 857 858
        Convert array of samples to posterior (a Pandas data frame)

        Also applies the conversion function to any stored posterior
859

860 861
        Parameters
        ----------
Colm Talbot's avatar
Colm Talbot committed
862
        likelihood: bilby.likelihood.GravitationalWaveTransient, optional
863 864
            GravitationalWaveTransient likelihood used for sampling.
        priors: dict, optional
865
            Dictionary of prior object, used to fill in delta function priors.
866
        conversion_function: function, optional
867 868
            Function which adds in extra parameters to the data frame,
            should take the data_frame, likelihood and prior as arguments.
869
        """
870 871 872
        try:
            data_frame = self.posterior
        except ValueError:
873 874
            data_frame = pd.DataFrame(
                self.samples, columns=self.search_parameter_keys)
875
            for key in priors:
876
                if isinstance(priors[key], DeltaFunction):
877
                    data_frame[key] = priors[key].peak
878 879 880 881
                elif isinstance(priors[key], float):
                    data_frame[key] = priors[key]
            data_frame['log_likelihood'] = getattr(
                self, 'log_likelihood_evaluations', np.nan)
882 883 884 885 886
            if self.log_prior_evaluations is None:
                data_frame['log_prior'] = self.priors.ln_prob(
                    data_frame[self.search_parameter_keys], axis=0)
            else:
                data_frame['log_prior'] = self.log_prior_evaluations
887
        if conversion_function is not None:
888
            data_frame = conversion_function(data_frame, likelihood, priors)
889
        self.posterior = data_frame
Gregory Ashton's avatar
Gregory Ashton committed
890

Colm Talbot's avatar
Colm Talbot committed
891
    def calculate_prior_values(self, priors):
892 893 894 895 896
        """
        Evaluate prior probability for each parameter for each sample.

        Parameters
        ----------
897
        priors: dict, PriorDict
898 899 900 901 902 903 904 905 906 907 908
            Prior distributions
        """
        self.prior_values = pd.DataFrame()
        for key in priors:
            if key in self.posterior.keys():
                if isinstance(priors[key], DeltaFunction):
                    continue
                else:
                    self.prior_values[key]\
                        = priors[key].prob(self.posterior[key].values)

Colm Talbot's avatar
Colm Talbot committed
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
    def get_all_injection_credible_levels(self):
        """
        Get credible levels for all parameters in self.injection_parameters

        Returns
        -------
        credible_levels: dict
            The credible levels at which the injected parameters are found.
        """
        if self.injection_parameters is None:
            raise(TypeError, "Result object has no 'injection_parameters'. "
                             "Cannot copmute credible levels.")
        credible_levels = {key: self.get_injection_credible_level(key)
                           for key in self.search_parameter_keys
                           if isinstance(self.injection_parameters[key], float)}
        return credible_levels

    def get_injection_credible_level(self, parameter):
        """
        Get the credible level of the injected parameter

        Calculated as CDF(injection value)

        Parameters
        ----------
        parameter: str
            Parameter to get credible level for
        Returns
        -------
        float: credible level
        """
        if self.injection_parameters is None:
            raise(TypeError, "Result object has no 'injection_parameters'. "
                             "Cannot copmute credible levels.")
        if parameter in self.posterior and\
                parameter in self.injection_parameters:
            credible_level =\
                sum(self.posterior[parameter].values <
                    self.injection_parameters[parameter]) / len(self.posterior)
            return credible_level
        else:
            return np.nan

952
    def _check_attribute_match_to_other_object(self, name, other_object):
953 954 955 956 957 958 959 960 961 962 963 964 965 966
        """ Check attribute name exists in other_object and is the same

        Parameters
        ----------
        name: str
            Name of the attribute in this instance
        other_object: object
            Other object with attributes to compare with

        Returns
        -------
        bool: True if attribute name matches with an attribute of other_object, False otherwise

        """
967 968 969 970 971 972 973 974
        a = getattr(self, name, False)
        b = getattr(other_object, name, False)
        logger.debug('Checking {} value: {}=={}'.format(name, a, b))
        if (a is not False) and (b is not False):
            type_a = type(a)
            type_b = type(b)
            if type_a == type_b:
                if type_a in [str, float, int, dict, list]:
Gregory Ashton's avatar
Gregory Ashton committed
975
                    try:
976
                        return a == b
Gregory Ashton's avatar
Gregory Ashton committed
977 978
                    except ValueError:
                        return False
979 980
                elif type_a in [np.ndarray]:
                    return np.all(a == b)
981
        return False
982

983 984 985 986 987 988
    @property
    def kde(self):
        """ Kernel density estimate built from the stored posterior

        Uses `scipy.stats.gaussian_kde` to generate the kernel density
        """
989
        if self._kde:
990
            return self._kde
991
        else:
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
            self._kde = scipy.stats.gaussian_kde(
                self.posterior[self.search_parameter_keys].values.T)
            return self._kde

    def posterior_probability(self, sample):
        """ Calculate the posterior probabily for a new sample

        This queries a Kernel Density Estimate of the posterior to calculate
        the posterior probability density for the new sample.

        Parameters
        ----------
        sample: dict, or list of dictionaries
            A dictionary containing all the keys from
            self.search_parameter_keys and corresponding values at which to
            calculate the posterior probability

        Returns
        -------
        p: array-like,
            The posterior probability of the sample

        """
        if isinstance(sample, dict):
            sample = [sample]
        ordered_sample = [[s[key] for key in self.search_parameter_keys]
                          for s in sample]
        return self.kde(ordered_sample)

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
    def _safe_outdir_creation(self, outdir=None, caller_func=None):
        if outdir is None:
            outdir = self.outdir
        try:
            utils.check_directory_exists_and_if_not_mkdir(outdir)
        except PermissionError:
            raise FileMovedError("Can not write in the out directory.\n"
                                 "Did you move the here file from another system?\n"
                                 "Try calling " + caller_func.__name__ + " with the 'outdir' "
                                 "keyword argument, e.g. " + caller_func.__name__ + "(outdir='.')")
        return outdir

1033 1034

def plot_multiple(results, filename=None, labels=None, colours=None,
1035
                  save=True, evidences=False, **kwargs):
1036 1037 1038 1039 1040
    """ Generate a corner plot overlaying two sets of results

    Parameters
    ----------
    results: list
Colm Talbot's avatar
Colm Talbot committed
1041
        A list of `bilby.core.result.Result` objects containing the samples to
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
        plot.
    filename: str
        File name to save the figure to. If None (default), a filename is
        constructed from the outdir of the first element of results and then
        the labels for all the result files.
    labels: list
        List of strings to use when generating a legend. If None (default), the
        `label` attribute of each result in `results` is used.
    colours: list
        The colours for each result. If None, default styles are applied.
    save: bool
        If true, save the figure
    kwargs: dict
        All other keyword arguments are passed to `result.plot_corner`.
        However, `show_titles` and `truths` are ignored since they would be
        ambiguous on such a plot.
1058 1059 1060
    evidences: bool, optional
        Add the log-evidence calculations to the legend. If available, the
        Bayes factor will be used instead.
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

    Returns
    -------
    fig:
        A matplotlib figure instance

    """

    kwargs['show_titles'] = False
    kwargs['truths'] = None

    fig = results[0].plot_corner(save=False, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
1073
    default_filename = '{}/{}'.format(results[0].outdir, 'combined')
1074 1075 1076 1077 1078