result.py 51.7 KB
Newer Older
Colm Talbot's avatar
Colm Talbot committed
1 2
from __future__ import division

3
import os
4
from distutils.version import LooseVersion
5
from collections import OrderedDict, namedtuple
Gregory Ashton's avatar
Gregory Ashton committed
6
from itertools import product
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
7

8 9
import numpy as np
import pandas as pd
10
import corner
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
11
import json
12
import scipy.stats
13
import matplotlib
14
import matplotlib.pyplot as plt
15
from matplotlib import lines as mpllines
16

17
from . import utils
Colm Talbot's avatar
Colm Talbot committed
18
from .utils import (logger, infer_parameters_from_function,
Colm Talbot's avatar
Colm Talbot committed
19 20
                    check_directory_exists_and_if_not_mkdir,
                    BilbyJsonEncoder, decode_bilby_json)
Colm Talbot's avatar
Colm Talbot committed
21
from .prior import Prior, PriorDict, DeltaFunction
22

23

24
def result_file_name(outdir, label, extension='json', gzip=False):
25 26 27 28 29 30 31 32
    """ Returns the standard filename used for a result file

    Parameters
    ----------
    outdir: str
        Name of the output directory
    label: str
        Naming scheme of the output file
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
33 34
    extension: str, optional
        Whether to save as `hdf5` or `json`
35 36
    gzip: bool, optional
        Set to True to append `.gz` to the extension for saving in gzipped format
37 38 39 40 41

    Returns
    -------
    str: File name of the output file
    """
42
    if extension in ['json', 'hdf5']:
43 44 45 46
        if extension == 'json' and gzip:
            return '{}/{}_result.{}.gz'.format(outdir, label, extension)
        else:
            return '{}/{}_result.{}'.format(outdir, label, extension)
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
47
    else:
48
        raise ValueError("Extension type {} not understood".format(extension))
49 50


51
def _determine_file_name(filename, outdir, label, extension, gzip):
52 53 54 55 56 57 58
    """ Helper method to determine the filename """
    if filename is not None:
        return filename
    else:
        if (outdir is None) and (label is None):
            raise ValueError("No information given to load file")
        else:
59
            return result_file_name(outdir, label, extension, gzip)
60 61


62
def read_in_result(filename=None, outdir=None, label=None, extension='json', gzip=False):
63 64 65 66 67 68 69 70 71 72 73
    """ Reads in a stored bilby result object

    Parameters
    ----------
    filename: str
        Path to the file to be read (alternative to giving the outdir and label)
    outdir, label, extension: str
        Name of the output directory, label and extension used for the default
        naming scheme.

    """
74
    filename = _determine_file_name(filename, outdir, label, extension, gzip)
75 76 77

    # Get the actual extension (may differ from the default extension if the filename is given)
    extension = os.path.splitext(filename)[1].lstrip('.')
78 79 80
    if extension == 'gz':  # gzipped file
        extension = os.path.splitext(os.path.splitext(filename)[0])[1].lstrip('.')

81 82 83 84 85 86 87 88
    if 'json' in extension:
        result = Result.from_json(filename=filename)
    elif ('hdf5' in extension) or ('h5' in extension):
        result = Result.from_hdf5(filename=filename)
    elif extension is None:
        raise ValueError("No filetype extension provided")
    else:
        raise ValueError("Filetype {} not understood".format(extension))
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
89
    return result
90 91 92 93 94


class Result(object):
    def __init__(self, label='no_label', outdir='.', sampler=None,
                 search_parameter_keys=None, fixed_parameter_keys=None,
Colm Talbot's avatar
Colm Talbot committed
95 96
                 constraint_parameter_keys=None, priors=None,
                 sampler_kwargs=None, injection_parameters=None,
97 98 99 100
                 meta_data=None, posterior=None, samples=None,
                 nested_samples=None, log_evidence=np.nan,
                 log_evidence_err=np.nan, log_noise_evidence=np.nan,
                 log_bayes_factor=np.nan, log_likelihood_evaluations=None,
101 102 103
                 log_prior_evaluations=None, sampling_time=None, nburn=None,
                 walkers=None, max_autocorrelation_time=None,
                 parameter_labels=None, parameter_labels_with_unit=None,
104
                 gzip=False, version=None):
105
        """ A class to store the results of the sampling run
106 107 108

        Parameters
        ----------
109 110
        label, outdir, sampler: str
            The label, output directory, and sampler used
Colm Talbot's avatar
Colm Talbot committed
111 112 113 114
        search_parameter_keys, fixed_parameter_keys, constraint_parameter_keys: list
            Lists of the search, constraint, and fixed parameter keys.
            Elements of the list should be of type `str` and match the keys
            of the `prior`
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        priors: dict, bilby.core.prior.PriorDict
            A dictionary of the priors used in the run
        sampler_kwargs: dict
            Key word arguments passed to the sampler
        injection_parameters: dict
            A dictionary of the injection parameters
        meta_data: dict
            A dictionary of meta data to store about the run
        posterior: pandas.DataFrame
            A pandas data frame of the posterior
        samples, nested_samples: array_like
            An array of the output posterior samples and the unweighted samples
        log_evidence, log_evidence_err, log_noise_evidence, log_bayes_factor: float
            Natural log evidences
        log_likelihood_evaluations: array_like
            The evaluations of the likelihood for each sample point
131 132
        log_prior_evaluations: array_like
            The evaluations of the prior for each sample point
133 134 135 136 137 138 139 140 141 142
        sampling_time: float
            The time taken to complete the sampling
        nburn: int
            The number of burn-in steps discarded for MCMC samplers
        walkers: array_like
            The samplers taken by a ensemble MCMC samplers
        max_autocorrelation_time: float
            The estimated maximum autocorrelation time for MCMC samplers
        parameter_labels, parameter_labels_with_unit: list
            Lists of the latex-formatted parameter labels
143 144
        gzip: bool
            Set to True to gzip the results file (if using json format)
145 146 147
        version: str,
            Version information for software used to generate the result. Note,
            this information is generated when the result object is initialized
148

149 150 151 152
        Note
        ---------
        All sampling output parameters, e.g. the samples themselves are
        typically not given at initialisation, but set at a later stage.
153 154

        """
155

156 157 158 159 160
        self.label = label
        self.outdir = os.path.abspath(outdir)
        self.sampler = sampler
        self.search_parameter_keys = search_parameter_keys
        self.fixed_parameter_keys = fixed_parameter_keys
Colm Talbot's avatar
Colm Talbot committed
161
        self.constraint_parameter_keys = constraint_parameter_keys
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        self.parameter_labels = parameter_labels
        self.parameter_labels_with_unit = parameter_labels_with_unit
        self.priors = priors
        self.sampler_kwargs = sampler_kwargs
        self.meta_data = meta_data
        self.injection_parameters = injection_parameters
        self.posterior = posterior
        self.samples = samples
        self.nested_samples = nested_samples
        self.walkers = walkers
        self.nburn = nburn
        self.log_evidence = log_evidence
        self.log_evidence_err = log_evidence_err
        self.log_noise_evidence = log_noise_evidence
        self.log_bayes_factor = log_bayes_factor
        self.log_likelihood_evaluations = log_likelihood_evaluations
178
        self.log_prior_evaluations = log_prior_evaluations
179
        self.sampling_time = sampling_time
180
        self.version = version
Colm Talbot's avatar
Colm Talbot committed
181
        self.max_autocorrelation_time = max_autocorrelation_time
182

183 184 185
        self.prior_values = None
        self._kde = None

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    @classmethod
    def from_hdf5(cls, filename=None, outdir=None, label=None):
        """ Read in a saved .h5 data file

        Parameters
        ----------
        filename: str
            If given, try to load from this filename
        outdir, label: str
            If given, use the default naming convention for saved results file

        Returns
        -------
        result: bilby.core.result.Result

        Raises
        -------
        ValueError: If no filename is given and either outdir or label is None
                    If no bilby.core.result.Result is found in the path

        """
207
        import deepdish
208
        filename = _determine_file_name(filename, outdir, label, 'hdf5', False)
209

210
        if os.path.isfile(filename):
Moritz Huebner's avatar
Moritz Huebner committed
211 212
            dictionary = deepdish.io.load(filename)
            # Some versions of deepdish/pytables return the dictionanary as
213
            # a dictionary with a key 'data'
Moritz Huebner's avatar
Moritz Huebner committed
214 215 216
            if len(dictionary) == 1 and 'data' in dictionary:
                dictionary = dictionary['data']
            try:
217 218
                if isinstance(dictionary.get('posterior', None), dict):
                    dictionary['posterior'] = pd.DataFrame(dictionary['posterior'])
Moritz Huebner's avatar
Moritz Huebner committed
219 220 221
                return cls(**dictionary)
            except TypeError as e:
                raise IOError("Unable to load dictionary, error={}".format(e))
222 223 224
        else:
            raise IOError("No result '{}' found".format(filename))

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
225
    @classmethod
226
    def from_json(cls, filename=None, outdir=None, label=None, gzip=False):
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        """ Read in a saved .json data file

        Parameters
        ----------
        filename: str
            If given, try to load from this filename
        outdir, label: str
            If given, use the default naming convention for saved results file

        Returns
        -------
        result: bilby.core.result.Result

        Raises
        -------
        ValueError: If no filename is given and either outdir or label is None
                    If no bilby.core.result.Result is found in the path

        """
246
        filename = _determine_file_name(filename, outdir, label, 'json', gzip)
247

Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
248
        if os.path.isfile(filename):
249 250 251 252 253 254 255 256
            if gzip or os.path.splitext(filename)[1].lstrip('.') == 'gz':
                import gzip
                with gzip.GzipFile(filename, 'r') as file:
                    json_str = file.read().decode('utf-8')
                dictionary = json.loads(json_str, object_hook=decode_bilby_json)
            else:
                with open(filename, 'r') as file:
                    dictionary = json.load(file, object_hook=decode_bilby_json)
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
257 258 259 260 261 262 263 264 265 266 267 268 269
            for key in dictionary.keys():
                # Convert the loaded priors to bilby prior type
                if key == 'priors':
                    for param in dictionary[key].keys():
                        dictionary[key][param] = str(dictionary[key][param])
                    dictionary[key] = PriorDict(dictionary[key])
            try:
                return cls(**dictionary)
            except TypeError as e:
                raise IOError("Unable to load dictionary, error={}".format(e))
        else:
            raise IOError("No result '{}' found".format(filename))

270
    def __str__(self):
271
        """Print a summary """
272 273
        if getattr(self, 'posterior', None) is not None:
            if getattr(self, 'log_noise_evidence', None) is not None:
274 275 276 277
                return ("nsamples: {:d}\n"
                        "log_noise_evidence: {:6.3f}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
                        "log_bayes_factor: {:6.3f} +/- {:6.3f}\n"
278
                        .format(len(self.posterior), self.log_noise_evidence, self.log_evidence,
279 280 281 282 283
                                self.log_evidence_err, self.log_bayes_factor,
                                self.log_evidence_err))
            else:
                return ("nsamples: {:d}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
284
                        .format(len(self.posterior), self.log_evidence, self.log_evidence_err))
285 286
        else:
            return ''
287

288 289 290 291 292 293
    @property
    def priors(self):
        if self._priors is not None:
            return self._priors
        else:
            raise ValueError('Result object has no priors')
294

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
    @priors.setter
    def priors(self, priors):
        if isinstance(priors, dict):
            self._priors = PriorDict(priors)
            if self.parameter_labels is None:
                self.parameter_labels = [self.priors[k].latex_label for k in
                                         self.search_parameter_keys]
            if self.parameter_labels_with_unit is None:
                self.parameter_labels_with_unit = [
                    self.priors[k].latex_label_with_unit for k in
                    self.search_parameter_keys]

        elif priors is None:
            self._priors = priors
            self.parameter_labels = self.search_parameter_keys
            self.parameter_labels_with_unit = self.search_parameter_keys
        else:
            raise ValueError("Input priors not understood")
313

314 315 316 317 318
    @property
    def samples(self):
        """ An array of samples """
        if self._samples is not None:
            return self._samples
319
        else:
320
            raise ValueError("Result object has no stored samples")
321

322 323 324
    @samples.setter
    def samples(self, samples):
        self._samples = samples
325

326 327 328 329 330 331 332
    @property
    def nested_samples(self):
        """" An array of unweighted samples """
        if self._nested_samples is not None:
            return self._nested_samples
        else:
            raise ValueError("Result object has no stored nested samples")
333

334 335 336
    @nested_samples.setter
    def nested_samples(self, nested_samples):
        self._nested_samples = nested_samples
337

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    @property
    def walkers(self):
        """" An array of the ensemble walkers """
        if self._walkers is not None:
            return self._walkers
        else:
            raise ValueError("Result object has no stored walkers")

    @walkers.setter
    def walkers(self, walkers):
        self._walkers = walkers

    @property
    def nburn(self):
        """" An array of the ensemble walkers """
        if self._nburn is not None:
            return self._nburn
        else:
            raise ValueError("Result object has no stored nburn")

    @nburn.setter
    def nburn(self, nburn):
        self._nburn = nburn

    @property
    def posterior(self):
        """ A pandas data frame of the posterior """
        if self._posterior is not None:
            return self._posterior
        else:
            raise ValueError("Result object has no stored posterior")

    @posterior.setter
    def posterior(self, posterior):
        self._posterior = posterior

374 375 376 377 378 379 380 381 382 383 384
    @property
    def version(self):
        return self._version

    @version.setter
    def version(self, version):
        if version is None:
            self._version = 'bilby={}'.format(utils.get_version_information())
        else:
            self._version = version

385
    def _get_save_data_dictionary(self):
386
        # This list defines all the parameters saved in the result object
387 388 389 390
        save_attrs = [
            'label', 'outdir', 'sampler', 'log_evidence', 'log_evidence_err',
            'log_noise_evidence', 'log_bayes_factor', 'priors', 'posterior',
            'injection_parameters', 'meta_data', 'search_parameter_keys',
Colm Talbot's avatar
Colm Talbot committed
391 392
            'fixed_parameter_keys', 'constraint_parameter_keys',
            'sampling_time', 'sampler_kwargs',
393 394
            'log_likelihood_evaluations', 'log_prior_evaluations', 'samples',
            'nested_samples', 'walkers', 'nburn', 'parameter_labels',
395
            'parameter_labels_with_unit', 'version']
396 397 398 399 400 401 402 403
        dictionary = OrderedDict()
        for attr in save_attrs:
            try:
                dictionary[attr] = getattr(self, attr)
            except ValueError as e:
                logger.debug("Unable to save {}, message: {}".format(attr, e))
                pass
        return dictionary
404

405
    def save_to_file(self, overwrite=False, outdir=None, extension='json', gzip=False):
Colm Talbot's avatar
Colm Talbot committed
406
        """
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
407
        Writes the Result to a json or deepdish h5 file
Colm Talbot's avatar
Colm Talbot committed
408 409 410 411 412 413

        Parameters
        ----------
        overwrite: bool, optional
            Whether or not to overwrite an existing result file.
            default=False
414 415
        outdir: str, optional
            Path to the outdir. Default is the one stored in the result object.
Gregory Ashton's avatar
Gregory Ashton committed
416 417 418
        extension: str, optional {json, hdf5, True}
            Determines the method to use to store the data (if True defaults
            to json)
419 420 421
        gzip: bool, optional
            If true, and outputing to a json file, this will gzip the resulting
            file and add '.gz' to the file extension.
Colm Talbot's avatar
Colm Talbot committed
422
        """
Gregory Ashton's avatar
Gregory Ashton committed
423 424 425 426

        if extension is True:
            extension = "json"

427
        outdir = self._safe_outdir_creation(outdir, self.save_to_file)
428
        file_name = result_file_name(outdir, self.label, extension, gzip)
429

430
        if os.path.isfile(file_name):
Colm Talbot's avatar
Colm Talbot committed
431 432 433 434 435 436 437 438
            if overwrite:
                logger.debug('Removing existing file {}'.format(file_name))
                os.remove(file_name)
            else:
                logger.debug(
                    'Renaming existing file {} to {}.old'.format(file_name,
                                                                 file_name))
                os.rename(file_name, file_name + '.old')
439

Gregory Ashton's avatar
Gregory Ashton committed
440
        logger.debug("Saving result to {}".format(file_name))
441 442

        # Convert the prior to a string representation for saving on disk
443
        dictionary = self._get_save_data_dictionary()
444 445 446
        if dictionary.get('priors', False):
            dictionary['priors'] = {key: str(self.priors[key]) for key in self.priors}

447
        # Convert callable sampler_kwargs to strings
448 449 450 451
        if dictionary.get('sampler_kwargs', None) is not None:
            for key in dictionary['sampler_kwargs']:
                if hasattr(dictionary['sampler_kwargs'][key], '__call__'):
                    dictionary['sampler_kwargs'][key] = str(dictionary['sampler_kwargs'])
452

Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
453
        try:
454
            if extension == 'json':
455 456 457 458 459 460 461 462 463
                if gzip:
                    import gzip
                    # encode to a string
                    json_str = json.dumps(dictionary, cls=BilbyJsonEncoder).encode('utf-8')
                    with gzip.GzipFile(file_name, 'w') as file:
                        file.write(json_str)
                else:
                    with open(file_name, 'w') as file:
                        json.dump(dictionary, file, indent=2, cls=BilbyJsonEncoder)
464
            elif extension == 'hdf5':
465
                import deepdish
466 467 468
                for key in dictionary:
                    if isinstance(dictionary[key], pd.DataFrame):
                        dictionary[key] = dictionary[key].to_dict()
Sylvia Biscoveanu's avatar
Sylvia Biscoveanu committed
469 470
                deepdish.io.save(file_name, dictionary)
            else:
471
                raise ValueError("Extension type {} not understood".format(extension))
Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
472
        except Exception as e:
Gregory Ashton's avatar
Gregory Ashton committed
473
            logger.error("\n\n Saving the data has failed with the "
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
474
                         "following message:\n {} \n\n".format(e))
Gregory Ashton's avatar
Gregory Ashton committed
475

476
    def save_posterior_samples(self, outdir=None):
477
        """Saves posterior samples to a file"""
478 479
        outdir = self._safe_outdir_creation(outdir, self.save_posterior_samples)
        filename = '{}/{}_posterior_samples.txt'.format(outdir, self.label)
480 481
        self.posterior.to_csv(filename, index=False, header=True)

Gregory Ashton's avatar
Gregory Ashton committed
482
    def get_latex_labels_from_parameter_keys(self, keys):
483 484 485 486 487 488 489 490 491 492 493 494 495
        """ Returns a list of latex_labels corresponding to the given keys

        Parameters
        ----------
        keys: list
            List of strings corresponding to the desired latex_labels

        Returns
        -------
        list: The desired latex_labels

        """
        latex_labels = []
Gregory Ashton's avatar
Gregory Ashton committed
496 497 498
        for k in keys:
            if k in self.search_parameter_keys:
                idx = self.search_parameter_keys.index(k)
499
                latex_labels.append(self.parameter_labels_with_unit[idx])
Gregory Ashton's avatar
Gregory Ashton committed
500
            elif k in self.parameter_labels:
501
                latex_labels.append(k)
Gregory Ashton's avatar
Gregory Ashton committed
502
            else:
Colm Talbot's avatar
Colm Talbot committed
503
                logger.debug(
504 505
                    'key {} not a parameter label or latex label'.format(k))
                latex_labels.append(' '.join(k.split('_')))
506
        return latex_labels
Gregory Ashton's avatar
Gregory Ashton committed
507

Gregory Ashton's avatar
Gregory Ashton committed
508 509 510 511 512 513 514 515 516
    @property
    def covariance_matrix(self):
        """ The covariance matrix of the samples the posterior """
        samples = self.posterior[self.search_parameter_keys].values
        return np.cov(samples.T)

    @property
    def posterior_volume(self):
        """ The posterior volume """
Gregory Ashton's avatar
Gregory Ashton committed
517 518 519
        if self.covariance_matrix.ndim == 0:
            return np.sqrt(self.covariance_matrix)
        else:
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
520 521
            return 1 / np.sqrt(np.abs(np.linalg.det(
                1 / self.covariance_matrix)))
Gregory Ashton's avatar
Gregory Ashton committed
522

523 524
    @staticmethod
    def prior_volume(priors):
Gregory Ashton's avatar
Gregory Ashton committed
525 526 527 528 529 530
        """ The prior volume, given a set of priors """
        return np.prod([priors[k].maximum - priors[k].minimum for k in priors])

    def occam_factor(self, priors):
        """ The Occam factor,

531 532 533
        See Chapter 28, `Mackay "Information Theory, Inference, and Learning
        Algorithms" <http://www.inference.org.uk/itprnn/book.html>`_ Cambridge
        University Press (2003).
Gregory Ashton's avatar
Gregory Ashton committed
534 535 536 537

        """
        return self.posterior_volume / self.prior_volume(priors)

538
    def get_one_dimensional_median_and_error_bar(self, key, fmt='.2f',
539
                                                 quantiles=(0.16, 0.84)):
540 541 542 543 544 545 546 547
        """ Calculate the median and error bar for a given key

        Parameters
        ----------
        key: str
            The parameter key for which to calculate the median and error bar
        fmt: str, ('.2f')
            A format string
548 549
        quantiles: list, tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
550 551 552 553
            the errors bars for.

        Returns
        -------
554 555
        summary: namedtuple
            An object with attributes, median, lower, upper and string
556 557

        """
558 559
        summary = namedtuple('summary', ['median', 'lower', 'upper', 'string'])

560 561 562 563 564
        if len(quantiles) != 2:
            raise ValueError("quantiles must be of length 2")

        quants_to_compute = np.array([quantiles[0], 0.5, quantiles[1]])
        quants = np.percentile(self.posterior[key], quants_to_compute * 100)
565 566 567
        summary.median = quants[1]
        summary.plus = quants[2] - summary.median
        summary.minus = summary.median - quants[0]
568 569

        fmt = "{{0:{0}}}".format(fmt).format
570 571 572 573 574
        string_template = r"${{{0}}}_{{-{1}}}^{{+{2}}}$"
        summary.string = string_template.format(
            fmt(summary.median), fmt(summary.minus), fmt(summary.plus))
        return summary

Colm Talbot's avatar
Colm Talbot committed
575 576 577
    def plot_single_density(self, key, prior=None, cumulative=False,
                            title=None, truth=None, save=True,
                            file_base_name=None, bins=50, label_fontsize=16,
578 579
                            title_fontsize=16, quantiles=(0.16, 0.84), dpi=300):
        """ Plot a 1D marginal density, either probability or cumulative.
Colm Talbot's avatar
Colm Talbot committed
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607

        Parameters
        ----------
        key: str
            Name of the parameter to plot
        prior: {bool (True), bilby.core.prior.Prior}
            If true, add the stored prior probability density function to the
            one-dimensional marginal distributions. If instead a Prior
            is provided, this will be plotted.
        cumulative: bool
            If true plot the CDF
        title: bool
            If true, add 1D title of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        truth: {bool, float}
            If true, plot self.injection_parameters[parameter].
            If float, plot this value.
        save: bool:
            If true, save plot to disk.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
            The fontsizes for the labels and titles
608 609
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
Colm Talbot's avatar
Colm Talbot committed
610 611 612 613 614 615 616 617 618 619 620 621
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot

        Returns
        -------
        figure: matplotlib.pyplot.figure
            A matplotlib figure object
        """
        logger.info('Plotting {} marginal distribution'.format(key))
        label = self.get_latex_labels_from_parameter_keys([key])[0]
        fig, ax = plt.subplots()
622 623 624 625 626 627 628 629
        try:
            ax.hist(self.posterior[key].values, bins=bins, density=True,
                    histtype='step', cumulative=cumulative)
        except ValueError as e:
            logger.info(
                'Failed to generate 1d plot for {}, error message: {}'
                .format(key, e))
            return
Colm Talbot's avatar
Colm Talbot committed
630 631 632 633 634 635 636 637 638 639 640 641 642
        ax.set_xlabel(label, fontsize=label_fontsize)
        if truth is not None:
            ax.axvline(truth, ls='-', color='orange')

        summary = self.get_one_dimensional_median_and_error_bar(
            key, quantiles=quantiles)
        ax.axvline(summary.median - summary.minus, ls='--', color='C0')
        ax.axvline(summary.median + summary.plus, ls='--', color='C0')
        if title:
            ax.set_title(summary.string, fontsize=title_fontsize)

        if isinstance(prior, Prior):
            theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
643
            ax.plot(theta, prior.prob(theta), color='C2')
Colm Talbot's avatar
Colm Talbot committed
644 645 646 647 648 649 650 651

        if save:
            fig.tight_layout()
            if cumulative:
                file_name = file_base_name + key + '_cdf'
            else:
                file_name = file_base_name + key + '_pdf'
            fig.savefig(file_name, dpi=dpi)
652 653 654
            plt.close(fig)
        else:
            return fig
Colm Talbot's avatar
Colm Talbot committed
655

656 657
    def plot_marginals(self, parameters=None, priors=None, titles=True,
                       file_base_name=None, bins=50, label_fontsize=16,
658 659
                       title_fontsize=16, quantiles=(0.16, 0.84), dpi=300,
                       outdir=None):
660 661 662 663 664 665 666
        """ Plot 1D marginal distributions

        Parameters
        ----------
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
667
        priors: {bool (False), bilby.core.prior.PriorDict}
668
            If true, add the stored prior probability density functions to the
669
            one-dimensional marginal distributions. If instead a PriorDict
670 671 672 673 674 675 676 677 678 679 680 681
            is provided, this will be plotted.
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
682 683 684
            The font sizes for the labels and titles
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
685 686 687
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot
688 689
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
690 691 692 693 694 695

        Returns
        -------
        """
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
Colm Talbot's avatar
Colm Talbot committed
696
            truths = parameters
697
        elif parameters is None:
Colm Talbot's avatar
Colm Talbot committed
698 699 700 701 702
            plot_parameter_keys = self.posterior.keys()
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
703 704
        else:
            plot_parameter_keys = list(parameters)
Colm Talbot's avatar
Colm Talbot committed
705 706 707 708
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
709 710

        if file_base_name is None:
711 712
            outdir = self._safe_outdir_creation(outdir, self.plot_marginals)
            file_base_name = '{}/{}_1d/'.format(outdir, self.label)
Colm Talbot's avatar
Colm Talbot committed
713
            check_directory_exists_and_if_not_mkdir(file_base_name)
714 715

        if priors is True:
Colm Talbot's avatar
Colm Talbot committed
716 717
            priors = getattr(self, 'priors', dict())
        elif isinstance(priors, dict):
718
            pass
Colm Talbot's avatar
Colm Talbot committed
719 720
        elif priors in [False, None]:
            priors = dict()
721 722 723 724
        else:
            raise ValueError('Input priors={} not understood'.format(priors))

        for i, key in enumerate(plot_parameter_keys):
Colm Talbot's avatar
Colm Talbot committed
725 726
            if not isinstance(self.posterior[key].values[0], float):
                continue
Colm Talbot's avatar
Colm Talbot committed
727 728
            prior = priors.get(key, None)
            truth = truths.get(key, None)
Colm Talbot's avatar
Colm Talbot committed
729
            for cumulative in [False, True]:
730
                self.plot_single_density(
Colm Talbot's avatar
Colm Talbot committed
731 732
                    key, prior=prior, cumulative=cumulative, title=titles,
                    truth=truth, save=True, file_base_name=file_base_name,
Colm Talbot's avatar
Colm Talbot committed
733 734
                    bins=bins, label_fontsize=label_fontsize, dpi=dpi,
                    title_fontsize=title_fontsize, quantiles=quantiles)
735

736 737 738
    def plot_corner(self, parameters=None, priors=None, titles=True, save=True,
                    filename=None, dpi=300, **kwargs):
        """ Plot a corner-plot
Gregory Ashton's avatar
Gregory Ashton committed
739 740 741

        Parameters
        ----------
742 743 744
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
745
        priors: {bool (False), bilby.core.prior.PriorDict}
746
            If true, add the stored prior probability density functions to the
747
            one-dimensional marginal distributions. If instead a PriorDict
748
            is provided, this will be plotted.
749 750 751 752 753
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
754 755 756 757 758 759
        save: bool, optional
            If true, save the image using the given label and outdir
        filename: str, optional
            If given, overwrite the default filename
        dpi: int, optional
            Dots per inch resolution of the plot
760 761 762
        **kwargs:
            Other keyword arguments are passed to `corner.corner`. We set some
            defaults to improve the basic look and feel, but these can all be
763 764
            overridden. Also optional an 'outdir' argument which can be used
            to override the outdir set by the absolute path of the result object.
Gregory Ashton's avatar
Gregory Ashton committed
765

766 767 768 769 770 771
        Notes
        -----
            The generation of the corner plot themselves is done by the corner
            python module, see https://corner.readthedocs.io for more
            information.

Gregory Ashton's avatar
Gregory Ashton committed
772 773 774 775
        Returns
        -------
        fig:
            A matplotlib figure instance
776

Gregory Ashton's avatar
Gregory Ashton committed
777
        """
778 779

        # If in testing mode, not corner plots are generated
780 781
        if utils.command_line_args.test:
            return
Gregory Ashton's avatar
Gregory Ashton committed
782

Colm Talbot's avatar
Colm Talbot committed
783
        # bilby default corner kwargs. Overwritten by anything passed to kwargs
784 785 786
        defaults_kwargs = dict(
            bins=50, smooth=0.9, label_kwargs=dict(fontsize=16),
            title_kwargs=dict(fontsize=16), color='#0072C1',
787
            truth_color='tab:orange', quantiles=[0.16, 0.84],
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
788
            levels=(1 - np.exp(-0.5), 1 - np.exp(-2), 1 - np.exp(-9 / 2.)),
789
            plot_density=False, plot_datapoints=True, fill_contours=True,
790 791 792 793 794 795
            max_n_ticks=3)

        if LooseVersion(matplotlib.__version__) < "2.1":
            defaults_kwargs['hist_kwargs'] = dict(normed=True)
        else:
            defaults_kwargs['hist_kwargs'] = dict(density=True)
796

797 798 799 800
        if 'lionize' in kwargs and kwargs['lionize'] is True:
            defaults_kwargs['truth_color'] = 'tab:blue'
            defaults_kwargs['color'] = '#FF8C00'

801 802 803
        defaults_kwargs.update(kwargs)
        kwargs = defaults_kwargs

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
        # Handle if truths was passed in
        if 'truth' in kwargs:
            kwargs['truths'] = kwargs.pop('truth')
        if kwargs.get('truths'):
            truths = kwargs.get('truths')
            if isinstance(parameters, list) and isinstance(truths, list):
                if len(parameters) != len(truths):
                    raise ValueError(
                        "Length of parameters and truths don't match")
            elif isinstance(truths, dict) and parameters is None:
                parameters = kwargs.pop('truths')
            else:
                raise ValueError(
                    "Combination of parameters and truths not understood")

Gregory Ashton's avatar
Gregory Ashton committed
819 820 821 822 823 824 825 826
        # If injection parameters where stored, use these as parameter values
        # but do not overwrite input parameters (or truths)
        cond1 = getattr(self, 'injection_parameters', None) is not None
        cond2 = parameters is None
        if cond1 and cond2:
            parameters = {key: self.injection_parameters[key] for key in
                          self.search_parameter_keys}

827 828 829 830 831 832 833 834 835
        # If parameters is a dictionary, use the keys to determine which
        # parameters to plot and the values as truths.
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
            kwargs['truths'] = list(parameters.values())
        elif parameters is None:
            plot_parameter_keys = self.search_parameter_keys
        else:
            plot_parameter_keys = list(parameters)
836

837
        # Get latex formatted strings for the plot labels
838 839
        kwargs['labels'] = kwargs.get(
            'labels', self.get_latex_labels_from_parameter_keys(
840
                plot_parameter_keys))
841

842 843 844 845
        # Unless already set, set the range to include all samples
        # This prevents ValueErrors being raised for parameters with no range
        kwargs['range'] = kwargs.get('range', [1] * len(plot_parameter_keys))

846 847
        # Create the data array to plot and pass everything to corner
        xs = self.posterior[plot_parameter_keys].values
848
        fig = corner.corner(xs, **kwargs)
849
        axes = fig.get_axes()
850 851 852

        #  Add the titles
        if titles and kwargs.get('quantiles', None) is not None:
853 854
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
855 856
                if ax.title.get_text() == '':
                    ax.set_title(self.get_one_dimensional_median_and_error_bar(
857
                        par, quantiles=kwargs['quantiles']).string,
858 859 860
                        **kwargs['title_kwargs'])

        #  Add priors to the 1D plots
861 862 863
        if priors is True:
            priors = getattr(self, 'priors', False)
        if isinstance(priors, dict):
864 865
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
866 867
                theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
                ax.plot(theta, priors[par].prob(theta), color='C2')
868 869 870 871
        elif priors in [False, None]:
            pass
        else:
            raise ValueError('Input priors={} not understood'.format(priors))
872

873
        if save:
874
            if filename is None:
875 876
                outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_corner)
                filename = '{}/{}_corner.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
877
            logger.debug('Saving corner plot to {}'.format(filename))
878
            fig.savefig(filename, dpi=dpi)
879
            plt.close(fig)
880

881
        return fig
882

Gregory Ashton's avatar
Gregory Ashton committed
883
    def plot_walkers(self, **kwargs):
MoritzThomasHuebner's avatar
A typo  
MoritzThomasHuebner committed
884
        """ Method to plot the trace of the walkers in an ensemble MCMC plot """
885
        if hasattr(self, 'walkers') is False:
Gregory Ashton's avatar
Gregory Ashton committed
886
            logger.warning("Cannot plot_walkers as no walkers are saved")
887
            return
888 889 890

        if utils.command_line_args.test:
            return
891 892 893

        nwalkers, nsteps, ndim = self.walkers.shape
        idxs = np.arange(nsteps)
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
894
        fig, axes = plt.subplots(nrows=ndim, figsize=(6, 3 * ndim))
895 896
        walkers = self.walkers[:, :, :]
        for i, ax in enumerate(axes):
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
897
            ax.plot(idxs[:self.nburn + 1], walkers[:, :self.nburn + 1, i].T,
898 899 900 901 902 903 904 905 906
                    lw=0.1, color='r')
            ax.set_ylabel(self.parameter_labels[i])

        for i, ax in enumerate(axes):
            ax.plot(idxs[self.nburn:], walkers[:, self.nburn:, i].T, lw=0.1,
                    color='k')
            ax.set_ylabel(self.parameter_labels[i])

        fig.tight_layout()
907 908
        outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_walkers)
        filename = '{}/{}_walkers.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
909
        logger.debug('Saving walkers plot to {}'.format('filename'))
910
        fig.savefig(filename)
911
        plt.close(fig)
912

913 914 915
    def plot_with_data(self, model, x, y, ndraws=1000, npoints=1000,
                       xlabel=None, ylabel=None, data_label='data',
                       data_fmt='o', draws_label=None, filename=None,
916
                       maxl_label='max likelihood', dpi=300, outdir=None):
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
        """ Generate a figure showing the data and fits to the data

        Parameters
        ----------
        model: function
            A python function which when called as `model(x, **kwargs)` returns
            the model prediction (here `kwargs` is a dictionary of key-value
            pairs of the model parameters.
        x, y: np.ndarray
            The independent and dependent data to plot
        ndraws: int
            Number of draws from the posterior to plot
        npoints: int
            Number of points used to plot the smoothed fit to the data
        xlabel, ylabel: str
            Labels for the axes
        data_label, draws_label, maxl_label: str
            Label for the data, draws, and max likelihood legend
        data_fmt: str
            Matpltolib fmt code, defaults to `'-o'`
        dpi: int
            Passed to `plt.savefig`
        filename: str
            If given, the filename to use. Otherwise, the filename is generated
            from the outdir and label attributes.
942 943
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
944 945

        """
946 947 948 949 950 951

        # Determine model_posterior, the subset of the full posterior which
        # should be passed into the model
        model_keys = infer_parameters_from_function(model)
        model_posterior = self.posterior[model_keys]

952 953 954 955
        xsmooth = np.linspace(np.min(x), np.max(x), npoints)
        fig, ax = plt.subplots()
        logger.info('Plotting {} draws'.format(ndraws))
        for _ in range(ndraws):
956
            s = model_posterior.sample().to_dict('records')[0]
957 958
            ax.plot(xsmooth, model(xsmooth, **s), alpha=0.25, lw=0.1, color='r',
                    label=draws_label)
959 960 961
        try:
            if all(~np.isnan(self.posterior.log_likelihood)):
                logger.info('Plotting maximum likelihood')
Colm Talbot's avatar
Colm Talbot committed
962
                s = model_posterior.iloc[self.posterior.log_likelihood.idxmax()]
963 964
                ax.plot(xsmooth, model(xsmooth, **s), lw=1, color='k',
                        label=maxl_label)
965
        except (AttributeError, TypeError):
966 967
            logger.debug(
                "No log likelihood values stored, unable to plot max")
968 969 970 971 972 973 974 975 976 977 978 979 980 981

        ax.plot(x, y, data_fmt, markersize=2, label=data_label)

        if xlabel is not None:
            ax.set_xlabel(xlabel)
        if ylabel is not None:
            ax.set_ylabel(ylabel)

        handles, labels = plt.gca().get_legend_handles_labels()
        by_label = OrderedDict(zip(labels, handles))
        plt.legend(by_label.values(), by_label.keys())
        ax.legend(numpoints=3)
        fig.tight_layout()
        if filename is None:
982 983
            outdir = self._safe_outdir_creation(outdir, self.plot_with_data)
            filename = '{}/{}_plot_with_data'.format(outdir, self.label)
984
        fig.savefig(filename, dpi=dpi)
985
        plt.close(fig)
986

987 988 989 990 991 992 993 994 995 996 997
    @staticmethod
    def _add_prior_fixed_values_to_posterior(posterior, priors):
        if priors is None:
            return posterior
        for key in priors:
            if isinstance(priors[key], DeltaFunction):
                posterior[key] = priors[key].peak
            elif isinstance(priors[key], float):
                posterior[key] = priors[key]
        return posterior

998 999
    def samples_to_posterior(self, likelihood=None, priors=None,
                             conversion_function=None):
1000
        """
1001 1002 1003
        Convert array of samples to posterior (a Pandas data frame)

        Also applies the conversion function to any stored posterior
1004

1005 1006
        Parameters
        ----------
Colm Talbot's avatar
Colm Talbot committed
1007
        likelihood: bilby.likelihood.GravitationalWaveTransient, optional
1008 1009
            GravitationalWaveTransient likelihood used for sampling.
        priors: dict, optional
1010
            Dictionary of prior object, used to fill in delta function priors.