result.py 44 KB
Newer Older
Colm Talbot's avatar
Colm Talbot committed
1 2
from __future__ import division

3
import os
4
from distutils.version import LooseVersion
5
from collections import OrderedDict, namedtuple
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
6

7
import numpy as np
8
import deepdish
9
import pandas as pd
10
import corner
11
import scipy.stats
12
import matplotlib
13
import matplotlib.pyplot as plt
14
from matplotlib import lines as mpllines
15

16
from . import utils
Colm Talbot's avatar
Colm Talbot committed
17 18 19
from .utils import (logger, infer_parameters_from_function,
                    check_directory_exists_and_if_not_mkdir)
from .prior import Prior, PriorDict, DeltaFunction
20

21

22
def result_file_name(outdir, label):
23 24 25 26 27 28 29 30 31 32 33 34 35
    """ Returns the standard filename used for a result file

    Parameters
    ----------
    outdir: str
        Name of the output directory
    label: str
        Naming scheme of the output file

    Returns
    -------
    str: File name of the output file
    """
36 37 38
    return '{}/{}_result.h5'.format(outdir, label)


39
def read_in_result(filename=None, outdir=None, label=None):
Gregory Ashton's avatar
Gregory Ashton committed
40 41 42 43 44 45
    """ Read in a saved .h5 data file

    Parameters
    ----------
    filename: str
        If given, try to load from this filename
46 47
    outdir, label: str
        If given, use the default naming convention for saved results file
Gregory Ashton's avatar
Gregory Ashton committed
48

49 50
    Returns
    -------
Colm Talbot's avatar
Colm Talbot committed
51
    result: bilby.core.result.Result
52

Moritz Huebner's avatar
Moritz Huebner committed
53
    Raises
54 55
    -------
    ValueError: If no filename is given and either outdir or label is None
Colm Talbot's avatar
Colm Talbot committed
56
                If no bilby.core.result.Result is found in the path
Gregory Ashton's avatar
Gregory Ashton committed
57 58 59

    """
    if filename is None:
60 61 62 63
        if (outdir is None) and (label is None):
            raise ValueError("No information given to load file")
        else:
            filename = result_file_name(outdir, label)
64
    if os.path.isfile(filename):
65
        return Result(**deepdish.io.load(filename))
66
    else:
67 68 69 70 71 72 73 74 75 76 77
        raise IOError("No result '{}' found".format(filename))


class Result(object):
    def __init__(self, label='no_label', outdir='.', sampler=None,
                 search_parameter_keys=None, fixed_parameter_keys=None,
                 priors=None, sampler_kwargs=None, injection_parameters=None,
                 meta_data=None, posterior=None, samples=None,
                 nested_samples=None, log_evidence=np.nan,
                 log_evidence_err=np.nan, log_noise_evidence=np.nan,
                 log_bayes_factor=np.nan, log_likelihood_evaluations=None,
78 79 80 81
                 log_prior_evaluations=None, sampling_time=None, nburn=None,
                 walkers=None, max_autocorrelation_time=None,
                 parameter_labels=None, parameter_labels_with_unit=None,
                 version=None):
82
        """ A class to store the results of the sampling run
83 84 85

        Parameters
        ----------
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
        label, outdir, sampler: str
            The label, output directory, and sampler used
        search_parameter_keys, fixed_parameter_keys: list
            Lists of the search and fixed parameter keys. Elemenents of the
            list should be of type `str` and matchs the keys of the `prior`
        priors: dict, bilby.core.prior.PriorDict
            A dictionary of the priors used in the run
        sampler_kwargs: dict
            Key word arguments passed to the sampler
        injection_parameters: dict
            A dictionary of the injection parameters
        meta_data: dict
            A dictionary of meta data to store about the run
        posterior: pandas.DataFrame
            A pandas data frame of the posterior
        samples, nested_samples: array_like
            An array of the output posterior samples and the unweighted samples
        log_evidence, log_evidence_err, log_noise_evidence, log_bayes_factor: float
            Natural log evidences
        log_likelihood_evaluations: array_like
            The evaluations of the likelihood for each sample point
107 108
        log_prior_evaluations: array_like
            The evaluations of the prior for each sample point
109 110 111 112 113 114 115 116 117 118
        sampling_time: float
            The time taken to complete the sampling
        nburn: int
            The number of burn-in steps discarded for MCMC samplers
        walkers: array_like
            The samplers taken by a ensemble MCMC samplers
        max_autocorrelation_time: float
            The estimated maximum autocorrelation time for MCMC samplers
        parameter_labels, parameter_labels_with_unit: list
            Lists of the latex-formatted parameter labels
119 120 121
        version: str,
            Version information for software used to generate the result. Note,
            this information is generated when the result object is initialized
122

123 124 125 126
        Note
        ---------
        All sampling output parameters, e.g. the samples themselves are
        typically not given at initialisation, but set at a later stage.
127 128

        """
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
        self.label = label
        self.outdir = os.path.abspath(outdir)
        self.sampler = sampler
        self.search_parameter_keys = search_parameter_keys
        self.fixed_parameter_keys = fixed_parameter_keys
        self.parameter_labels = parameter_labels
        self.parameter_labels_with_unit = parameter_labels_with_unit
        self.priors = priors
        self.sampler_kwargs = sampler_kwargs
        self.meta_data = meta_data
        self.injection_parameters = injection_parameters
        self.posterior = posterior
        self.samples = samples
        self.nested_samples = nested_samples
        self.walkers = walkers
        self.nburn = nburn
        self.log_evidence = log_evidence
        self.log_evidence_err = log_evidence_err
        self.log_noise_evidence = log_noise_evidence
        self.log_bayes_factor = log_bayes_factor
        self.log_likelihood_evaluations = log_likelihood_evaluations
151
        self.log_prior_evaluations = log_prior_evaluations
152
        self.sampling_time = sampling_time
153
        self.version = version
Colm Talbot's avatar
Colm Talbot committed
154
        self.max_autocorrelation_time = max_autocorrelation_time
155

156 157 158
        self.prior_values = None
        self._kde = None

159
    def __str__(self):
160
        """Print a summary """
161 162
        if getattr(self, 'posterior', None) is not None:
            if getattr(self, 'log_noise_evidence', None) is not None:
163 164 165 166
                return ("nsamples: {:d}\n"
                        "log_noise_evidence: {:6.3f}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
                        "log_bayes_factor: {:6.3f} +/- {:6.3f}\n"
167
                        .format(len(self.posterior), self.log_noise_evidence, self.log_evidence,
168 169 170 171 172
                                self.log_evidence_err, self.log_bayes_factor,
                                self.log_evidence_err))
            else:
                return ("nsamples: {:d}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
173
                        .format(len(self.posterior), self.log_evidence, self.log_evidence_err))
174 175
        else:
            return ''
176

177 178 179 180 181 182
    @property
    def priors(self):
        if self._priors is not None:
            return self._priors
        else:
            raise ValueError('Result object has no priors')
183

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    @priors.setter
    def priors(self, priors):
        if isinstance(priors, dict):
            self._priors = PriorDict(priors)
            if self.parameter_labels is None:
                self.parameter_labels = [self.priors[k].latex_label for k in
                                         self.search_parameter_keys]
            if self.parameter_labels_with_unit is None:
                self.parameter_labels_with_unit = [
                    self.priors[k].latex_label_with_unit for k in
                    self.search_parameter_keys]

        elif priors is None:
            self._priors = priors
            self.parameter_labels = self.search_parameter_keys
            self.parameter_labels_with_unit = self.search_parameter_keys
        else:
            raise ValueError("Input priors not understood")
202

203 204 205 206 207
    @property
    def samples(self):
        """ An array of samples """
        if self._samples is not None:
            return self._samples
208
        else:
209
            raise ValueError("Result object has no stored samples")
210

211 212 213
    @samples.setter
    def samples(self, samples):
        self._samples = samples
214

215 216 217 218 219 220 221
    @property
    def nested_samples(self):
        """" An array of unweighted samples """
        if self._nested_samples is not None:
            return self._nested_samples
        else:
            raise ValueError("Result object has no stored nested samples")
222

223 224 225
    @nested_samples.setter
    def nested_samples(self, nested_samples):
        self._nested_samples = nested_samples
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    @property
    def walkers(self):
        """" An array of the ensemble walkers """
        if self._walkers is not None:
            return self._walkers
        else:
            raise ValueError("Result object has no stored walkers")

    @walkers.setter
    def walkers(self, walkers):
        self._walkers = walkers

    @property
    def nburn(self):
        """" An array of the ensemble walkers """
        if self._nburn is not None:
            return self._nburn
        else:
            raise ValueError("Result object has no stored nburn")

    @nburn.setter
    def nburn(self, nburn):
        self._nburn = nburn

    @property
    def posterior(self):
        """ A pandas data frame of the posterior """
        if self._posterior is not None:
            return self._posterior
        else:
            raise ValueError("Result object has no stored posterior")

    @posterior.setter
    def posterior(self, posterior):
        self._posterior = posterior

263 264 265 266 267 268 269 270 271 272 273
    @property
    def version(self):
        return self._version

    @version.setter
    def version(self, version):
        if version is None:
            self._version = 'bilby={}'.format(utils.get_version_information())
        else:
            self._version = version

274
    def _get_save_data_dictionary(self):
275
        # This list defines all the parameters saved in the result object
276 277 278 279 280
        save_attrs = [
            'label', 'outdir', 'sampler', 'log_evidence', 'log_evidence_err',
            'log_noise_evidence', 'log_bayes_factor', 'priors', 'posterior',
            'injection_parameters', 'meta_data', 'search_parameter_keys',
            'fixed_parameter_keys', 'sampling_time', 'sampler_kwargs',
281 282
            'log_likelihood_evaluations', 'log_prior_evaluations', 'samples',
            'nested_samples', 'walkers', 'nburn', 'parameter_labels',
283
            'parameter_labels_with_unit', 'version']
284 285 286 287 288 289 290 291
        dictionary = OrderedDict()
        for attr in save_attrs:
            try:
                dictionary[attr] = getattr(self, attr)
            except ValueError as e:
                logger.debug("Unable to save {}, message: {}".format(attr, e))
                pass
        return dictionary
292

293
    def save_to_file(self, overwrite=False, outdir=None):
Colm Talbot's avatar
Colm Talbot committed
294 295 296 297 298 299 300 301
        """
        Writes the Result to a deepdish h5 file

        Parameters
        ----------
        overwrite: bool, optional
            Whether or not to overwrite an existing result file.
            default=False
302 303
        outdir: str, optional
            Path to the outdir. Default is the one stored in the result object.
Colm Talbot's avatar
Colm Talbot committed
304
        """
305 306 307
        outdir = self._safe_outdir_creation(outdir, self.save_to_file)
        file_name = result_file_name(outdir, self.label)

308
        if os.path.isfile(file_name):
Colm Talbot's avatar
Colm Talbot committed
309 310 311 312 313 314 315 316
            if overwrite:
                logger.debug('Removing existing file {}'.format(file_name))
                os.remove(file_name)
            else:
                logger.debug(
                    'Renaming existing file {} to {}.old'.format(file_name,
                                                                 file_name))
                os.rename(file_name, file_name + '.old')
317

Gregory Ashton's avatar
Gregory Ashton committed
318
        logger.debug("Saving result to {}".format(file_name))
319 320

        # Convert the prior to a string representation for saving on disk
321
        dictionary = self._get_save_data_dictionary()
322 323 324
        if dictionary.get('priors', False):
            dictionary['priors'] = {key: str(self.priors[key]) for key in self.priors}

325 326 327 328 329
        # Convert callable sampler_kwargs to strings to avoid pickling issues
        if dictionary.get('sampler_kwargs', None) is not None:
            for key in dictionary['sampler_kwargs']:
                if hasattr(dictionary['sampler_kwargs'][key], '__call__'):
                    dictionary['sampler_kwargs'][key] = str(dictionary['sampler_kwargs'])
330

Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
331
        try:
332
            deepdish.io.save(file_name, dictionary)
Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
333
        except Exception as e:
Gregory Ashton's avatar
Gregory Ashton committed
334
            logger.error("\n\n Saving the data has failed with the "
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
335
                         "following message:\n {} \n\n".format(e))
Gregory Ashton's avatar
Gregory Ashton committed
336

337
    def save_posterior_samples(self, outdir=None):
338
        """Saves posterior samples to a file"""
339 340
        outdir = self._safe_outdir_creation(outdir, self.save_posterior_samples)
        filename = '{}/{}_posterior_samples.txt'.format(outdir, self.label)
341 342
        self.posterior.to_csv(filename, index=False, header=True)

Gregory Ashton's avatar
Gregory Ashton committed
343
    def get_latex_labels_from_parameter_keys(self, keys):
344 345 346 347 348 349 350 351 352 353 354 355 356
        """ Returns a list of latex_labels corresponding to the given keys

        Parameters
        ----------
        keys: list
            List of strings corresponding to the desired latex_labels

        Returns
        -------
        list: The desired latex_labels

        """
        latex_labels = []
Gregory Ashton's avatar
Gregory Ashton committed
357 358 359
        for k in keys:
            if k in self.search_parameter_keys:
                idx = self.search_parameter_keys.index(k)
360
                latex_labels.append(self.parameter_labels_with_unit[idx])
Gregory Ashton's avatar
Gregory Ashton committed
361
            elif k in self.parameter_labels:
362
                latex_labels.append(k)
Gregory Ashton's avatar
Gregory Ashton committed
363
            else:
Colm Talbot's avatar
Colm Talbot committed
364
                logger.debug(
365 366
                    'key {} not a parameter label or latex label'.format(k))
                latex_labels.append(' '.join(k.split('_')))
367
        return latex_labels
Gregory Ashton's avatar
Gregory Ashton committed
368

Gregory Ashton's avatar
Gregory Ashton committed
369 370 371 372 373 374 375 376 377
    @property
    def covariance_matrix(self):
        """ The covariance matrix of the samples the posterior """
        samples = self.posterior[self.search_parameter_keys].values
        return np.cov(samples.T)

    @property
    def posterior_volume(self):
        """ The posterior volume """
Gregory Ashton's avatar
Gregory Ashton committed
378 379 380
        if self.covariance_matrix.ndim == 0:
            return np.sqrt(self.covariance_matrix)
        else:
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
381 382
            return 1 / np.sqrt(np.abs(np.linalg.det(
                1 / self.covariance_matrix)))
Gregory Ashton's avatar
Gregory Ashton committed
383

384 385
    @staticmethod
    def prior_volume(priors):
Gregory Ashton's avatar
Gregory Ashton committed
386 387 388 389 390 391
        """ The prior volume, given a set of priors """
        return np.prod([priors[k].maximum - priors[k].minimum for k in priors])

    def occam_factor(self, priors):
        """ The Occam factor,

392 393 394
        See Chapter 28, `Mackay "Information Theory, Inference, and Learning
        Algorithms" <http://www.inference.org.uk/itprnn/book.html>`_ Cambridge
        University Press (2003).
Gregory Ashton's avatar
Gregory Ashton committed
395 396 397 398

        """
        return self.posterior_volume / self.prior_volume(priors)

399
    def get_one_dimensional_median_and_error_bar(self, key, fmt='.2f',
400
                                                 quantiles=(0.16, 0.84)):
401 402 403 404 405 406 407 408
        """ Calculate the median and error bar for a given key

        Parameters
        ----------
        key: str
            The parameter key for which to calculate the median and error bar
        fmt: str, ('.2f')
            A format string
409 410
        quantiles: list, tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
411 412 413 414
            the errors bars for.

        Returns
        -------
415 416
        summary: namedtuple
            An object with attributes, median, lower, upper and string
417 418

        """
419 420
        summary = namedtuple('summary', ['median', 'lower', 'upper', 'string'])

421 422 423 424 425
        if len(quantiles) != 2:
            raise ValueError("quantiles must be of length 2")

        quants_to_compute = np.array([quantiles[0], 0.5, quantiles[1]])
        quants = np.percentile(self.posterior[key], quants_to_compute * 100)
426 427 428
        summary.median = quants[1]
        summary.plus = quants[2] - summary.median
        summary.minus = summary.median - quants[0]
429 430

        fmt = "{{0:{0}}}".format(fmt).format
431 432 433 434 435
        string_template = r"${{{0}}}_{{-{1}}}^{{+{2}}}$"
        summary.string = string_template.format(
            fmt(summary.median), fmt(summary.minus), fmt(summary.plus))
        return summary

Colm Talbot's avatar
Colm Talbot committed
436 437 438
    def plot_single_density(self, key, prior=None, cumulative=False,
                            title=None, truth=None, save=True,
                            file_base_name=None, bins=50, label_fontsize=16,
439 440
                            title_fontsize=16, quantiles=(0.16, 0.84), dpi=300):
        """ Plot a 1D marginal density, either probability or cumulative.
Colm Talbot's avatar
Colm Talbot committed
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

        Parameters
        ----------
        key: str
            Name of the parameter to plot
        prior: {bool (True), bilby.core.prior.Prior}
            If true, add the stored prior probability density function to the
            one-dimensional marginal distributions. If instead a Prior
            is provided, this will be plotted.
        cumulative: bool
            If true plot the CDF
        title: bool
            If true, add 1D title of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        truth: {bool, float}
            If true, plot self.injection_parameters[parameter].
            If float, plot this value.
        save: bool:
            If true, save plot to disk.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
            The fontsizes for the labels and titles
469 470
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
Colm Talbot's avatar
Colm Talbot committed
471 472 473 474 475 476 477 478 479 480 481 482
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot

        Returns
        -------
        figure: matplotlib.pyplot.figure
            A matplotlib figure object
        """
        logger.info('Plotting {} marginal distribution'.format(key))
        label = self.get_latex_labels_from_parameter_keys([key])[0]
        fig, ax = plt.subplots()
483 484 485 486 487 488 489 490
        try:
            ax.hist(self.posterior[key].values, bins=bins, density=True,
                    histtype='step', cumulative=cumulative)
        except ValueError as e:
            logger.info(
                'Failed to generate 1d plot for {}, error message: {}'
                .format(key, e))
            return
Colm Talbot's avatar
Colm Talbot committed
491 492 493 494 495 496 497 498 499 500 501 502 503
        ax.set_xlabel(label, fontsize=label_fontsize)
        if truth is not None:
            ax.axvline(truth, ls='-', color='orange')

        summary = self.get_one_dimensional_median_and_error_bar(
            key, quantiles=quantiles)
        ax.axvline(summary.median - summary.minus, ls='--', color='C0')
        ax.axvline(summary.median + summary.plus, ls='--', color='C0')
        if title:
            ax.set_title(summary.string, fontsize=title_fontsize)

        if isinstance(prior, Prior):
            theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
504
            ax.plot(theta, prior.prob(theta), color='C2')
Colm Talbot's avatar
Colm Talbot committed
505 506 507 508 509 510 511 512

        if save:
            fig.tight_layout()
            if cumulative:
                file_name = file_base_name + key + '_cdf'
            else:
                file_name = file_base_name + key + '_pdf'
            fig.savefig(file_name, dpi=dpi)
513 514 515
            plt.close(fig)
        else:
            return fig
Colm Talbot's avatar
Colm Talbot committed
516

517 518
    def plot_marginals(self, parameters=None, priors=None, titles=True,
                       file_base_name=None, bins=50, label_fontsize=16,
519 520
                       title_fontsize=16, quantiles=(0.16, 0.84), dpi=300,
                       outdir=None):
521 522 523 524 525 526 527
        """ Plot 1D marginal distributions

        Parameters
        ----------
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
528
        priors: {bool (False), bilby.core.prior.PriorDict}
529
            If true, add the stored prior probability density functions to the
530
            one-dimensional marginal distributions. If instead a PriorDict
531 532 533 534 535 536 537 538 539 540 541 542
            is provided, this will be plotted.
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
        file_base_name: str, optional
            If given, the base file name to use (by default `outdir/label_` is
            used)
        bins: int
            The number of histogram bins
        label_fontsize, title_fontsize: int
543 544 545
            The font sizes for the labels and titles
        quantiles: tuple
            A length-2 tuple of the lower and upper-quantiles to calculate
546 547 548
            the errors bars for.
        dpi: int
            Dots per inch resolution of the plot
549 550
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
551 552 553 554 555 556

        Returns
        -------
        """
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
Colm Talbot's avatar
Colm Talbot committed
557
            truths = parameters
558
        elif parameters is None:
Colm Talbot's avatar
Colm Talbot committed
559 560 561 562 563
            plot_parameter_keys = self.posterior.keys()
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
564 565
        else:
            plot_parameter_keys = list(parameters)
Colm Talbot's avatar
Colm Talbot committed
566 567 568 569
            if self.injection_parameters is None:
                truths = dict()
            else:
                truths = self.injection_parameters
570 571

        if file_base_name is None:
572 573
            outdir = self._safe_outdir_creation(outdir, self.plot_marginals)
            file_base_name = '{}/{}_1d/'.format(outdir, self.label)
Colm Talbot's avatar
Colm Talbot committed
574
            check_directory_exists_and_if_not_mkdir(file_base_name)
575 576

        if priors is True:
Colm Talbot's avatar
Colm Talbot committed
577 578
            priors = getattr(self, 'priors', dict())
        elif isinstance(priors, dict):
579
            pass
Colm Talbot's avatar
Colm Talbot committed
580 581
        elif priors in [False, None]:
            priors = dict()
582 583 584 585
        else:
            raise ValueError('Input priors={} not understood'.format(priors))

        for i, key in enumerate(plot_parameter_keys):
Colm Talbot's avatar
Colm Talbot committed
586 587
            if not isinstance(self.posterior[key].values[0], float):
                continue
Colm Talbot's avatar
Colm Talbot committed
588 589
            prior = priors.get(key, None)
            truth = truths.get(key, None)
Colm Talbot's avatar
Colm Talbot committed
590
            for cumulative in [False, True]:
591
                self.plot_single_density(
Colm Talbot's avatar
Colm Talbot committed
592 593
                    key, prior=prior, cumulative=cumulative, title=titles,
                    truth=truth, save=True, file_base_name=file_base_name,
Colm Talbot's avatar
Colm Talbot committed
594 595
                    bins=bins, label_fontsize=label_fontsize, dpi=dpi,
                    title_fontsize=title_fontsize, quantiles=quantiles)
596

597 598 599
    def plot_corner(self, parameters=None, priors=None, titles=True, save=True,
                    filename=None, dpi=300, **kwargs):
        """ Plot a corner-plot
Gregory Ashton's avatar
Gregory Ashton committed
600 601 602

        Parameters
        ----------
603 604 605
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
606
        priors: {bool (False), bilby.core.prior.PriorDict}
607
            If true, add the stored prior probability density functions to the
608
            one-dimensional marginal distributions. If instead a PriorDict
609
            is provided, this will be plotted.
610 611 612 613 614
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
615 616 617 618 619 620
        save: bool, optional
            If true, save the image using the given label and outdir
        filename: str, optional
            If given, overwrite the default filename
        dpi: int, optional
            Dots per inch resolution of the plot
621 622 623
        **kwargs:
            Other keyword arguments are passed to `corner.corner`. We set some
            defaults to improve the basic look and feel, but these can all be
624 625
            overridden. Also optional an 'outdir' argument which can be used
            to override the outdir set by the absolute path of the result object.
Gregory Ashton's avatar
Gregory Ashton committed
626

627 628 629 630 631 632
        Notes
        -----
            The generation of the corner plot themselves is done by the corner
            python module, see https://corner.readthedocs.io for more
            information.

Gregory Ashton's avatar
Gregory Ashton committed
633 634 635 636
        Returns
        -------
        fig:
            A matplotlib figure instance
637

Gregory Ashton's avatar
Gregory Ashton committed
638
        """
639 640

        # If in testing mode, not corner plots are generated
641 642
        if utils.command_line_args.test:
            return
Gregory Ashton's avatar
Gregory Ashton committed
643

Colm Talbot's avatar
Colm Talbot committed
644
        # bilby default corner kwargs. Overwritten by anything passed to kwargs
645 646 647
        defaults_kwargs = dict(
            bins=50, smooth=0.9, label_kwargs=dict(fontsize=16),
            title_kwargs=dict(fontsize=16), color='#0072C1',
648
            truth_color='tab:orange', quantiles=[0.16, 0.84],
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
649
            levels=(1 - np.exp(-0.5), 1 - np.exp(-2), 1 - np.exp(-9 / 2.)),
650
            plot_density=False, plot_datapoints=True, fill_contours=True,
651 652 653 654 655 656
            max_n_ticks=3)

        if LooseVersion(matplotlib.__version__) < "2.1":
            defaults_kwargs['hist_kwargs'] = dict(normed=True)
        else:
            defaults_kwargs['hist_kwargs'] = dict(density=True)
657

658 659 660 661
        if 'lionize' in kwargs and kwargs['lionize'] is True:
            defaults_kwargs['truth_color'] = 'tab:blue'
            defaults_kwargs['color'] = '#FF8C00'

662 663 664
        defaults_kwargs.update(kwargs)
        kwargs = defaults_kwargs

665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        # Handle if truths was passed in
        if 'truth' in kwargs:
            kwargs['truths'] = kwargs.pop('truth')
        if kwargs.get('truths'):
            truths = kwargs.get('truths')
            if isinstance(parameters, list) and isinstance(truths, list):
                if len(parameters) != len(truths):
                    raise ValueError(
                        "Length of parameters and truths don't match")
            elif isinstance(truths, dict) and parameters is None:
                parameters = kwargs.pop('truths')
            else:
                raise ValueError(
                    "Combination of parameters and truths not understood")

Gregory Ashton's avatar
Gregory Ashton committed
680 681 682 683 684 685 686 687
        # If injection parameters where stored, use these as parameter values
        # but do not overwrite input parameters (or truths)
        cond1 = getattr(self, 'injection_parameters', None) is not None
        cond2 = parameters is None
        if cond1 and cond2:
            parameters = {key: self.injection_parameters[key] for key in
                          self.search_parameter_keys}

688 689 690 691 692 693 694 695 696
        # If parameters is a dictionary, use the keys to determine which
        # parameters to plot and the values as truths.
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
            kwargs['truths'] = list(parameters.values())
        elif parameters is None:
            plot_parameter_keys = self.search_parameter_keys
        else:
            plot_parameter_keys = list(parameters)
697

698
        # Get latex formatted strings for the plot labels
699 700
        kwargs['labels'] = kwargs.get(
            'labels', self.get_latex_labels_from_parameter_keys(
701
                plot_parameter_keys))
702

703 704 705 706
        # Unless already set, set the range to include all samples
        # This prevents ValueErrors being raised for parameters with no range
        kwargs['range'] = kwargs.get('range', [1] * len(plot_parameter_keys))

707 708
        # Create the data array to plot and pass everything to corner
        xs = self.posterior[plot_parameter_keys].values
709
        fig = corner.corner(xs, **kwargs)
710
        axes = fig.get_axes()
711 712 713

        #  Add the titles
        if titles and kwargs.get('quantiles', None) is not None:
714 715
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
716 717
                if ax.title.get_text() == '':
                    ax.set_title(self.get_one_dimensional_median_and_error_bar(
718
                        par, quantiles=kwargs['quantiles']).string,
719 720 721
                        **kwargs['title_kwargs'])

        #  Add priors to the 1D plots
722 723 724
        if priors is True:
            priors = getattr(self, 'priors', False)
        if isinstance(priors, dict):
725 726
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
727 728
                theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
                ax.plot(theta, priors[par].prob(theta), color='C2')
729 730 731 732
        elif priors in [False, None]:
            pass
        else:
            raise ValueError('Input priors={} not understood'.format(priors))
733

734
        if save:
735
            if filename is None:
736 737
                outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_corner)
                filename = '{}/{}_corner.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
738
            logger.debug('Saving corner plot to {}'.format(filename))
739
            fig.savefig(filename, dpi=dpi)
740
            plt.close(fig)
741

742
        return fig
743

Gregory Ashton's avatar
Gregory Ashton committed
744
    def plot_walkers(self, **kwargs):
MoritzThomasHuebner's avatar
A typo  
MoritzThomasHuebner committed
745
        """ Method to plot the trace of the walkers in an ensemble MCMC plot """
746
        if hasattr(self, 'walkers') is False:
Gregory Ashton's avatar
Gregory Ashton committed
747
            logger.warning("Cannot plot_walkers as no walkers are saved")
748
            return
749 750 751

        if utils.command_line_args.test:
            return
752 753 754

        nwalkers, nsteps, ndim = self.walkers.shape
        idxs = np.arange(nsteps)
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
755
        fig, axes = plt.subplots(nrows=ndim, figsize=(6, 3 * ndim))
756 757
        walkers = self.walkers[:, :, :]
        for i, ax in enumerate(axes):
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
758
            ax.plot(idxs[:self.nburn + 1], walkers[:, :self.nburn + 1, i].T,
759 760 761 762 763 764 765 766 767
                    lw=0.1, color='r')
            ax.set_ylabel(self.parameter_labels[i])

        for i, ax in enumerate(axes):
            ax.plot(idxs[self.nburn:], walkers[:, self.nburn:, i].T, lw=0.1,
                    color='k')
            ax.set_ylabel(self.parameter_labels[i])

        fig.tight_layout()
768 769
        outdir = self._safe_outdir_creation(kwargs.get('outdir'), self.plot_walkers)
        filename = '{}/{}_walkers.png'.format(outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
770
        logger.debug('Saving walkers plot to {}'.format('filename'))
771
        fig.savefig(filename)
772
        plt.close(fig)
773

774 775 776
    def plot_with_data(self, model, x, y, ndraws=1000, npoints=1000,
                       xlabel=None, ylabel=None, data_label='data',
                       data_fmt='o', draws_label=None, filename=None,
777
                       maxl_label='max likelihood', dpi=300, outdir=None):
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
        """ Generate a figure showing the data and fits to the data

        Parameters
        ----------
        model: function
            A python function which when called as `model(x, **kwargs)` returns
            the model prediction (here `kwargs` is a dictionary of key-value
            pairs of the model parameters.
        x, y: np.ndarray
            The independent and dependent data to plot
        ndraws: int
            Number of draws from the posterior to plot
        npoints: int
            Number of points used to plot the smoothed fit to the data
        xlabel, ylabel: str
            Labels for the axes
        data_label, draws_label, maxl_label: str
            Label for the data, draws, and max likelihood legend
        data_fmt: str
            Matpltolib fmt code, defaults to `'-o'`
        dpi: int
            Passed to `plt.savefig`
        filename: str
            If given, the filename to use. Otherwise, the filename is generated
            from the outdir and label attributes.
803 804
        outdir: str, optional
            Path to the outdir. Default is the one store in the result object.
805 806

        """
807 808 809 810 811 812

        # Determine model_posterior, the subset of the full posterior which
        # should be passed into the model
        model_keys = infer_parameters_from_function(model)
        model_posterior = self.posterior[model_keys]

813 814 815 816
        xsmooth = np.linspace(np.min(x), np.max(x), npoints)
        fig, ax = plt.subplots()
        logger.info('Plotting {} draws'.format(ndraws))
        for _ in range(ndraws):
817
            s = model_posterior.sample().to_dict('records')[0]
818 819
            ax.plot(xsmooth, model(xsmooth, **s), alpha=0.25, lw=0.1, color='r',
                    label=draws_label)
820 821 822
        try:
            if all(~np.isnan(self.posterior.log_likelihood)):
                logger.info('Plotting maximum likelihood')
Colm Talbot's avatar
Colm Talbot committed
823
                s = model_posterior.iloc[self.posterior.log_likelihood.idxmax()]
824 825
                ax.plot(xsmooth, model(xsmooth, **s), lw=1, color='k',
                        label=maxl_label)
826
        except (AttributeError, TypeError):
827 828
            logger.debug(
                "No log likelihood values stored, unable to plot max")
829 830 831 832 833 834 835 836 837 838 839 840 841 842

        ax.plot(x, y, data_fmt, markersize=2, label=data_label)

        if xlabel is not None:
            ax.set_xlabel(xlabel)
        if ylabel is not None:
            ax.set_ylabel(ylabel)

        handles, labels = plt.gca().get_legend_handles_labels()
        by_label = OrderedDict(zip(labels, handles))
        plt.legend(by_label.values(), by_label.keys())
        ax.legend(numpoints=3)
        fig.tight_layout()
        if filename is None:
843 844
            outdir = self._safe_outdir_creation(outdir, self.plot_with_data)
            filename = '{}/{}_plot_with_data'.format(outdir, self.label)
845
        fig.savefig(filename, dpi=dpi)
846
        plt.close(fig)
847

848 849
    def samples_to_posterior(self, likelihood=None, priors=None,
                             conversion_function=None):
850
        """
851 852 853
        Convert array of samples to posterior (a Pandas data frame)

        Also applies the conversion function to any stored posterior
854

855 856
        Parameters
        ----------
Colm Talbot's avatar
Colm Talbot committed
857
        likelihood: bilby.likelihood.GravitationalWaveTransient, optional
858 859
            GravitationalWaveTransient likelihood used for sampling.
        priors: dict, optional
860
            Dictionary of prior object, used to fill in delta function priors.
861
        conversion_function: function, optional
862 863
            Function which adds in extra parameters to the data frame,
            should take the data_frame, likelihood and prior as arguments.
864
        """
865 866 867
        try:
            data_frame = self.posterior
        except ValueError:
868 869
            data_frame = pd.DataFrame(
                self.samples, columns=self.search_parameter_keys)
870
            for key in priors:
871
                if isinstance(priors[key], DeltaFunction):
872
                    data_frame[key] = priors[key].peak
873 874 875 876
                elif isinstance(priors[key], float):
                    data_frame[key] = priors[key]
            data_frame['log_likelihood'] = getattr(
                self, 'log_likelihood_evaluations', np.nan)
877 878 879 880 881
            if self.log_prior_evaluations is None:
                data_frame['log_prior'] = self.priors.ln_prob(
                    data_frame[self.search_parameter_keys], axis=0)
            else:
                data_frame['log_prior'] = self.log_prior_evaluations
882
        if conversion_function is not None:
883
            data_frame = conversion_function(data_frame, likelihood, priors)
884
        self.posterior = data_frame
Gregory Ashton's avatar
Gregory Ashton committed
885

Colm Talbot's avatar
Colm Talbot committed
886
    def calculate_prior_values(self, priors):
887 888 889 890 891
        """
        Evaluate prior probability for each parameter for each sample.

        Parameters
        ----------
892
        priors: dict, PriorDict
893 894 895 896 897 898 899 900 901 902 903
            Prior distributions
        """
        self.prior_values = pd.DataFrame()
        for key in priors:
            if key in self.posterior.keys():
                if isinstance(priors[key], DeltaFunction):
                    continue
                else:
                    self.prior_values[key]\
                        = priors[key].prob(self.posterior[key].values)

Colm Talbot's avatar
Colm Talbot committed
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
    def get_all_injection_credible_levels(self):
        """
        Get credible levels for all parameters in self.injection_parameters

        Returns
        -------
        credible_levels: dict
            The credible levels at which the injected parameters are found.
        """
        if self.injection_parameters is None:
            raise(TypeError, "Result object has no 'injection_parameters'. "
                             "Cannot copmute credible levels.")
        credible_levels = {key: self.get_injection_credible_level(key)
                           for key in self.search_parameter_keys
                           if isinstance(self.injection_parameters[key], float)}
        return credible_levels

    def get_injection_credible_level(self, parameter):
        """
        Get the credible level of the injected parameter

        Calculated as CDF(injection value)

        Parameters
        ----------
        parameter: str
            Parameter to get credible level for
        Returns
        -------
        float: credible level
        """
        if self.injection_parameters is None:
            raise(TypeError, "Result object has no 'injection_parameters'. "
                             "Cannot copmute credible levels.")
        if parameter in self.posterior and\
                parameter in self.injection_parameters:
            credible_level =\
                sum(self.posterior[parameter].values <
                    self.injection_parameters[parameter]) / len(self.posterior)
            return credible_level
        else:
            return np.nan

947
    def _check_attribute_match_to_other_object(self, name, other_object):
948 949 950 951 952 953 954 955 956 957 958 959 960 961
        """ Check attribute name exists in other_object and is the same

        Parameters
        ----------
        name: str
            Name of the attribute in this instance
        other_object: object
            Other object with attributes to compare with

        Returns
        -------
        bool: True if attribute name matches with an attribute of other_object, False otherwise

        """
962 963 964 965 966 967 968 969
        a = getattr(self, name, False)
        b = getattr(other_object, name, False)
        logger.debug('Checking {} value: {}=={}'.format(name, a, b))
        if (a is not False) and (b is not False):
            type_a = type(a)
            type_b = type(b)
            if type_a == type_b:
                if type_a in [str, float, int, dict, list]:
Gregory Ashton's avatar
Gregory Ashton committed
970
                    try:
971
                        return a == b
Gregory Ashton's avatar
Gregory Ashton committed
972 973
                    except ValueError:
                        return False
974 975
                elif type_a in [np.ndarray]:
                    return np.all(a == b)
976
        return False
977

978 979 980 981 982 983
    @property
    def kde(self):
        """ Kernel density estimate built from the stored posterior

        Uses `scipy.stats.gaussian_kde` to generate the kernel density
        """
984
        if self._kde:
985
            return self._kde
986
        else:
987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
            self._kde = scipy.stats.gaussian_kde(
                self.posterior[self.search_parameter_keys].values.T)
            return self._kde

    def posterior_probability(self, sample):
        """ Calculate the posterior probabily for a new sample

        This queries a Kernel Density Estimate of the posterior to calculate
        the posterior probability density for the new sample.

        Parameters
        ----------
        sample: dict, or list of dictionaries
            A dictionary containing all the keys from
            self.search_parameter_keys and corresponding values at which to
            calculate the posterior probability

        Returns
        -------
        p: array-like,
            The posterior probability of the sample

        """
        if isinstance(sample, dict):
            sample = [sample]
        ordered_sample = [[s[key] for key in self.search_parameter_keys]
                          for s in sample]
        return self.kde(ordered_sample)

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
    def _safe_outdir_creation(self, outdir=None, caller_func=None):
        if outdir is None:
            outdir = self.outdir
        try:
            utils.check_directory_exists_and_if_not_mkdir(outdir)
        except PermissionError:
            raise FileMovedError("Can not write in the out directory.\n"
                                 "Did you move the here file from another system?\n"
                                 "Try calling " + caller_func.__name__ + " with the 'outdir' "
                                 "keyword argument, e.g. " + caller_func.__name__ + "(outdir='.')")
        return outdir

1028 1029

def plot_multiple(results, filename=None, labels=None, colours=None,
1030
                  save=True, evidences=False, **kwargs):
1031 1032 1033 1034 1035
    """ Generate a corner plot overlaying two sets of results

    Parameters
    ----------
    results: list
Colm Talbot's avatar
Colm Talbot committed
1036
        A list of `bilby.core.result.Result` objects containing the samples to
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
        plot.
    filename: str
        File name to save the figure to. If None (default), a filename is
        constructed from the outdir of the first element of results and then
        the labels for all the result files.
    labels: list
        List of strings to use when generating a legend. If None (default), the
        `label` attribute of each result in `results` is used.
    colours: list
        The colours for each result. If None, default styles are applied.
    save: bool
        If true, save the figure
    kwargs: dict
<