result.py 26.4 KB
Newer Older
1
import os
2
from distutils.version import LooseVersion
3
import numpy as np
4
import deepdish
5
import pandas as pd
6
import corner
7
import matplotlib
8
import matplotlib.pyplot as plt
9
from collections import OrderedDict
10

11 12 13
from . import utils
from .utils import logger
from .prior import PriorSet, DeltaFunction
14

15

16
def result_file_name(outdir, label):
17 18 19 20 21 22 23 24 25 26 27 28 29
    """ Returns the standard filename used for a result file

    Parameters
    ----------
    outdir: str
        Name of the output directory
    label: str
        Naming scheme of the output file

    Returns
    -------
    str: File name of the output file
    """
30 31 32
    return '{}/{}_result.h5'.format(outdir, label)


Gregory Ashton's avatar
Gregory Ashton committed
33 34 35 36 37 38 39 40 41 42
def read_in_result(outdir=None, label=None, filename=None):
    """ Read in a saved .h5 data file

    Parameters
    ----------
    outdir, label: str
        If given, use the default naming convention for saved results file
    filename: str
        If given, try to load from this filename

43 44
    Returns
    -------
Colm Talbot's avatar
Colm Talbot committed
45
    result: bilby.core.result.Result
46

Moritz Huebner's avatar
Moritz Huebner committed
47
    Raises
48 49
    -------
    ValueError: If no filename is given and either outdir or label is None
Colm Talbot's avatar
Colm Talbot committed
50
                If no bilby.core.result.Result is found in the path
Gregory Ashton's avatar
Gregory Ashton committed
51 52 53 54

    """
    if filename is None:
        filename = result_file_name(outdir, label)
55 56
    elif (outdir is None or label is None) and filename is None:
        raise ValueError("No information given to load file")
57 58 59
    if os.path.isfile(filename):
        return Result(deepdish.io.load(filename))
    else:
60
        raise ValueError("No result found")
61

62 63

class Result(dict):
64
    def __init__(self, dictionary=None):
65 66 67 68 69 70 71 72
        """ A class to save the results of the sampling run.

        Parameters
        ----------
        dictionary: dict
            A dictionary containing values to be set in this instance
        """

73 74 75 76
        # Set some defaults
        self.outdir = '.'
        self.label = 'no_name'

Moritz Huebner's avatar
Moritz Huebner committed
77
        dict.__init__(self)
78 79
        if type(dictionary) is dict:
            for key in dictionary:
80
                val = self._standardise_a_string(dictionary[key])
81
                setattr(self, key, val)
82

83 84 85
        if getattr(self, 'priors', None) is not None:
            self.priors = PriorSet(self.priors)

86
    def __add__(self, other):
87 88 89 90 91 92 93
        matches = ['sampler', 'search_parameter_keys']
        for match in matches:
            # The 1 and 0 here ensure that if either doesn't have a match for
            # some reason, a error will be thrown.
            if getattr(other, match, 1) != getattr(self, match, 0):
                raise ValueError(
                    "Unable to add results generated with different {}".format(match))
94 95 96 97 98

        self.samples = np.concatenate([self.samples, other.samples])
        self.posterior = pd.concat([self.posterior, other.posterior])
        return self

99 100 101 102 103 104
    def __dir__(self):
        """ Adds tab completion in ipython

        See: http://ipython.org/ipython-doc/dev/config/integrating.html

        """
Gregory Ashton's avatar
Gregory Ashton committed
105 106
        methods = ['plot_corner', 'save_to_file', 'save_posterior_samples']
        return self.keys() + methods
107

108 109 110 111 112 113
    def __getattr__(self, name):
        try:
            return self[name]
        except KeyError:
            raise AttributeError(name)

114 115 116
    __setattr__ = dict.__setitem__
    __delattr__ = dict.__delitem__

117 118
    def __repr__(self):
        """Print a summary """
Gregory Ashton's avatar
Gregory Ashton committed
119
        if hasattr(self, 'posterior'):
120 121 122 123 124
            if hasattr(self, 'log_noise_evidence'):
                return ("nsamples: {:d}\n"
                        "log_noise_evidence: {:6.3f}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
                        "log_bayes_factor: {:6.3f} +/- {:6.3f}\n"
125
                        .format(len(self.posterior), self.log_noise_evidence, self.log_evidence,
126 127 128 129 130
                                self.log_evidence_err, self.log_bayes_factor,
                                self.log_evidence_err))
            else:
                return ("nsamples: {:d}\n"
                        "log_evidence: {:6.3f} +/- {:6.3f}\n"
131
                        .format(len(self.posterior), self.log_evidence, self.log_evidence_err))
132 133
        else:
            return ''
134

135 136
    @staticmethod
    def _standardise_a_string(item):
137 138 139 140 141 142 143 144 145 146
        """ When reading in data, ensure all strings are decoded correctly

        Parameters
        ----------
        item: str

        Returns
        -------
        str: decoded string
        """
147
        if type(item) in [bytes]:
148
            return item.decode()
149 150
        else:
            return item
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165
    @staticmethod
    def _standardise_strings(item):
        """

        Parameters
        ----------
        item: list
            List of strings to be decoded

        Returns
        -------
        list: list of decoded strings in item

        """
166
        if type(item) in [list]:
Colm Talbot's avatar
Colm Talbot committed
167
            item = [Result._standardise_a_string(i) for i in item]
168 169
        return item

Colm Talbot's avatar
Colm Talbot committed
170 171 172 173 174 175 176 177 178 179
    def save_to_file(self, overwrite=False):
        """
        Writes the Result to a deepdish h5 file

        Parameters
        ----------
        overwrite: bool, optional
            Whether or not to overwrite an existing result file.
            default=False
        """
180
        file_name = result_file_name(self.outdir, self.label)
181
        utils.check_directory_exists_and_if_not_mkdir(self.outdir)
182
        if os.path.isfile(file_name):
Colm Talbot's avatar
Colm Talbot committed
183 184 185 186 187 188 189 190
            if overwrite:
                logger.debug('Removing existing file {}'.format(file_name))
                os.remove(file_name)
            else:
                logger.debug(
                    'Renaming existing file {} to {}.old'.format(file_name,
                                                                 file_name))
                os.rename(file_name, file_name + '.old')
191

Gregory Ashton's avatar
Gregory Ashton committed
192
        logger.debug("Saving result to {}".format(file_name))
193 194 195 196 197 198

        # Convert the prior to a string representation for saving on disk
        dictionary = dict(self)
        if dictionary.get('priors', False):
            dictionary['priors'] = {key: str(self.priors[key]) for key in self.priors}

199 200 201 202 203 204
        # Convert callable kwargs to strings to avoid pickling issues
        if hasattr(self, 'kwargs'):
            for key in self.kwargs:
                if hasattr(self.kwargs[key], '__call__'):
                    self.kwargs[key] = str(self.kwargs[key])

Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
205
        try:
206
            deepdish.io.save(file_name, dictionary)
Gregory Ashton's avatar
Fix #49  
Gregory Ashton committed
207
        except Exception as e:
Gregory Ashton's avatar
Gregory Ashton committed
208
            logger.error("\n\n Saving the data has failed with the "
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
209
                         "following message:\n {} \n\n".format(e))
Gregory Ashton's avatar
Gregory Ashton committed
210

211
    def save_posterior_samples(self):
212
        """Saves posterior samples to a file"""
213 214 215
        filename = '{}/{}_posterior_samples.txt'.format(self.outdir, self.label)
        self.posterior.to_csv(filename, index=False, header=True)

Gregory Ashton's avatar
Gregory Ashton committed
216
    def get_latex_labels_from_parameter_keys(self, keys):
217 218 219 220 221 222 223 224 225 226 227 228 229
        """ Returns a list of latex_labels corresponding to the given keys

        Parameters
        ----------
        keys: list
            List of strings corresponding to the desired latex_labels

        Returns
        -------
        list: The desired latex_labels

        """
        latex_labels = []
Gregory Ashton's avatar
Gregory Ashton committed
230 231 232
        for k in keys:
            if k in self.search_parameter_keys:
                idx = self.search_parameter_keys.index(k)
233
                latex_labels.append(self.parameter_labels_with_unit[idx])
Gregory Ashton's avatar
Gregory Ashton committed
234
            elif k in self.parameter_labels:
235
                latex_labels.append(k)
Gregory Ashton's avatar
Gregory Ashton committed
236 237 238
            else:
                raise ValueError('key {} not a parameter label or latex label'
                                 .format(k))
239
        return latex_labels
Gregory Ashton's avatar
Gregory Ashton committed
240

Gregory Ashton's avatar
Gregory Ashton committed
241 242 243 244 245 246 247 248 249
    @property
    def covariance_matrix(self):
        """ The covariance matrix of the samples the posterior """
        samples = self.posterior[self.search_parameter_keys].values
        return np.cov(samples.T)

    @property
    def posterior_volume(self):
        """ The posterior volume """
Gregory Ashton's avatar
Gregory Ashton committed
250 251 252
        if self.covariance_matrix.ndim == 0:
            return np.sqrt(self.covariance_matrix)
        else:
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
253 254
            return 1 / np.sqrt(np.abs(np.linalg.det(
                1 / self.covariance_matrix)))
Gregory Ashton's avatar
Gregory Ashton committed
255

256 257
    @staticmethod
    def prior_volume(priors):
Gregory Ashton's avatar
Gregory Ashton committed
258 259 260 261 262 263
        """ The prior volume, given a set of priors """
        return np.prod([priors[k].maximum - priors[k].minimum for k in priors])

    def occam_factor(self, priors):
        """ The Occam factor,

264 265 266
        See Chapter 28, `Mackay "Information Theory, Inference, and Learning
        Algorithms" <http://www.inference.org.uk/itprnn/book.html>`_ Cambridge
        University Press (2003).
Gregory Ashton's avatar
Gregory Ashton committed
267 268 269 270

        """
        return self.posterior_volume / self.prior_volume(priors)

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    def get_one_dimensional_median_and_error_bar(self, key, fmt='.2f',
                                                 quantiles=[0.16, 0.84]):
        """ Calculate the median and error bar for a given key

        Parameters
        ----------
        key: str
            The parameter key for which to calculate the median and error bar
        fmt: str, ('.2f')
            A format string
        quantiles: list
            A length-2 list of the lower and upper-quantiles to calculate
            the errors bars for.

        Returns
        -------
        string: str
            A string of latex-formatted text of the mean and 1-sigma quantiles

        """
        if len(quantiles) != 2:
            raise ValueError("quantiles must be of length 2")

        quants_to_compute = np.array([quantiles[0], 0.5, quantiles[1]])
        quants = np.percentile(self.posterior[key], quants_to_compute * 100)
        median = quants[1]
        upper = quants[2] - median
        lower = median - quants[0]

        fmt = "{{0:{0}}}".format(fmt).format
        string = r"${{{0}}}_{{-{1}}}^{{+{2}}}$"
        return string.format(fmt(median), fmt(lower), fmt(upper))

304 305 306
    def plot_corner(self, parameters=None, priors=None, titles=True, save=True,
                    filename=None, dpi=300, **kwargs):
        """ Plot a corner-plot
Gregory Ashton's avatar
Gregory Ashton committed
307 308 309

        Parameters
        ----------
310 311 312
        parameters: (list, dict), optional
            If given, either a list of the parameter names to include, or a
            dictionary of parameter names and their "true" values to plot.
Colm Talbot's avatar
Colm Talbot committed
313
        priors: {bool (False), bilby.core.prior.PriorSet}
314 315 316
            If true, add the stored prior probability density functions to the
            one-dimensional marginal distributions. If instead a PriorSet
            is provided, this will be plotted.
317 318 319 320 321
        titles: bool
            If true, add 1D titles of the median and (by default 1-sigma)
            error bars. To change the error bars, pass in the quantiles kwarg.
            See method `get_one_dimensional_median_and_error_bar` for further
            details). If `quantiles=None` is passed in, no title is added.
322 323 324 325 326 327
        save: bool, optional
            If true, save the image using the given label and outdir
        filename: str, optional
            If given, overwrite the default filename
        dpi: int, optional
            Dots per inch resolution of the plot
328 329 330 331
        **kwargs:
            Other keyword arguments are passed to `corner.corner`. We set some
            defaults to improve the basic look and feel, but these can all be
            overridden.
Gregory Ashton's avatar
Gregory Ashton committed
332

333 334 335 336 337 338
        Notes
        -----
            The generation of the corner plot themselves is done by the corner
            python module, see https://corner.readthedocs.io for more
            information.

Gregory Ashton's avatar
Gregory Ashton committed
339 340 341 342
        Returns
        -------
        fig:
            A matplotlib figure instance
343

Gregory Ashton's avatar
Gregory Ashton committed
344
        """
345 346

        # If in testing mode, not corner plots are generated
347 348
        if utils.command_line_args.test:
            return
Gregory Ashton's avatar
Gregory Ashton committed
349

Colm Talbot's avatar
Colm Talbot committed
350
        # bilby default corner kwargs. Overwritten by anything passed to kwargs
351 352 353
        defaults_kwargs = dict(
            bins=50, smooth=0.9, label_kwargs=dict(fontsize=16),
            title_kwargs=dict(fontsize=16), color='#0072C1',
354
            truth_color='tab:orange', quantiles=[0.16, 0.84],
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
355
            levels=(1 - np.exp(-0.5), 1 - np.exp(-2), 1 - np.exp(-9 / 2.)),
356
            plot_density=False, plot_datapoints=True, fill_contours=True,
357 358 359 360 361 362
            max_n_ticks=3)

        if LooseVersion(matplotlib.__version__) < "2.1":
            defaults_kwargs['hist_kwargs'] = dict(normed=True)
        else:
            defaults_kwargs['hist_kwargs'] = dict(density=True)
363

364 365 366 367
        if 'lionize' in kwargs and kwargs['lionize'] is True:
            defaults_kwargs['truth_color'] = 'tab:blue'
            defaults_kwargs['color'] = '#FF8C00'

368 369 370
        defaults_kwargs.update(kwargs)
        kwargs = defaults_kwargs

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
        # Handle if truths was passed in
        if 'truth' in kwargs:
            kwargs['truths'] = kwargs.pop('truth')
        if kwargs.get('truths'):
            truths = kwargs.get('truths')
            if isinstance(parameters, list) and isinstance(truths, list):
                if len(parameters) != len(truths):
                    raise ValueError(
                        "Length of parameters and truths don't match")
            elif isinstance(truths, dict) and parameters is None:
                parameters = kwargs.pop('truths')
            else:
                raise ValueError(
                    "Combination of parameters and truths not understood")

Gregory Ashton's avatar
Gregory Ashton committed
386 387 388 389 390 391 392 393
        # If injection parameters where stored, use these as parameter values
        # but do not overwrite input parameters (or truths)
        cond1 = getattr(self, 'injection_parameters', None) is not None
        cond2 = parameters is None
        if cond1 and cond2:
            parameters = {key: self.injection_parameters[key] for key in
                          self.search_parameter_keys}

394 395 396 397 398 399 400 401 402
        # If parameters is a dictionary, use the keys to determine which
        # parameters to plot and the values as truths.
        if isinstance(parameters, dict):
            plot_parameter_keys = list(parameters.keys())
            kwargs['truths'] = list(parameters.values())
        elif parameters is None:
            plot_parameter_keys = self.search_parameter_keys
        else:
            plot_parameter_keys = list(parameters)
403

404
        # Get latex formatted strings for the plot labels
405 406
        kwargs['labels'] = kwargs.get(
            'labels', self.get_latex_labels_from_parameter_keys(
407
                plot_parameter_keys))
408

409 410
        # Create the data array to plot and pass everything to corner
        xs = self.posterior[plot_parameter_keys].values
411
        fig = corner.corner(xs, **kwargs)
412
        axes = fig.get_axes()
413 414 415

        #  Add the titles
        if titles and kwargs.get('quantiles', None) is not None:
416 417
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
418 419 420 421 422 423
                if ax.title.get_text() == '':
                    ax.set_title(self.get_one_dimensional_median_and_error_bar(
                        par, quantiles=kwargs['quantiles']),
                        **kwargs['title_kwargs'])

        #  Add priors to the 1D plots
424 425 426
        if priors is True:
            priors = getattr(self, 'priors', False)
        if isinstance(priors, dict):
427 428
            for i, par in enumerate(plot_parameter_keys):
                ax = axes[i + i * len(plot_parameter_keys)]
429 430
                theta = np.linspace(ax.get_xlim()[0], ax.get_xlim()[1], 300)
                ax.plot(theta, priors[par].prob(theta), color='C2')
431 432 433 434
        elif priors in [False, None]:
            pass
        else:
            raise ValueError('Input priors={} not understood'.format(priors))
435

436
        if save:
437 438 439
            if filename is None:
                utils.check_directory_exists_and_if_not_mkdir(self.outdir)
                filename = '{}/{}_corner.png'.format(self.outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
440
            logger.debug('Saving corner plot to {}'.format(filename))
441
            fig.savefig(filename, dpi=dpi)
442

443
        return fig
444

Gregory Ashton's avatar
Gregory Ashton committed
445
    def plot_walkers(self, **kwargs):
MoritzThomasHuebner's avatar
A typo  
MoritzThomasHuebner committed
446
        """ Method to plot the trace of the walkers in an ensemble MCMC plot """
447
        if hasattr(self, 'walkers') is False:
Gregory Ashton's avatar
Gregory Ashton committed
448
            logger.warning("Cannot plot_walkers as no walkers are saved")
449
            return
450 451 452

        if utils.command_line_args.test:
            return
453 454 455

        nwalkers, nsteps, ndim = self.walkers.shape
        idxs = np.arange(nsteps)
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
456
        fig, axes = plt.subplots(nrows=ndim, figsize=(6, 3 * ndim))
457 458
        walkers = self.walkers[:, :, :]
        for i, ax in enumerate(axes):
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
459
            ax.plot(idxs[:self.nburn + 1], walkers[:, :self.nburn + 1, i].T,
460 461 462 463 464 465 466 467 468 469
                    lw=0.1, color='r')
            ax.set_ylabel(self.parameter_labels[i])

        for i, ax in enumerate(axes):
            ax.plot(idxs[self.nburn:], walkers[:, self.nburn:, i].T, lw=0.1,
                    color='k')
            ax.set_ylabel(self.parameter_labels[i])

        fig.tight_layout()
        filename = '{}/{}_walkers.png'.format(self.outdir, self.label)
Gregory Ashton's avatar
Gregory Ashton committed
470
        logger.debug('Saving walkers plot to {}'.format('filename'))
471
        utils.check_directory_exists_and_if_not_mkdir(self.outdir)
472 473
        fig.savefig(filename)

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
    def plot_with_data(self, model, x, y, ndraws=1000, npoints=1000,
                       xlabel=None, ylabel=None, data_label='data',
                       data_fmt='o', draws_label=None, filename=None,
                       maxl_label='max likelihood', dpi=300):
        """ Generate a figure showing the data and fits to the data

        Parameters
        ----------
        model: function
            A python function which when called as `model(x, **kwargs)` returns
            the model prediction (here `kwargs` is a dictionary of key-value
            pairs of the model parameters.
        x, y: np.ndarray
            The independent and dependent data to plot
        ndraws: int
            Number of draws from the posterior to plot
        npoints: int
            Number of points used to plot the smoothed fit to the data
        xlabel, ylabel: str
            Labels for the axes
        data_label, draws_label, maxl_label: str
            Label for the data, draws, and max likelihood legend
        data_fmt: str
            Matpltolib fmt code, defaults to `'-o'`
        dpi: int
            Passed to `plt.savefig`
        filename: str
            If given, the filename to use. Otherwise, the filename is generated
            from the outdir and label attributes.

        """
        xsmooth = np.linspace(np.min(x), np.max(x), npoints)
        fig, ax = plt.subplots()
        logger.info('Plotting {} draws'.format(ndraws))
        for _ in range(ndraws):
            s = self.posterior.sample().to_dict('records')[0]
            ax.plot(xsmooth, model(xsmooth, **s), alpha=0.25, lw=0.1, color='r',
                    label=draws_label)
        if all(~np.isnan(self.posterior.log_likelihood)):
            logger.info('Plotting maximum likelihood')
            s = self.posterior.ix[self.posterior.log_likelihood.idxmax()]
            ax.plot(xsmooth, model(xsmooth, **s), lw=1, color='k',
                    label=maxl_label)

        ax.plot(x, y, data_fmt, markersize=2, label=data_label)

        if xlabel is not None:
            ax.set_xlabel(xlabel)
        if ylabel is not None:
            ax.set_ylabel(ylabel)

        handles, labels = plt.gca().get_legend_handles_labels()
        by_label = OrderedDict(zip(labels, handles))
        plt.legend(by_label.values(), by_label.keys())
        ax.legend(numpoints=3)
        fig.tight_layout()
        if filename is None:
            filename = '{}/{}_plot_with_data'.format(self.outdir, self.label)
        fig.savefig(filename, dpi=dpi)

534 535
    def samples_to_posterior(self, likelihood=None, priors=None,
                             conversion_function=None):
536
        """
537
        Convert array of samples to posterior (a Pandas data frame).
538

539 540
        Parameters
        ----------
Colm Talbot's avatar
Colm Talbot committed
541
        likelihood: bilby.likelihood.GravitationalWaveTransient, optional
542 543
            GravitationalWaveTransient likelihood used for sampling.
        priors: dict, optional
544
            Dictionary of prior object, used to fill in delta function priors.
545
        conversion_function: function, optional
546 547
            Function which adds in extra parameters to the data frame,
            should take the data_frame, likelihood and prior as arguments.
548
        """
549 550 551 552 553
        if hasattr(self, 'posterior') is False:
            data_frame = pd.DataFrame(
                self.samples, columns=self.search_parameter_keys)
            data_frame['log_likelihood'] = getattr(
                self, 'log_likelihood_evaluations', np.nan)
554 555 556
            for key in priors:
                if getattr(priors[key], 'is_fixed', False):
                    data_frame[key] = priors[key].peak
557 558 559 560
            # We save the samples in the posterior and remove the array of samples
            del self.samples
        else:
            data_frame = self.posterior
561
        if conversion_function is not None:
562
            data_frame = conversion_function(data_frame, likelihood, priors)
563
        self.posterior = data_frame
Gregory Ashton's avatar
Gregory Ashton committed
564

Colm Talbot's avatar
Colm Talbot committed
565
    def calculate_prior_values(self, priors):
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
        """
        Evaluate prior probability for each parameter for each sample.

        Parameters
        ----------
        priors: dict, PriorSet
            Prior distributions
        """
        self.prior_values = pd.DataFrame()
        for key in priors:
            if key in self.posterior.keys():
                if isinstance(priors[key], DeltaFunction):
                    continue
                else:
                    self.prior_values[key]\
                        = priors[key].prob(self.posterior[key].values)

583
    def construct_cbc_derived_parameters(self):
584
        """ Construct widely used derived parameters of CBCs """
Gregory Ashton's avatar
Gregory Ashton committed
585 586 587
        self.posterior['mass_chirp'] = (
            (self.posterior.mass_1 * self.posterior.mass_2) ** 0.6 / (
                self.posterior.mass_1 + self.posterior.mass_2) ** 0.2)
588 589 590
        self.search_parameter_keys.append('mass_chirp')
        self.parameter_labels.append('$\mathcal{M}$')

591
        self.posterior['q'] = self.posterior.mass_2 / self.posterior.mass_1
592 593 594
        self.search_parameter_keys.append('q')
        self.parameter_labels.append('$q$')

Gregory Ashton's avatar
Gregory Ashton committed
595 596 597
        self.posterior['eta'] = (
            (self.posterior.mass_1 * self.posterior.mass_2) / (
                self.posterior.mass_1 + self.posterior.mass_2) ** 2)
598 599
        self.search_parameter_keys.append('eta')
        self.parameter_labels.append('$\eta$')
Gregory Ashton's avatar
Gregory Ashton committed
600 601

        self.posterior['chi_eff'] = (
602 603 604
            (self.posterior.a_1 * np.cos(self.posterior.tilt_1) +
                self.posterior.q * self.posterior.a_2 *
                np.cos(self.posterior.tilt_2)) / (1 + self.posterior.q))
605 606 607
        self.search_parameter_keys.append('chi_eff')
        self.parameter_labels.append('$\chi_{\mathrm eff}$')

608 609 610 611 612
        self.posterior['chi_p'] = (
            np.maximum(self.posterior.a_1 * np.sin(self.posterior.tilt_1),
                       (4 * self.posterior.q + 3) / (3 * self.posterior.q + 4) *
                       self.posterior.q * self.posterior.a_2 *
                       np.sin(self.posterior.tilt_2)))
613 614
        self.search_parameter_keys.append('chi_p')
        self.parameter_labels.append('$\chi_{\mathrm p}$')
615

616
    def check_attribute_match_to_other_object(self, name, other_object):
617 618 619 620 621 622 623 624 625 626 627 628 629 630
        """ Check attribute name exists in other_object and is the same

        Parameters
        ----------
        name: str
            Name of the attribute in this instance
        other_object: object
            Other object with attributes to compare with

        Returns
        -------
        bool: True if attribute name matches with an attribute of other_object, False otherwise

        """
631
        A = getattr(self, name, False)
632
        B = getattr(other_object, name, False)
Gregory Ashton's avatar
Gregory Ashton committed
633
        logger.debug('Checking {} value: {}=={}'.format(name, A, B))
634 635 636 637 638
        if (A is not False) and (B is not False):
            typeA = type(A)
            typeB = type(B)
            if typeA == typeB:
                if typeA in [str, float, int, dict, list]:
Gregory Ashton's avatar
Gregory Ashton committed
639 640 641 642
                    try:
                        return A == B
                    except ValueError:
                        return False
643 644 645
                elif typeA in [np.ndarray]:
                    return np.all(A == B)
        return False
646 647 648


def plot_multiple(results, filename=None, labels=None, colours=None,
649
                  save=True, evidences=False, **kwargs):
650 651 652 653 654
    """ Generate a corner plot overlaying two sets of results

    Parameters
    ----------
    results: list
Colm Talbot's avatar
Colm Talbot committed
655
        A list of `bilby.core.result.Result` objects containing the samples to
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
        plot.
    filename: str
        File name to save the figure to. If None (default), a filename is
        constructed from the outdir of the first element of results and then
        the labels for all the result files.
    labels: list
        List of strings to use when generating a legend. If None (default), the
        `label` attribute of each result in `results` is used.
    colours: list
        The colours for each result. If None, default styles are applied.
    save: bool
        If true, save the figure
    kwargs: dict
        All other keyword arguments are passed to `result.plot_corner`.
        However, `show_titles` and `truths` are ignored since they would be
        ambiguous on such a plot.
672 673 674
    evidences: bool, optional
        Add the log-evidence calculations to the legend. If available, the
        Bayes factor will be used instead.
675 676 677 678 679 680 681 682 683 684 685 686

    Returns
    -------
    fig:
        A matplotlib figure instance

    """

    kwargs['show_titles'] = False
    kwargs['truths'] = None

    fig = results[0].plot_corner(save=False, **kwargs)
Gregory Ashton's avatar
Gregory Ashton committed
687
    default_filename = '{}/{}'.format(results[0].outdir, 'combined')
688 689 690 691 692 693 694
    lines = []
    default_labels = []
    for i, result in enumerate(results):
        if colours:
            c = colours[i]
        else:
            c = 'C{}'.format(i)
Gregory Ashton's avatar
Gregory Ashton committed
695 696
        hist_kwargs = kwargs.get('hist_kwargs', dict())
        hist_kwargs['color'] = c
697 698 699 700 701
        fig = result.plot_corner(fig=fig, save=False, color=c, **kwargs)
        default_filename += '_{}'.format(result.label)
        lines.append(matplotlib.lines.Line2D([0], [0], color=c))
        default_labels.append(result.label)

Gregory Ashton's avatar
Gregory Ashton committed
702 703 704 705 706
    # Rescale the axes
    for i, ax in enumerate(fig.axes):
        ax.autoscale()
    plt.draw()

707 708 709
    if labels is None:
        labels = default_labels

710 711
    if evidences:
        if np.isnan(results[0].log_bayes_factor):
712
            template = ' $\mathrm{{ln}}(Z)={lnz:1.3g}$'
713
        else:
714 715 716 717
            template = ' $\mathrm{{ln}}(B)={lnbf:1.3g}$'
        labels = [template.format(lnz=result.log_evidence,
                                  lnbf=result.log_bayes_factor)
                  for ii, result in enumerate(results)]
718

719 720
    axes = fig.get_axes()
    ndim = int(np.sqrt(len(axes)))
MoritzThomasHuebner's avatar
MoritzThomasHuebner committed
721
    axes[ndim - 1].legend(lines, labels)
722 723 724 725 726 727 728

    if filename is None:
        filename = default_filename

    if save:
        fig.savefig(filename)
    return fig