diff --git a/bilby/core/sampler/ptemcee.py b/bilby/core/sampler/ptemcee.py index b55f490f1921977ebe9a44bd90ae0d253baab164..9fc5fa6f71ca9d145b47da73fd043518417d80bf 100644 --- a/bilby/core/sampler/ptemcee.py +++ b/bilby/core/sampler/ptemcee.py @@ -667,6 +667,9 @@ def check_iteration( """ ci = convergence_inputs + # Note: nsteps is the number of steps in the samples while iterations is + # the current iteration number. So iteration > nsteps by the number of + # od discards nwalkers, nsteps, ndim = samples.shape tau_array = calculate_tau_array(samples, search_parameter_keys, ci) @@ -699,14 +702,15 @@ def check_iteration( nburn = int(ci.burn_in_nact * tau_int) thin = int(np.max([1, ci.thin_by_nact * tau_int])) samples_per_check = nwalkers / thin - nsamples_effective = int(nwalkers * (iteration - nburn) / thin) + nsamples_effective = int(nwalkers * (nsteps - nburn) / thin) + print(nwalkers, iteration, nsteps, nburn, thin, nsamples_effective) # Calculate convergence boolean converged = Q < ci.Q_tol and ci.nsamples < nsamples_effective logger.debug("Convergence: Q<Q_tol={}, nsamples<nsamples_effective={}" .format(Q < ci.Q_tol, ci.nsamples < nsamples_effective)) - GRAD_WINDOW_LENGTH = 11 + GRAD_WINDOW_LENGTH = nwalkers + 1 nsteps_to_check = ci.autocorr_tau * np.max([2 * GRAD_WINDOW_LENGTH, tau_int]) lower_tau_index = np.max([0, len(tau_list) - nsteps_to_check]) check_taus = np.array(tau_list[lower_tau_index :]) @@ -990,11 +994,15 @@ def plot_tau( def plot_mean_log_likelihood(mean_log_likelihood, outdir, label): ntemps, nsteps = mean_log_likelihood.shape + max_logl = np.max(mean_log_likelihood) + ymax = max_logl + 0.01 * np.abs(max_logl) + ymin = max_logl - 0.1 * np.abs(max_logl) fig, ax = plt.subplots() idxs = np.arange(nsteps) ax.plot(idxs, mean_log_likelihood.T) - ax.set(xlabel="Iteration", ylabel=r"$\langle\log\mathcal{L}\rangle$") + ax.set(xlabel="Iteration", ylabel=r"$\langle\log\mathcal{L}\rangle$", + ylim=(ymin, ymax)) fig.tight_layout() fig.savefig("{}/{}_checkpoint_meanloglike.png".format(outdir, label)) plt.close(fig)