diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index 4d0343f47985fc802d4dc855f63ac40dd2b5bd9a..a063d51d06ccbbc4d10fd602c7c11a1f40f30bcd 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -43,7 +43,7 @@ basic-3.7:
 # test example on python 3.7
 python-3.7:
   stage: test
-  image: bilbydev/v2-dockerfile-test-suite-python37
+  image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen
   script:
     - python -m pip install .
 
@@ -69,7 +69,7 @@ python-3.7:
 # test example on python 3.8
 python-3.8:
   stage: test
-  image: bilbydev/v2-dockerfile-test-suite-python38
+  image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python38-frozen
   script:
     - python -m pip install .
 
@@ -78,7 +78,7 @@ python-3.8:
 # test example on python 3.6
 python-3.6:
   stage: test
-  image: bilbydev/v2-dockerfile-test-suite-python36
+  image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python36-frozen
   script:
     - python -m pip install .
 
@@ -87,7 +87,7 @@ python-3.6:
 # test samplers on python 3.7
 python-3.7-samplers:
   stage: test
-  image: bilbydev/v2-dockerfile-test-suite-python37
+  image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen
   script:
     - python -m pip install .
 
@@ -97,7 +97,7 @@ python-3.7-samplers:
 # test samplers on python 3.6
 python-3.6-samplers:
   stage: test
-  image: bilbydev/v2-dockerfile-test-suite-python36
+  image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python36-frozen
   script:
     - python -m pip install .
 
@@ -106,7 +106,7 @@ python-3.6-samplers:
 # Test containers are up to date
 containers:
   stage: test
-  image: bilbydev/v2-dockerfile-test-suite-python37
+  image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen
   script:
     - cd containers
     - python write_dockerfiles.py
@@ -117,7 +117,7 @@ containers:
 # Tests run at a fixed schedule rather than on push
 scheduled-python-3.7:
   stage: test
-  image: bilbydev/v2-dockerfile-test-suite-python37
+  image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen
   only:
     - schedules
   script:
@@ -129,7 +129,7 @@ scheduled-python-3.7:
 
 plotting:
   stage: test
-  image: bilbydev/bilby-test-suite-python37
+  image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen
   only:
     - schedules
   script:
@@ -138,6 +138,12 @@ plotting:
 
     - pytest test/gw/plot_test.py
 
+authors:
+  stage: test
+  image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen
+  script:
+    - python test/check_author_list.py
+
 pages:
   stage: deploy
   dependencies:
@@ -156,7 +162,7 @@ pages:
 
 deploy_release:
   stage: deploy
-  image: bilbydev/v2-dockerfile-test-suite-python37
+  image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen
   variables:
     TWINE_USERNAME: $PYPI_USERNAME
     TWINE_PASSWORD: $PYPI_PASSWORD
@@ -171,7 +177,7 @@ deploy_release:
 
 precommits-py3.7:
   stage: test
-  image: bilbydev/v2-dockerfile-test-suite-python37
+  image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen
   script:
     - source activate python37
     - mkdir -p .pip37
diff --git a/AUTHORS.md b/AUTHORS.md
new file mode 100644
index 0000000000000000000000000000000000000000..bfd80a6e9bf73780d29bc0a133324434cd4eba1c
--- /dev/null
+++ b/AUTHORS.md
@@ -0,0 +1,71 @@
+# Authors
+
+This file lists all the authors in first-name alphabetical order who have
+contributed (either by code contribution or indirectly). If your name is not
+listed here, please contact anyone on this list and raise your concern.
+
+Abhirup Ghosh
+Aditya Vijaykumar
+Andrew Kim
+Andrew Miller
+Antoni Ramos-Buades
+Avi Vajpeyi
+Bruce Edelman
+Carl-Johan Haster
+Cecilio Garcia-Quiros
+Charlie Hoy
+Christopher Berry
+Christos Karathanasis
+Colm Talbot
+Daniel Williams
+David Keitel
+Duncan Macleod
+Eric Thrane
+Ethan Payne
+Francisco Javier Hernandez
+Gregory Ashton
+Hector Estelles
+Ignacio Magaña Hernandez
+Isobel Marguarethe Romero-Shaw
+Jade Powell
+James A Clark
+John Veitch
+Katerina Chatziioannou
+Kaylee de Soto
+Khun Sang Phukon
+Kshipraa Athar
+Liting Xiao
+Maite Mateu-Lucena
+Marc Arene
+Marcus Edward Lower
+Margaret Millhouse
+Marta Colleoni
+Matthew Carney
+Matthew David Pitkin
+Michael Puerrer
+Michael Williams
+Monica Rizzo
+Moritz Huebner
+Nicola De Lillo
+Nikhil Sarin
+Nirban Bose
+Paul Easter
+Paul Lasky
+Philip Relton
+Rhys Green
+Roberto Cotesta
+Rory Smith
+S. H. Oh
+Sacha Husa
+Scott Coughlin
+Serguei Ossokine
+Shanika Galaudage
+Sharan Banagiri
+Shichao Wu
+Simon Stevenson
+Soichiro Morisaki
+Sumeet Kulkarni
+Sylvia Biscoveanu
+Tathagata Ghosh
+Virginia d'Emilio
+Vivien Raymond
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 63966fa169c26dfe44d2db723498c364ea037c6b..ddbd703b36f04a438a61bcc14338310d13c0ef43 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -1,5 +1,33 @@
 # All notable changes will be documented in this file
 
+## [1.0.3] 2020-11-23
+Version 1.0.4 release of bilby
+
+### Added
+- Added a chirp-mass and mass-ratio prior which are uniform in component masses (!891)
+
+### Changes
+- Fixed issue in the CI
+
+## [1.0.3] 2020-10-23
+
+Version 1.0.3 release of bilby
+
+### Added
+- SlabSpikePrior and examples (!857)
+- Authors file (!885)
+- CDF function to conditional priors (!882)
+- Waveform plot in visualising_the_results.ipynb (!817)
+- Addition of dnest4 sampler (!849, !883)
+- Loaded modules added to meta-data (!881)
+
+### Changes
+- Constraint to Uniform priors in ROQ tutorial (!884)
+- Fix to CDF and PDF for SymmetricLogUniform prior (!876)
+- Fix bug in evidence combination (!880)
+- Typo fixes (!878, !887, !879)
+- Minor bug fixes (!888)
+
 ## [1.0.2] 2020-09-14
 
 Version 1.0.2 release of bilby
@@ -8,7 +36,7 @@ Version 1.0.2 release of bilby
 - Template for the docker files (!783)
 - New delta_phase parameter (!850)
 - Normalization factor to time-domain waveform plot (!867)
-- JSON encoding for int and float types (!866) 
+- JSON encoding for int and float types (!866)
 - Various minor formatting additions (!870)
 
 ### Changes
diff --git a/bilby/core/prior/__init__.py b/bilby/core/prior/__init__.py
index 253ad6c9c75ad0a644d5f674f4c408ffca538de0..fc795c3e1f1f69fbcd2b52d994b8c17d752f6e31 100644
--- a/bilby/core/prior/__init__.py
+++ b/bilby/core/prior/__init__.py
@@ -4,3 +4,4 @@ from .conditional import *
 from .dict import *
 from .interpolated import *
 from .joint import *
+from .slabspike import *
diff --git a/bilby/core/prior/analytical.py b/bilby/core/prior/analytical.py
index b575b3376e99a5185dfba1b01fd5de174a87b6de..7a7fb2b6b5c59b5be7178e60172c889a0b20d380 100644
--- a/bilby/core/prior/analytical.py
+++ b/bilby/core/prior/analytical.py
@@ -618,6 +618,7 @@ class TruncatedGaussian(Prior):
             / self.sigma / self.normalisation * self.is_in_prior_range(val)
 
     def cdf(self, val):
+        val = np.atleast_1d(val)
         _cdf = (erf((val - self.mu) / 2 ** 0.5 / self.sigma) - erf(
             (self.minimum - self.mu) / 2 ** 0.5 / self.sigma)) / 2 / self.normalisation
         _cdf[val > self.maximum] = 1
diff --git a/bilby/core/prior/conditional.py b/bilby/core/prior/conditional.py
index c96c1a05da9b4e9aee7f2159b868c5e1fd1f7ded..80cdbb91acfb3a49342aad479ef8881c27cca71d 100644
--- a/bilby/core/prior/conditional.py
+++ b/bilby/core/prior/conditional.py
@@ -110,9 +110,41 @@ def conditional_prior_factory(prior_class):
             return super(ConditionalPrior, self).prob(val)
 
         def ln_prob(self, val, **required_variables):
+            """Return the natural log prior probability of val.
+
+            Parameters
+            ----------
+            val: Union[float, int, array_like]
+                See superclass
+            required_variables:
+                Any required variables that this prior depends on
+
+
+            Returns
+            -------
+            float: Natural log prior probability of val
+            """
             self.update_conditions(**required_variables)
             return super(ConditionalPrior, self).ln_prob(val)
 
+        def cdf(self, val, **required_variables):
+            """Return the cdf of val.
+
+            Parameters
+            ----------
+            val: Union[float, int, array_like]
+                See superclass
+            required_variables:
+                Any required variables that this prior depends on
+
+
+            Returns
+            -------
+            float: CDF of val
+            """
+            self.update_conditions(**required_variables)
+            return super(ConditionalPrior, self).cdf(val)
+
         def update_conditions(self, **required_variables):
             """
             This method updates the conditional parameters (depending on the parent class
diff --git a/bilby/core/prior/slabspike.py b/bilby/core/prior/slabspike.py
new file mode 100644
index 0000000000000000000000000000000000000000..de7dc48ad5ae0004a38ec538a4acb82673b57753
--- /dev/null
+++ b/bilby/core/prior/slabspike.py
@@ -0,0 +1,169 @@
+import numpy as np
+
+from bilby.core.prior.base import Prior
+from bilby.core.utils import logger
+
+
+class SlabSpikePrior(Prior):
+
+    def __init__(self, slab, spike_location=None, spike_height=0):
+        """'Slab-and-spike' prior, see e.g. https://arxiv.org/abs/1812.07259
+        This prior is composed of a `slab`, i.e. any common prior distribution,
+        and a Dirac spike at a fixed location. This can effectively be used
+        to emulate sampling in the number of dimensions (similar to reversible-
+        jump MCMC).
+
+        `SymmetricLogUniform` and `FermiDirac` are currently not supported.
+
+        Parameters
+        ----------
+        slab: Prior
+            Any instance of a bilby prior class. All general prior attributes
+            from the slab are copied into the SlabSpikePrior.
+            Note that this hasn't been tested for conditional priors.
+        spike_location: float, optional
+            Location of the Dirac spike. Must be between minimum and maximum
+            of the slab. Defaults to the minimum of the slab
+        spike_height: float, optional
+            Relative weight of the spike compared to the slab. Must be
+            between 0 and 1. Defaults to 0, i.e. the prior is just the slab.
+
+        """
+        self.slab = slab
+        super().__init__(name=self.slab.name, latex_label=self.slab.latex_label, unit=self.slab.unit,
+                         minimum=self.slab.minimum, maximum=self.slab.maximum,
+                         check_range_nonzero=self.slab.check_range_nonzero, boundary=self.slab.boundary)
+        self.spike_location = spike_location
+        self.spike_height = spike_height
+        try:
+            self.inverse_cdf_below_spike = self._find_inverse_cdf_fraction_before_spike()
+        except Exception as e:
+            logger.warning("Disregard the following warning when running tests:\n {}".format(e))
+
+    @property
+    def spike_location(self):
+        return self._spike_loc
+
+    @spike_location.setter
+    def spike_location(self, spike_loc):
+        if spike_loc is None:
+            spike_loc = self.minimum
+        if not self.minimum <= spike_loc <= self.maximum:
+            raise ValueError("Spike location {} not within prior domain ".format(spike_loc))
+        self._spike_loc = spike_loc
+
+    @property
+    def spike_height(self):
+        return self._spike_height
+
+    @spike_height.setter
+    def spike_height(self, spike_height):
+        if 0 <= spike_height <= 1:
+            self._spike_height = spike_height
+        else:
+            raise ValueError("Spike height must be between 0 and 1, but is {}".format(spike_height))
+
+    @property
+    def slab_fraction(self):
+        """ Relative prior weight of the slab. """
+        return 1 - self.spike_height
+
+    def _find_inverse_cdf_fraction_before_spike(self):
+        return float(self.slab.cdf(self.spike_location)) * self.slab_fraction
+
+    def rescale(self, val):
+        """
+        'Rescale' a sample from the unit line element to the prior.
+
+        Parameters
+        ----------
+        val: Union[float, int, array_like]
+            A random number between 0 and 1
+
+        Returns
+        -------
+        array_like: Associated prior value with input value.
+        """
+        val = np.atleast_1d(val)
+
+        lower_indices = np.where(val < self.inverse_cdf_below_spike)[0]
+        intermediate_indices = np.where(np.logical_and(
+            self.inverse_cdf_below_spike <= val,
+            val <= self.inverse_cdf_below_spike + self.spike_height))[0]
+        higher_indices = np.where(val > self.inverse_cdf_below_spike + self.spike_height)[0]
+
+        res = np.zeros(len(val))
+        res[lower_indices] = self._contracted_rescale(val[lower_indices])
+        res[intermediate_indices] = self.spike_location
+        res[higher_indices] = self._contracted_rescale(val[higher_indices] - self.spike_height)
+        return res
+
+    def _contracted_rescale(self, val):
+        """
+        Contracted version of the rescale function that implements the `rescale` function
+        on the pure slab part of the prior.
+
+        Parameters
+        ----------
+        val: Union[float, int, array_like]
+            A random number between 0 and self.slab_fraction
+
+        Returns
+        -------
+        array_like: Associated prior value with input value.
+        """
+        return self.slab.rescale(val / self.slab_fraction)
+
+    def prob(self, val):
+        """Return the prior probability of val.
+        Returns np.inf for the spike location
+
+        Parameters
+        ----------
+        val: Union[float, int, array_like]
+
+        Returns
+        -------
+        array_like: Prior probability of val
+        """
+        res = self.slab.prob(val) * self.slab_fraction
+        res = np.atleast_1d(res)
+        res[np.where(val == self.spike_location)] = np.inf
+        return res
+
+    def ln_prob(self, val):
+        """Return the Log prior probability of val.
+        Returns np.inf for the spike location
+
+        Parameters
+        ----------
+        val: Union[float, int, array_like]
+
+        Returns
+        -------
+        array_like: Prior probability of val
+        """
+        res = self.slab.ln_prob(val) + np.log(self.slab_fraction)
+        res = np.atleast_1d(res)
+        res[np.where(val == self.spike_location)] = np.inf
+        return res
+
+    def cdf(self, val):
+        """ Return the CDF of the prior.
+        This calls to the slab CDF and adds a discrete step
+        at the spike location.
+
+        Parameters
+        ----------
+        val: Union[float, int, array_like]
+
+        Returns
+        -------
+        array_like: CDF value of val
+
+        """
+        res = self.slab.cdf(val) * self.slab_fraction
+        res = np.atleast_1d(res)
+        indices_above_spike = np.where(val > self.spike_location)[0]
+        res[indices_above_spike] += self.spike_height
+        return res
diff --git a/bilby/core/sampler/__init__.py b/bilby/core/sampler/__init__.py
index 6d02882f67f2749e98266cb96bf9a95cf5864828..27da24334e8839da74ac1ae0fcb2d577ff99bc08 100644
--- a/bilby/core/sampler/__init__.py
+++ b/bilby/core/sampler/__init__.py
@@ -25,11 +25,11 @@ from .dnest4 import DNest4
 from . import proposal
 
 IMPLEMENTED_SAMPLERS = {
-    'cpnest': Cpnest, 'dynamic_dynesty': DynamicDynesty, 'dynesty': Dynesty,
-    'emcee': Emcee, 'kombine': Kombine, 'nestle': Nestle, 'ptemcee': Ptemcee,
-    'ptmcmcsampler': PTMCMCSampler, 'pymc3': Pymc3, 'pymultinest': Pymultinest,
-    'pypolychord': PyPolyChord, 'ultranest': Ultranest,
-    'fake_sampler': FakeSampler, 'dnest4': DNest4}
+    'cpnest': Cpnest, 'dnest4': DNest4, 'dynamic_dynesty': DynamicDynesty,
+    'dynesty': Dynesty, 'emcee': Emcee, 'kombine': Kombine, 'nestle': Nestle,
+    'ptemcee': Ptemcee, 'ptmcmcsampler': PTMCMCSampler, 'pymc3': Pymc3,
+    'pymultinest': Pymultinest, 'pypolychord': PyPolyChord, 'ultranest': Ultranest,
+    'fake_sampler': FakeSampler}
 
 if command_line_args.sampler_help:
     sampler = command_line_args.sampler_help
diff --git a/bilby/core/sampler/base_sampler.py b/bilby/core/sampler/base_sampler.py
index 74e880fbb852ac48ecde433bcbc0d54de2115b5d..fa05b4f83adbe59ff5c8444fc8d43f5ab26d722a 100644
--- a/bilby/core/sampler/base_sampler.py
+++ b/bilby/core/sampler/base_sampler.py
@@ -1,10 +1,13 @@
 from __future__ import absolute_import
 import datetime
+import distutils.dir_util
 import numpy as np
+import os
+import tempfile
 
 from pandas import DataFrame
 
-from ..utils import logger, command_line_args, Counter
+from ..utils import logger, check_directory_exists_and_if_not_mkdir, command_line_args, Counter
 from ..prior import Prior, PriorDict, DeltaFunction, Constraint
 from ..result import Result, read_in_result
 
@@ -541,7 +544,8 @@ class Sampler(object):
 
 
 class NestedSampler(Sampler):
-    npoints_equiv_kwargs = ['nlive', 'nlives', 'n_live_points', 'npoints', 'npoint', 'Nlive', 'num_live_points']
+    npoints_equiv_kwargs = ['nlive', 'nlives', 'n_live_points', 'npoints',
+                            'npoint', 'Nlive', 'num_live_points', 'num_particles']
     walks_equiv_kwargs = ['walks', 'steps', 'nmcmc']
 
     def reorder_loglikelihoods(self, unsorted_loglikelihoods, unsorted_samples,
@@ -601,6 +605,27 @@ class NestedSampler(Sampler):
         else:
             return np.nan_to_num(-np.inf)
 
+    def _setup_run_directory(self):
+        """
+        If using a temporary directory, the output directory is moved to the
+        temporary directory.
+        Used for Dnest4, Pymultinest, and Ultranest.
+        """
+        if self.use_temporary_directory:
+            temporary_outputfiles_basename = tempfile.TemporaryDirectory().name
+            self.temporary_outputfiles_basename = temporary_outputfiles_basename
+
+            if os.path.exists(self.outputfiles_basename):
+                distutils.dir_util.copy_tree(self.outputfiles_basename, self.temporary_outputfiles_basename)
+            check_directory_exists_and_if_not_mkdir(temporary_outputfiles_basename)
+
+            self.kwargs["outputfiles_basename"] = self.temporary_outputfiles_basename
+            logger.info("Using temporary file {}".format(temporary_outputfiles_basename))
+        else:
+            check_directory_exists_and_if_not_mkdir(self.outputfiles_basename)
+            self.kwargs["outputfiles_basename"] = self.outputfiles_basename
+            logger.info("Using output file {}".format(self.outputfiles_basename))
+
 
 class MCMCSampler(Sampler):
     nwalkers_equiv_kwargs = ['nwalker', 'nwalkers', 'draws', 'Niter']
diff --git a/bilby/core/sampler/cpnest.py b/bilby/core/sampler/cpnest.py
index 611219e76708e7cae9f9bae073d7c44d95e5b480..25183bd07eb53938b122bb0305b89b0c548d718d 100644
--- a/bilby/core/sampler/cpnest.py
+++ b/bilby/core/sampler/cpnest.py
@@ -1,5 +1,6 @@
 from __future__ import absolute_import
 
+import array
 import copy
 
 import numpy as np
@@ -88,8 +89,8 @@ class Cpnest(NestedSampler):
                 prior_samples = self.priors.sample()
                 self._update_bounds()
                 point = LivePoint(
-                    self.names, [prior_samples[name]
-                                 for name in self.names])
+                    self.names, array.array(
+                        'f', [prior_samples[name] for name in self.names]))
                 return point
 
         self._resolve_proposal_functions()
diff --git a/bilby/core/sampler/dnest4.py b/bilby/core/sampler/dnest4.py
index a623635fd6807d4e7d43c330b8f39a6648af3604..a35f54f6704c2101cd13d964ea9b6b689519e271 100644
--- a/bilby/core/sampler/dnest4.py
+++ b/bilby/core/sampler/dnest4.py
@@ -1,12 +1,10 @@
-from __future__ import absolute_import
-
 import os
-import tempfile
 import shutil
 import distutils.dir_util
 import signal
 import time
 import datetime
+import sys
 
 import numpy as np
 import pandas as pd
@@ -20,14 +18,14 @@ class _DNest4Model(object):
     def __init__(self, log_likelihood_func, from_prior_func, widths, centers, highs, lows):
         """Initialize the DNest4 model.
         Args:
-            log_likelihood_func (function): The loglikelihood function to use
-                during the Nested Sampling run.
-            from_prior_func (function): The function to use when randomly
-                selecting parameter vectors from the prior space.
-            widths (numpy.array): The approximate widths of the prior
-                distrbutions.
-            centers (numpy.array): The approximate center points of the prior
-                distributions.
+            log_likelihood_func: function
+                The loglikelihood function to use during the Nested Sampling run.
+            from_prior_func: function
+                The function to use when randomly selecting parameter vectors from the prior space.
+            widths: array_like
+                The approximate widths of the prior distrbutions.
+            centers: array_like
+                The approximate center points of the prior distributions.
         """
         self._log_likelihood = log_likelihood_func
         self._from_prior = from_prior_func
@@ -58,9 +56,11 @@ class _DNest4Model(object):
 
         return 0.0
 
-    def wrap(self, x, a, b):
-        assert b > a
-        return (x - a) % (b - a) + a
+    @staticmethod
+    def wrap(x, minimum, maximum):
+        if maximum <= minimum:
+            raise ValueError("maximum {} <= minimum {}, when trying to wrap coordinates".format(maximum, minimum))
+        return (x - minimum) % (maximum - minimum) + minimum
 
 
 class DNest4(NestedSampler):
@@ -83,8 +83,9 @@ class DNest4(NestedSampler):
         The python DNest4 backend for storing the output.
         Options are: 'memory' and 'csv'. If 'memory' the
         DNest4 outputs are stored in memory during the run. If 'csv' the
-        DNest4 outputs are written out to filse with a CSV format during
+        DNest4 outputs are written out to files with a CSV format during
         the run.
+        CSV backend may not be functional right now (October 2020)
     num_steps: int
         The number of MCMC iterations to run
     new_level_interval: int
@@ -97,53 +98,20 @@ class DNest4(NestedSampler):
         Set the seed for the C++ random number generator
     verbose: Bool
         If True, prints information during run
-    TO DO: add equivalent args for num_particles (nlive, etc.)
-    Add sampling time functions
     """
 
-    default_kwargs = dict(
-        max_num_levels=20,
-        num_steps=500,  # Number of iterations
-        new_level_interval=10000,
-        num_per_step=10000,
-        thread_steps=1,
-        num_particles=1000,
-        lam=10.0,
-        beta=100,
-        seed=None,
-        verbose=True,
-        outputfiles_basename=None,
-        # backend_callback=None,  # for checkpointing in dnest5
-        backend='memory',  # csv is currently bugged right now
-
-        # could change max_num_levels based on snr
-    )
-
-    def __init__(
-        self,
-        likelihood,
-        priors,
-        outdir="outdir",
-        label="label",
-        use_ratio=False,
-        plot=False,
-        exit_code=77,
-        skip_import_verification=False,
-        temporary_directory=True,
-        resume=True,
-        **kwargs
-    ):
+    default_kwargs = dict(max_num_levels=20, num_steps=500,
+                          new_level_interval=10000, num_per_step=10000,
+                          thread_steps=1, num_particles=1000, lam=10.0,
+                          beta=100, seed=None, verbose=True, outputfiles_basename=None,
+                          backend='memory')
+
+    def __init__(self, likelihood, priors, outdir="outdir", label="label", use_ratio=False, plot=False,
+                 exit_code=77, skip_import_verification=False, temporary_directory=True, **kwargs):
         super(DNest4, self).__init__(
-            likelihood=likelihood,
-            priors=priors,
-            outdir=outdir,
-            label=label,
-            use_ratio=use_ratio,
-            plot=plot,
-            skip_import_verification=skip_import_verification,
-            exit_code=exit_code,
-            **kwargs
-        )
+            likelihood=likelihood, priors=priors, outdir=outdir, label=label,
+            use_ratio=use_ratio, plot=plot, skip_import_verification=skip_import_verification,
+            exit_code=exit_code, **kwargs)
 
         self.num_particles = self.kwargs["num_particles"]
         self.max_num_levels = self.kwargs["max_num_levels"]
@@ -151,6 +119,13 @@ class DNest4(NestedSampler):
         self._backend = self.kwargs["backend"]
         self.use_temporary_directory = temporary_directory
 
+        self.start_time = np.nan
+        self.sampler = None
+        self._information = np.nan
+        self._last_live_sample_info = np.nan
+        self._outputfiles_basename = None
+        self._temporary_outputfiles_basename = None
+
         signal.signal(signal.SIGTERM, self.write_current_state_and_exit)
         signal.signal(signal.SIGINT, self.write_current_state_and_exit)
         signal.signal(signal.SIGALRM, self.write_current_state_and_exit)
@@ -180,26 +155,19 @@ class DNest4(NestedSampler):
         self._highs = np.array(highs)
         self._lows = np.array(lows)
 
-        self._from_prior = self.get_random_draw_from_prior
-
-        self._dnest4_model = _DNest4Model(self.log_likelihood, self._from_prior, self._widths,
+        self._dnest4_model = _DNest4Model(self.log_likelihood, self.get_random_draw_from_prior, self._widths,
                                           self._centers, self._highs, self._lows)
 
     def _set_backend(self):
         import dnest4
         if self._backend == 'csv':
-            # for CSVBackend, which is output data to disk
-            backend = dnest4.backends.CSVBackend("{}/dnest4{}/".format(self.outdir, self.label), sep=" ")
-            # change to original
+            return dnest4.backends.CSVBackend("{}/dnest4{}/".format(self.outdir, self.label), sep=" ")
         else:
-            # for the MemoryBackend, which is output data to memory
-            backend = dnest4.backends.MemoryBackend()
-        return backend
+            return dnest4.backends.MemoryBackend()
 
     def _set_dnest4_kwargs(self):
         dnest4_keys = ["num_steps", "new_level_interval", "lam", "beta", "seed"]
         self.dnest4_kwargs = {key: self.kwargs[key] for key in dnest4_keys}
-        return self.dnest4_kwargs
 
     def run_sampler(self):
         import dnest4
@@ -233,17 +201,11 @@ class DNest4(NestedSampler):
         if self._backend == 'memory':
             self._last_live_sample_info = pd.DataFrame(self.sampler.backend.sample_info[-1])
             self.result.log_likelihood_evaluations = self._last_live_sample_info['log_likelihood']
-
             self.result.samples = np.array(self.sampler.backend.posterior_samples)
-            print("here")
-            print(self.sampler.backend.posterior_samples)
-            print(self.result.samples)
         else:
             sample_info_path = './' + self.kwargs["outputfiles_basename"] + '/sample_info.txt'
-
             sample_info = np.genfromtxt(sample_info_path, comments='#', names=True)
             self.result.log_likelihood_evaluations = sample_info['log_likelihood']
-
             self.result.samples = np.array(self.sampler.backend.posterior_samples)
 
         self.result.sampler_output = out
@@ -262,36 +224,7 @@ class DNest4(NestedSampler):
 
     def _verify_kwargs_against_default_kwargs(self):
         self.outputfiles_basename = self.kwargs.pop("outputfiles_basename", None)
-
-        # if self.kwargs['backend_callback'] is None:
-        #     self.kwargs['backend_callback'] = self._backend_callback
-
-        NestedSampler._verify_kwargs_against_default_kwargs(self)
-
-    # def _backend_callback(self, *args, **kwargs):
-    #     if self.use_temporary_directory:
-    #         self._copy_temporary_directory_contents_to_proper_path()
-    #     self._calculate_and_save_sampling_time()
-
-    def _setup_run_directory(self):
-        """
-        If using a temporary directory, the output directory is moved to the
-        temporary directory.
-        """
-        if self.use_temporary_directory:
-            temporary_outputfiles_basename = tempfile.TemporaryDirectory().name
-            self.temporary_outputfiles_basename = temporary_outputfiles_basename
-
-            if os.path.exists(self.outputfiles_basename):
-                distutils.dir_util.copy_tree(self.outputfiles_basename, self.temporary_outputfiles_basename)
-            check_directory_exists_and_if_not_mkdir(temporary_outputfiles_basename)
-
-            self.kwargs["outputfiles_basename"] = self.temporary_outputfiles_basename
-            logger.info("Using temporary file {}".format(temporary_outputfiles_basename))
-        else:
-            check_directory_exists_and_if_not_mkdir(self.outputfiles_basename)
-            self.kwargs["outputfiles_basename"] = self.outpuxtfiles_basename
-            logger.info("Using output file {}".format(self.outputfiles_basename))
+        super(DNest4, self)._verify_kwargs_against_default_kwargs()
 
     def _check_and_load_sampling_time_file(self):
         self.time_file_path = self.kwargs["outputfiles_basename"] + '/sampling_time.dat'
@@ -355,7 +288,7 @@ class DNest4(NestedSampler):
         self._calculate_and_save_sampling_time()
         if self.use_temporary_directory:
             self._move_temporary_directory_to_proper_path()
-        os._exit(self.exit_code)
+        sys.exit(self.exit_code)
 
     def _move_temporary_directory_to_proper_path(self):
         """
diff --git a/bilby/core/sampler/ptemcee.py b/bilby/core/sampler/ptemcee.py
index a45a4c0853e965ea2057f4b7172ce22547d0b7f3..82cfcf4acc23a1957fb61043f16ae89cc8017dd9 100644
--- a/bilby/core/sampler/ptemcee.py
+++ b/bilby/core/sampler/ptemcee.py
@@ -146,8 +146,8 @@ class Ptemcee(MCMCSampler):
         resume=True,
         nsamples=5000,
         burn_in_nact=50,
-        burn_in_fixed_discard=100,
-        mean_logl_frac=0.001,
+        burn_in_fixed_discard=0,
+        mean_logl_frac=0.01,
         thin_by_nact=0.5,
         autocorr_tol=50,
         autocorr_c=5,
@@ -498,6 +498,7 @@ class Ptemcee(MCMCSampler):
                 self.mean_log_likelihood,
                 frac=self.convergence_inputs.mean_logl_frac
             )
+            logger.debug("Mean logl min it = {}".format(mean_logl_min_it))
 
             # Calculate the maximum discard number
             discard_max = np.max(
@@ -1039,7 +1040,7 @@ def plot_tau(
     ax.set_xlabel("Iteration")
     ax.set_ylabel(r"$\langle \tau \rangle$")
     ax.legend()
-
+    fig.tight_layout()
     fig.savefig("{}/{}_checkpoint_tau.png".format(outdir, label))
     plt.close(fig)
 
diff --git a/bilby/core/sampler/pymultinest.py b/bilby/core/sampler/pymultinest.py
index eaa14ccef7ec2c570689e6d17f9f3e09f3cdfc07..e977dc153f0a2572297b5a8bb382b462372b1243 100644
--- a/bilby/core/sampler/pymultinest.py
+++ b/bilby/core/sampler/pymultinest.py
@@ -1,11 +1,11 @@
 import importlib
 import os
-import tempfile
 import shutil
 import distutils.dir_util
 import signal
 import time
 import datetime
+import sys
 
 import numpy as np
 
@@ -175,7 +175,7 @@ class Pymultinest(NestedSampler):
         self._calculate_and_save_sampling_time()
         if self.use_temporary_directory:
             self._move_temporary_directory_to_proper_path()
-        os._exit(self.exit_code)
+        sys.exit(self.exit_code)
 
     def _copy_temporary_directory_contents_to_proper_path(self):
         """
@@ -239,26 +239,6 @@ class Pymultinest(NestedSampler):
         self.result.sampling_time = datetime.timedelta(seconds=self.total_sampling_time)
         return self.result
 
-    def _setup_run_directory(self):
-        """
-        If using a temporary directory, the output directory is moved to the
-        temporary directory.
-        """
-        if self.use_temporary_directory:
-            temporary_outputfiles_basename = tempfile.TemporaryDirectory().name
-            self.temporary_outputfiles_basename = temporary_outputfiles_basename
-
-            if os.path.exists(self.outputfiles_basename):
-                distutils.dir_util.copy_tree(self.outputfiles_basename, self.temporary_outputfiles_basename)
-            check_directory_exists_and_if_not_mkdir(temporary_outputfiles_basename)
-
-            self.kwargs["outputfiles_basename"] = self.temporary_outputfiles_basename
-            logger.info("Using temporary file {}".format(temporary_outputfiles_basename))
-        else:
-            check_directory_exists_and_if_not_mkdir(self.outputfiles_basename)
-            self.kwargs["outputfiles_basename"] = self.outputfiles_basename
-            logger.info("Using output file {}".format(self.outputfiles_basename))
-
     def _check_and_load_sampling_time_file(self):
         self.time_file_path = self.kwargs["outputfiles_basename"] + '/sampling_time.dat'
         if os.path.exists(self.time_file_path):
diff --git a/bilby/core/sampler/ultranest.py b/bilby/core/sampler/ultranest.py
index 82815557ce7581a00789036afd7067593eb4fcfc..fdae9a8e9c4393b857a58a27a8f075d2bc704d12 100644
--- a/bilby/core/sampler/ultranest.py
+++ b/bilby/core/sampler/ultranest.py
@@ -6,7 +6,6 @@ import inspect
 import os
 import shutil
 import signal
-import tempfile
 import time
 
 import numpy as np
@@ -287,6 +286,7 @@ class Ultranest(NestedSampler):
         stepsampler = self.kwargs.pop("step_sampler", None)
 
         self._setup_run_directory()
+        self.kwargs["log_dir"] = self.kwargs.pop("outputfiles_basename")
         self._check_and_load_sampling_time_file()
 
         # use reactive nested sampler when no live points are given
@@ -326,30 +326,6 @@ class Ultranest(NestedSampler):
 
         return self.result
 
-    def _setup_run_directory(self):
-        """
-        If using a temporary directory, the output directory is moved to the
-        temporary directory and symlinked back.
-        """
-        if self.use_temporary_directory:
-            temporary_outputfiles_basename = tempfile.TemporaryDirectory().name
-            self.temporary_outputfiles_basename = temporary_outputfiles_basename
-
-            if os.path.exists(self.outputfiles_basename):
-                distutils.dir_util.copy_tree(
-                    self.outputfiles_basename, self.temporary_outputfiles_basename
-                )
-            check_directory_exists_and_if_not_mkdir(temporary_outputfiles_basename)
-
-            self.kwargs["log_dir"] = self.temporary_outputfiles_basename
-            logger.info(
-                "Using temporary file {}".format(temporary_outputfiles_basename)
-            )
-        else:
-            check_directory_exists_and_if_not_mkdir(self.outputfiles_basename)
-            self.kwargs["log_dir"] = self.outputfiles_basename
-            logger.info("Using output file {}".format(self.outputfiles_basename))
-
     def _clean_up_run_directory(self):
         if self.use_temporary_directory:
             self._move_temporary_directory_to_proper_path()
diff --git a/bilby/gw/prior.py b/bilby/gw/prior.py
index 7d1b37da3bf3c0f35000fc699f6c48cd85aa772e..3ffcfb193df6f34ed07deb9689def2adf444bb60 100644
--- a/bilby/gw/prior.py
+++ b/bilby/gw/prior.py
@@ -4,11 +4,13 @@ import copy
 import numpy as np
 from scipy.interpolate import InterpolatedUnivariateSpline, interp1d
 from scipy.integrate import cumtrapz
+from scipy.special import hyp2f1
 from scipy.stats import norm
 
 from ..core.prior import (PriorDict, Uniform, Prior, DeltaFunction, Gaussian,
                           Interped, Constraint, conditional_prior_factory,
-                          BaseJointPriorDist, JointPrior, JointPriorDistError)
+                          BaseJointPriorDist, JointPrior, JointPriorDistError,
+                          PowerLaw)
 from ..core.utils import infer_args_from_method, logger
 from .conversion import (
     convert_to_lal_binary_black_hole_parameters,
@@ -285,6 +287,93 @@ class UniformSourceFrame(Cosmological):
         return zs, p_dz
 
 
+class UniformInComponentsChirpMass(PowerLaw):
+
+    def __init__(self, minimum, maximum, name='chirp_mass',
+                 latex_label='$\mathcal{M}$', unit=None, boundary=None):
+        """
+        Prior distribution for chirp mass which is uniform in component masses.
+
+        This is useful when chirp mass and mass ratio are sampled while the
+        prior is uniform in component masses.
+
+        Parameters
+        ----------
+        minimum : float
+            The minimum of chirp mass
+        maximum : float
+            The maximum of chirp mass
+        name: see superclass
+        latex_label: see superclass
+        unit: see superclass
+        boundary: see superclass
+        """
+        super(UniformInComponentsChirpMass, self).__init__(
+            alpha=1., minimum=minimum, maximum=maximum,
+            name=name, latex_label=latex_label, unit=unit, boundary=boundary)
+
+
+class WrappedInterp1d(interp1d):
+    """ A wrapper around scipy interp1d which sets equality-by-instantiation """
+    def __eq__(self, other):
+
+        for key in self.__dict__:
+            if type(self.__dict__[key]) is np.ndarray:
+                if not np.array_equal(self.__dict__[key], other.__dict__[key]):
+                    return False
+            elif key == "_spline":
+                pass
+            elif getattr(self, key) != getattr(other, key):
+                return False
+        return True
+
+
+class UniformInComponentsMassRatio(Prior):
+
+    def __init__(self, minimum, maximum, name='mass_ratio', latex_label='$q$',
+                 unit=None, boundary=None):
+        """
+        Prior distribution for mass ratio which is uniform in component masses.
+
+        This is useful when chirp mass and mass ratio are sampled while the
+        prior is uniform in component masses.
+
+        Parameters
+        ----------
+        minimum : float
+            The minimum of mass ratio
+        maximum : float
+            The maximum of mass ratio
+        name: see superclass
+        latex_label: see superclass
+        unit: see superclass
+        boundary: see superclass
+        """
+        super(UniformInComponentsMassRatio, self).__init__(
+            minimum=minimum, maximum=maximum, name=name,
+            latex_label=latex_label, unit=unit, boundary=boundary)
+        self.norm = self._integral(maximum) - self._integral(minimum)
+        qs = np.linspace(minimum, maximum, 1000)
+        self.icdf = WrappedInterp1d(
+            self.cdf(qs), qs, kind='cubic',
+            bounds_error=False, fill_value=(minimum, maximum))
+
+    @staticmethod
+    def _integral(q):
+        return -5. * q**(-1. / 5.) * hyp2f1(-2. / 5., -1. / 5., 4. / 5., -q)
+
+    def cdf(self, val):
+        return (self._integral(val) - self._integral(self.minimum)) / self.norm
+
+    def rescale(self, val):
+        self.test_valid_for_rescaling(val)
+        return self.icdf(val)
+
+    def prob(self, val):
+        in_prior = (val >= self.minimum) & (val <= self.maximum)
+        return (1. + val)**(2. / 5.) / (val**(6. / 5.)) / self.norm * in_prior
+
+
 class AlignedSpin(Interped):
 
     def __init__(self, a_prior=Uniform(0, 1), z_prior=Uniform(-1, 1),
diff --git a/containers/dockerfile-template b/containers/dockerfile-template
index 46d4f54700cb9bfad245e7d1e3113b85589d73f4..eb2fa024cae7f1f93bdfa0d6ef256d6867538809 100644
--- a/containers/dockerfile-template
+++ b/containers/dockerfile-template
@@ -1,4 +1,4 @@
-FROM continuumio/miniconda3
+FROM containers.ligo.org/docker/base:conda
 LABEL name="bilby Base miniconda3" \
 maintainer="Gregory Ashton <gregory.ashton@ligo.org>"
 
diff --git a/containers/v2-dockerfile-test-suite-python35 b/containers/v2-dockerfile-test-suite-python35
index 38d4c8b2fcaebd5dc78e87cd699cc8419b69c1dc..544b562f37dc870538b71a4207139a90e8101c5d 100644
--- a/containers/v2-dockerfile-test-suite-python35
+++ b/containers/v2-dockerfile-test-suite-python35
@@ -1,6 +1,6 @@
 # This dockerfile is written automatically and should not be modified by hand.
 
-FROM continuumio/miniconda3
+FROM containers.ligo.org/docker/base:conda
 LABEL name="bilby Base miniconda3" \
 maintainer="Gregory Ashton <gregory.ashton@ligo.org>"
 
diff --git a/containers/v2-dockerfile-test-suite-python36 b/containers/v2-dockerfile-test-suite-python36
index ae75fff03aa80026a56fa48bc7682f8acb852881..d9a2782cfb22c020520375665ff1668e7c5f6aa4 100644
--- a/containers/v2-dockerfile-test-suite-python36
+++ b/containers/v2-dockerfile-test-suite-python36
@@ -1,6 +1,6 @@
 # This dockerfile is written automatically and should not be modified by hand.
 
-FROM continuumio/miniconda3
+FROM containers.ligo.org/docker/base:conda
 LABEL name="bilby Base miniconda3" \
 maintainer="Gregory Ashton <gregory.ashton@ligo.org>"
 
diff --git a/containers/v2-dockerfile-test-suite-python37 b/containers/v2-dockerfile-test-suite-python37
index 9e27fcab40ae8a7c0561a32b508449e0943925a6..b77f489227fd58720727a24d1a8989cc7b9dc36a 100644
--- a/containers/v2-dockerfile-test-suite-python37
+++ b/containers/v2-dockerfile-test-suite-python37
@@ -1,6 +1,6 @@
 # This dockerfile is written automatically and should not be modified by hand.
 
-FROM continuumio/miniconda3
+FROM containers.ligo.org/docker/base:conda
 LABEL name="bilby Base miniconda3" \
 maintainer="Gregory Ashton <gregory.ashton@ligo.org>"
 
diff --git a/containers/v2-dockerfile-test-suite-python38 b/containers/v2-dockerfile-test-suite-python38
index 690055494c8798269a17a80386fe76de313a81ad..71cf85d0197a80f01ef5e7765d3a2875e40d8a11 100644
--- a/containers/v2-dockerfile-test-suite-python38
+++ b/containers/v2-dockerfile-test-suite-python38
@@ -1,6 +1,6 @@
 # This dockerfile is written automatically and should not be modified by hand.
 
-FROM continuumio/miniconda3
+FROM containers.ligo.org/docker/base:conda
 LABEL name="bilby Base miniconda3" \
 maintainer="Gregory Ashton <gregory.ashton@ligo.org>"
 
diff --git a/docs/prior.txt b/docs/prior.txt
index f55aafe76324d984a2e013402477184a96d5170c..cea75744c1ce37145b97422aaad4dc1f9e5c984f 100644
--- a/docs/prior.txt
+++ b/docs/prior.txt
@@ -45,7 +45,7 @@ which provides extra functionality. For example, to sample from the prior:
 
 .. code:: python
 
-   >>> priors = bilby.core.priors.PriorDict()
+   >>> priors = bilby.core.prior.PriorDict()
    >>> priors['a'] = bilby.prior.Uniform(minimum=0, maximum=10, name='a')
    >>> priors['b'] = bilby.prior.Uniform(minimum=0, maximum=10, name='b')
    >>> priors.sample()
@@ -89,7 +89,7 @@ matrix and standard deviations, e.g.:
    >>> names = ['a', 'b']  # set the parameter names
    >>> mu = [0., 5.]  # the means of the parameters
    >>> cov = [[2., 0.7], [0.7, 3.]]  # the covariance matrix
-   >>> mvg = bilby.core.priors.MultivariateGaussianDist(names, mus=mu, covs=cov)
+   >>> mvg = bilby.core.prior.MultivariateGaussianDist(names, mus=mu, covs=cov)
 
 It is also possible to define a mixture model of multiple multivariate Gaussian modes of
 different weights if required, e.g.:
@@ -100,7 +100,7 @@ different weights if required, e.g.:
    >>> mu = [[0., 5.], [2., 7.]]  # the means of the parameters
    >>> cov = [[[2., 0.7], [0.7, 3.]], [[1., -0.9], [-0.9, 5.]]]  # the covariance matrix
    >>> weights = [0.3, 0.7]  # weights of each mode
-   >>> mvg = bilby.core.priors.MultivariateGaussianDist(names, mus=mu, covs=cov, nmodes=2, weights=weights)
+   >>> mvg = bilby.core.prior.MultivariateGaussianDist(names, mus=mu, covs=cov, nmodes=2, weights=weights)
 
 The distribution can also have hard bounds on each parameter by supplying them.
 
diff --git a/examples/core_examples/slabspike_example.py b/examples/core_examples/slabspike_example.py
new file mode 100644
index 0000000000000000000000000000000000000000..d798512353178bf9f77940c0017a2e1f21aa1b35
--- /dev/null
+++ b/examples/core_examples/slabspike_example.py
@@ -0,0 +1,97 @@
+#!/usr/bin/env python
+"""
+An example of how to use slab-and-spike priors in bilby.
+In this example we look at a simple example with the sum
+of two Gaussian distributions, and we try to fit with
+up to three Gaussians.
+
+"""
+
+import bilby
+import numpy as np
+import matplotlib.pyplot as plt
+
+outdir = 'outdir'
+label = 'slabspike'
+bilby.utils.check_directory_exists_and_if_not_mkdir(outdir)
+
+
+# Here we define our model. We want to inject two Gaussians and recover with up to three.
+def gaussian(xs, amplitude, mu, sigma):
+    return amplitude / np.sqrt(2 * np.pi * sigma**2) * np.exp(-0.5 * (xs - mu)**2 / sigma**2)
+
+
+def triple_gaussian(xs, amplitude_0, amplitude_1, amplitude_2, mu_0, mu_1, mu_2, sigma_0, sigma_1, sigma_2, **kwargs):
+    return \
+        gaussian(xs, amplitude_0, mu_0, sigma_0) + \
+        gaussian(xs, amplitude_1, mu_1, sigma_1) + \
+        gaussian(xs, amplitude_2, mu_2, sigma_2)
+
+
+# Let's create our data set. We create 200 points on a grid.
+
+xs = np.linspace(-5, 5, 200)
+dx = xs[1] - xs[0]
+
+# Note for our injection parameters we set the amplitude of the second component to 0.
+injection_params = dict(amplitude_0=-3, mu_0=-4, sigma_0=4,
+                        amplitude_1=0, mu_1=0, sigma_1=1,
+                        amplitude_2=4, mu_2=3, sigma_2=3)
+
+# We calculate the injected curve and add some Gaussian noise on the data points
+sigma = 0.02
+p = bilby.core.prior.Gaussian(mu=0, sigma=sigma)
+ys = triple_gaussian(xs=xs, **injection_params) + p.sample(len(xs))
+
+plt.errorbar(xs, ys, yerr=sigma, fmt=".k", capsize=0, label='Injected data')
+plt.plot(xs, triple_gaussian(xs=xs, **injection_params), label='True signal')
+plt.legend()
+plt.savefig(f'{outdir}/{label}_injected_data')
+plt.clf()
+
+
+# Now we want to set up our priors.
+priors = bilby.core.prior.PriorDict()
+# For the slab-and-spike prior, we first need to define the 'slab' part, which is just a regular bilby prior.
+amplitude_slab_0 = bilby.core.prior.Uniform(minimum=-10, maximum=10, name='amplitude_0', latex_label='$A_0$')
+amplitude_slab_1 = bilby.core.prior.Uniform(minimum=-10, maximum=10, name='amplitude_1', latex_label='$A_1$')
+amplitude_slab_2 = bilby.core.prior.Uniform(minimum=-10, maximum=10, name='amplitude_2', latex_label='$A_2$')
+# We do the following to create the slab-and-spike prior. The spike height is somewhat arbitrary and can
+# be corrected in post-processing.
+priors['amplitude_0'] = bilby.core.prior.SlabSpikePrior(slab=amplitude_slab_0, spike_location=0, spike_height=0.1)
+priors['amplitude_1'] = bilby.core.prior.SlabSpikePrior(slab=amplitude_slab_1, spike_location=0, spike_height=0.1)
+priors['amplitude_2'] = bilby.core.prior.SlabSpikePrior(slab=amplitude_slab_2, spike_location=0, spike_height=0.1)
+# Our problem has a degeneracy in the ordering. In general, this problem is somewhat difficult to resolve properly.
+# See e.g. https://github.com/GregoryAshton/kookaburra/blob/master/src/priors.py#L72 for an implementation.
+# We resolve this by not letting the priors overlap in this case.
+priors['mu_0'] = bilby.core.prior.Uniform(minimum=-5, maximum=-2, name='mu_0', latex_label='$\mu_0$')
+priors['mu_1'] = bilby.core.prior.Uniform(minimum=-2, maximum=2, name='mu_1', latex_label='$\mu_1$')
+priors['mu_2'] = bilby.core.prior.Uniform(minimum=2, maximum=5, name='mu_2', latex_label='$\mu_2$')
+priors['sigma_0'] = bilby.core.prior.LogUniform(minimum=0.01, maximum=10, name='sigma_0', latex_label='$\sigma_0$')
+priors['sigma_1'] = bilby.core.prior.LogUniform(minimum=0.01, maximum=10, name='sigma_1', latex_label='$\sigma_1$')
+priors['sigma_2'] = bilby.core.prior.LogUniform(minimum=0.01, maximum=10, name='sigma_2', latex_label='$\sigma_2$')
+
+# Setting up the likelihood and running the samplers works the same as elsewhere.
+likelihood = bilby.core.likelihood.GaussianLikelihood(x=xs, y=ys, func=triple_gaussian, sigma=sigma)
+result = bilby.run_sampler(likelihood=likelihood, priors=priors, outdir=outdir, label=label,
+                           sampler='dynesty', nlive=400)
+
+result.plot_corner(truths=injection_params)
+
+
+# Let's also plot the maximum likelihood fit along with the data.
+max_like_params = result.posterior.iloc[-1]
+plt.errorbar(xs, ys, yerr=sigma, fmt=".k", capsize=0, label='Injected data')
+plt.plot(xs, triple_gaussian(xs=xs, **injection_params), label='True signal')
+plt.plot(xs, triple_gaussian(xs=xs, **max_like_params), label='Max likelihood fit')
+plt.legend()
+plt.savefig(f'{outdir}/{label}_max_likelihood_recovery')
+plt.clf()
+
+# Finally, we can check what fraction of amplitude samples are exactly on the spike.
+spike_samples_0 = len(np.where(result.posterior['amplitude_0'] == 0.0)[0]) / len(result.posterior)
+spike_samples_1 = len(np.where(result.posterior['amplitude_1'] == 0.0)[0]) / len(result.posterior)
+spike_samples_2 = len(np.where(result.posterior['amplitude_2'] == 0.0)[0]) / len(result.posterior)
+print(f"{spike_samples_0 * 100:.2f}% of amplitude_0 samples are exactly 0.0")
+print(f"{spike_samples_1 * 100:.2f}% of amplitude_1 samples are exactly 0.0")
+print(f"{spike_samples_2 * 100:.2f}% of amplitude_2 samples are exactly 0.0")
diff --git a/examples/gw_examples/injection_examples/roq_example.py b/examples/gw_examples/injection_examples/roq_example.py
index 0ffdbf33817fa0813e630264608a38b06df6f7cc..69bff31df6e1fd6413d69de64669d53f9ee91f36 100644
--- a/examples/gw_examples/injection_examples/roq_example.py
+++ b/examples/gw_examples/injection_examples/roq_example.py
@@ -84,10 +84,10 @@ for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'theta_jn', 'phase', 'psi', 'ra',
     priors[key] = injection_parameters[key]
 for key in ['mass_1', 'mass_2']:
     priors[key].minimum = max(priors[key].minimum, minimum_component_mass)
-priors['chirp_mass'] = bilby.core.prior.Constraint(
+priors['chirp_mass'] = bilby.core.prior.Uniform(
     name='chirp_mass', minimum=float(minimum_chirp_mass),
     maximum=float(maximum_chirp_mass))
-priors['mass_ratio'] = bilby.core.prior.Constraint(0.125, 1, name='mass_ratio')
+priors['mass_ratio'] = bilby.core.prior.Uniform(0.125, 1, name='mass_ratio')
 priors['geocent_time'] = bilby.core.prior.Uniform(
     injection_parameters['geocent_time'] - 0.1,
     injection_parameters['geocent_time'] + 0.1, latex_label='$t_c$', unit='s')
diff --git a/examples/tutorials/visualising_the_results.ipynb b/examples/tutorials/visualising_the_results.ipynb
index 09c5660ad767fe38d210f2664e58d63fa0c45627..9bf2de0aaf5f276dfbe821bacd8bf706da669a60 100644
--- a/examples/tutorials/visualising_the_results.ipynb
+++ b/examples/tutorials/visualising_the_results.ipynb
@@ -3,9 +3,7 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {
-    "collapsed": true
-   },
+   "metadata": {},
    "outputs": [],
    "source": [
     "! rm visualising_the_results/*"
@@ -22,138 +20,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "10:31 bilby INFO    : No power spectral density provided, using aLIGO,zero detuning, high power.\n",
-      "10:31 bilby INFO    : Injected signal in H1:\n",
-      "10:31 bilby INFO    :   optimal SNR = 120.28\n",
-      "10:31 bilby INFO    :   matched filter SNR = 120.60-0.46j\n",
-      "10:31 bilby INFO    :   mass_1 = 36.0\n",
-      "10:31 bilby INFO    :   mass_2 = 29.0\n",
-      "10:31 bilby INFO    :   a_1 = 0.4\n",
-      "10:31 bilby INFO    :   a_2 = 0.3\n",
-      "10:31 bilby INFO    :   tilt_1 = 0.5\n",
-      "10:31 bilby INFO    :   tilt_2 = 1.0\n",
-      "10:31 bilby INFO    :   phi_12 = 1.7\n",
-      "10:31 bilby INFO    :   phi_jl = 0.3\n",
-      "10:31 bilby INFO    :   luminosity_distance = 200.0\n",
-      "10:31 bilby INFO    :   theta_jn = 0.4\n",
-      "10:31 bilby INFO    :   phase = 1.3\n",
-      "10:31 bilby INFO    :   ra = 1.375\n",
-      "10:31 bilby INFO    :   dec = -1.2108\n",
-      "10:31 bilby INFO    :   geocent_time = 1126259642.413\n",
-      "10:31 bilby INFO    :   psi = 2.659\n",
-      "10:31 bilby WARNING : The waveform_generator start_time is not equal to that of the provided interferometers. Overwriting the waveform_generator.\n",
-      "10:31 bilby INFO    : Running for label 'example', output will be saved to 'visualising_the_results'\n",
-      "10:31 bilby INFO    : Using LAL version Branch: None;Tag: lalsuite-v6.60;Id: 413788d4afeff8b759d8d75abe589ae4a846120c;;Builder: Unknown User <>;Repository status: CLEAN: All modifications committed\n",
-      "10:31 bilby INFO    : Search parameters:\n",
-      "10:31 bilby INFO    :   mass_1 = Uniform(minimum=20, maximum=50, name='mass_1', latex_label='$m_1$', unit=None, boundary=None)\n",
-      "10:31 bilby INFO    :   mass_2 = Uniform(minimum=20, maximum=50, name='mass_2', latex_label='$m_2$', unit=None, boundary=None)\n",
-      "10:31 bilby INFO    :   luminosity_distance = Uniform(minimum=100, maximum=300, name='luminosity_distance', latex_label='$d_L$', unit=None, boundary=None)\n",
-      "10:31 bilby INFO    :   a_1 = 0.4\n",
-      "10:31 bilby INFO    :   a_2 = 0.3\n",
-      "10:31 bilby INFO    :   tilt_1 = 0.5\n",
-      "10:31 bilby INFO    :   tilt_2 = 1.0\n",
-      "10:31 bilby INFO    :   phi_12 = 1.7\n",
-      "10:31 bilby INFO    :   phi_jl = 0.3\n",
-      "10:31 bilby INFO    :   theta_jn = 0.4\n",
-      "10:31 bilby INFO    :   phase = 1.3\n",
-      "10:31 bilby INFO    :   ra = 1.375\n",
-      "10:31 bilby INFO    :   dec = -1.2108\n",
-      "10:31 bilby INFO    :   geocent_time = 1126259642.413\n",
-      "10:31 bilby INFO    :   psi = 2.659\n",
-      "10:31 bilby INFO    : Single likelihood evaluation took 2.305e-03 s\n",
-      "10:31 bilby INFO    : Using sampler Dynesty with kwargs {'bound': 'multi', 'sample': 'rwalk', 'verbose': True, 'periodic': None, 'reflective': None, 'check_point_delta_t': 600, 'nlive': 100, 'first_update': None, 'walks': 5, 'npdim': None, 'rstate': None, 'queue_size': None, 'pool': None, 'use_pool': None, 'live_points': None, 'logl_args': None, 'logl_kwargs': None, 'ptform_args': None, 'ptform_kwargs': None, 'enlarge': None, 'bootstrap': None, 'vol_dec': 0.5, 'vol_check': 2.0, 'facc': 0.5, 'slices': 5, 'update_interval': 60, 'print_func': <bound method Dynesty._print_func of <bilby.core.sampler.dynesty.Dynesty object at 0x1236747f0>>, 'dlogz': 0.1, 'maxiter': None, 'maxcall': None, 'logl_max': inf, 'add_live': True, 'print_progress': True, 'save_bounds': False, 'n_effective': None}\n",
-      "10:31 bilby INFO    : Checkpoint every n_check_point = 300000\n",
-      "10:31 bilby INFO    : Using dynesty version 0.9.7\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      " 1864| logz ratio=7255.416 +/-  0.541 | dlogz:  0.118 >  0.100000"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "10:32 bilby WARNING : Run terminated with signal 2\n",
-      "10:32 bilby INFO    : Writing checkpoint file visualising_the_results/example_resume.pickle\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Exception while calling loglikelihood function:\n",
-      "  params: [ 35.99600559  28.99205241 200.17592464]\n",
-      "  args: []\n",
-      "  kwargs: {}\n",
-      "  exception:\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "Traceback (most recent call last):\n",
-      "  File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/core/sampler/dynesty.py\", line 279, in _run_nested_wrapper\n",
-      "    self.sampler.run_nested(**kwargs)\n",
-      "TypeError: run_nested() got an unexpected keyword argument 'n_effective'\n",
-      "\n",
-      "During handling of the above exception, another exception occurred:\n",
-      "\n",
-      "Traceback (most recent call last):\n",
-      "  File \"/Users/virginiademilio/anaconda3/envs/bilby_source/lib/python3.7/site-packages/dynesty/dynesty.py\", line 805, in __call__\n",
-      "    return self.func(x, *self.args, **self.kwargs)\n",
-      "  File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/core/sampler/base_sampler.py\", line 583, in log_likelihood\n",
-      "    return Sampler.log_likelihood(self, theta)\n",
-      "  File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/core/sampler/base_sampler.py\", line 381, in log_likelihood\n",
-      "    return self.likelihood.log_likelihood_ratio()\n",
-      "  File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/likelihood.py\", line 244, in log_likelihood_ratio\n",
-      "    self.waveform_generator.frequency_domain_strain(self.parameters)\n",
-      "  File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/waveform_generator.py\", line 119, in frequency_domain_strain\n",
-      "    transformed_model_data_points=self.time_array)\n",
-      "  File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/waveform_generator.py\", line 158, in _calculate_strain\n",
-      "    model_strain = self._strain_from_model(model_data_points, model)\n",
-      "  File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/waveform_generator.py\", line 170, in _strain_from_model\n",
-      "    return model(model_data_points, **self.parameters)\n",
-      "  File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/source.py\", line 71, in lal_binary_black_hole\n",
-      "    phi_jl=phi_jl, **waveform_kwargs)\n",
-      "  File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/source.py\", line 272, in _base_lal_cbc_fd_waveform\n",
-      "    waveform_dictionary, approximant)\n",
-      "  File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/utils.py\", line 798, in lalsim_SimInspiralChooseFDWaveform\n",
-      "    waveform_dictionary, approximant)\n",
-      "  File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/core/sampler/dynesty.py\", line 385, in write_current_state_and_exit\n",
-      "    sys.exit(130)\n",
-      "SystemExit: 130\n"
-     ]
-    },
-    {
-     "ename": "SystemExit",
-     "evalue": "130",
-     "output_type": "error",
-     "traceback": [
-      "An exception has occurred, use %tb to see the full traceback.\n",
-      "\u001b[0;31mSystemExit\u001b[0m\u001b[0;31m:\u001b[0m 130\n"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/Users/virginiademilio/anaconda3/envs/bilby_source/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3334: UserWarning: To exit: use 'exit', 'quit', or Ctrl-D.\n",
-      "  warn(\"To exit: use 'exit', 'quit', or Ctrl-D.\", stacklevel=1)\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "import bilby\n",
     "import matplotlib.pyplot as plt\n",
@@ -363,13 +232,56 @@
     "result.plot_marginals()\n",
     "plt.show()"
    ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "collapsed": false,
+    "pycharm": {
+     "name": "#%% md\n"
+    }
+   },
+   "source": [
+    "#### Best-Fit Time Domain Waveform plot\n",
+    "Some plots sepcific to compact binary coalescence parameter estimation results can\n",
+    "be created by re-loading the result as a `CBCResult`:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": null,
+   "metadata": {
+    "pycharm": {
+     "name": "#%%\n"
+    }
+   },
+   "outputs": [],
+   "source": [
+    "from bilby.gw.result import CBCResult\n",
+    "\n",
+    "cbc_result = CBCResult.from_json(\"visualising_the_results/example_result.json\")\n",
+    "cbc_result.plot_waveform_posterior()\n",
+    "plt.show()"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {
+    "collapsed": false
+   },
+   "source": [
+    "Again, notice that the plot is saved as a \"waveform.png\" in the output dir.\n",
+    "\n",
+    "\n",
+    "\n"
+   ]
   }
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "Bilby (source-install)",
+   "display_name": "Python 3",
    "language": "python",
-   "name": "bilby_source"
+   "name": "python3"
   },
   "language_info": {
    "codemirror_mode": {
@@ -382,15 +294,6 @@
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
    "version": "3.7.3"
-  },
-  "pycharm": {
-   "stem_cell": {
-    "cell_type": "raw",
-    "metadata": {
-     "collapsed": false
-    },
-    "source": []
-   }
   }
  },
  "nbformat": 4,
diff --git a/setup.py b/setup.py
index abb40ecd07fde6a08cf24cf463c2f0f07fd94d3c..0882ade9b33e1477ff5ffccad7ee8a22be36fecc 100644
--- a/setup.py
+++ b/setup.py
@@ -64,7 +64,7 @@ def readfile(filename):
     return filecontents
 
 
-VERSION = '1.0.2'
+VERSION = '1.0.4'
 version_file = write_version_file(VERSION)
 long_description = get_long_description()
 
diff --git a/test/check_author_list.py b/test/check_author_list.py
new file mode 100644
index 0000000000000000000000000000000000000000..1b082e219da9e6105185cd47f0a9bd3b03e4287d
--- /dev/null
+++ b/test/check_author_list.py
@@ -0,0 +1,28 @@
+""" A script to verify that the .AUTHOR.md file is up to date """
+
+import re
+import subprocess
+
+special_cases = ["plasky", "thomas", "mj-will"]
+AUTHORS_list = []
+with open("AUTHORS.md", "r") as f:
+    AUTHORS_list = " ".join([line for line in f]).lower()
+
+
+lines = subprocess.check_output(["git", "shortlog", "HEAD", "-sn"]).decode("utf-8").split("\n")
+
+if len(lines) == 0:
+    raise Exception("No authors to check against")
+
+fail_test = False
+for line in lines:
+    line = line.replace(".", " ")
+    line = re.sub('([A-Z][a-z]+)', r' \1', re.sub('([A-Z]+)', r' \1', line))
+    for element in line.split()[1:]:
+        element = element.lower()
+        if element not in AUTHORS_list and element not in special_cases:
+            print("Failure: {} not in AUTHOR.md".format(element))
+            fail_test += True
+
+if fail_test:
+    raise Exception("Author check list failed.. have you added your name to the .AUTHOR file?")
diff --git a/test/core/prior/conditional_test.py b/test/core/prior/conditional_test.py
index 0e44fda3691172e1ca8618d7ace3a172de991912..a76f10a4fa379d34b4fe35499a76fb4005506741 100644
--- a/test/core/prior/conditional_test.py
+++ b/test/core/prior/conditional_test.py
@@ -110,7 +110,7 @@ class TestConditionalPrior(unittest.TestCase):
                 test_parameter_2=self.test_variable_2,
             )
 
-    def test_rescale_prob_update_conditions(self):
+    def test_prob_calls_update_conditions(self):
         with mock.patch.object(self.prior, "update_conditions") as m:
             self.prior.prob(
                 1,
@@ -138,6 +138,21 @@ class TestConditionalPrior(unittest.TestCase):
             ]
             m.assert_has_calls(calls)
 
+    def test_cdf_calls_update_conditions(self):
+        self.prior = bilby.core.prior.ConditionalUniform(
+            condition_func=self.condition_func, minimum=self.minimum, maximum=self.maximum
+        )
+        with mock.patch.object(self.prior, "update_conditions") as m:
+            self.prior.cdf(
+                1,
+                test_parameter_1=self.test_variable_1,
+                test_parameter_2=self.test_variable_2,
+            )
+            m.assert_called_with(
+                test_parameter_1=self.test_variable_1,
+                test_parameter_2=self.test_variable_2,
+            )
+
     def test_reset_to_reference_parameters(self):
         self.prior.minimum = 10
         self.prior.maximum = 20
diff --git a/test/core/prior/slabspike_test.py b/test/core/prior/slabspike_test.py
new file mode 100644
index 0000000000000000000000000000000000000000..d2cdcc55a0fbf9d3ef64c71b9420b321ee11e384
--- /dev/null
+++ b/test/core/prior/slabspike_test.py
@@ -0,0 +1,202 @@
+import numpy as np
+import unittest
+
+import bilby
+from bilby.core.prior.slabspike import SlabSpikePrior
+from bilby.core.prior.analytical import Uniform, PowerLaw, LogUniform, TruncatedGaussian, \
+    Beta, Gaussian, Cosine, Sine, HalfGaussian, LogNormal, Exponential, StudentT, Logistic, \
+    Cauchy, Gamma, ChiSquared
+
+
+class TestSlabSpikePrior(unittest.TestCase):
+
+    def setUp(self):
+        self.minimum = 0
+        self.maximum = 1
+        self.spike_loc = 0.5
+        self.spike_height = 0.3
+        self.slab = bilby.core.prior.Prior(minimum=self.minimum, maximum=self.maximum)
+        self.prior = SlabSpikePrior(
+            slab=self.slab, spike_location=self.spike_loc, spike_height=self.spike_height)
+
+    def tearDown(self):
+        del self.minimum
+        del self.maximum
+        del self.spike_loc
+        del self.spike_height
+        del self.prior
+        del self.slab
+
+    def test_slab_fraction(self):
+        expected = 1 - self.spike_height
+        self.assertEqual(expected, self.prior.slab_fraction)
+
+    def test_spike_loc(self):
+        self.assertEqual(self.spike_loc, self.prior.spike_location)
+
+    def test_set_spike_loc_none(self):
+        self.prior.spike_location = None
+        self.assertEqual(self.prior.minimum, self.prior.spike_location)
+
+    def test_set_spike_loc_outside_domain(self):
+        with self.assertRaises(ValueError):
+            self.prior.spike_location = 1.5
+
+    def test_set_spike_loc_maximum(self):
+        self.prior.spike_location = self.maximum
+        self.assertEqual(self.maximum, self.prior.spike_location)
+
+    def test_class_name(self):
+        expected = "SlabSpikePrior"
+        self.assertEqual(expected, self.prior.__class__.__name__)
+        self.assertEqual(expected, self.prior.__class__.__qualname__)
+
+    def test_set_spike_height_outside_domain(self):
+        with self.assertRaises(ValueError):
+            self.prior.spike_height = 1.5
+
+    def test_set_spike_height_domain_edge(self):
+        self.prior.spike_height = 0
+        self.prior.spike_height = 1
+
+
+class TestSlabSpikeClasses(unittest.TestCase):
+
+    def setUp(self):
+        self.minimum = 0.4
+        self.maximum = 2.4
+        self.spike_loc = 1.5
+        self.spike_height = 0.3
+
+        self.slabs = [
+            Uniform(minimum=self.minimum, maximum=self.maximum),
+            PowerLaw(minimum=self.minimum, maximum=self.maximum, alpha=2),
+            LogUniform(minimum=self.minimum, maximum=self.maximum),
+            TruncatedGaussian(minimum=self.minimum, maximum=self.maximum, mu=0, sigma=1),
+            Beta(minimum=self.minimum, maximum=self.maximum, alpha=1, beta=1),
+            Gaussian(mu=0, sigma=1),
+            Cosine(),
+            Sine(),
+            HalfGaussian(sigma=1),
+            LogNormal(mu=1, sigma=2),
+            Exponential(mu=2),
+            StudentT(df=2),
+            Logistic(mu=2, scale=1),
+            Cauchy(alpha=1, beta=2),
+            Gamma(k=1, theta=1.),
+            ChiSquared(nu=2)]
+        self.slab_spikes = [SlabSpikePrior(slab, spike_height=self.spike_height, spike_location=self.spike_loc)
+                            for slab in self.slabs]
+        self.test_nodes_finite_support = np.linspace(self.minimum, self.maximum, 1000)
+        self.test_nodes_infinite_support = np.linspace(-10, 10, 1000)
+        self.test_nodes = [self.test_nodes_finite_support
+                           if np.isinf(slab.minimum) or np.isinf(slab.maximum)
+                           else self.test_nodes_finite_support for slab in self.slabs]
+
+    def tearDown(self):
+        del self.minimum
+        del self.maximum
+        del self.spike_loc
+        del self.spike_height
+        del self.slabs
+        del self.test_nodes_finite_support
+        del self.test_nodes_infinite_support
+
+    def test_prob_on_slab(self):
+        for slab, slab_spike, test_nodes in zip(self.slabs, self.slab_spikes, self.test_nodes):
+            expected = slab.prob(test_nodes) * slab_spike.slab_fraction
+            actual = slab_spike.prob(test_nodes)
+            self.assertTrue(np.allclose(expected, actual, rtol=1e-5))
+
+    def test_prob_on_spike(self):
+        for slab_spike in self.slab_spikes:
+            self.assertEqual(np.inf, slab_spike.prob(self.spike_loc))
+
+    def test_ln_prob_on_slab(self):
+        for slab, slab_spike, test_nodes in zip(self.slabs, self.slab_spikes, self.test_nodes):
+            expected = slab.ln_prob(test_nodes) + np.log(slab_spike.slab_fraction)
+            actual = slab_spike.ln_prob(test_nodes)
+            self.assertTrue(np.array_equal(expected, actual))
+
+    def test_ln_prob_on_spike(self):
+        for slab_spike in self.slab_spikes:
+            self.assertEqual(np.inf, slab_spike.ln_prob(self.spike_loc))
+
+    def test_inverse_cdf_below_spike_with_spike_at_minimum(self):
+        for slab in self.slabs:
+            slab_spike = SlabSpikePrior(slab=slab, spike_height=0.4, spike_location=slab.minimum)
+            self.assertEqual(0, slab_spike.inverse_cdf_below_spike)
+
+    def test_inverse_cdf_below_spike_with_spike_at_maximum(self):
+        for slab in self.slabs:
+            slab_spike = SlabSpikePrior(slab=slab, spike_height=0.4, spike_location=slab.maximum)
+            expected = 1 - slab_spike.spike_height
+            actual = slab_spike.inverse_cdf_below_spike
+            self.assertEqual(expected, actual)
+
+    def test_inverse_cdf_below_spike_arbitrary_position(self):
+        pass
+
+    def test_cdf_below_spike(self):
+        for slab, slab_spike, test_nodes in zip(self.slabs, self.slab_spikes, self.test_nodes):
+            test_nodes = test_nodes[np.where(test_nodes < self.spike_loc)]
+            expected = slab.cdf(test_nodes) * slab_spike.slab_fraction
+            actual = slab_spike.cdf(test_nodes)
+            self.assertTrue(np.allclose(expected, actual, rtol=1e-5))
+
+    def test_cdf_at_spike(self):
+        for slab, slab_spike in zip(self.slabs, self.slab_spikes):
+            expected = slab.cdf(self.spike_loc) * slab_spike.slab_fraction
+            actual = slab_spike.cdf(self.spike_loc)
+            self.assertTrue(np.allclose(expected, actual, rtol=1e-5))
+
+    def test_cdf_above_spike(self):
+        for slab, slab_spike, test_nodes in zip(self.slabs, self.slab_spikes, self.test_nodes):
+            test_nodes = test_nodes[np.where(test_nodes > self.spike_loc)]
+            expected = slab.cdf(test_nodes) * slab_spike.slab_fraction + self.spike_height
+            actual = slab_spike.cdf(test_nodes)
+            self.assertTrue(np.array_equal(expected, actual))
+
+    def test_cdf_at_minimum(self):
+        for slab_spike in self.slab_spikes:
+            expected = 0
+            actual = slab_spike.cdf(slab_spike.minimum)
+            self.assertEqual(expected, actual)
+
+    def test_cdf_at_maximum(self):
+        for slab_spike in self.slab_spikes:
+            expected = 1
+            actual = slab_spike.cdf(slab_spike.maximum)
+            self.assertEqual(expected, actual)
+
+    def test_rescale_no_spike(self):
+        for slab in self.slabs:
+            slab_spike = SlabSpikePrior(slab=slab, spike_height=0, spike_location=slab.minimum)
+            vals = np.linspace(0, 1, 1000)
+            expected = slab.rescale(vals)
+            actual = slab_spike.rescale(vals)
+            print(slab)
+            self.assertTrue(np.allclose(expected, actual, rtol=1e-5))
+
+    def test_rescale_below_spike(self):
+        for slab, slab_spike in zip(self.slabs, self.slab_spikes):
+            vals = np.linspace(0, slab_spike.inverse_cdf_below_spike, 1000)
+            expected = slab.rescale(vals / slab_spike.slab_fraction)
+            actual = slab_spike.rescale(vals)
+            self.assertTrue(np.allclose(expected, actual, rtol=1e-5))
+
+    def test_rescale_at_spike(self):
+        for slab, slab_spike in zip(self.slabs, self.slab_spikes):
+            vals = np.linspace(slab_spike.inverse_cdf_below_spike,
+                               slab_spike.inverse_cdf_below_spike + slab_spike.spike_height, 1000)
+            expected = np.ones(len(vals)) * slab.rescale(vals[0] / slab_spike.slab_fraction)
+            actual = slab_spike.rescale(vals)
+            self.assertTrue(np.allclose(expected, actual, rtol=1e-5))
+
+    def test_rescale_above_spike(self):
+        for slab, slab_spike in zip(self.slabs, self.slab_spikes):
+            vals = np.linspace(slab_spike.inverse_cdf_below_spike + self.spike_height, 1, 1000)
+            expected = np.ones(len(vals)) * slab.rescale(
+                (vals - self.spike_height) / slab_spike.slab_fraction)
+            actual = slab_spike.rescale(vals)
+            self.assertTrue(np.allclose(expected, actual, rtol=1e-5))
diff --git a/test/core/sampler/dnest4_test.py b/test/core/sampler/dnest4_test.py
new file mode 100644
index 0000000000000000000000000000000000000000..fc67a0f8f3dbe1c37e6301bce95ef69e9fae6570
--- /dev/null
+++ b/test/core/sampler/dnest4_test.py
@@ -0,0 +1,61 @@
+import unittest
+
+from mock import MagicMock
+
+import bilby
+
+
+class TestDnest4(unittest.TestCase):
+    def setUp(self):
+        self.likelihood = MagicMock()
+        self.priors = bilby.core.prior.PriorDict(
+            dict(a=bilby.core.prior.Uniform(0, 1), b=bilby.core.prior.Uniform(0, 1))
+        )
+        self.sampler = bilby.core.sampler.DNest4(
+            self.likelihood,
+            self.priors,
+            outdir="outdir",
+            label="label",
+            use_ratio=False,
+            plot=False,
+            skip_import_verification=True,
+        )
+
+    def tearDown(self):
+        del self.likelihood
+        del self.priors
+        del self.sampler
+
+    def test_default_kwargs(self):
+        expected = dict(
+            max_num_levels=20, num_steps=500,
+            new_level_interval=10000, num_per_step=10000,
+            thread_steps=1, num_particles=1000, lam=10.0,
+            beta=100, seed=None, verbose=True, backend='memory'
+        )
+        for key in self.sampler.kwargs.keys():
+            print(
+                "key={}, expected={}, actual={}".format(
+                    key, expected[key], self.sampler.kwargs[key]
+                )
+            )
+        self.assertDictEqual(expected, self.sampler.kwargs)
+
+    def test_translate_kwargs(self):
+        expected = dict(
+            max_num_levels=20, num_steps=500,
+            new_level_interval=10000, num_per_step=10000,
+            thread_steps=1, num_particles=1000, lam=10.0,
+            beta=100, seed=None, verbose=True, backend='memory'
+        )
+
+        for equiv in bilby.core.sampler.base_sampler.NestedSampler.npoints_equiv_kwargs:
+            new_kwargs = self.sampler.kwargs.copy()
+            del new_kwargs["num_particles"]
+            new_kwargs[equiv] = 1000
+            self.sampler.kwargs = new_kwargs
+            self.assertDictEqual(expected, self.sampler.kwargs)
+
+
+if __name__ == "__main__":
+    unittest.main()
diff --git a/test/core/sampler/sampler_run_test.py b/test/core/sampler/sampler_run_test.py
index 2d697494409d0b8064af22959d6767149047b073..3278ddc0f1f0b70f0ebb42e7e9e617d367c9777f 100644
--- a/test/core/sampler/sampler_run_test.py
+++ b/test/core/sampler/sampler_run_test.py
@@ -40,6 +40,15 @@ class TestRunningSamplers(unittest.TestCase):
             resume=False,
         )
 
+    def test_run_dnest4(self):
+        _ = bilby.run_sampler(
+            likelihood=self.likelihood,
+            priors=self.priors,
+            sampler="dnest4",
+            nlive=100,
+            save=False,
+        )
+
     def test_run_dynesty(self):
         _ = bilby.run_sampler(
             likelihood=self.likelihood,