diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 4d0343f47985fc802d4dc855f63ac40dd2b5bd9a..a063d51d06ccbbc4d10fd602c7c11a1f40f30bcd 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -43,7 +43,7 @@ basic-3.7: # test example on python 3.7 python-3.7: stage: test - image: bilbydev/v2-dockerfile-test-suite-python37 + image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen script: - python -m pip install . @@ -69,7 +69,7 @@ python-3.7: # test example on python 3.8 python-3.8: stage: test - image: bilbydev/v2-dockerfile-test-suite-python38 + image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python38-frozen script: - python -m pip install . @@ -78,7 +78,7 @@ python-3.8: # test example on python 3.6 python-3.6: stage: test - image: bilbydev/v2-dockerfile-test-suite-python36 + image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python36-frozen script: - python -m pip install . @@ -87,7 +87,7 @@ python-3.6: # test samplers on python 3.7 python-3.7-samplers: stage: test - image: bilbydev/v2-dockerfile-test-suite-python37 + image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen script: - python -m pip install . @@ -97,7 +97,7 @@ python-3.7-samplers: # test samplers on python 3.6 python-3.6-samplers: stage: test - image: bilbydev/v2-dockerfile-test-suite-python36 + image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python36-frozen script: - python -m pip install . @@ -106,7 +106,7 @@ python-3.6-samplers: # Test containers are up to date containers: stage: test - image: bilbydev/v2-dockerfile-test-suite-python37 + image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen script: - cd containers - python write_dockerfiles.py @@ -117,7 +117,7 @@ containers: # Tests run at a fixed schedule rather than on push scheduled-python-3.7: stage: test - image: bilbydev/v2-dockerfile-test-suite-python37 + image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen only: - schedules script: @@ -129,7 +129,7 @@ scheduled-python-3.7: plotting: stage: test - image: bilbydev/bilby-test-suite-python37 + image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen only: - schedules script: @@ -138,6 +138,12 @@ plotting: - pytest test/gw/plot_test.py +authors: + stage: test + image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen + script: + - python test/check_author_list.py + pages: stage: deploy dependencies: @@ -156,7 +162,7 @@ pages: deploy_release: stage: deploy - image: bilbydev/v2-dockerfile-test-suite-python37 + image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen variables: TWINE_USERNAME: $PYPI_USERNAME TWINE_PASSWORD: $PYPI_PASSWORD @@ -171,7 +177,7 @@ deploy_release: precommits-py3.7: stage: test - image: bilbydev/v2-dockerfile-test-suite-python37 + image: quay.io/gregory_ashton/bilby_v2-dockerfile-test-suite-python37-frozen script: - source activate python37 - mkdir -p .pip37 diff --git a/AUTHORS.md b/AUTHORS.md new file mode 100644 index 0000000000000000000000000000000000000000..bfd80a6e9bf73780d29bc0a133324434cd4eba1c --- /dev/null +++ b/AUTHORS.md @@ -0,0 +1,71 @@ +# Authors + +This file lists all the authors in first-name alphabetical order who have +contributed (either by code contribution or indirectly). If your name is not +listed here, please contact anyone on this list and raise your concern. + +Abhirup Ghosh +Aditya Vijaykumar +Andrew Kim +Andrew Miller +Antoni Ramos-Buades +Avi Vajpeyi +Bruce Edelman +Carl-Johan Haster +Cecilio Garcia-Quiros +Charlie Hoy +Christopher Berry +Christos Karathanasis +Colm Talbot +Daniel Williams +David Keitel +Duncan Macleod +Eric Thrane +Ethan Payne +Francisco Javier Hernandez +Gregory Ashton +Hector Estelles +Ignacio Magaña Hernandez +Isobel Marguarethe Romero-Shaw +Jade Powell +James A Clark +John Veitch +Katerina Chatziioannou +Kaylee de Soto +Khun Sang Phukon +Kshipraa Athar +Liting Xiao +Maite Mateu-Lucena +Marc Arene +Marcus Edward Lower +Margaret Millhouse +Marta Colleoni +Matthew Carney +Matthew David Pitkin +Michael Puerrer +Michael Williams +Monica Rizzo +Moritz Huebner +Nicola De Lillo +Nikhil Sarin +Nirban Bose +Paul Easter +Paul Lasky +Philip Relton +Rhys Green +Roberto Cotesta +Rory Smith +S. H. Oh +Sacha Husa +Scott Coughlin +Serguei Ossokine +Shanika Galaudage +Sharan Banagiri +Shichao Wu +Simon Stevenson +Soichiro Morisaki +Sumeet Kulkarni +Sylvia Biscoveanu +Tathagata Ghosh +Virginia d'Emilio +Vivien Raymond diff --git a/CHANGELOG.md b/CHANGELOG.md index 63966fa169c26dfe44d2db723498c364ea037c6b..ddbd703b36f04a438a61bcc14338310d13c0ef43 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,5 +1,33 @@ # All notable changes will be documented in this file +## [1.0.3] 2020-11-23 +Version 1.0.4 release of bilby + +### Added +- Added a chirp-mass and mass-ratio prior which are uniform in component masses (!891) + +### Changes +- Fixed issue in the CI + +## [1.0.3] 2020-10-23 + +Version 1.0.3 release of bilby + +### Added +- SlabSpikePrior and examples (!857) +- Authors file (!885) +- CDF function to conditional priors (!882) +- Waveform plot in visualising_the_results.ipynb (!817) +- Addition of dnest4 sampler (!849, !883) +- Loaded modules added to meta-data (!881) + +### Changes +- Constraint to Uniform priors in ROQ tutorial (!884) +- Fix to CDF and PDF for SymmetricLogUniform prior (!876) +- Fix bug in evidence combination (!880) +- Typo fixes (!878, !887, !879) +- Minor bug fixes (!888) + ## [1.0.2] 2020-09-14 Version 1.0.2 release of bilby @@ -8,7 +36,7 @@ Version 1.0.2 release of bilby - Template for the docker files (!783) - New delta_phase parameter (!850) - Normalization factor to time-domain waveform plot (!867) -- JSON encoding for int and float types (!866) +- JSON encoding for int and float types (!866) - Various minor formatting additions (!870) ### Changes diff --git a/bilby/core/prior/__init__.py b/bilby/core/prior/__init__.py index 253ad6c9c75ad0a644d5f674f4c408ffca538de0..fc795c3e1f1f69fbcd2b52d994b8c17d752f6e31 100644 --- a/bilby/core/prior/__init__.py +++ b/bilby/core/prior/__init__.py @@ -4,3 +4,4 @@ from .conditional import * from .dict import * from .interpolated import * from .joint import * +from .slabspike import * diff --git a/bilby/core/prior/analytical.py b/bilby/core/prior/analytical.py index b575b3376e99a5185dfba1b01fd5de174a87b6de..7a7fb2b6b5c59b5be7178e60172c889a0b20d380 100644 --- a/bilby/core/prior/analytical.py +++ b/bilby/core/prior/analytical.py @@ -618,6 +618,7 @@ class TruncatedGaussian(Prior): / self.sigma / self.normalisation * self.is_in_prior_range(val) def cdf(self, val): + val = np.atleast_1d(val) _cdf = (erf((val - self.mu) / 2 ** 0.5 / self.sigma) - erf( (self.minimum - self.mu) / 2 ** 0.5 / self.sigma)) / 2 / self.normalisation _cdf[val > self.maximum] = 1 diff --git a/bilby/core/prior/conditional.py b/bilby/core/prior/conditional.py index c96c1a05da9b4e9aee7f2159b868c5e1fd1f7ded..80cdbb91acfb3a49342aad479ef8881c27cca71d 100644 --- a/bilby/core/prior/conditional.py +++ b/bilby/core/prior/conditional.py @@ -110,9 +110,41 @@ def conditional_prior_factory(prior_class): return super(ConditionalPrior, self).prob(val) def ln_prob(self, val, **required_variables): + """Return the natural log prior probability of val. + + Parameters + ---------- + val: Union[float, int, array_like] + See superclass + required_variables: + Any required variables that this prior depends on + + + Returns + ------- + float: Natural log prior probability of val + """ self.update_conditions(**required_variables) return super(ConditionalPrior, self).ln_prob(val) + def cdf(self, val, **required_variables): + """Return the cdf of val. + + Parameters + ---------- + val: Union[float, int, array_like] + See superclass + required_variables: + Any required variables that this prior depends on + + + Returns + ------- + float: CDF of val + """ + self.update_conditions(**required_variables) + return super(ConditionalPrior, self).cdf(val) + def update_conditions(self, **required_variables): """ This method updates the conditional parameters (depending on the parent class diff --git a/bilby/core/prior/slabspike.py b/bilby/core/prior/slabspike.py new file mode 100644 index 0000000000000000000000000000000000000000..de7dc48ad5ae0004a38ec538a4acb82673b57753 --- /dev/null +++ b/bilby/core/prior/slabspike.py @@ -0,0 +1,169 @@ +import numpy as np + +from bilby.core.prior.base import Prior +from bilby.core.utils import logger + + +class SlabSpikePrior(Prior): + + def __init__(self, slab, spike_location=None, spike_height=0): + """'Slab-and-spike' prior, see e.g. https://arxiv.org/abs/1812.07259 + This prior is composed of a `slab`, i.e. any common prior distribution, + and a Dirac spike at a fixed location. This can effectively be used + to emulate sampling in the number of dimensions (similar to reversible- + jump MCMC). + + `SymmetricLogUniform` and `FermiDirac` are currently not supported. + + Parameters + ---------- + slab: Prior + Any instance of a bilby prior class. All general prior attributes + from the slab are copied into the SlabSpikePrior. + Note that this hasn't been tested for conditional priors. + spike_location: float, optional + Location of the Dirac spike. Must be between minimum and maximum + of the slab. Defaults to the minimum of the slab + spike_height: float, optional + Relative weight of the spike compared to the slab. Must be + between 0 and 1. Defaults to 0, i.e. the prior is just the slab. + + """ + self.slab = slab + super().__init__(name=self.slab.name, latex_label=self.slab.latex_label, unit=self.slab.unit, + minimum=self.slab.minimum, maximum=self.slab.maximum, + check_range_nonzero=self.slab.check_range_nonzero, boundary=self.slab.boundary) + self.spike_location = spike_location + self.spike_height = spike_height + try: + self.inverse_cdf_below_spike = self._find_inverse_cdf_fraction_before_spike() + except Exception as e: + logger.warning("Disregard the following warning when running tests:\n {}".format(e)) + + @property + def spike_location(self): + return self._spike_loc + + @spike_location.setter + def spike_location(self, spike_loc): + if spike_loc is None: + spike_loc = self.minimum + if not self.minimum <= spike_loc <= self.maximum: + raise ValueError("Spike location {} not within prior domain ".format(spike_loc)) + self._spike_loc = spike_loc + + @property + def spike_height(self): + return self._spike_height + + @spike_height.setter + def spike_height(self, spike_height): + if 0 <= spike_height <= 1: + self._spike_height = spike_height + else: + raise ValueError("Spike height must be between 0 and 1, but is {}".format(spike_height)) + + @property + def slab_fraction(self): + """ Relative prior weight of the slab. """ + return 1 - self.spike_height + + def _find_inverse_cdf_fraction_before_spike(self): + return float(self.slab.cdf(self.spike_location)) * self.slab_fraction + + def rescale(self, val): + """ + 'Rescale' a sample from the unit line element to the prior. + + Parameters + ---------- + val: Union[float, int, array_like] + A random number between 0 and 1 + + Returns + ------- + array_like: Associated prior value with input value. + """ + val = np.atleast_1d(val) + + lower_indices = np.where(val < self.inverse_cdf_below_spike)[0] + intermediate_indices = np.where(np.logical_and( + self.inverse_cdf_below_spike <= val, + val <= self.inverse_cdf_below_spike + self.spike_height))[0] + higher_indices = np.where(val > self.inverse_cdf_below_spike + self.spike_height)[0] + + res = np.zeros(len(val)) + res[lower_indices] = self._contracted_rescale(val[lower_indices]) + res[intermediate_indices] = self.spike_location + res[higher_indices] = self._contracted_rescale(val[higher_indices] - self.spike_height) + return res + + def _contracted_rescale(self, val): + """ + Contracted version of the rescale function that implements the `rescale` function + on the pure slab part of the prior. + + Parameters + ---------- + val: Union[float, int, array_like] + A random number between 0 and self.slab_fraction + + Returns + ------- + array_like: Associated prior value with input value. + """ + return self.slab.rescale(val / self.slab_fraction) + + def prob(self, val): + """Return the prior probability of val. + Returns np.inf for the spike location + + Parameters + ---------- + val: Union[float, int, array_like] + + Returns + ------- + array_like: Prior probability of val + """ + res = self.slab.prob(val) * self.slab_fraction + res = np.atleast_1d(res) + res[np.where(val == self.spike_location)] = np.inf + return res + + def ln_prob(self, val): + """Return the Log prior probability of val. + Returns np.inf for the spike location + + Parameters + ---------- + val: Union[float, int, array_like] + + Returns + ------- + array_like: Prior probability of val + """ + res = self.slab.ln_prob(val) + np.log(self.slab_fraction) + res = np.atleast_1d(res) + res[np.where(val == self.spike_location)] = np.inf + return res + + def cdf(self, val): + """ Return the CDF of the prior. + This calls to the slab CDF and adds a discrete step + at the spike location. + + Parameters + ---------- + val: Union[float, int, array_like] + + Returns + ------- + array_like: CDF value of val + + """ + res = self.slab.cdf(val) * self.slab_fraction + res = np.atleast_1d(res) + indices_above_spike = np.where(val > self.spike_location)[0] + res[indices_above_spike] += self.spike_height + return res diff --git a/bilby/core/sampler/__init__.py b/bilby/core/sampler/__init__.py index 6d02882f67f2749e98266cb96bf9a95cf5864828..27da24334e8839da74ac1ae0fcb2d577ff99bc08 100644 --- a/bilby/core/sampler/__init__.py +++ b/bilby/core/sampler/__init__.py @@ -25,11 +25,11 @@ from .dnest4 import DNest4 from . import proposal IMPLEMENTED_SAMPLERS = { - 'cpnest': Cpnest, 'dynamic_dynesty': DynamicDynesty, 'dynesty': Dynesty, - 'emcee': Emcee, 'kombine': Kombine, 'nestle': Nestle, 'ptemcee': Ptemcee, - 'ptmcmcsampler': PTMCMCSampler, 'pymc3': Pymc3, 'pymultinest': Pymultinest, - 'pypolychord': PyPolyChord, 'ultranest': Ultranest, - 'fake_sampler': FakeSampler, 'dnest4': DNest4} + 'cpnest': Cpnest, 'dnest4': DNest4, 'dynamic_dynesty': DynamicDynesty, + 'dynesty': Dynesty, 'emcee': Emcee, 'kombine': Kombine, 'nestle': Nestle, + 'ptemcee': Ptemcee, 'ptmcmcsampler': PTMCMCSampler, 'pymc3': Pymc3, + 'pymultinest': Pymultinest, 'pypolychord': PyPolyChord, 'ultranest': Ultranest, + 'fake_sampler': FakeSampler} if command_line_args.sampler_help: sampler = command_line_args.sampler_help diff --git a/bilby/core/sampler/base_sampler.py b/bilby/core/sampler/base_sampler.py index 74e880fbb852ac48ecde433bcbc0d54de2115b5d..fa05b4f83adbe59ff5c8444fc8d43f5ab26d722a 100644 --- a/bilby/core/sampler/base_sampler.py +++ b/bilby/core/sampler/base_sampler.py @@ -1,10 +1,13 @@ from __future__ import absolute_import import datetime +import distutils.dir_util import numpy as np +import os +import tempfile from pandas import DataFrame -from ..utils import logger, command_line_args, Counter +from ..utils import logger, check_directory_exists_and_if_not_mkdir, command_line_args, Counter from ..prior import Prior, PriorDict, DeltaFunction, Constraint from ..result import Result, read_in_result @@ -541,7 +544,8 @@ class Sampler(object): class NestedSampler(Sampler): - npoints_equiv_kwargs = ['nlive', 'nlives', 'n_live_points', 'npoints', 'npoint', 'Nlive', 'num_live_points'] + npoints_equiv_kwargs = ['nlive', 'nlives', 'n_live_points', 'npoints', + 'npoint', 'Nlive', 'num_live_points', 'num_particles'] walks_equiv_kwargs = ['walks', 'steps', 'nmcmc'] def reorder_loglikelihoods(self, unsorted_loglikelihoods, unsorted_samples, @@ -601,6 +605,27 @@ class NestedSampler(Sampler): else: return np.nan_to_num(-np.inf) + def _setup_run_directory(self): + """ + If using a temporary directory, the output directory is moved to the + temporary directory. + Used for Dnest4, Pymultinest, and Ultranest. + """ + if self.use_temporary_directory: + temporary_outputfiles_basename = tempfile.TemporaryDirectory().name + self.temporary_outputfiles_basename = temporary_outputfiles_basename + + if os.path.exists(self.outputfiles_basename): + distutils.dir_util.copy_tree(self.outputfiles_basename, self.temporary_outputfiles_basename) + check_directory_exists_and_if_not_mkdir(temporary_outputfiles_basename) + + self.kwargs["outputfiles_basename"] = self.temporary_outputfiles_basename + logger.info("Using temporary file {}".format(temporary_outputfiles_basename)) + else: + check_directory_exists_and_if_not_mkdir(self.outputfiles_basename) + self.kwargs["outputfiles_basename"] = self.outputfiles_basename + logger.info("Using output file {}".format(self.outputfiles_basename)) + class MCMCSampler(Sampler): nwalkers_equiv_kwargs = ['nwalker', 'nwalkers', 'draws', 'Niter'] diff --git a/bilby/core/sampler/cpnest.py b/bilby/core/sampler/cpnest.py index 611219e76708e7cae9f9bae073d7c44d95e5b480..25183bd07eb53938b122bb0305b89b0c548d718d 100644 --- a/bilby/core/sampler/cpnest.py +++ b/bilby/core/sampler/cpnest.py @@ -1,5 +1,6 @@ from __future__ import absolute_import +import array import copy import numpy as np @@ -88,8 +89,8 @@ class Cpnest(NestedSampler): prior_samples = self.priors.sample() self._update_bounds() point = LivePoint( - self.names, [prior_samples[name] - for name in self.names]) + self.names, array.array( + 'f', [prior_samples[name] for name in self.names])) return point self._resolve_proposal_functions() diff --git a/bilby/core/sampler/dnest4.py b/bilby/core/sampler/dnest4.py index a623635fd6807d4e7d43c330b8f39a6648af3604..a35f54f6704c2101cd13d964ea9b6b689519e271 100644 --- a/bilby/core/sampler/dnest4.py +++ b/bilby/core/sampler/dnest4.py @@ -1,12 +1,10 @@ -from __future__ import absolute_import - import os -import tempfile import shutil import distutils.dir_util import signal import time import datetime +import sys import numpy as np import pandas as pd @@ -20,14 +18,14 @@ class _DNest4Model(object): def __init__(self, log_likelihood_func, from_prior_func, widths, centers, highs, lows): """Initialize the DNest4 model. Args: - log_likelihood_func (function): The loglikelihood function to use - during the Nested Sampling run. - from_prior_func (function): The function to use when randomly - selecting parameter vectors from the prior space. - widths (numpy.array): The approximate widths of the prior - distrbutions. - centers (numpy.array): The approximate center points of the prior - distributions. + log_likelihood_func: function + The loglikelihood function to use during the Nested Sampling run. + from_prior_func: function + The function to use when randomly selecting parameter vectors from the prior space. + widths: array_like + The approximate widths of the prior distrbutions. + centers: array_like + The approximate center points of the prior distributions. """ self._log_likelihood = log_likelihood_func self._from_prior = from_prior_func @@ -58,9 +56,11 @@ class _DNest4Model(object): return 0.0 - def wrap(self, x, a, b): - assert b > a - return (x - a) % (b - a) + a + @staticmethod + def wrap(x, minimum, maximum): + if maximum <= minimum: + raise ValueError("maximum {} <= minimum {}, when trying to wrap coordinates".format(maximum, minimum)) + return (x - minimum) % (maximum - minimum) + minimum class DNest4(NestedSampler): @@ -83,8 +83,9 @@ class DNest4(NestedSampler): The python DNest4 backend for storing the output. Options are: 'memory' and 'csv'. If 'memory' the DNest4 outputs are stored in memory during the run. If 'csv' the - DNest4 outputs are written out to filse with a CSV format during + DNest4 outputs are written out to files with a CSV format during the run. + CSV backend may not be functional right now (October 2020) num_steps: int The number of MCMC iterations to run new_level_interval: int @@ -97,53 +98,20 @@ class DNest4(NestedSampler): Set the seed for the C++ random number generator verbose: Bool If True, prints information during run - TO DO: add equivalent args for num_particles (nlive, etc.) - Add sampling time functions """ - default_kwargs = dict( - max_num_levels=20, - num_steps=500, # Number of iterations - new_level_interval=10000, - num_per_step=10000, - thread_steps=1, - num_particles=1000, - lam=10.0, - beta=100, - seed=None, - verbose=True, - outputfiles_basename=None, - # backend_callback=None, # for checkpointing in dnest5 - backend='memory', # csv is currently bugged right now - - # could change max_num_levels based on snr - ) - - def __init__( - self, - likelihood, - priors, - outdir="outdir", - label="label", - use_ratio=False, - plot=False, - exit_code=77, - skip_import_verification=False, - temporary_directory=True, - resume=True, - **kwargs - ): + default_kwargs = dict(max_num_levels=20, num_steps=500, + new_level_interval=10000, num_per_step=10000, + thread_steps=1, num_particles=1000, lam=10.0, + beta=100, seed=None, verbose=True, outputfiles_basename=None, + backend='memory') + + def __init__(self, likelihood, priors, outdir="outdir", label="label", use_ratio=False, plot=False, + exit_code=77, skip_import_verification=False, temporary_directory=True, **kwargs): super(DNest4, self).__init__( - likelihood=likelihood, - priors=priors, - outdir=outdir, - label=label, - use_ratio=use_ratio, - plot=plot, - skip_import_verification=skip_import_verification, - exit_code=exit_code, - **kwargs - ) + likelihood=likelihood, priors=priors, outdir=outdir, label=label, + use_ratio=use_ratio, plot=plot, skip_import_verification=skip_import_verification, + exit_code=exit_code, **kwargs) self.num_particles = self.kwargs["num_particles"] self.max_num_levels = self.kwargs["max_num_levels"] @@ -151,6 +119,13 @@ class DNest4(NestedSampler): self._backend = self.kwargs["backend"] self.use_temporary_directory = temporary_directory + self.start_time = np.nan + self.sampler = None + self._information = np.nan + self._last_live_sample_info = np.nan + self._outputfiles_basename = None + self._temporary_outputfiles_basename = None + signal.signal(signal.SIGTERM, self.write_current_state_and_exit) signal.signal(signal.SIGINT, self.write_current_state_and_exit) signal.signal(signal.SIGALRM, self.write_current_state_and_exit) @@ -180,26 +155,19 @@ class DNest4(NestedSampler): self._highs = np.array(highs) self._lows = np.array(lows) - self._from_prior = self.get_random_draw_from_prior - - self._dnest4_model = _DNest4Model(self.log_likelihood, self._from_prior, self._widths, + self._dnest4_model = _DNest4Model(self.log_likelihood, self.get_random_draw_from_prior, self._widths, self._centers, self._highs, self._lows) def _set_backend(self): import dnest4 if self._backend == 'csv': - # for CSVBackend, which is output data to disk - backend = dnest4.backends.CSVBackend("{}/dnest4{}/".format(self.outdir, self.label), sep=" ") - # change to original + return dnest4.backends.CSVBackend("{}/dnest4{}/".format(self.outdir, self.label), sep=" ") else: - # for the MemoryBackend, which is output data to memory - backend = dnest4.backends.MemoryBackend() - return backend + return dnest4.backends.MemoryBackend() def _set_dnest4_kwargs(self): dnest4_keys = ["num_steps", "new_level_interval", "lam", "beta", "seed"] self.dnest4_kwargs = {key: self.kwargs[key] for key in dnest4_keys} - return self.dnest4_kwargs def run_sampler(self): import dnest4 @@ -233,17 +201,11 @@ class DNest4(NestedSampler): if self._backend == 'memory': self._last_live_sample_info = pd.DataFrame(self.sampler.backend.sample_info[-1]) self.result.log_likelihood_evaluations = self._last_live_sample_info['log_likelihood'] - self.result.samples = np.array(self.sampler.backend.posterior_samples) - print("here") - print(self.sampler.backend.posterior_samples) - print(self.result.samples) else: sample_info_path = './' + self.kwargs["outputfiles_basename"] + '/sample_info.txt' - sample_info = np.genfromtxt(sample_info_path, comments='#', names=True) self.result.log_likelihood_evaluations = sample_info['log_likelihood'] - self.result.samples = np.array(self.sampler.backend.posterior_samples) self.result.sampler_output = out @@ -262,36 +224,7 @@ class DNest4(NestedSampler): def _verify_kwargs_against_default_kwargs(self): self.outputfiles_basename = self.kwargs.pop("outputfiles_basename", None) - - # if self.kwargs['backend_callback'] is None: - # self.kwargs['backend_callback'] = self._backend_callback - - NestedSampler._verify_kwargs_against_default_kwargs(self) - - # def _backend_callback(self, *args, **kwargs): - # if self.use_temporary_directory: - # self._copy_temporary_directory_contents_to_proper_path() - # self._calculate_and_save_sampling_time() - - def _setup_run_directory(self): - """ - If using a temporary directory, the output directory is moved to the - temporary directory. - """ - if self.use_temporary_directory: - temporary_outputfiles_basename = tempfile.TemporaryDirectory().name - self.temporary_outputfiles_basename = temporary_outputfiles_basename - - if os.path.exists(self.outputfiles_basename): - distutils.dir_util.copy_tree(self.outputfiles_basename, self.temporary_outputfiles_basename) - check_directory_exists_and_if_not_mkdir(temporary_outputfiles_basename) - - self.kwargs["outputfiles_basename"] = self.temporary_outputfiles_basename - logger.info("Using temporary file {}".format(temporary_outputfiles_basename)) - else: - check_directory_exists_and_if_not_mkdir(self.outputfiles_basename) - self.kwargs["outputfiles_basename"] = self.outpuxtfiles_basename - logger.info("Using output file {}".format(self.outputfiles_basename)) + super(DNest4, self)._verify_kwargs_against_default_kwargs() def _check_and_load_sampling_time_file(self): self.time_file_path = self.kwargs["outputfiles_basename"] + '/sampling_time.dat' @@ -355,7 +288,7 @@ class DNest4(NestedSampler): self._calculate_and_save_sampling_time() if self.use_temporary_directory: self._move_temporary_directory_to_proper_path() - os._exit(self.exit_code) + sys.exit(self.exit_code) def _move_temporary_directory_to_proper_path(self): """ diff --git a/bilby/core/sampler/ptemcee.py b/bilby/core/sampler/ptemcee.py index a45a4c0853e965ea2057f4b7172ce22547d0b7f3..82cfcf4acc23a1957fb61043f16ae89cc8017dd9 100644 --- a/bilby/core/sampler/ptemcee.py +++ b/bilby/core/sampler/ptemcee.py @@ -146,8 +146,8 @@ class Ptemcee(MCMCSampler): resume=True, nsamples=5000, burn_in_nact=50, - burn_in_fixed_discard=100, - mean_logl_frac=0.001, + burn_in_fixed_discard=0, + mean_logl_frac=0.01, thin_by_nact=0.5, autocorr_tol=50, autocorr_c=5, @@ -498,6 +498,7 @@ class Ptemcee(MCMCSampler): self.mean_log_likelihood, frac=self.convergence_inputs.mean_logl_frac ) + logger.debug("Mean logl min it = {}".format(mean_logl_min_it)) # Calculate the maximum discard number discard_max = np.max( @@ -1039,7 +1040,7 @@ def plot_tau( ax.set_xlabel("Iteration") ax.set_ylabel(r"$\langle \tau \rangle$") ax.legend() - + fig.tight_layout() fig.savefig("{}/{}_checkpoint_tau.png".format(outdir, label)) plt.close(fig) diff --git a/bilby/core/sampler/pymultinest.py b/bilby/core/sampler/pymultinest.py index eaa14ccef7ec2c570689e6d17f9f3e09f3cdfc07..e977dc153f0a2572297b5a8bb382b462372b1243 100644 --- a/bilby/core/sampler/pymultinest.py +++ b/bilby/core/sampler/pymultinest.py @@ -1,11 +1,11 @@ import importlib import os -import tempfile import shutil import distutils.dir_util import signal import time import datetime +import sys import numpy as np @@ -175,7 +175,7 @@ class Pymultinest(NestedSampler): self._calculate_and_save_sampling_time() if self.use_temporary_directory: self._move_temporary_directory_to_proper_path() - os._exit(self.exit_code) + sys.exit(self.exit_code) def _copy_temporary_directory_contents_to_proper_path(self): """ @@ -239,26 +239,6 @@ class Pymultinest(NestedSampler): self.result.sampling_time = datetime.timedelta(seconds=self.total_sampling_time) return self.result - def _setup_run_directory(self): - """ - If using a temporary directory, the output directory is moved to the - temporary directory. - """ - if self.use_temporary_directory: - temporary_outputfiles_basename = tempfile.TemporaryDirectory().name - self.temporary_outputfiles_basename = temporary_outputfiles_basename - - if os.path.exists(self.outputfiles_basename): - distutils.dir_util.copy_tree(self.outputfiles_basename, self.temporary_outputfiles_basename) - check_directory_exists_and_if_not_mkdir(temporary_outputfiles_basename) - - self.kwargs["outputfiles_basename"] = self.temporary_outputfiles_basename - logger.info("Using temporary file {}".format(temporary_outputfiles_basename)) - else: - check_directory_exists_and_if_not_mkdir(self.outputfiles_basename) - self.kwargs["outputfiles_basename"] = self.outputfiles_basename - logger.info("Using output file {}".format(self.outputfiles_basename)) - def _check_and_load_sampling_time_file(self): self.time_file_path = self.kwargs["outputfiles_basename"] + '/sampling_time.dat' if os.path.exists(self.time_file_path): diff --git a/bilby/core/sampler/ultranest.py b/bilby/core/sampler/ultranest.py index 82815557ce7581a00789036afd7067593eb4fcfc..fdae9a8e9c4393b857a58a27a8f075d2bc704d12 100644 --- a/bilby/core/sampler/ultranest.py +++ b/bilby/core/sampler/ultranest.py @@ -6,7 +6,6 @@ import inspect import os import shutil import signal -import tempfile import time import numpy as np @@ -287,6 +286,7 @@ class Ultranest(NestedSampler): stepsampler = self.kwargs.pop("step_sampler", None) self._setup_run_directory() + self.kwargs["log_dir"] = self.kwargs.pop("outputfiles_basename") self._check_and_load_sampling_time_file() # use reactive nested sampler when no live points are given @@ -326,30 +326,6 @@ class Ultranest(NestedSampler): return self.result - def _setup_run_directory(self): - """ - If using a temporary directory, the output directory is moved to the - temporary directory and symlinked back. - """ - if self.use_temporary_directory: - temporary_outputfiles_basename = tempfile.TemporaryDirectory().name - self.temporary_outputfiles_basename = temporary_outputfiles_basename - - if os.path.exists(self.outputfiles_basename): - distutils.dir_util.copy_tree( - self.outputfiles_basename, self.temporary_outputfiles_basename - ) - check_directory_exists_and_if_not_mkdir(temporary_outputfiles_basename) - - self.kwargs["log_dir"] = self.temporary_outputfiles_basename - logger.info( - "Using temporary file {}".format(temporary_outputfiles_basename) - ) - else: - check_directory_exists_and_if_not_mkdir(self.outputfiles_basename) - self.kwargs["log_dir"] = self.outputfiles_basename - logger.info("Using output file {}".format(self.outputfiles_basename)) - def _clean_up_run_directory(self): if self.use_temporary_directory: self._move_temporary_directory_to_proper_path() diff --git a/bilby/gw/prior.py b/bilby/gw/prior.py index 7d1b37da3bf3c0f35000fc699f6c48cd85aa772e..3ffcfb193df6f34ed07deb9689def2adf444bb60 100644 --- a/bilby/gw/prior.py +++ b/bilby/gw/prior.py @@ -4,11 +4,13 @@ import copy import numpy as np from scipy.interpolate import InterpolatedUnivariateSpline, interp1d from scipy.integrate import cumtrapz +from scipy.special import hyp2f1 from scipy.stats import norm from ..core.prior import (PriorDict, Uniform, Prior, DeltaFunction, Gaussian, Interped, Constraint, conditional_prior_factory, - BaseJointPriorDist, JointPrior, JointPriorDistError) + BaseJointPriorDist, JointPrior, JointPriorDistError, + PowerLaw) from ..core.utils import infer_args_from_method, logger from .conversion import ( convert_to_lal_binary_black_hole_parameters, @@ -285,6 +287,93 @@ class UniformSourceFrame(Cosmological): return zs, p_dz +class UniformInComponentsChirpMass(PowerLaw): + + def __init__(self, minimum, maximum, name='chirp_mass', + latex_label='$\mathcal{M}$', unit=None, boundary=None): + """ + Prior distribution for chirp mass which is uniform in component masses. + + This is useful when chirp mass and mass ratio are sampled while the + prior is uniform in component masses. + + Parameters + ---------- + minimum : float + The minimum of chirp mass + maximum : float + The maximum of chirp mass + name: see superclass + latex_label: see superclass + unit: see superclass + boundary: see superclass + """ + super(UniformInComponentsChirpMass, self).__init__( + alpha=1., minimum=minimum, maximum=maximum, + name=name, latex_label=latex_label, unit=unit, boundary=boundary) + + +class WrappedInterp1d(interp1d): + """ A wrapper around scipy interp1d which sets equality-by-instantiation """ + def __eq__(self, other): + + for key in self.__dict__: + if type(self.__dict__[key]) is np.ndarray: + if not np.array_equal(self.__dict__[key], other.__dict__[key]): + return False + elif key == "_spline": + pass + elif getattr(self, key) != getattr(other, key): + return False + return True + + +class UniformInComponentsMassRatio(Prior): + + def __init__(self, minimum, maximum, name='mass_ratio', latex_label='$q$', + unit=None, boundary=None): + """ + Prior distribution for mass ratio which is uniform in component masses. + + This is useful when chirp mass and mass ratio are sampled while the + prior is uniform in component masses. + + Parameters + ---------- + minimum : float + The minimum of mass ratio + maximum : float + The maximum of mass ratio + name: see superclass + latex_label: see superclass + unit: see superclass + boundary: see superclass + """ + super(UniformInComponentsMassRatio, self).__init__( + minimum=minimum, maximum=maximum, name=name, + latex_label=latex_label, unit=unit, boundary=boundary) + self.norm = self._integral(maximum) - self._integral(minimum) + qs = np.linspace(minimum, maximum, 1000) + self.icdf = WrappedInterp1d( + self.cdf(qs), qs, kind='cubic', + bounds_error=False, fill_value=(minimum, maximum)) + + @staticmethod + def _integral(q): + return -5. * q**(-1. / 5.) * hyp2f1(-2. / 5., -1. / 5., 4. / 5., -q) + + def cdf(self, val): + return (self._integral(val) - self._integral(self.minimum)) / self.norm + + def rescale(self, val): + self.test_valid_for_rescaling(val) + return self.icdf(val) + + def prob(self, val): + in_prior = (val >= self.minimum) & (val <= self.maximum) + return (1. + val)**(2. / 5.) / (val**(6. / 5.)) / self.norm * in_prior + + class AlignedSpin(Interped): def __init__(self, a_prior=Uniform(0, 1), z_prior=Uniform(-1, 1), diff --git a/containers/dockerfile-template b/containers/dockerfile-template index 46d4f54700cb9bfad245e7d1e3113b85589d73f4..eb2fa024cae7f1f93bdfa0d6ef256d6867538809 100644 --- a/containers/dockerfile-template +++ b/containers/dockerfile-template @@ -1,4 +1,4 @@ -FROM continuumio/miniconda3 +FROM containers.ligo.org/docker/base:conda LABEL name="bilby Base miniconda3" \ maintainer="Gregory Ashton <gregory.ashton@ligo.org>" diff --git a/containers/v2-dockerfile-test-suite-python35 b/containers/v2-dockerfile-test-suite-python35 index 38d4c8b2fcaebd5dc78e87cd699cc8419b69c1dc..544b562f37dc870538b71a4207139a90e8101c5d 100644 --- a/containers/v2-dockerfile-test-suite-python35 +++ b/containers/v2-dockerfile-test-suite-python35 @@ -1,6 +1,6 @@ # This dockerfile is written automatically and should not be modified by hand. -FROM continuumio/miniconda3 +FROM containers.ligo.org/docker/base:conda LABEL name="bilby Base miniconda3" \ maintainer="Gregory Ashton <gregory.ashton@ligo.org>" diff --git a/containers/v2-dockerfile-test-suite-python36 b/containers/v2-dockerfile-test-suite-python36 index ae75fff03aa80026a56fa48bc7682f8acb852881..d9a2782cfb22c020520375665ff1668e7c5f6aa4 100644 --- a/containers/v2-dockerfile-test-suite-python36 +++ b/containers/v2-dockerfile-test-suite-python36 @@ -1,6 +1,6 @@ # This dockerfile is written automatically and should not be modified by hand. -FROM continuumio/miniconda3 +FROM containers.ligo.org/docker/base:conda LABEL name="bilby Base miniconda3" \ maintainer="Gregory Ashton <gregory.ashton@ligo.org>" diff --git a/containers/v2-dockerfile-test-suite-python37 b/containers/v2-dockerfile-test-suite-python37 index 9e27fcab40ae8a7c0561a32b508449e0943925a6..b77f489227fd58720727a24d1a8989cc7b9dc36a 100644 --- a/containers/v2-dockerfile-test-suite-python37 +++ b/containers/v2-dockerfile-test-suite-python37 @@ -1,6 +1,6 @@ # This dockerfile is written automatically and should not be modified by hand. -FROM continuumio/miniconda3 +FROM containers.ligo.org/docker/base:conda LABEL name="bilby Base miniconda3" \ maintainer="Gregory Ashton <gregory.ashton@ligo.org>" diff --git a/containers/v2-dockerfile-test-suite-python38 b/containers/v2-dockerfile-test-suite-python38 index 690055494c8798269a17a80386fe76de313a81ad..71cf85d0197a80f01ef5e7765d3a2875e40d8a11 100644 --- a/containers/v2-dockerfile-test-suite-python38 +++ b/containers/v2-dockerfile-test-suite-python38 @@ -1,6 +1,6 @@ # This dockerfile is written automatically and should not be modified by hand. -FROM continuumio/miniconda3 +FROM containers.ligo.org/docker/base:conda LABEL name="bilby Base miniconda3" \ maintainer="Gregory Ashton <gregory.ashton@ligo.org>" diff --git a/docs/prior.txt b/docs/prior.txt index f55aafe76324d984a2e013402477184a96d5170c..cea75744c1ce37145b97422aaad4dc1f9e5c984f 100644 --- a/docs/prior.txt +++ b/docs/prior.txt @@ -45,7 +45,7 @@ which provides extra functionality. For example, to sample from the prior: .. code:: python - >>> priors = bilby.core.priors.PriorDict() + >>> priors = bilby.core.prior.PriorDict() >>> priors['a'] = bilby.prior.Uniform(minimum=0, maximum=10, name='a') >>> priors['b'] = bilby.prior.Uniform(minimum=0, maximum=10, name='b') >>> priors.sample() @@ -89,7 +89,7 @@ matrix and standard deviations, e.g.: >>> names = ['a', 'b'] # set the parameter names >>> mu = [0., 5.] # the means of the parameters >>> cov = [[2., 0.7], [0.7, 3.]] # the covariance matrix - >>> mvg = bilby.core.priors.MultivariateGaussianDist(names, mus=mu, covs=cov) + >>> mvg = bilby.core.prior.MultivariateGaussianDist(names, mus=mu, covs=cov) It is also possible to define a mixture model of multiple multivariate Gaussian modes of different weights if required, e.g.: @@ -100,7 +100,7 @@ different weights if required, e.g.: >>> mu = [[0., 5.], [2., 7.]] # the means of the parameters >>> cov = [[[2., 0.7], [0.7, 3.]], [[1., -0.9], [-0.9, 5.]]] # the covariance matrix >>> weights = [0.3, 0.7] # weights of each mode - >>> mvg = bilby.core.priors.MultivariateGaussianDist(names, mus=mu, covs=cov, nmodes=2, weights=weights) + >>> mvg = bilby.core.prior.MultivariateGaussianDist(names, mus=mu, covs=cov, nmodes=2, weights=weights) The distribution can also have hard bounds on each parameter by supplying them. diff --git a/examples/core_examples/slabspike_example.py b/examples/core_examples/slabspike_example.py new file mode 100644 index 0000000000000000000000000000000000000000..d798512353178bf9f77940c0017a2e1f21aa1b35 --- /dev/null +++ b/examples/core_examples/slabspike_example.py @@ -0,0 +1,97 @@ +#!/usr/bin/env python +""" +An example of how to use slab-and-spike priors in bilby. +In this example we look at a simple example with the sum +of two Gaussian distributions, and we try to fit with +up to three Gaussians. + +""" + +import bilby +import numpy as np +import matplotlib.pyplot as plt + +outdir = 'outdir' +label = 'slabspike' +bilby.utils.check_directory_exists_and_if_not_mkdir(outdir) + + +# Here we define our model. We want to inject two Gaussians and recover with up to three. +def gaussian(xs, amplitude, mu, sigma): + return amplitude / np.sqrt(2 * np.pi * sigma**2) * np.exp(-0.5 * (xs - mu)**2 / sigma**2) + + +def triple_gaussian(xs, amplitude_0, amplitude_1, amplitude_2, mu_0, mu_1, mu_2, sigma_0, sigma_1, sigma_2, **kwargs): + return \ + gaussian(xs, amplitude_0, mu_0, sigma_0) + \ + gaussian(xs, amplitude_1, mu_1, sigma_1) + \ + gaussian(xs, amplitude_2, mu_2, sigma_2) + + +# Let's create our data set. We create 200 points on a grid. + +xs = np.linspace(-5, 5, 200) +dx = xs[1] - xs[0] + +# Note for our injection parameters we set the amplitude of the second component to 0. +injection_params = dict(amplitude_0=-3, mu_0=-4, sigma_0=4, + amplitude_1=0, mu_1=0, sigma_1=1, + amplitude_2=4, mu_2=3, sigma_2=3) + +# We calculate the injected curve and add some Gaussian noise on the data points +sigma = 0.02 +p = bilby.core.prior.Gaussian(mu=0, sigma=sigma) +ys = triple_gaussian(xs=xs, **injection_params) + p.sample(len(xs)) + +plt.errorbar(xs, ys, yerr=sigma, fmt=".k", capsize=0, label='Injected data') +plt.plot(xs, triple_gaussian(xs=xs, **injection_params), label='True signal') +plt.legend() +plt.savefig(f'{outdir}/{label}_injected_data') +plt.clf() + + +# Now we want to set up our priors. +priors = bilby.core.prior.PriorDict() +# For the slab-and-spike prior, we first need to define the 'slab' part, which is just a regular bilby prior. +amplitude_slab_0 = bilby.core.prior.Uniform(minimum=-10, maximum=10, name='amplitude_0', latex_label='$A_0$') +amplitude_slab_1 = bilby.core.prior.Uniform(minimum=-10, maximum=10, name='amplitude_1', latex_label='$A_1$') +amplitude_slab_2 = bilby.core.prior.Uniform(minimum=-10, maximum=10, name='amplitude_2', latex_label='$A_2$') +# We do the following to create the slab-and-spike prior. The spike height is somewhat arbitrary and can +# be corrected in post-processing. +priors['amplitude_0'] = bilby.core.prior.SlabSpikePrior(slab=amplitude_slab_0, spike_location=0, spike_height=0.1) +priors['amplitude_1'] = bilby.core.prior.SlabSpikePrior(slab=amplitude_slab_1, spike_location=0, spike_height=0.1) +priors['amplitude_2'] = bilby.core.prior.SlabSpikePrior(slab=amplitude_slab_2, spike_location=0, spike_height=0.1) +# Our problem has a degeneracy in the ordering. In general, this problem is somewhat difficult to resolve properly. +# See e.g. https://github.com/GregoryAshton/kookaburra/blob/master/src/priors.py#L72 for an implementation. +# We resolve this by not letting the priors overlap in this case. +priors['mu_0'] = bilby.core.prior.Uniform(minimum=-5, maximum=-2, name='mu_0', latex_label='$\mu_0$') +priors['mu_1'] = bilby.core.prior.Uniform(minimum=-2, maximum=2, name='mu_1', latex_label='$\mu_1$') +priors['mu_2'] = bilby.core.prior.Uniform(minimum=2, maximum=5, name='mu_2', latex_label='$\mu_2$') +priors['sigma_0'] = bilby.core.prior.LogUniform(minimum=0.01, maximum=10, name='sigma_0', latex_label='$\sigma_0$') +priors['sigma_1'] = bilby.core.prior.LogUniform(minimum=0.01, maximum=10, name='sigma_1', latex_label='$\sigma_1$') +priors['sigma_2'] = bilby.core.prior.LogUniform(minimum=0.01, maximum=10, name='sigma_2', latex_label='$\sigma_2$') + +# Setting up the likelihood and running the samplers works the same as elsewhere. +likelihood = bilby.core.likelihood.GaussianLikelihood(x=xs, y=ys, func=triple_gaussian, sigma=sigma) +result = bilby.run_sampler(likelihood=likelihood, priors=priors, outdir=outdir, label=label, + sampler='dynesty', nlive=400) + +result.plot_corner(truths=injection_params) + + +# Let's also plot the maximum likelihood fit along with the data. +max_like_params = result.posterior.iloc[-1] +plt.errorbar(xs, ys, yerr=sigma, fmt=".k", capsize=0, label='Injected data') +plt.plot(xs, triple_gaussian(xs=xs, **injection_params), label='True signal') +plt.plot(xs, triple_gaussian(xs=xs, **max_like_params), label='Max likelihood fit') +plt.legend() +plt.savefig(f'{outdir}/{label}_max_likelihood_recovery') +plt.clf() + +# Finally, we can check what fraction of amplitude samples are exactly on the spike. +spike_samples_0 = len(np.where(result.posterior['amplitude_0'] == 0.0)[0]) / len(result.posterior) +spike_samples_1 = len(np.where(result.posterior['amplitude_1'] == 0.0)[0]) / len(result.posterior) +spike_samples_2 = len(np.where(result.posterior['amplitude_2'] == 0.0)[0]) / len(result.posterior) +print(f"{spike_samples_0 * 100:.2f}% of amplitude_0 samples are exactly 0.0") +print(f"{spike_samples_1 * 100:.2f}% of amplitude_1 samples are exactly 0.0") +print(f"{spike_samples_2 * 100:.2f}% of amplitude_2 samples are exactly 0.0") diff --git a/examples/gw_examples/injection_examples/roq_example.py b/examples/gw_examples/injection_examples/roq_example.py index 0ffdbf33817fa0813e630264608a38b06df6f7cc..69bff31df6e1fd6413d69de64669d53f9ee91f36 100644 --- a/examples/gw_examples/injection_examples/roq_example.py +++ b/examples/gw_examples/injection_examples/roq_example.py @@ -84,10 +84,10 @@ for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'theta_jn', 'phase', 'psi', 'ra', priors[key] = injection_parameters[key] for key in ['mass_1', 'mass_2']: priors[key].minimum = max(priors[key].minimum, minimum_component_mass) -priors['chirp_mass'] = bilby.core.prior.Constraint( +priors['chirp_mass'] = bilby.core.prior.Uniform( name='chirp_mass', minimum=float(minimum_chirp_mass), maximum=float(maximum_chirp_mass)) -priors['mass_ratio'] = bilby.core.prior.Constraint(0.125, 1, name='mass_ratio') +priors['mass_ratio'] = bilby.core.prior.Uniform(0.125, 1, name='mass_ratio') priors['geocent_time'] = bilby.core.prior.Uniform( injection_parameters['geocent_time'] - 0.1, injection_parameters['geocent_time'] + 0.1, latex_label='$t_c$', unit='s') diff --git a/examples/tutorials/visualising_the_results.ipynb b/examples/tutorials/visualising_the_results.ipynb index 09c5660ad767fe38d210f2664e58d63fa0c45627..9bf2de0aaf5f276dfbe821bacd8bf706da669a60 100644 --- a/examples/tutorials/visualising_the_results.ipynb +++ b/examples/tutorials/visualising_the_results.ipynb @@ -3,9 +3,7 @@ { "cell_type": "code", "execution_count": null, - "metadata": { - "collapsed": true - }, + "metadata": {}, "outputs": [], "source": [ "! rm visualising_the_results/*" @@ -22,138 +20,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "10:31 bilby INFO : No power spectral density provided, using aLIGO,zero detuning, high power.\n", - "10:31 bilby INFO : Injected signal in H1:\n", - "10:31 bilby INFO : optimal SNR = 120.28\n", - "10:31 bilby INFO : matched filter SNR = 120.60-0.46j\n", - "10:31 bilby INFO : mass_1 = 36.0\n", - "10:31 bilby INFO : mass_2 = 29.0\n", - "10:31 bilby INFO : a_1 = 0.4\n", - "10:31 bilby INFO : a_2 = 0.3\n", - "10:31 bilby INFO : tilt_1 = 0.5\n", - "10:31 bilby INFO : tilt_2 = 1.0\n", - "10:31 bilby INFO : phi_12 = 1.7\n", - "10:31 bilby INFO : phi_jl = 0.3\n", - "10:31 bilby INFO : luminosity_distance = 200.0\n", - "10:31 bilby INFO : theta_jn = 0.4\n", - "10:31 bilby INFO : phase = 1.3\n", - "10:31 bilby INFO : ra = 1.375\n", - "10:31 bilby INFO : dec = -1.2108\n", - "10:31 bilby INFO : geocent_time = 1126259642.413\n", - "10:31 bilby INFO : psi = 2.659\n", - "10:31 bilby WARNING : The waveform_generator start_time is not equal to that of the provided interferometers. Overwriting the waveform_generator.\n", - "10:31 bilby INFO : Running for label 'example', output will be saved to 'visualising_the_results'\n", - "10:31 bilby INFO : Using LAL version Branch: None;Tag: lalsuite-v6.60;Id: 413788d4afeff8b759d8d75abe589ae4a846120c;;Builder: Unknown User <>;Repository status: CLEAN: All modifications committed\n", - "10:31 bilby INFO : Search parameters:\n", - "10:31 bilby INFO : mass_1 = Uniform(minimum=20, maximum=50, name='mass_1', latex_label='$m_1$', unit=None, boundary=None)\n", - "10:31 bilby INFO : mass_2 = Uniform(minimum=20, maximum=50, name='mass_2', latex_label='$m_2$', unit=None, boundary=None)\n", - "10:31 bilby INFO : luminosity_distance = Uniform(minimum=100, maximum=300, name='luminosity_distance', latex_label='$d_L$', unit=None, boundary=None)\n", - "10:31 bilby INFO : a_1 = 0.4\n", - "10:31 bilby INFO : a_2 = 0.3\n", - "10:31 bilby INFO : tilt_1 = 0.5\n", - "10:31 bilby INFO : tilt_2 = 1.0\n", - "10:31 bilby INFO : phi_12 = 1.7\n", - "10:31 bilby INFO : phi_jl = 0.3\n", - "10:31 bilby INFO : theta_jn = 0.4\n", - "10:31 bilby INFO : phase = 1.3\n", - "10:31 bilby INFO : ra = 1.375\n", - "10:31 bilby INFO : dec = -1.2108\n", - "10:31 bilby INFO : geocent_time = 1126259642.413\n", - "10:31 bilby INFO : psi = 2.659\n", - "10:31 bilby INFO : Single likelihood evaluation took 2.305e-03 s\n", - "10:31 bilby INFO : Using sampler Dynesty with kwargs {'bound': 'multi', 'sample': 'rwalk', 'verbose': True, 'periodic': None, 'reflective': None, 'check_point_delta_t': 600, 'nlive': 100, 'first_update': None, 'walks': 5, 'npdim': None, 'rstate': None, 'queue_size': None, 'pool': None, 'use_pool': None, 'live_points': None, 'logl_args': None, 'logl_kwargs': None, 'ptform_args': None, 'ptform_kwargs': None, 'enlarge': None, 'bootstrap': None, 'vol_dec': 0.5, 'vol_check': 2.0, 'facc': 0.5, 'slices': 5, 'update_interval': 60, 'print_func': <bound method Dynesty._print_func of <bilby.core.sampler.dynesty.Dynesty object at 0x1236747f0>>, 'dlogz': 0.1, 'maxiter': None, 'maxcall': None, 'logl_max': inf, 'add_live': True, 'print_progress': True, 'save_bounds': False, 'n_effective': None}\n", - "10:31 bilby INFO : Checkpoint every n_check_point = 300000\n", - "10:31 bilby INFO : Using dynesty version 0.9.7\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - " 1864| logz ratio=7255.416 +/- 0.541 | dlogz: 0.118 > 0.100000" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "10:32 bilby WARNING : Run terminated with signal 2\n", - "10:32 bilby INFO : Writing checkpoint file visualising_the_results/example_resume.pickle\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Exception while calling loglikelihood function:\n", - " params: [ 35.99600559 28.99205241 200.17592464]\n", - " args: []\n", - " kwargs: {}\n", - " exception:\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "Traceback (most recent call last):\n", - " File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/core/sampler/dynesty.py\", line 279, in _run_nested_wrapper\n", - " self.sampler.run_nested(**kwargs)\n", - "TypeError: run_nested() got an unexpected keyword argument 'n_effective'\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/Users/virginiademilio/anaconda3/envs/bilby_source/lib/python3.7/site-packages/dynesty/dynesty.py\", line 805, in __call__\n", - " return self.func(x, *self.args, **self.kwargs)\n", - " File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/core/sampler/base_sampler.py\", line 583, in log_likelihood\n", - " return Sampler.log_likelihood(self, theta)\n", - " File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/core/sampler/base_sampler.py\", line 381, in log_likelihood\n", - " return self.likelihood.log_likelihood_ratio()\n", - " File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/likelihood.py\", line 244, in log_likelihood_ratio\n", - " self.waveform_generator.frequency_domain_strain(self.parameters)\n", - " File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/waveform_generator.py\", line 119, in frequency_domain_strain\n", - " transformed_model_data_points=self.time_array)\n", - " File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/waveform_generator.py\", line 158, in _calculate_strain\n", - " model_strain = self._strain_from_model(model_data_points, model)\n", - " File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/waveform_generator.py\", line 170, in _strain_from_model\n", - " return model(model_data_points, **self.parameters)\n", - " File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/source.py\", line 71, in lal_binary_black_hole\n", - " phi_jl=phi_jl, **waveform_kwargs)\n", - " File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/source.py\", line 272, in _base_lal_cbc_fd_waveform\n", - " waveform_dictionary, approximant)\n", - " File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/gw/utils.py\", line 798, in lalsim_SimInspiralChooseFDWaveform\n", - " waveform_dictionary, approximant)\n", - " File \"/Users/virginiademilio/Documents/Bilby/bilby/bilby/core/sampler/dynesty.py\", line 385, in write_current_state_and_exit\n", - " sys.exit(130)\n", - "SystemExit: 130\n" - ] - }, - { - "ename": "SystemExit", - "evalue": "130", - "output_type": "error", - "traceback": [ - "An exception has occurred, use %tb to see the full traceback.\n", - "\u001b[0;31mSystemExit\u001b[0m\u001b[0;31m:\u001b[0m 130\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/virginiademilio/anaconda3/envs/bilby_source/lib/python3.7/site-packages/IPython/core/interactiveshell.py:3334: UserWarning: To exit: use 'exit', 'quit', or Ctrl-D.\n", - " warn(\"To exit: use 'exit', 'quit', or Ctrl-D.\", stacklevel=1)\n" - ] - } - ], + "outputs": [], "source": [ "import bilby\n", "import matplotlib.pyplot as plt\n", @@ -363,13 +232,56 @@ "result.plot_marginals()\n", "plt.show()" ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false, + "pycharm": { + "name": "#%% md\n" + } + }, + "source": [ + "#### Best-Fit Time Domain Waveform plot\n", + "Some plots sepcific to compact binary coalescence parameter estimation results can\n", + "be created by re-loading the result as a `CBCResult`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "pycharm": { + "name": "#%%\n" + } + }, + "outputs": [], + "source": [ + "from bilby.gw.result import CBCResult\n", + "\n", + "cbc_result = CBCResult.from_json(\"visualising_the_results/example_result.json\")\n", + "cbc_result.plot_waveform_posterior()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "Again, notice that the plot is saved as a \"waveform.png\" in the output dir.\n", + "\n", + "\n", + "\n" + ] } ], "metadata": { "kernelspec": { - "display_name": "Bilby (source-install)", + "display_name": "Python 3", "language": "python", - "name": "bilby_source" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -382,15 +294,6 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" - }, - "pycharm": { - "stem_cell": { - "cell_type": "raw", - "metadata": { - "collapsed": false - }, - "source": [] - } } }, "nbformat": 4, diff --git a/setup.py b/setup.py index abb40ecd07fde6a08cf24cf463c2f0f07fd94d3c..0882ade9b33e1477ff5ffccad7ee8a22be36fecc 100644 --- a/setup.py +++ b/setup.py @@ -64,7 +64,7 @@ def readfile(filename): return filecontents -VERSION = '1.0.2' +VERSION = '1.0.4' version_file = write_version_file(VERSION) long_description = get_long_description() diff --git a/test/check_author_list.py b/test/check_author_list.py new file mode 100644 index 0000000000000000000000000000000000000000..1b082e219da9e6105185cd47f0a9bd3b03e4287d --- /dev/null +++ b/test/check_author_list.py @@ -0,0 +1,28 @@ +""" A script to verify that the .AUTHOR.md file is up to date """ + +import re +import subprocess + +special_cases = ["plasky", "thomas", "mj-will"] +AUTHORS_list = [] +with open("AUTHORS.md", "r") as f: + AUTHORS_list = " ".join([line for line in f]).lower() + + +lines = subprocess.check_output(["git", "shortlog", "HEAD", "-sn"]).decode("utf-8").split("\n") + +if len(lines) == 0: + raise Exception("No authors to check against") + +fail_test = False +for line in lines: + line = line.replace(".", " ") + line = re.sub('([A-Z][a-z]+)', r' \1', re.sub('([A-Z]+)', r' \1', line)) + for element in line.split()[1:]: + element = element.lower() + if element not in AUTHORS_list and element not in special_cases: + print("Failure: {} not in AUTHOR.md".format(element)) + fail_test += True + +if fail_test: + raise Exception("Author check list failed.. have you added your name to the .AUTHOR file?") diff --git a/test/core/prior/conditional_test.py b/test/core/prior/conditional_test.py index 0e44fda3691172e1ca8618d7ace3a172de991912..a76f10a4fa379d34b4fe35499a76fb4005506741 100644 --- a/test/core/prior/conditional_test.py +++ b/test/core/prior/conditional_test.py @@ -110,7 +110,7 @@ class TestConditionalPrior(unittest.TestCase): test_parameter_2=self.test_variable_2, ) - def test_rescale_prob_update_conditions(self): + def test_prob_calls_update_conditions(self): with mock.patch.object(self.prior, "update_conditions") as m: self.prior.prob( 1, @@ -138,6 +138,21 @@ class TestConditionalPrior(unittest.TestCase): ] m.assert_has_calls(calls) + def test_cdf_calls_update_conditions(self): + self.prior = bilby.core.prior.ConditionalUniform( + condition_func=self.condition_func, minimum=self.minimum, maximum=self.maximum + ) + with mock.patch.object(self.prior, "update_conditions") as m: + self.prior.cdf( + 1, + test_parameter_1=self.test_variable_1, + test_parameter_2=self.test_variable_2, + ) + m.assert_called_with( + test_parameter_1=self.test_variable_1, + test_parameter_2=self.test_variable_2, + ) + def test_reset_to_reference_parameters(self): self.prior.minimum = 10 self.prior.maximum = 20 diff --git a/test/core/prior/slabspike_test.py b/test/core/prior/slabspike_test.py new file mode 100644 index 0000000000000000000000000000000000000000..d2cdcc55a0fbf9d3ef64c71b9420b321ee11e384 --- /dev/null +++ b/test/core/prior/slabspike_test.py @@ -0,0 +1,202 @@ +import numpy as np +import unittest + +import bilby +from bilby.core.prior.slabspike import SlabSpikePrior +from bilby.core.prior.analytical import Uniform, PowerLaw, LogUniform, TruncatedGaussian, \ + Beta, Gaussian, Cosine, Sine, HalfGaussian, LogNormal, Exponential, StudentT, Logistic, \ + Cauchy, Gamma, ChiSquared + + +class TestSlabSpikePrior(unittest.TestCase): + + def setUp(self): + self.minimum = 0 + self.maximum = 1 + self.spike_loc = 0.5 + self.spike_height = 0.3 + self.slab = bilby.core.prior.Prior(minimum=self.minimum, maximum=self.maximum) + self.prior = SlabSpikePrior( + slab=self.slab, spike_location=self.spike_loc, spike_height=self.spike_height) + + def tearDown(self): + del self.minimum + del self.maximum + del self.spike_loc + del self.spike_height + del self.prior + del self.slab + + def test_slab_fraction(self): + expected = 1 - self.spike_height + self.assertEqual(expected, self.prior.slab_fraction) + + def test_spike_loc(self): + self.assertEqual(self.spike_loc, self.prior.spike_location) + + def test_set_spike_loc_none(self): + self.prior.spike_location = None + self.assertEqual(self.prior.minimum, self.prior.spike_location) + + def test_set_spike_loc_outside_domain(self): + with self.assertRaises(ValueError): + self.prior.spike_location = 1.5 + + def test_set_spike_loc_maximum(self): + self.prior.spike_location = self.maximum + self.assertEqual(self.maximum, self.prior.spike_location) + + def test_class_name(self): + expected = "SlabSpikePrior" + self.assertEqual(expected, self.prior.__class__.__name__) + self.assertEqual(expected, self.prior.__class__.__qualname__) + + def test_set_spike_height_outside_domain(self): + with self.assertRaises(ValueError): + self.prior.spike_height = 1.5 + + def test_set_spike_height_domain_edge(self): + self.prior.spike_height = 0 + self.prior.spike_height = 1 + + +class TestSlabSpikeClasses(unittest.TestCase): + + def setUp(self): + self.minimum = 0.4 + self.maximum = 2.4 + self.spike_loc = 1.5 + self.spike_height = 0.3 + + self.slabs = [ + Uniform(minimum=self.minimum, maximum=self.maximum), + PowerLaw(minimum=self.minimum, maximum=self.maximum, alpha=2), + LogUniform(minimum=self.minimum, maximum=self.maximum), + TruncatedGaussian(minimum=self.minimum, maximum=self.maximum, mu=0, sigma=1), + Beta(minimum=self.minimum, maximum=self.maximum, alpha=1, beta=1), + Gaussian(mu=0, sigma=1), + Cosine(), + Sine(), + HalfGaussian(sigma=1), + LogNormal(mu=1, sigma=2), + Exponential(mu=2), + StudentT(df=2), + Logistic(mu=2, scale=1), + Cauchy(alpha=1, beta=2), + Gamma(k=1, theta=1.), + ChiSquared(nu=2)] + self.slab_spikes = [SlabSpikePrior(slab, spike_height=self.spike_height, spike_location=self.spike_loc) + for slab in self.slabs] + self.test_nodes_finite_support = np.linspace(self.minimum, self.maximum, 1000) + self.test_nodes_infinite_support = np.linspace(-10, 10, 1000) + self.test_nodes = [self.test_nodes_finite_support + if np.isinf(slab.minimum) or np.isinf(slab.maximum) + else self.test_nodes_finite_support for slab in self.slabs] + + def tearDown(self): + del self.minimum + del self.maximum + del self.spike_loc + del self.spike_height + del self.slabs + del self.test_nodes_finite_support + del self.test_nodes_infinite_support + + def test_prob_on_slab(self): + for slab, slab_spike, test_nodes in zip(self.slabs, self.slab_spikes, self.test_nodes): + expected = slab.prob(test_nodes) * slab_spike.slab_fraction + actual = slab_spike.prob(test_nodes) + self.assertTrue(np.allclose(expected, actual, rtol=1e-5)) + + def test_prob_on_spike(self): + for slab_spike in self.slab_spikes: + self.assertEqual(np.inf, slab_spike.prob(self.spike_loc)) + + def test_ln_prob_on_slab(self): + for slab, slab_spike, test_nodes in zip(self.slabs, self.slab_spikes, self.test_nodes): + expected = slab.ln_prob(test_nodes) + np.log(slab_spike.slab_fraction) + actual = slab_spike.ln_prob(test_nodes) + self.assertTrue(np.array_equal(expected, actual)) + + def test_ln_prob_on_spike(self): + for slab_spike in self.slab_spikes: + self.assertEqual(np.inf, slab_spike.ln_prob(self.spike_loc)) + + def test_inverse_cdf_below_spike_with_spike_at_minimum(self): + for slab in self.slabs: + slab_spike = SlabSpikePrior(slab=slab, spike_height=0.4, spike_location=slab.minimum) + self.assertEqual(0, slab_spike.inverse_cdf_below_spike) + + def test_inverse_cdf_below_spike_with_spike_at_maximum(self): + for slab in self.slabs: + slab_spike = SlabSpikePrior(slab=slab, spike_height=0.4, spike_location=slab.maximum) + expected = 1 - slab_spike.spike_height + actual = slab_spike.inverse_cdf_below_spike + self.assertEqual(expected, actual) + + def test_inverse_cdf_below_spike_arbitrary_position(self): + pass + + def test_cdf_below_spike(self): + for slab, slab_spike, test_nodes in zip(self.slabs, self.slab_spikes, self.test_nodes): + test_nodes = test_nodes[np.where(test_nodes < self.spike_loc)] + expected = slab.cdf(test_nodes) * slab_spike.slab_fraction + actual = slab_spike.cdf(test_nodes) + self.assertTrue(np.allclose(expected, actual, rtol=1e-5)) + + def test_cdf_at_spike(self): + for slab, slab_spike in zip(self.slabs, self.slab_spikes): + expected = slab.cdf(self.spike_loc) * slab_spike.slab_fraction + actual = slab_spike.cdf(self.spike_loc) + self.assertTrue(np.allclose(expected, actual, rtol=1e-5)) + + def test_cdf_above_spike(self): + for slab, slab_spike, test_nodes in zip(self.slabs, self.slab_spikes, self.test_nodes): + test_nodes = test_nodes[np.where(test_nodes > self.spike_loc)] + expected = slab.cdf(test_nodes) * slab_spike.slab_fraction + self.spike_height + actual = slab_spike.cdf(test_nodes) + self.assertTrue(np.array_equal(expected, actual)) + + def test_cdf_at_minimum(self): + for slab_spike in self.slab_spikes: + expected = 0 + actual = slab_spike.cdf(slab_spike.minimum) + self.assertEqual(expected, actual) + + def test_cdf_at_maximum(self): + for slab_spike in self.slab_spikes: + expected = 1 + actual = slab_spike.cdf(slab_spike.maximum) + self.assertEqual(expected, actual) + + def test_rescale_no_spike(self): + for slab in self.slabs: + slab_spike = SlabSpikePrior(slab=slab, spike_height=0, spike_location=slab.minimum) + vals = np.linspace(0, 1, 1000) + expected = slab.rescale(vals) + actual = slab_spike.rescale(vals) + print(slab) + self.assertTrue(np.allclose(expected, actual, rtol=1e-5)) + + def test_rescale_below_spike(self): + for slab, slab_spike in zip(self.slabs, self.slab_spikes): + vals = np.linspace(0, slab_spike.inverse_cdf_below_spike, 1000) + expected = slab.rescale(vals / slab_spike.slab_fraction) + actual = slab_spike.rescale(vals) + self.assertTrue(np.allclose(expected, actual, rtol=1e-5)) + + def test_rescale_at_spike(self): + for slab, slab_spike in zip(self.slabs, self.slab_spikes): + vals = np.linspace(slab_spike.inverse_cdf_below_spike, + slab_spike.inverse_cdf_below_spike + slab_spike.spike_height, 1000) + expected = np.ones(len(vals)) * slab.rescale(vals[0] / slab_spike.slab_fraction) + actual = slab_spike.rescale(vals) + self.assertTrue(np.allclose(expected, actual, rtol=1e-5)) + + def test_rescale_above_spike(self): + for slab, slab_spike in zip(self.slabs, self.slab_spikes): + vals = np.linspace(slab_spike.inverse_cdf_below_spike + self.spike_height, 1, 1000) + expected = np.ones(len(vals)) * slab.rescale( + (vals - self.spike_height) / slab_spike.slab_fraction) + actual = slab_spike.rescale(vals) + self.assertTrue(np.allclose(expected, actual, rtol=1e-5)) diff --git a/test/core/sampler/dnest4_test.py b/test/core/sampler/dnest4_test.py new file mode 100644 index 0000000000000000000000000000000000000000..fc67a0f8f3dbe1c37e6301bce95ef69e9fae6570 --- /dev/null +++ b/test/core/sampler/dnest4_test.py @@ -0,0 +1,61 @@ +import unittest + +from mock import MagicMock + +import bilby + + +class TestDnest4(unittest.TestCase): + def setUp(self): + self.likelihood = MagicMock() + self.priors = bilby.core.prior.PriorDict( + dict(a=bilby.core.prior.Uniform(0, 1), b=bilby.core.prior.Uniform(0, 1)) + ) + self.sampler = bilby.core.sampler.DNest4( + self.likelihood, + self.priors, + outdir="outdir", + label="label", + use_ratio=False, + plot=False, + skip_import_verification=True, + ) + + def tearDown(self): + del self.likelihood + del self.priors + del self.sampler + + def test_default_kwargs(self): + expected = dict( + max_num_levels=20, num_steps=500, + new_level_interval=10000, num_per_step=10000, + thread_steps=1, num_particles=1000, lam=10.0, + beta=100, seed=None, verbose=True, backend='memory' + ) + for key in self.sampler.kwargs.keys(): + print( + "key={}, expected={}, actual={}".format( + key, expected[key], self.sampler.kwargs[key] + ) + ) + self.assertDictEqual(expected, self.sampler.kwargs) + + def test_translate_kwargs(self): + expected = dict( + max_num_levels=20, num_steps=500, + new_level_interval=10000, num_per_step=10000, + thread_steps=1, num_particles=1000, lam=10.0, + beta=100, seed=None, verbose=True, backend='memory' + ) + + for equiv in bilby.core.sampler.base_sampler.NestedSampler.npoints_equiv_kwargs: + new_kwargs = self.sampler.kwargs.copy() + del new_kwargs["num_particles"] + new_kwargs[equiv] = 1000 + self.sampler.kwargs = new_kwargs + self.assertDictEqual(expected, self.sampler.kwargs) + + +if __name__ == "__main__": + unittest.main() diff --git a/test/core/sampler/sampler_run_test.py b/test/core/sampler/sampler_run_test.py index 2d697494409d0b8064af22959d6767149047b073..3278ddc0f1f0b70f0ebb42e7e9e617d367c9777f 100644 --- a/test/core/sampler/sampler_run_test.py +++ b/test/core/sampler/sampler_run_test.py @@ -40,6 +40,15 @@ class TestRunningSamplers(unittest.TestCase): resume=False, ) + def test_run_dnest4(self): + _ = bilby.run_sampler( + likelihood=self.likelihood, + priors=self.priors, + sampler="dnest4", + nlive=100, + save=False, + ) + def test_run_dynesty(self): _ = bilby.run_sampler( likelihood=self.likelihood,