diff --git a/bilby/core/sampler/dynesty.py b/bilby/core/sampler/dynesty.py index 54163557ae03565d2af1c5525b3bafd9ca5c4de6..a89e8f55a94096d2e0b4769a68d840e67c381f1e 100644 --- a/bilby/core/sampler/dynesty.py +++ b/bilby/core/sampler/dynesty.py @@ -715,19 +715,20 @@ def sample_rwalk_bilby(args): reject = 0 nfail = 0 act = np.inf - u_list = [u] - v_list = [prior_transform(u)] - logl_list = [loglikelihood(v_list[-1])] - max_walk_warning = True + u_list = [] + v_list = [] + logl_list = [] - while len(u_list) < nact * act: + ii = 0 + while ii < nact * act: + ii += 1 # Propose a direction on the unit n-sphere. drhat = rstate.randn(n) drhat /= linalg.norm(drhat) # Scale based on dimensionality. - dr = drhat * rstate.rand()**(1. / n) + dr = drhat * rstate.rand() ** (1.0 / n) # Transform to proposal distribution. du = np.dot(axes, dr) @@ -778,16 +779,12 @@ def sample_rwalk_bilby(args): old_act=old_act, maxmcmc=maxmcmc) # If we've taken too many likelihood evaluations then break - if accept + reject > maxmcmc and accept > 0: - if max_walk_warning: - warnings.warn( - "Hit maximum number of walks {} with accept={}, reject={}, " - "and nfail={} try increasing maxmcmc" - .format(maxmcmc, accept, reject, nfail)) - max_walk_warning = False - if accept > 0: - # Break if we are above maxmcmc and have at least one accepted point - break + if accept + reject > maxmcmc: + warnings.warn( + "Hit maximum number of walks {} with accept={}, reject={}, " + "and nfail={} try increasing maxmcmc" + .format(maxmcmc, accept, reject, nfail)) + break # If the act is finite, pick randomly from within the chain if np.isfinite(act) and int(.5 * nact * act) < len(u_list): @@ -795,17 +792,11 @@ def sample_rwalk_bilby(args): u = u_list[idx] v = v_list[idx] logl = logl_list[idx] - elif len(u_list) == 1: - logger.warning("Returning the only point in the chain") - u = u_list[-1] - v = v_list[-1] - logl = logl_list[-1] else: - idx = np.random.randint(int(len(u_list) / 2), len(u_list)) - logger.warning("Returning random point in second half of the chain") - u = u_list[idx] - v = v_list[idx] - logl = logl_list[idx] + logger.warning("Unable to find a new point using walk: returning a random point") + u = np.random.uniform(size=n) + v = prior_transform(u) + logl = loglikelihood(v) blob = {'accept': accept, 'reject': reject, 'fail': nfail, 'scale': scale} kwargs["old_act"] = act