From 0f5941400375d79447b302fdf75a66203acb95aa Mon Sep 17 00:00:00 2001 From: RorySmith <rory.smith@caltech.edu> Date: Fri, 1 Jun 2018 14:02:51 +1000 Subject: [PATCH] new basic tutorial for dist, time and phase marg'd likelihood --- examples/injection_examples/basic_tutorial.py | 4 +- .../basic_tutorial_dist_time_phase_marg.py | 66 +++++++++++++++++++ 2 files changed, 68 insertions(+), 2 deletions(-) create mode 100644 examples/injection_examples/basic_tutorial_dist_time_phase_marg.py diff --git a/examples/injection_examples/basic_tutorial.py b/examples/injection_examples/basic_tutorial.py index c6a9a9041..f5a6589c7 100644 --- a/examples/injection_examples/basic_tutorial.py +++ b/examples/injection_examples/basic_tutorial.py @@ -47,13 +47,13 @@ priors = dict() # so for this example we will set almost all of the priors to be equall to their injected values. This implies the # prior is a delta function at the true, injected value. In reality, the sampler implementation is smart enough to # not sample any parameter that has a delta-function prior. -<<<<<<< HEAD + for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl','psi', 'ra', 'dec', 'geocent_time', 'phase']: priors[key] = injection_parameters[key] # The above list does *not* include mass_1, mass_2, iota and luminosity_distance, which means those are the parameters # that will be included in the sampler. If we do nothing, then the default priors get used. -#priors['luminosity_distance'] = tupak.prior.create_default_prior(name='luminosity_distance') +priors['luminosity_distance'] = tupak.prior.create_default_prior(name='luminosity_distance') priors['geocent_time'] = tupak.prior.Uniform(injection_parameters['geocent_time'] - 1, injection_parameters['geocent_time'] + 1, 'geocent_time') diff --git a/examples/injection_examples/basic_tutorial_dist_time_phase_marg.py b/examples/injection_examples/basic_tutorial_dist_time_phase_marg.py new file mode 100644 index 000000000..ad10a6a20 --- /dev/null +++ b/examples/injection_examples/basic_tutorial_dist_time_phase_marg.py @@ -0,0 +1,66 @@ +#!/bin/python +""" +Tutorial to demonstrate running parameter estimation on a reduced parameter space for an injected signal. + +This example estimates the masses using a uniform prior in both component masses and distance using a uniform in +comoving volume prior on luminosity distance between luminosity distances of 100Mpc and 5Gpc, the cosmology is WMAP7. +""" +from __future__ import division, print_function +import tupak +import numpy as np + +# Set the duration and sampling frequency of the data segment that we're going to inject the signal into +time_duration = 4. +sampling_frequency = 2048. + +# Specify the output directory and the name of the simulation. +outdir = 'outdir' +label = 'basic_tutorial_dist_time_phase_marg' +tupak.utils.setup_logger(outdir=outdir, label=label) + +# Set up a random seed for result reproducibility. This is optional! +np.random.seed(88170235) + +# We are going to inject a binary black hole waveform. We first establish a dictionary of parameters that +# includes all of the different waveform parameters, including masses of the two black holes (mass_1, mass_2), +# spins of both black holes (a, tilt, phi), etc. +injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, phi_12=1.7, phi_jl=0.3, + luminosity_distance=2000., iota=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, + waveform_approximant='IMRPhenomPv2', reference_frequency=50., ra=1.375, dec=-1.2108) + +# Create the waveform_generator using a LAL BinaryBlackHole source function +waveform_generator = tupak.WaveformGenerator(time_duration=time_duration, + sampling_frequency=sampling_frequency, + frequency_domain_source_model=tupak.source.lal_binary_black_hole, + parameters=injection_parameters) +hf_signal = waveform_generator.frequency_domain_strain() + +# Set up interferometers. In this case we'll use three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1), +# and Virgo (V1)). These default to their design sensitivity +IFOs = [tupak.detector.get_interferometer_with_fake_noise_and_injection( + name, injection_polarizations=hf_signal, injection_parameters=injection_parameters, time_duration=time_duration, + sampling_frequency=sampling_frequency, outdir=outdir) for name in ['H1', 'L1']] + +# Set up prior, which is a dictionary +priors = dict() +# By default we will sample all terms in the signal models. However, this will take a long time for the calculation, +# so for this example we will set almost all of the priors to be equall to their injected values. This implies the +# prior is a delta function at the true, injected value. In reality, the sampler implementation is smart enough to +# not sample any parameter that has a delta-function prior. +for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl','psi', 'ra', 'dec', 'geocent_time', 'phase']: + priors[key] = injection_parameters[key] + +# The above list does *not* include mass_1, mass_2, iota and luminosity_distance, which means those are the parameters +# that will be included in the sampler. If we do nothing, then the default priors get used. +priors['luminosity_distance'] = tupak.prior.create_default_prior(name='luminosity_distance') + +# Initialise the likelihood by passing in the interferometer data (IFOs) and the waveoform generator +likelihood = tupak.likelihood.GravitationalWaveTransient(interferometers=IFOs, waveform_generator=waveform_generator,time_marginalization=True, phase_marginalization=True, distance_marginalization=True, prior=priors) + +# Run sampler. In this case we're going to use the `dynesty` sampler +result = tupak.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000, + injection_parameters=injection_parameters, outdir=outdir, label=label) + +# make some plots of the outputs +result.plot_corner() +print(result) -- GitLab