From 0f5941400375d79447b302fdf75a66203acb95aa Mon Sep 17 00:00:00 2001
From: RorySmith <rory.smith@caltech.edu>
Date: Fri, 1 Jun 2018 14:02:51 +1000
Subject: [PATCH] new basic tutorial for dist, time and phase marg'd likelihood

---
 examples/injection_examples/basic_tutorial.py |  4 +-
 .../basic_tutorial_dist_time_phase_marg.py    | 66 +++++++++++++++++++
 2 files changed, 68 insertions(+), 2 deletions(-)
 create mode 100644 examples/injection_examples/basic_tutorial_dist_time_phase_marg.py

diff --git a/examples/injection_examples/basic_tutorial.py b/examples/injection_examples/basic_tutorial.py
index c6a9a9041..f5a6589c7 100644
--- a/examples/injection_examples/basic_tutorial.py
+++ b/examples/injection_examples/basic_tutorial.py
@@ -47,13 +47,13 @@ priors = dict()
 # so for this example we will set almost all of the priors to be equall to their injected values.  This implies the
 # prior is a delta function at the true, injected value.  In reality, the sampler implementation is smart enough to
 # not sample any parameter that has a delta-function prior.
-<<<<<<< HEAD
+
 for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl','psi', 'ra', 'dec', 'geocent_time', 'phase']:
     priors[key] = injection_parameters[key]
 
 # The above list does *not* include mass_1, mass_2, iota and luminosity_distance, which means those are the parameters
 # that will be included in the sampler.  If we do nothing, then the default priors get used.
-#priors['luminosity_distance'] = tupak.prior.create_default_prior(name='luminosity_distance')
+priors['luminosity_distance'] = tupak.prior.create_default_prior(name='luminosity_distance')
 priors['geocent_time'] = tupak.prior.Uniform(injection_parameters['geocent_time'] - 1,
                                             injection_parameters['geocent_time'] + 1,
                                             'geocent_time')
diff --git a/examples/injection_examples/basic_tutorial_dist_time_phase_marg.py b/examples/injection_examples/basic_tutorial_dist_time_phase_marg.py
new file mode 100644
index 000000000..ad10a6a20
--- /dev/null
+++ b/examples/injection_examples/basic_tutorial_dist_time_phase_marg.py
@@ -0,0 +1,66 @@
+#!/bin/python
+"""
+Tutorial to demonstrate running parameter estimation on a reduced parameter space for an injected signal.
+
+This example estimates the masses using a uniform prior in both component masses and distance using a uniform in
+comoving volume prior on luminosity distance between luminosity distances of 100Mpc and 5Gpc, the cosmology is WMAP7.
+"""
+from __future__ import division, print_function
+import tupak
+import numpy as np
+
+# Set the duration and sampling frequency of the data segment that we're going to inject the signal into
+time_duration = 4.
+sampling_frequency = 2048.
+
+# Specify the output directory and the name of the simulation.
+outdir = 'outdir'
+label = 'basic_tutorial_dist_time_phase_marg'
+tupak.utils.setup_logger(outdir=outdir, label=label)
+
+# Set up a random seed for result reproducibility.  This is optional!
+np.random.seed(88170235)
+
+# We are going to inject a binary black hole waveform.  We first establish a dictionary of parameters that
+# includes all of the different waveform parameters, including masses of the two black holes (mass_1, mass_2),
+# spins of both black holes (a, tilt, phi), etc.
+injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, phi_12=1.7, phi_jl=0.3,
+                            luminosity_distance=2000., iota=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413,
+                            waveform_approximant='IMRPhenomPv2', reference_frequency=50., ra=1.375, dec=-1.2108)
+
+# Create the waveform_generator using a LAL BinaryBlackHole source function
+waveform_generator = tupak.WaveformGenerator(time_duration=time_duration,
+                                             sampling_frequency=sampling_frequency,
+                                             frequency_domain_source_model=tupak.source.lal_binary_black_hole,
+                                             parameters=injection_parameters)
+hf_signal = waveform_generator.frequency_domain_strain()
+
+# Set up interferometers.  In this case we'll use three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1),
+# and Virgo (V1)).  These default to their design sensitivity
+IFOs = [tupak.detector.get_interferometer_with_fake_noise_and_injection(
+    name, injection_polarizations=hf_signal, injection_parameters=injection_parameters, time_duration=time_duration,
+    sampling_frequency=sampling_frequency, outdir=outdir) for name in ['H1', 'L1']]
+
+# Set up prior, which is a dictionary
+priors = dict()
+# By default we will sample all terms in the signal models.  However, this will take a long time for the calculation,
+# so for this example we will set almost all of the priors to be equall to their injected values.  This implies the
+# prior is a delta function at the true, injected value.  In reality, the sampler implementation is smart enough to
+# not sample any parameter that has a delta-function prior.
+for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl','psi', 'ra', 'dec', 'geocent_time', 'phase']:
+    priors[key] = injection_parameters[key]
+
+# The above list does *not* include mass_1, mass_2, iota and luminosity_distance, which means those are the parameters
+# that will be included in the sampler.  If we do nothing, then the default priors get used.
+priors['luminosity_distance'] = tupak.prior.create_default_prior(name='luminosity_distance')
+
+# Initialise the likelihood by passing in the interferometer data (IFOs) and the waveoform generator
+likelihood = tupak.likelihood.GravitationalWaveTransient(interferometers=IFOs, waveform_generator=waveform_generator,time_marginalization=True, phase_marginalization=True, distance_marginalization=True, prior=priors)
+
+# Run sampler.  In this case we're going to use the `dynesty` sampler
+result = tupak.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000,
+                           injection_parameters=injection_parameters, outdir=outdir, label=label)
+
+# make some plots of the outputs
+result.plot_corner()
+print(result)
-- 
GitLab