diff --git a/tupak/result.py b/tupak/result.py index 1c803bfbc4253553eeb7fbed8485dad3ac0bde43..2d01627d83a0e4fc9c5a57732ff3d88a481e36a0 100644 --- a/tupak/result.py +++ b/tupak/result.py @@ -205,21 +205,23 @@ class Result(dict): for key in self.prior: prior_file.write(self.prior[key]) - def samples_to_data_frame(self, waveform_generator=None, interferometers=None, priors=None): + def samples_to_data_frame(self, likelihood=None, priors=None, conversion_function=None): """ Convert array of samples to data frame. Parameters ---------- - waveform_generator: tupak.waveform_generator.WaveformGenerator, optional - If the waveform generator and interferometers are provided, the SNRs will be recorded. - interferometers: tupak.detector.Interferometer - If the waveform generator and interferometers are provided, the SNRs will be recorded. + likelihood: tupak.likelihood.Likelihood + Likelihood used for sampling. priors: dict Dictionary of prior object, used to fill in delta function priors. + conversion_function: function + Function which adds in extra parameters to the data frame, + should take the data_frame, likelihood and prior as arguments. """ data_frame = pd.DataFrame(self.samples, columns=self.search_parameter_keys) - tupak.conversion.generate_all_bbh_parameters(data_frame, waveform_generator, interferometers, priors) + if conversion_function is not None: + conversion_function(data_frame, likelihood, priors) self.posterior = data_frame def construct_cbc_derived_parameters(self):