diff --git a/.coveragerc b/.coveragerc index c051155b5f2b882364426a8f85bb5633b7afcd04..7d64384d997739ae73dc950ed2fd722d17f73322 100644 --- a/.coveragerc +++ b/.coveragerc @@ -3,3 +3,4 @@ omit = test/integration/example_test.py test/integration/noise_realisation_test.py test/integration/other_test.py + bilby/_version.py diff --git a/.gitignore b/.gitignore index 88717818866b233ab49b644f24d116aa61efea91..48e4c01a1387a87c5af4a7381f1f5d157171e3c0 100644 --- a/.gitignore +++ b/.gitignore @@ -15,3 +15,4 @@ MANIFEST *.ipynb_checkpoints outdir/* .idea/* +bilby/_version.py diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 7663fbac2e98490a65363d7fb217fa678f16ec65..5fa17f7bb4da803074c3672413c2e935dc84da6d 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -135,11 +135,12 @@ python-3.9: after_script: - coverage html - coverage xml + coverage: '/(?i)total.*? (100(?:\.0+)?\%|[1-9]?\d(?:\.\d+)?\%)$/' artifacts: reports: coverage_report: coverage_format: cobertura - path: coverage/cobertura-coverage.xml + path: coverage.xml paths: - htmlcov/ expire_in: 30 days @@ -153,9 +154,10 @@ python-3.10: stage: test script: - python -m pip install . + - python -m pip install schwimmbad - python -m pip list installed - - pytest test/integration/sampler_run_test.py --durations 10 + - pytest test/integration/sampler_run_test.py --durations 10 -v python-3.8-samplers: <<: *test-sampler @@ -282,7 +284,7 @@ pypi-release: TWINE_USERNAME: $PYPI_USERNAME TWINE_PASSWORD: $PYPI_PASSWORD before_script: - - pip install twine + - pip install twine setuptools_scm - python setup.py sdist script: - twine upload dist/* diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 14215c6f183db9d846f38f82067ecd0f7878f1f4..a78a604a57217f0d579213ef06be28307664da50 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -9,7 +9,7 @@ repos: hooks: - id: black language_version: python3 - files: '(^bilby/bilby_mcmc/|^examples/core_examples/|examples/gw_examples/data_examples)' + files: '^(bilby/bilby_mcmc/|bilby/core/sampler/|examples/)' - repo: https://github.com/codespell-project/codespell rev: v2.1.0 hooks: @@ -20,7 +20,7 @@ repos: hooks: - id: isort # sort imports alphabetically and separates import into sections args: [-w=88, -m=3, -tc, -sp=setup.cfg ] - files: '(^bilby/bilby_mcmc/|^examples/core_examples/examples/gw_examples/data_examples)' + files: '^(bilby/bilby_mcmc/|bilby/core/sampler/|examples/)' - repo: https://github.com/datarootsio/databooks rev: 0.1.14 hooks: diff --git a/AUTHORS.md b/AUTHORS.md index 32f41f250997c53eaa77e2217a7a7326c3be4081..819c6e71d245f909f12f3c40fe8be87c76412893 100644 --- a/AUTHORS.md +++ b/AUTHORS.md @@ -24,6 +24,7 @@ Eric Thrane Ethan Payne Francisco Javier Hernandez Gregory Ashton +Hank Hua Hector Estelles Ignacio Magaña Hernandez Isobel Marguarethe Romero-Shaw @@ -34,6 +35,7 @@ Jeremy G Baier John Veitch Joshua Brandt Josh Willis +Karl Wette Katerina Chatziioannou Kaylee de Soto Khun Sang Phukon @@ -59,6 +61,7 @@ Paul Easter Paul Lasky Philip Relton Rhys Green +Richard Udall Rico Lo Roberto Cotesta Rory Smith @@ -75,6 +78,9 @@ Stephen R Green Sumeet Kulkarni Sylvia Biscoveanu Tathagata Ghosh +Tomasz Baka +Will M. Farr Virginia d'Emilio Vivien Raymond Ka-Lok Lo +Isaac Legred diff --git a/CHANGELOG.md b/CHANGELOG.md index 73cdbefb1a01c4f877ee657fa6f3c4fc668162e4..635c69e0a88621f116ee60674c61205586b3547c 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -1,7 +1,56 @@ # All notable changes will be documented in this file +## [1.2.1] 2022-09-05 +Version 1.2.1 release of Bilby + +This release contains a few bug fixes following 1.2.0. + +### Changes +- Improve how sampling seed is handled across samplers (!1134) +- Make sure labels are included when evidences are in corner plot legend (!1135) +- Remove calls to `getargspec` (!1136) +- Make sure parameter reconstruction cache is not mangled when reading (!1126) +- Enable the constant uncertainty calibration spline to have a specifiable boundary condition (!1137) +- Fix a bug in checkpointing for `bilby_mcmc` (!1141) +- Fix the `LALCBCWaveformGenerator` (!1140) +- Switch to automatic versioning with `setuptools_scm` (!1125) +- Improve the stability of the multivariate normal prior (!1142) +- Extend mass conversions to include source-frame parameters (!1131) +- Fix prior ranges for GW150914 example (!1129) + +## [1.2.0] 2022-08-15 +Version 1.2.0 release of Bilby + +This is the first release that drops support for `Python<3.8`. + +This release involves major refactoring, especially of the sampler implementations. + +Additionally, there are a range of improvements to how information is passed +with multiprocessing. + +### Added +- Time marginalized ROQ likelihood (!1040) +- Multiple and multi-banded ROQ likelihood (!1093) +- Gaussian process likelihoods (!1086) +- `CBCWaveformGenerator` added with CBC specific defaults (!1080) + +### Changes +- Fixes and improvements to multi-processing (!1084, !1043, !1096) +- Major refactoring of sampler implementations (!1043) +- Fixes for reading/writing priors (!1103, !1127, !1128) +- Fixes/updates to exmample scripts (!1050, !1031, !1076, !1081, !1074) +- Fixes to calibration correction in GW likelihoods (!1114, !1120, !1119) + +### Deprecated/removed +- Require `Python>=3.8` +- Require `astropy>=5` +- `bilby.core.utils.conversion.gps_time_to_gmst` +- `bilby.core.utils.spherical_to_cartesian` +- `bilby.core.utils.progress` +- Deepdish IO for `Result`, `Interferometer`, and `InterferometerList` + ## [1.1.5] 2022-01-14 -Version 1.1.5 release of bilby +Version 1.1.5 release of Bilby ### Added - Option to enforce that a GW signal fits into the segment duration (!1041) diff --git a/MANIFEST.in b/MANIFEST.in index d6ac4a64451d950e361c2c2c860632e80f8d4791..331a31917140aef951df8fcfb55384beab56fcc6 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -5,4 +5,5 @@ include gw_requirements.txt include mcmc_requirements.txt include optional_requirements.txt include sampler_requirements.txt +include bilby/_version.py recursive-include test *.py *.prior diff --git a/bilby/__init__.py b/bilby/__init__.py index 04a29e1bc27008ffed916a8f8f171bc6a2315c7c..092f05a1a52f146b1375ccb39869c14ae6763149 100644 --- a/bilby/__init__.py +++ b/bilby/__init__.py @@ -24,7 +24,10 @@ from .core import utils, likelihood, prior, result, sampler from .core.sampler import run_sampler from .core.likelihood import Likelihood -__version__ = utils.get_version_information() +try: + from ._version import version as __version__ +except ModuleNotFoundError: # development mode + __version__ = 'unknown' if sys.version_info < (3,): diff --git a/bilby/bilby_mcmc/sampler.py b/bilby/bilby_mcmc/sampler.py index 9f7925bf340eafcb07d8e9903e3c612b1a03ee4f..6485ce1a00bfddb52e0d5e11d608ba20044a6ef8 100644 --- a/bilby/bilby_mcmc/sampler.py +++ b/bilby/bilby_mcmc/sampler.py @@ -1,6 +1,5 @@ import datetime import os -import signal import time from collections import Counter @@ -8,7 +7,13 @@ import numpy as np import pandas as pd from ..core.result import rejection_sample -from ..core.sampler.base_sampler import MCMCSampler, ResumeError, SamplerError +from ..core.sampler.base_sampler import ( + MCMCSampler, + ResumeError, + SamplerError, + _sampling_convenience_dump, + signal_wrapper, +) from ..core.utils import check_directory_exists_and_if_not_mkdir, logger, safe_file_dump from . import proposals from .chain import Chain, Sample @@ -131,7 +136,6 @@ class Bilby_MCMC(MCMCSampler): autocorr_c=5, L1steps=100, L2steps=3, - npool=1, printdt=60, min_tau=1, proposal_cycle="default", @@ -154,7 +158,7 @@ class Bilby_MCMC(MCMCSampler): diagnostic=False, resume=True, exit_code=130, - verbose=False, + verbose=True, **kwargs, ): @@ -172,7 +176,6 @@ class Bilby_MCMC(MCMCSampler): self.check_point_plot = check_point_plot self.diagnostic = diagnostic self.kwargs["target_nsamples"] = self.kwargs["nsamples"] - self.npool = self.kwargs["npool"] self.L1steps = self.kwargs["L1steps"] self.L2steps = self.kwargs["L2steps"] self.pt_inputs = ParallelTemperingInputs( @@ -194,22 +197,12 @@ class Bilby_MCMC(MCMCSampler): self.verify_configuration() self.verbose = verbose - try: - signal.signal(signal.SIGTERM, self.write_current_state_and_exit) - signal.signal(signal.SIGINT, self.write_current_state_and_exit) - signal.signal(signal.SIGALRM, self.write_current_state_and_exit) - except AttributeError: - logger.debug( - "Setting signal attributes unavailable on this system. " - "This is likely the case if you are running on a Windows machine" - " and is no further concern." - ) - def verify_configuration(self): if self.convergence_inputs.burn_in_nact / self.kwargs["target_nsamples"] > 0.1: logger.warning("Burn-in inefficiency fraction greater than 10%") def _translate_kwargs(self, kwargs): + kwargs = super()._translate_kwargs(kwargs) if "printdt" not in kwargs: for equiv in ["print_dt", "print_update"]: if equiv in kwargs: @@ -223,6 +216,7 @@ class Bilby_MCMC(MCMCSampler): def target_nsamples(self): return self.kwargs["target_nsamples"] + @signal_wrapper def run_sampler(self): self._setup_pool() self.setup_chain_set() @@ -377,31 +371,12 @@ class Bilby_MCMC(MCMCSampler): f"setup:\n{self.get_setup_string()}" ) - def write_current_state_and_exit(self, signum=None, frame=None): - """ - Make sure that if a pool of jobs is running only the parent tries to - checkpoint and exit. Only the parent has a 'pool' attribute. - """ - if self.npool == 1 or getattr(self, "pool", None) is not None: - if signum == 14: - logger.info( - "Run interrupted by alarm signal {}: checkpoint and exit on {}".format( - signum, self.exit_code - ) - ) - else: - logger.info( - "Run interrupted by signal {}: checkpoint and exit on {}".format( - signum, self.exit_code - ) - ) - self.write_current_state() - self._close_pool() - os._exit(self.exit_code) - def write_current_state(self): import dill + if not hasattr(self, "ptsampler"): + logger.debug("Attempted checkpoint before initialization") + return logger.debug("Check point") check_directory_exists_and_if_not_mkdir(self.outdir) @@ -534,39 +509,6 @@ class Bilby_MCMC(MCMCSampler): all_samples=ptsampler.samples, ) - def _setup_pool(self): - if self.npool > 1: - logger.info(f"Setting up multiproccesing pool with {self.npool} processes") - import multiprocessing - - self.pool = multiprocessing.Pool( - processes=self.npool, - initializer=_initialize_global_variables, - initargs=( - self.likelihood, - self.priors, - self._search_parameter_keys, - self.use_ratio, - ), - ) - else: - self.pool = None - - _initialize_global_variables( - likelihood=self.likelihood, - priors=self.priors, - search_parameter_keys=self._search_parameter_keys, - use_ratio=self.use_ratio, - ) - - def _close_pool(self): - if getattr(self, "pool", None) is not None: - logger.info("Starting to close worker pool.") - self.pool.close() - self.pool.join() - self.pool = None - logger.info("Finished closing worker pool.") - class BilbyPTMCMCSampler(object): def __init__( @@ -579,7 +521,6 @@ class BilbyPTMCMCSampler(object): use_ratio, evidence_method, ): - self.set_pt_inputs(pt_inputs) self.use_ratio = use_ratio self.setup_sampler_dictionary(convergence_inputs, proposal_cycle) @@ -597,7 +538,7 @@ class BilbyPTMCMCSampler(object): self._nsamples_dict = {} self.ensemble_proposal_cycle = proposals.get_default_ensemble_proposal_cycle( - _priors + _sampling_convenience_dump.priors ) self.sampling_time = 0 self.ln_z_dict = dict() @@ -612,7 +553,7 @@ class BilbyPTMCMCSampler(object): elif pt_inputs.Tmax is not None: betas = np.logspace(0, -np.log10(pt_inputs.Tmax), pt_inputs.ntemps) elif pt_inputs.Tmax_from_SNR is not None: - ndim = len(_priors.non_fixed_keys) + ndim = len(_sampling_convenience_dump.priors.non_fixed_keys) target_hot_likelihood = ndim / 2 Tmax = pt_inputs.Tmax_from_SNR**2 / (2 * target_hot_likelihood) betas = np.logspace(0, -np.log10(Tmax), pt_inputs.ntemps) @@ -1140,12 +1081,14 @@ class BilbyMCMCSampler(object): self.Eindex = Eindex self.use_ratio = use_ratio - self.parameters = _priors.non_fixed_keys + self.parameters = _sampling_convenience_dump.priors.non_fixed_keys self.ndim = len(self.parameters) - full_sample_dict = _priors.sample() + full_sample_dict = _sampling_convenience_dump.priors.sample() initial_sample = { - k: v for k, v in full_sample_dict.items() if k in _priors.non_fixed_keys + k: v + for k, v in full_sample_dict.items() + if k in _sampling_convenience_dump.priors.non_fixed_keys } initial_sample = Sample(initial_sample) initial_sample[LOGLKEY] = self.log_likelihood(initial_sample) @@ -1168,7 +1111,10 @@ class BilbyMCMCSampler(object): warn = False self.proposal_cycle = proposals.get_proposal_cycle( - proposal_cycle, _priors, L1steps=self.chain.L1steps, warn=warn + proposal_cycle, + _sampling_convenience_dump.priors, + L1steps=self.chain.L1steps, + warn=warn, ) elif isinstance(proposal_cycle, proposals.ProposalCycle): self.proposal_cycle = proposal_cycle @@ -1185,17 +1131,17 @@ class BilbyMCMCSampler(object): self.stop_after_convergence = convergence_inputs.stop_after_convergence def log_likelihood(self, sample): - _likelihood.parameters.update(sample.sample_dict) + _sampling_convenience_dump.likelihood.parameters.update(sample.sample_dict) if self.use_ratio: - logl = _likelihood.log_likelihood_ratio() + logl = _sampling_convenience_dump.likelihood.log_likelihood_ratio() else: - logl = _likelihood.log_likelihood() + logl = _sampling_convenience_dump.likelihood.log_likelihood() return logl def log_prior(self, sample): - return _priors.ln_prob(sample.parameter_only_dict) + return _sampling_convenience_dump.priors.ln_prob(sample.parameter_only_dict) def accept_proposal(self, prop, proposal): self.chain.append(prop) @@ -1293,8 +1239,10 @@ class BilbyMCMCSampler(object): zerotemp_logl = hot_samples[LOGLKEY] # Revert to true likelihood if needed - if _use_ratio: - zerotemp_logl += _likelihood.noise_log_likelihood() + if _sampling_convenience_dump.use_ratio: + zerotemp_logl += ( + _sampling_convenience_dump.likelihood.noise_log_likelihood() + ) # Calculate normalised weights log_weights = (1 - beta) * zerotemp_logl @@ -1322,29 +1270,3 @@ class BilbyMCMCSampler(object): def call_step(sampler): sampler = sampler.step() return sampler - - -_likelihood = None -_priors = None -_search_parameter_keys = None -_use_ratio = False - - -def _initialize_global_variables( - likelihood, - priors, - search_parameter_keys, - use_ratio, -): - """ - Store a global copy of the likelihood, priors, and search keys for - multiprocessing. - """ - global _likelihood - global _priors - global _search_parameter_keys - global _use_ratio - _likelihood = likelihood - _priors = priors - _search_parameter_keys = search_parameter_keys - _use_ratio = use_ratio diff --git a/bilby/core/prior/base.py b/bilby/core/prior/base.py index ea8607545c59126ab7e5c4d6e83b8c5ba7ba83d8..e11f7862ad7360737760eaa272cd6157f85d8ba6 100644 --- a/bilby/core/prior/base.py +++ b/bilby/core/prior/base.py @@ -214,10 +214,13 @@ class Prior(object): """ prior_name = self.__class__.__name__ + prior_module = self.__class__.__module__ instantiation_dict = self.get_instantiation_dict() - args = ', '.join(['{}={}'.format(key, repr(instantiation_dict[key])) - for key in instantiation_dict]) - return "{}({})".format(prior_name, args) + args = ', '.join([f'{key}={repr(instantiation_dict[key])}' for key in instantiation_dict]) + if "bilby.core.prior" in prior_module: + return f"{prior_name}({args})" + else: + return f"{prior_module}.{prior_name}({args})" @property def _repr_dict(self): diff --git a/bilby/core/prior/conditional.py b/bilby/core/prior/conditional.py index 107822828c52ed32111a9462c1d8f4325b143719..c4dcc36827fd844853095dcbbcafd69f2585c40a 100644 --- a/bilby/core/prior/conditional.py +++ b/bilby/core/prior/conditional.py @@ -371,7 +371,7 @@ class DirichletElement(ConditionalBeta): self._required_variables = [ label + str(ii) for ii in range(order) ] - self.__class__.__name__ = 'Dirichlet' + self.__class__.__name__ = 'DirichletElement' def dirichlet_condition(self, reference_parms, **kwargs): remaining = 1 - sum( diff --git a/bilby/core/prior/dict.py b/bilby/core/prior/dict.py index 85e8ac4ef75c8808fd20f1b175fd5214364deb1a..d25ca6487560bbb946b8930ba8c625e9d0f2d766 100644 --- a/bilby/core/prior/dict.py +++ b/bilby/core/prior/dict.py @@ -824,6 +824,8 @@ class ConditionalPriorDict(PriorDict): ======= list: List of floats containing the rescaled sample """ + from matplotlib.cbook import flatten + keys = list(keys) theta = list(theta) self._check_resolved() @@ -836,7 +838,7 @@ class ConditionalPriorDict(PriorDict): theta[index], **self.get_required_variables(key) ) self[key].least_recently_sampled = result[key] - return [result[key] for key in keys] + return list(flatten([result[key] for key in keys])) def _update_rescale_keys(self, keys): if not keys == self._least_recently_rescaled_keys: diff --git a/bilby/core/prior/joint.py b/bilby/core/prior/joint.py index 742e7920b067877ce4d8aa3d2aa0f862db1dee4f..7f35b8716526e8811571409c2aba6d476a9958cc 100644 --- a/bilby/core/prior/joint.py +++ b/bilby/core/prior/joint.py @@ -43,7 +43,7 @@ class BaseJointPriorDist(object): if isinstance(bounds, (list, tuple, np.ndarray)): if len(bound) != 2: raise ValueError( - "Bounds must contain an upper and " "lower value." + "Bounds must contain an upper and lower value." ) else: if bound[1] <= bound[0]: @@ -382,6 +382,7 @@ class MultivariateGaussianDist(BaseJointPriorDist): self.covs = [] self.corrcoefs = [] self.sigmas = [] + self.logprodsigmas = [] # log of product of sigmas, needed for "standard" multivariate normal self.weights = [] self.eigvalues = [] self.eigvectors = [] @@ -399,7 +400,7 @@ class MultivariateGaussianDist(BaseJointPriorDist): if len(np.shape(sigmas)) == 1: sigmas = [sigmas] elif len(np.shape(sigmas)) == 0: - raise ValueError("Must supply a list of standard " "deviations") + raise ValueError("Must supply a list of standard deviations") if covs is not None: if isinstance(covs, np.ndarray): covs = [covs] @@ -421,7 +422,7 @@ class MultivariateGaussianDist(BaseJointPriorDist): "List of correlation coefficients the wrong shape" ) elif not isinstance(corrcoefs, list): - raise TypeError("Must pass a list of correlation " "coefficients") + raise TypeError("Must pass a list of correlation coefficients") if weights is not None: if isinstance(weights, (int, float)): weights = [weights] @@ -489,7 +490,7 @@ class MultivariateGaussianDist(BaseJointPriorDist): if len(self.corrcoefs[-1].shape) != 2: raise ValueError( - "Correlation coefficient matrix must be a 2d " "array." + "Correlation coefficient matrix must be a 2d array." ) if ( @@ -497,16 +498,16 @@ class MultivariateGaussianDist(BaseJointPriorDist): or self.corrcoefs[-1].shape[0] != self.num_vars ): raise ValueError( - "Correlation coefficient matrix shape is " "inconsistent" + "Correlation coefficient matrix shape is inconsistent" ) # check matrix is symmetric if not np.allclose(self.corrcoefs[-1], self.corrcoefs[-1].T): - raise ValueError("Correlation coefficient matrix is not " "symmetric") + raise ValueError("Correlation coefficient matrix is not symmetric") # check diagonal is all ones if not np.all(np.diag(self.corrcoefs[-1]) == 1.0): - raise ValueError("Correlation coefficient matrix is not" "correct") + raise ValueError("Correlation coefficient matrix is not correct") try: self.sigmas.append(list(sigmas)) # standard deviations @@ -528,6 +529,9 @@ class MultivariateGaussianDist(BaseJointPriorDist): self.covs.append(np.eye(self.num_vars)) self.sigmas.append(np.ones(self.num_vars)) + # compute log of product of sigmas, needed for "standard" multivariate normal + self.logprodsigmas.append(np.log(np.prod(self.sigmas[-1]))) + # get eigen values and vectors try: evals, evecs = np.linalg.eig(self.corrcoefs[-1]) @@ -535,13 +539,13 @@ class MultivariateGaussianDist(BaseJointPriorDist): self.eigvectors.append(evecs) except Exception as e: raise RuntimeError( - "Problem getting eigenvalues and vectors: " "{}".format(e) + "Problem getting eigenvalues and vectors: {}".format(e) ) # check eigenvalues are positive if np.any(self.eigvalues[-1] <= 0.0): raise ValueError( - "Correlation coefficient matrix is not positive " "definite" + "Correlation coefficient matrix is not positive definite" ) self.sqeigvalues.append(np.sqrt(self.eigvalues[-1])) @@ -557,9 +561,16 @@ class MultivariateGaussianDist(BaseJointPriorDist): # add the mode self.nmodes += 1 - # add multivariate Gaussian + # add "standard" multivariate normal distribution + # - when the typical scales of the parameters are very different, + # multivariate_normal() may complain that the covariance matrix is singular + # - instead pass zero means and correlation matrix instead of covariance matrix + # to get the equivalent of a standard normal distribution in higher dimensions + # - this modifies the multivariate normal PDF as follows: + # multivariate_normal(mean=mus, cov=cov).logpdf(x) + # = multivariate_normal(mean=0, cov=corrcoefs).logpdf((x - mus)/sigmas) - logprodsigmas self.mvn.append( - scipy.stats.multivariate_normal(mean=self.mus[-1], cov=self.covs[-1]) + scipy.stats.multivariate_normal(mean=np.zeros(self.num_vars), cov=self.corrcoefs[-1]) ) def _rescale(self, samp, **kwargs): @@ -630,7 +641,9 @@ class MultivariateGaussianDist(BaseJointPriorDist): for j in range(samp.shape[0]): # loop over the modes and sum the probabilities for i in range(self.nmodes): - lnprob[j] = np.logaddexp(lnprob[j], self.mvn[i].logpdf(samp[j])) + # self.mvn[i] is a "standard" multivariate normal distribution; see add_mode() + z = (samp[j] - self.mus[i]) / self.sigmas[i] + lnprob[j] = np.logaddexp(lnprob[j], self.mvn[i].logpdf(z) - self.logprodsigmas[i]) # set out-of-bounds values to -inf lnprob[outbounds] = -np.inf diff --git a/bilby/core/result.py b/bilby/core/result.py index 221420c90cc375a673ffb327a4a58be341b2c2b2..bef3f11af4c6ac632b31d23e693668340a29a582 100644 --- a/bilby/core/result.py +++ b/bilby/core/result.py @@ -298,7 +298,7 @@ def reweight(result, label=None, new_likelihood=None, new_prior=None, if conversion_function is not None: data_frame = result.posterior - if "npool" in inspect.getargspec(conversion_function).args: + if "npool" in inspect.signature(conversion_function).parameters: data_frame = conversion_function(data_frame, new_likelihood, new_prior, npool=npool) else: data_frame = conversion_function(data_frame, new_likelihood, new_prior) @@ -1389,7 +1389,7 @@ class Result(object): data_frame['log_prior'] = self.log_prior_evaluations if conversion_function is not None: - if "npool" in inspect.getargspec(conversion_function).args: + if "npool" in inspect.signature(conversion_function).parameters: data_frame = conversion_function(data_frame, likelihood, priors, npool=npool) else: data_frame = conversion_function(data_frame, likelihood, priors) @@ -1435,8 +1435,11 @@ class Result(object): if keys is None: keys = self.search_parameter_keys if self.injection_parameters is None: - raise(TypeError, "Result object has no 'injection_parameters'. " - "Cannot compute credible levels.") + raise ( + TypeError, + "Result object has no 'injection_parameters'. " + "Cannot compute credible levels." + ) credible_levels = {key: self.get_injection_credible_level(key, weights=weights) for key in keys if isinstance(self.injection_parameters.get(key, None), float)} @@ -1462,8 +1465,11 @@ class Result(object): float: credible level """ if self.injection_parameters is None: - raise(TypeError, "Result object has no 'injection_parameters'. " - "Cannot copmute credible levels.") + raise ( + TypeError, + "Result object has no 'injection_parameters'. " + "Cannot copmute credible levels." + ) if weights is None: weights = np.ones(len(self.posterior)) @@ -1933,12 +1939,17 @@ def plot_multiple(results, filename=None, labels=None, colours=None, if evidences: if np.isnan(results[0].log_bayes_factor): - template = r' $\mathrm{{ln}}(Z)={lnz:1.3g}$' + template = r'{label} $\mathrm{{ln}}(Z)={lnz:1.3g}$' else: - template = r' $\mathrm{{ln}}(B)={lnbf:1.3g}$' - labels = [template.format(lnz=result.log_evidence, - lnbf=result.log_bayes_factor) - for ii, result in enumerate(results)] + template = r'{label} $\mathrm{{ln}}(B)={lnbf:1.3g}$' + labels = [ + template.format( + label=label, + lnz=result.log_evidence, + lnbf=result.log_bayes_factor, + ) + for label, result in zip(labels, results) + ] axes = fig.get_axes() ndim = int(np.sqrt(len(axes))) diff --git a/bilby/core/sampler/__init__.py b/bilby/core/sampler/__init__.py index bd259f97a74c4784ecf4cf8b5fe2c742e7bc79b0..ce9422f85e6649c74c57b16997678a681b247841 100644 --- a/bilby/core/sampler/__init__.py +++ b/bilby/core/sampler/__init__.py @@ -1,29 +1,30 @@ +import datetime import inspect import sys -import datetime import bilby -from ..utils import command_line_args, logger, loaded_modules_dict -from ..prior import PriorDict, DeltaFunction +from bilby.bilby_mcmc import Bilby_MCMC + +from ..prior import DeltaFunction, PriorDict +from ..utils import command_line_args, loaded_modules_dict, logger +from . import proposal from .base_sampler import Sampler, SamplingMarginalisedParameterError from .cpnest import Cpnest +from .dnest4 import DNest4 from .dynamic_dynesty import DynamicDynesty from .dynesty import Dynesty from .emcee import Emcee +from .fake_sampler import FakeSampler from .kombine import Kombine from .nessai import Nessai from .nestle import Nestle from .polychord import PyPolyChord from .ptemcee import Ptemcee from .ptmcmc import PTMCMCSampler -from .pymc3 import Pymc3 +from .pymc import Pymc from .pymultinest import Pymultinest from .ultranest import Ultranest -from .fake_sampler import FakeSampler -from .dnest4 import DNest4 from .zeus import Zeus -from bilby.bilby_mcmc import Bilby_MCMC -from . import proposal IMPLEMENTED_SAMPLERS = { "bilby_mcmc": Bilby_MCMC, @@ -37,7 +38,7 @@ IMPLEMENTED_SAMPLERS = { "nestle": Nestle, "ptemcee": Ptemcee, "ptmcmcsampler": PTMCMCSampler, - "pymc3": Pymc3, + "pymc": Pymc, "pymultinest": Pymultinest, "pypolychord": PyPolyChord, "ultranest": Ultranest, @@ -49,7 +50,7 @@ if command_line_args.sampler_help: sampler = command_line_args.sampler_help if sampler in IMPLEMENTED_SAMPLERS: sampler_class = IMPLEMENTED_SAMPLERS[sampler] - print('Help for sampler "{}":'.format(sampler)) + print(f'Help for sampler "{sampler}":') print(sampler_class.__doc__) else: if sampler == "None": @@ -58,8 +59,8 @@ if command_line_args.sampler_help: "the name of the sampler" ) else: - print("Requested sampler {} not implemented".format(sampler)) - print("Available samplers = {}".format(IMPLEMENTED_SAMPLERS)) + print(f"Requested sampler {sampler} not implemented") + print(f"Available samplers = {IMPLEMENTED_SAMPLERS}") sys.exit() @@ -81,7 +82,7 @@ def run_sampler( gzip=False, result_class=None, npool=1, - **kwargs + **kwargs, ): """ The primary interface to easy parameter estimation @@ -144,9 +145,7 @@ def run_sampler( An object containing the results """ - logger.info( - "Running for label '{}', output will be saved to '{}'".format(label, outdir) - ) + logger.info(f"Running for label '{label}', output will be saved to '{outdir}'") if clean: command_line_args.clean = clean @@ -174,7 +173,7 @@ def run_sampler( meta_data = dict() likelihood.label = label likelihood.outdir = outdir - meta_data['likelihood'] = likelihood.meta_data + meta_data["likelihood"] = likelihood.meta_data meta_data["loaded_modules"] = loaded_modules_dict() if command_line_args.bilby_zero_likelihood_mode: @@ -198,11 +197,11 @@ def run_sampler( plot=plot, result_class=result_class, npool=npool, - **kwargs + **kwargs, ) else: print(IMPLEMENTED_SAMPLERS) - raise ValueError("Sampler {} not yet implemented".format(sampler)) + raise ValueError(f"Sampler {sampler} not yet implemented") elif inspect.isclass(sampler): sampler = sampler.__init__( likelihood, @@ -214,12 +213,12 @@ def run_sampler( injection_parameters=injection_parameters, meta_data=meta_data, npool=npool, - **kwargs + **kwargs, ) else: raise ValueError( "Provided sampler should be a Sampler object or name of a known " - "sampler: {}.".format(", ".join(IMPLEMENTED_SAMPLERS.keys())) + f"sampler: {', '.join(IMPLEMENTED_SAMPLERS.keys())}." ) if sampler.cached_result: @@ -240,23 +239,22 @@ def run_sampler( elif isinstance(result.sampling_time, (float, int)): result.sampling_time = datetime.timedelta(result.sampling_time) - logger.info('Sampling time: {}'.format(result.sampling_time)) + logger.info(f"Sampling time: {result.sampling_time}") # Convert sampling time into seconds result.sampling_time = result.sampling_time.total_seconds() if sampler.use_ratio: result.log_noise_evidence = likelihood.noise_log_likelihood() result.log_bayes_factor = result.log_evidence - result.log_evidence = \ - result.log_bayes_factor + result.log_noise_evidence + result.log_evidence = result.log_bayes_factor + result.log_noise_evidence else: result.log_noise_evidence = likelihood.noise_log_likelihood() - result.log_bayes_factor = \ - result.log_evidence - result.log_noise_evidence + result.log_bayes_factor = result.log_evidence - result.log_noise_evidence if None not in [result.injection_parameters, conversion_function]: result.injection_parameters = conversion_function( - result.injection_parameters) + result.injection_parameters + ) # Initial save of the sampler in case of failure in samples_to_posterior if save: @@ -267,9 +265,12 @@ def run_sampler( # Check if the posterior has already been created if getattr(result, "_posterior", None) is None: - result.samples_to_posterior(likelihood=likelihood, priors=result.priors, - conversion_function=conversion_function, - npool=npool) + result.samples_to_posterior( + likelihood=likelihood, + priors=result.priors, + conversion_function=conversion_function, + npool=npool, + ) if save: # The overwrite here ensures we overwrite the initially stored data @@ -277,7 +278,7 @@ def run_sampler( if plot: result.plot_corner() - logger.info("Summary of results:\n{}".format(result)) + logger.info(f"Summary of results:\n{result}") return result @@ -286,7 +287,5 @@ def _check_marginalized_parameters_not_sampled(likelihood, priors): if key in priors: if not isinstance(priors[key], (float, DeltaFunction)): raise SamplingMarginalisedParameterError( - "Likelihood is {} marginalized but you are trying to sample in {}. ".format( - key, key - ) + f"Likelihood is {key} marginalized but you are trying to sample in {key}. " ) diff --git a/bilby/core/sampler/base_sampler.py b/bilby/core/sampler/base_sampler.py index 215104a98087bb91abc3964684edf1a0a5d0d458..380ca001267eca8f09e7a9d02c0a6520e11850b3 100644 --- a/bilby/core/sampler/base_sampler.py +++ b/bilby/core/sampler/base_sampler.py @@ -1,18 +1,111 @@ import datetime import distutils.dir_util -import numpy as np import os +import shutil +import signal +import sys import tempfile +import time +import attr +import numpy as np from pandas import DataFrame -from ..utils import logger, check_directory_exists_and_if_not_mkdir, command_line_args, Counter -from ..prior import Prior, PriorDict, DeltaFunction, Constraint +from ..prior import Constraint, DeltaFunction, Prior, PriorDict from ..result import Result, read_in_result +from ..utils import ( + Counter, + check_directory_exists_and_if_not_mkdir, + command_line_args, + logger, +) + + +@attr.s +class _SamplingContainer: + """ + A container class for objects that are stored independently in each thread + for some samplers. + + A single instance of this will appear in this module that can be access + by the individual samplers. + + This includes the: + + - likelihood (bilby.core.likelihood.Likelihood) + - priors (bilby.core.prior.PriorDict) + - search_parameter_keys (list) + - use_ratio (bool) + """ + + likelihood = attr.ib(default=None) + priors = attr.ib(default=None) + search_parameter_keys = attr.ib(default=None) + use_ratio = attr.ib(default=False) + + +_sampling_convenience_dump = _SamplingContainer() + + +def _initialize_global_variables( + likelihood, + priors, + search_parameter_keys, + use_ratio, +): + """ + Store a global copy of the likelihood, priors, and search keys for + multiprocessing. + """ + global _sampling_convenience_dump + _sampling_convenience_dump.likelihood = likelihood + _sampling_convenience_dump.priors = priors + _sampling_convenience_dump.search_parameter_keys = search_parameter_keys + _sampling_convenience_dump.use_ratio = use_ratio + + +def signal_wrapper(method): + """ + Decorator to wrap a method of a class to set system signals before running + and reset them after. + + Parameters + ========== + method: callable + The method to call, this assumes the first argument is `self` + and that `self` has a `write_current_state_and_exit` method. + + Returns + ======= + output: callable + The wrapped method. + """ + + def wrapped(self, *args, **kwargs): + try: + old_term = signal.signal(signal.SIGTERM, self.write_current_state_and_exit) + old_int = signal.signal(signal.SIGINT, self.write_current_state_and_exit) + old_alarm = signal.signal(signal.SIGALRM, self.write_current_state_and_exit) + _set = True + except (AttributeError, ValueError): + _set = False + logger.debug( + "Setting signal attributes unavailable on this system. " + "This is likely the case if you are running on a Windows machine " + "and can be safely ignored." + ) + output = method(self, *args, **kwargs) + if _set: + signal.signal(signal.SIGTERM, old_term) + signal.signal(signal.SIGINT, old_int) + signal.signal(signal.SIGALRM, old_alarm) + return output + + return wrapped class Sampler(object): - """ A sampler object to aid in setting up an inference run + """A sampler object to aid in setting up an inference run Parameters ========== @@ -76,6 +169,10 @@ class Sampler(object): System exit code to return on interrupt kwargs: dict Dictionary of keyword arguments that can be used in the external sampler + hard_exit: bool + Whether the implemented sampler exits hard (:code:`os._exit` rather + than :code:`sys.exit`). The latter can be escaped as :code:`SystemExit`. + The former cannot. Raises ====== @@ -89,15 +186,42 @@ class Sampler(object): If some of the priors can't be sampled """ + default_kwargs = dict() - npool_equiv_kwargs = ['queue_size', 'threads', 'nthreads', 'npool'] + npool_equiv_kwargs = [ + "npool", + "queue_size", + "threads", + "nthreads", + "cores", + "n_pool", + ] + sampling_seed_equiv_kwargs = ["sampling_seed", "seed", "random_seed"] + hard_exit = False + sampling_seed_key = None + """Name of keyword argument for setting the sampling for the specific sampler. + If a specific sampler does not have a sampling seed option, then it should be + left as None. + """ def __init__( - self, likelihood, priors, outdir='outdir', label='label', - use_ratio=False, plot=False, skip_import_verification=False, - injection_parameters=None, meta_data=None, result_class=None, - likelihood_benchmark=False, soft_init=False, exit_code=130, - **kwargs): + self, + likelihood, + priors, + outdir="outdir", + label="label", + use_ratio=False, + plot=False, + skip_import_verification=False, + injection_parameters=None, + meta_data=None, + result_class=None, + likelihood_benchmark=False, + soft_init=False, + exit_code=130, + npool=1, + **kwargs, + ): self.likelihood = likelihood if isinstance(priors, PriorDict): self.priors = priors @@ -108,6 +232,7 @@ class Sampler(object): self.injection_parameters = injection_parameters self.meta_data = meta_data self.use_ratio = use_ratio + self._npool = npool if not skip_import_verification: self._verify_external_sampler() self.external_sampler_function = None @@ -118,6 +243,7 @@ class Sampler(object): self._fixed_parameter_keys = list() self._constraint_parameter_keys = list() self._initialise_parameters() + self._log_information_about_priors_and_likelihood() self.exit_code = exit_code @@ -159,7 +285,7 @@ class Sampler(object): @property def kwargs(self): - """dict: Container for the kwargs. Has more sophisticated logic in subclasses """ + """dict: Container for the kwargs. Has more sophisticated logic in subclasses""" return self._kwargs @kwargs.setter @@ -170,8 +296,16 @@ class Sampler(object): self._verify_kwargs_against_default_kwargs() def _translate_kwargs(self, kwargs): - """ Template for child classes """ - pass + """Translate keyword arguments. + + Default only translates the sampling seed if the sampler has + :code:`sampling_seed_key` set. + """ + if self.sampling_seed_key and self.sampling_seed_key not in kwargs: + for equiv in self.sampling_seed_equiv_kwargs: + if equiv in kwargs: + kwargs[self.sampling_seed_key] = kwargs.pop(equiv) + return kwargs @property def external_sampler_name(self): @@ -180,10 +314,11 @@ class Sampler(object): def _verify_external_sampler(self): external_sampler_name = self.external_sampler_name try: - self.external_sampler = __import__(external_sampler_name) + __import__(external_sampler_name) except (ImportError, SystemExit): raise SamplerNotInstalledError( - "Sampler {} is not installed on this system".format(external_sampler_name)) + f"Sampler {external_sampler_name} is not installed on this system" + ) def _verify_kwargs_against_default_kwargs(self): """ @@ -195,8 +330,8 @@ class Sampler(object): for user_input in self.kwargs.keys(): if user_input not in args: logger.warning( - "Supplied argument '{}' not an argument of '{}', removing." - .format(user_input, self.__class__.__name__)) + f"Supplied argument '{user_input}' not an argument of '{self.__class__.__name__}', removing." + ) bad_keys.append(user_input) for key in bad_keys: self.kwargs.pop(key) @@ -208,8 +343,10 @@ class Sampler(object): the respective parameter is fixed. """ for key in self.priors: - if isinstance(self.priors[key], Prior) \ - and self.priors[key].is_fixed is False: + if ( + isinstance(self.priors[key], Prior) + and self.priors[key].is_fixed is False + ): self._search_parameter_keys.append(key) elif isinstance(self.priors[key], Constraint): self._constraint_parameter_keys.append(key) @@ -217,11 +354,16 @@ class Sampler(object): self.likelihood.parameters[key] = self.priors[key].sample() self._fixed_parameter_keys.append(key) - logger.info("Search parameters:") + def _log_information_about_priors_and_likelihood(self): + logger.info("Analysis priors:") for key in self._search_parameter_keys + self._constraint_parameter_keys: - logger.info(' {} = {}'.format(key, self.priors[key])) + logger.info(f"{key}={self.priors[key]}") for key in self._fixed_parameter_keys: - logger.info(' {} = {}'.format(key, self.priors[key].peak)) + logger.info(f"{key}={self.priors[key].peak}") + logger.info(f"Analysis likelihood class: {self.likelihood.__class__}") + logger.info( + f"Analysis likelihood noise evidence: {self.likelihood.noise_log_likelihood()}" + ) def _initialise_result(self, result_class): """ @@ -231,27 +373,30 @@ class Sampler(object): """ result_kwargs = dict( - label=self.label, outdir=self.outdir, + label=self.label, + outdir=self.outdir, sampler=self.__class__.__name__.lower(), search_parameter_keys=self._search_parameter_keys, fixed_parameter_keys=self._fixed_parameter_keys, constraint_parameter_keys=self._constraint_parameter_keys, - priors=self.priors, meta_data=self.meta_data, + priors=self.priors, + meta_data=self.meta_data, injection_parameters=self.injection_parameters, - sampler_kwargs=self.kwargs, use_ratio=self.use_ratio) + sampler_kwargs=self.kwargs, + use_ratio=self.use_ratio, + ) if result_class is None: result = Result(**result_kwargs) elif issubclass(result_class, Result): result = result_class(**result_kwargs) else: - raise ValueError( - "Input result_class={} not understood".format(result_class)) + raise ValueError(f"Input result_class={result_class} not understood") return result def _verify_parameters(self): - """ Evaluate a set of parameters drawn from the prior + """Evaluate a set of parameters drawn from the prior Tests if the likelihood evaluation passes @@ -264,20 +409,22 @@ class Sampler(object): if self.priors.test_has_redundant_keys(): raise IllegalSamplingSetError( - "Your sampling set contains redundant parameters.") + "Your sampling set contains redundant parameters." + ) theta = self.priors.sample_subset_constrained_as_array( - self.search_parameter_keys, size=1)[:, 0] + self.search_parameter_keys, size=1 + )[:, 0] try: self.log_likelihood(theta) except TypeError as e: raise TypeError( - "Likelihood evaluation failed with message: \n'{}'\n" - "Have you specified all the parameters:\n{}" - .format(e, self.likelihood.parameters)) + f"Likelihood evaluation failed with message: \n'{e}'\n" + f"Have you specified all the parameters:\n{self.likelihood.parameters}" + ) def _time_likelihood(self, n_evaluations=100): - """ Times the likelihood evaluation and print an info message + """Times the likelihood evaluation and print an info message Parameters ========== @@ -289,7 +436,8 @@ class Sampler(object): t1 = datetime.datetime.now() for _ in range(n_evaluations): theta = self.priors.sample_subset_constrained_as_array( - self._search_parameter_keys, size=1)[:, 0] + self._search_parameter_keys, size=1 + )[:, 0] self.log_likelihood(theta) total_time = (datetime.datetime.now() - t1).total_seconds() self._log_likelihood_eval_time = total_time / n_evaluations @@ -298,8 +446,9 @@ class Sampler(object): self._log_likelihood_eval_time = np.nan logger.info("Unable to measure single likelihood time") else: - logger.info("Single likelihood evaluation took {:.3e} s" - .format(self._log_likelihood_eval_time)) + logger.info( + f"Single likelihood evaluation took {self._log_likelihood_eval_time:.3e} s" + ) def _verify_use_ratio(self): """ @@ -309,9 +458,9 @@ class Sampler(object): try: self.priors.sample_subset(self.search_parameter_keys) except (KeyError, AttributeError): - logger.error("Cannot sample from priors with keys: {}.".format( - self.search_parameter_keys - )) + logger.error( + f"Cannot sample from priors with keys: {self.search_parameter_keys}." + ) raise if self.use_ratio is False: logger.debug("use_ratio set to False") @@ -322,14 +471,14 @@ class Sampler(object): if self.use_ratio is True and ratio_is_nan: logger.warning( "You have requested to use the loglikelihood_ratio, but it " - " returns a NaN") + " returns a NaN" + ) elif self.use_ratio is None and not ratio_is_nan: - logger.debug( - "use_ratio not spec. but gives valid answer, setting True") + logger.debug("use_ratio not spec. but gives valid answer, setting True") self.use_ratio = True def prior_transform(self, theta): - """ Prior transform method that is passed into the external sampler. + """Prior transform method that is passed into the external sampler. Parameters ========== @@ -355,8 +504,7 @@ class Sampler(object): float: Joint ln prior probability of theta """ - params = { - key: t for key, t in zip(self._search_parameter_keys, theta)} + params = {key: t for key, t in zip(self._search_parameter_keys, theta)} return self.priors.ln_prob(params) def log_likelihood(self, theta): @@ -378,8 +526,7 @@ class Sampler(object): self.likelihood_count.increment() except AttributeError: pass - params = { - key: t for key, t in zip(self._search_parameter_keys, theta)} + params = {key: t for key, t in zip(self._search_parameter_keys, theta)} self.likelihood.parameters.update(params) if self.use_ratio: return self.likelihood.log_likelihood_ratio() @@ -387,7 +534,7 @@ class Sampler(object): return self.likelihood.log_likelihood() def get_random_draw_from_prior(self): - """ Get a random draw from the prior distribution + """Get a random draw from the prior distribution Returns ======= @@ -397,13 +544,12 @@ class Sampler(object): """ new_sample = self.priors.sample() - draw = np.array(list(new_sample[key] - for key in self._search_parameter_keys)) + draw = np.array(list(new_sample[key] for key in self._search_parameter_keys)) self.check_draw(draw) return draw def get_initial_points_from_prior(self, npoints=1): - """ Method to draw a set of live points from the prior + """Method to draw a set of live points from the prior This iterates over draws from the prior until all the samples have a finite prior and likelihood (relevant for constrained priors). @@ -457,9 +603,11 @@ class Sampler(object): """ log_p = self.log_prior(theta) log_l = self.log_likelihood(theta) - return \ - self._check_bad_value(val=log_p, warning=warning, theta=theta, label='prior') and \ - self._check_bad_value(val=log_l, warning=warning, theta=theta, label='likelihood') + return self._check_bad_value( + val=log_p, warning=warning, theta=theta, label="prior" + ) and self._check_bad_value( + val=log_l, warning=warning, theta=theta, label="likelihood" + ) @staticmethod def _check_bad_value(val, warning, theta, label): @@ -467,7 +615,7 @@ class Sampler(object): bad_values = [np.inf, np.nan_to_num(np.inf)] if val in bad_values or np.isnan(val): if warning: - logger.warning(f'Prior draw {theta} has inf {label}') + logger.warning(f"Prior draw {theta} has inf {label}") return False return True @@ -485,7 +633,7 @@ class Sampler(object): raise ValueError("Method not yet implemented") def _check_cached_result(self): - """ Check if the cached data file exists and can be used """ + """Check if the cached data file exists and can be used""" if command_line_args.clean: logger.debug("Command line argument clean given, forcing rerun") @@ -493,30 +641,30 @@ class Sampler(object): return try: - self.cached_result = read_in_result( - outdir=self.outdir, label=self.label) + self.cached_result = read_in_result(outdir=self.outdir, label=self.label) except IOError: self.cached_result = None if command_line_args.use_cached: - logger.debug( - "Command line argument cached given, no cache check performed") + logger.debug("Command line argument cached given, no cache check performed") return logger.debug("Checking cached data") if self.cached_result: - check_keys = ['search_parameter_keys', 'fixed_parameter_keys'] + check_keys = ["search_parameter_keys", "fixed_parameter_keys"] use_cache = True for key in check_keys: - if self.cached_result._check_attribute_match_to_other_object( - key, self) is False: - logger.debug("Cached value {} is unmatched".format(key)) + if ( + self.cached_result._check_attribute_match_to_other_object(key, self) + is False + ): + logger.debug(f"Cached value {key} is unmatched") use_cache = False try: # Recursive check the dictionaries allowing for numpy arrays np.testing.assert_equal( self.meta_data["likelihood"], - self.cached_result.meta_data["likelihood"] + self.cached_result.meta_data["likelihood"], ) except AssertionError: use_cache = False @@ -531,13 +679,12 @@ class Sampler(object): if type(kwargs_print[k]) in (list, np.ndarray): array_repr = np.array(kwargs_print[k]) if array_repr.size > 10: - kwargs_print[k] = ('array_like, shape={}' - .format(array_repr.shape)) + kwargs_print[k] = f"array_like, shape={array_repr.shape}" elif type(kwargs_print[k]) == DataFrame: - kwargs_print[k] = ('DataFrame, shape={}' - .format(kwargs_print[k].shape)) - logger.info("Using sampler {} with kwargs {}".format( - self.__class__.__name__, kwargs_print)) + kwargs_print[k] = f"DataFrame, shape={kwargs_print[k].shape}" + logger.info( + f"Using sampler {self.__class__.__name__} with kwargs {kwargs_print}" + ) def calc_likelihood_count(self): if self.likelihood_benchmark: @@ -545,15 +692,100 @@ class Sampler(object): else: return None + @property + def npool(self): + for key in self.npool_equiv_kwargs: + if key in self.kwargs: + return self.kwargs[key] + return self._npool + + def _log_interruption(self, signum=None): + if signum == 14: + logger.info( + f"Run interrupted by alarm signal {signum}: checkpoint and exit on {self.exit_code}" + ) + else: + logger.info( + f"Run interrupted by signal {signum}: checkpoint and exit on {self.exit_code}" + ) + + def write_current_state_and_exit(self, signum=None, frame=None): + """ + Make sure that if a pool of jobs is running only the parent tries to + checkpoint and exit. Only the parent has a 'pool' attribute. + + For samplers that must hard exit (typically due to non-Python process) + use :code:`os._exit` that cannot be excepted. Other samplers exiting + can be caught as a :code:`SystemExit`. + """ + if self.npool in (1, None) or getattr(self, "pool", None) is not None: + self._log_interruption(signum=signum) + self.write_current_state() + self._close_pool() + if self.hard_exit: + os._exit(self.exit_code) + else: + sys.exit(self.exit_code) + + def _close_pool(self): + if getattr(self, "pool", None) is not None: + logger.info("Starting to close worker pool.") + self.pool.close() + self.pool.join() + self.pool = None + self.kwargs["pool"] = self.pool + logger.info("Finished closing worker pool.") + + def _setup_pool(self): + if self.kwargs.get("pool", None) is not None: + logger.info("Using user defined pool.") + self.pool = self.kwargs["pool"] + elif self.npool is not None and self.npool > 1: + logger.info(f"Setting up multiproccesing pool with {self.npool} processes") + import multiprocessing + + self.pool = multiprocessing.Pool( + processes=self.npool, + initializer=_initialize_global_variables, + initargs=( + self.likelihood, + self.priors, + self._search_parameter_keys, + self.use_ratio, + ), + ) + else: + self.pool = None + _initialize_global_variables( + likelihood=self.likelihood, + priors=self.priors, + search_parameter_keys=self._search_parameter_keys, + use_ratio=self.use_ratio, + ) + self.kwargs["pool"] = self.pool + + def write_current_state(self): + raise NotImplementedError() + class NestedSampler(Sampler): - npoints_equiv_kwargs = ['nlive', 'nlives', 'n_live_points', 'npoints', - 'npoint', 'Nlive', 'num_live_points', 'num_particles'] - walks_equiv_kwargs = ['walks', 'steps', 'nmcmc'] + npoints_equiv_kwargs = [ + "nlive", + "nlives", + "n_live_points", + "npoints", + "npoint", + "Nlive", + "num_live_points", + "num_particles", + ] + walks_equiv_kwargs = ["walks", "steps", "nmcmc"] - def reorder_loglikelihoods(self, unsorted_loglikelihoods, unsorted_samples, - sorted_samples): - """ Reorders the stored log-likelihood after they have been reweighted + @staticmethod + def reorder_loglikelihoods( + unsorted_loglikelihoods, unsorted_samples, sorted_samples + ): + """Reorders the stored log-likelihood after they have been reweighted This creates a sorting index by matching the reweights `result.samples` against the raw samples, then uses this index to sort the @@ -578,12 +810,12 @@ class NestedSampler(Sampler): idxs = [] for ii in range(len(unsorted_loglikelihoods)): - idx = np.where(np.all(sorted_samples[ii] == unsorted_samples, - axis=1))[0] + idx = np.where(np.all(sorted_samples[ii] == unsorted_samples, axis=1))[0] if len(idx) > 1: logger.warning( "Multiple likelihood matches found between sorted and " - "unsorted samples. Taking the first match.") + "unsorted samples. Taking the first match." + ) idxs.append(idx[0]) return unsorted_loglikelihoods[idxs] @@ -601,52 +833,34 @@ class NestedSampler(Sampler): ======= float: log_likelihood """ - if self.priors.evaluate_constraints({ - key: theta[ii] for ii, key in - enumerate(self.search_parameter_keys)}): + if self.priors.evaluate_constraints( + {key: theta[ii] for ii, key in enumerate(self.search_parameter_keys)} + ): return Sampler.log_likelihood(self, theta) else: return np.nan_to_num(-np.inf) - def _setup_run_directory(self): - """ - If using a temporary directory, the output directory is moved to the - temporary directory. - Used for Dnest4, Pymultinest, and Ultranest. - """ - if self.use_temporary_directory: - temporary_outputfiles_basename = tempfile.TemporaryDirectory().name - self.temporary_outputfiles_basename = temporary_outputfiles_basename - - if os.path.exists(self.outputfiles_basename): - distutils.dir_util.copy_tree(self.outputfiles_basename, self.temporary_outputfiles_basename) - check_directory_exists_and_if_not_mkdir(temporary_outputfiles_basename) - - self.kwargs["outputfiles_basename"] = self.temporary_outputfiles_basename - logger.info("Using temporary file {}".format(temporary_outputfiles_basename)) - else: - check_directory_exists_and_if_not_mkdir(self.outputfiles_basename) - self.kwargs["outputfiles_basename"] = self.outputfiles_basename - logger.info("Using output file {}".format(self.outputfiles_basename)) - class MCMCSampler(Sampler): - nwalkers_equiv_kwargs = ['nwalker', 'nwalkers', 'draws', 'Niter'] - nburn_equiv_kwargs = ['burn', 'nburn'] + nwalkers_equiv_kwargs = ["nwalker", "nwalkers", "draws", "Niter"] + nburn_equiv_kwargs = ["burn", "nburn"] def print_nburn_logging_info(self): - """ Prints logging info as to how nburn was calculated """ + """Prints logging info as to how nburn was calculated""" if type(self.nburn) in [float, int]: - logger.info("Discarding {} steps for burn-in".format(self.nburn)) + logger.info(f"Discarding {self.nburn} steps for burn-in") elif self.result.max_autocorrelation_time is None: - logger.info("Autocorrelation time not calculated, discarding {} " - " steps for burn-in".format(self.nburn)) + logger.info( + f"Autocorrelation time not calculated, discarding " + f"{self.nburn} steps for burn-in" + ) else: - logger.info("Discarding {} steps for burn-in, estimated from " - "autocorr".format(self.nburn)) + logger.info( + f"Discarding {self.nburn} steps for burn-in, estimated from autocorr" + ) def calculate_autocorrelation(self, samples, c=3): - """ Uses the `emcee.autocorr` module to estimate the autocorrelation + """Uses the `emcee.autocorr` module to estimate the autocorrelation Parameters ========== @@ -657,35 +871,155 @@ class MCMCSampler(Sampler): estimate (default: `3`). See `emcee.autocorr.integrated_time`. """ import emcee + try: - self.result.max_autocorrelation_time = int(np.max( - emcee.autocorr.integrated_time(samples, c=c))) - logger.info("Max autocorr time = {}".format( - self.result.max_autocorrelation_time)) + self.result.max_autocorrelation_time = int( + np.max(emcee.autocorr.integrated_time(samples, c=c)) + ) + logger.info(f"Max autocorr time = {self.result.max_autocorrelation_time}") except emcee.autocorr.AutocorrError as e: self.result.max_autocorrelation_time = None - logger.info("Unable to calculate autocorr time: {}".format(e)) + logger.info(f"Unable to calculate autocorr time: {e}") + + +class _TemporaryFileSamplerMixin: + """ + A mixin class to handle storing sampler intermediate products in a temporary + location. See, e.g., `this SO <https://stackoverflow.com/a/547714>` for a + basic background on mixins. + + This class makes sure that any subclasses can seamlessly use the temporary + file functionality. + """ + + short_name = "" + + def __init__(self, temporary_directory, **kwargs): + super(_TemporaryFileSamplerMixin, self).__init__(**kwargs) + self.use_temporary_directory = temporary_directory + self._outputfiles_basename = None + self._temporary_outputfiles_basename = None + + def _check_and_load_sampling_time_file(self): + if os.path.exists(self.time_file_path): + with open(self.time_file_path, "r") as time_file: + self.total_sampling_time = float(time_file.readline()) + else: + self.total_sampling_time = 0 + + def _calculate_and_save_sampling_time(self): + current_time = time.time() + new_sampling_time = current_time - self.start_time + self.total_sampling_time += new_sampling_time + + with open(self.time_file_path, "w") as time_file: + time_file.write(str(self.total_sampling_time)) + + self.start_time = current_time + + def _clean_up_run_directory(self): + if self.use_temporary_directory: + self._move_temporary_directory_to_proper_path() + self.kwargs["outputfiles_basename"] = self.outputfiles_basename + + @property + def outputfiles_basename(self): + return self._outputfiles_basename + + @outputfiles_basename.setter + def outputfiles_basename(self, outputfiles_basename): + if outputfiles_basename is None: + outputfiles_basename = f"{self.outdir}/{self.short_name}_{self.label}/" + if not outputfiles_basename.endswith("/"): + outputfiles_basename += "/" + check_directory_exists_and_if_not_mkdir(self.outdir) + self._outputfiles_basename = outputfiles_basename + + @property + def temporary_outputfiles_basename(self): + return self._temporary_outputfiles_basename + + @temporary_outputfiles_basename.setter + def temporary_outputfiles_basename(self, temporary_outputfiles_basename): + if not temporary_outputfiles_basename.endswith("/"): + temporary_outputfiles_basename += "/" + self._temporary_outputfiles_basename = temporary_outputfiles_basename + if os.path.exists(self.outputfiles_basename): + shutil.copytree( + self.outputfiles_basename, self.temporary_outputfiles_basename + ) + + def write_current_state(self): + self._calculate_and_save_sampling_time() + if self.use_temporary_directory: + self._move_temporary_directory_to_proper_path() + + def _move_temporary_directory_to_proper_path(self): + """ + Move the temporary back to the proper path + + Anything in the proper path at this point is removed including links + """ + self._copy_temporary_directory_contents_to_proper_path() + shutil.rmtree(self.temporary_outputfiles_basename) + + def _copy_temporary_directory_contents_to_proper_path(self): + """ + Copy the temporary back to the proper path. + Do not delete the temporary directory. + """ + logger.info( + f"Overwriting {self.outputfiles_basename} with {self.temporary_outputfiles_basename}" + ) + outputfiles_basename_stripped = self.outputfiles_basename.rstrip("/") + distutils.dir_util.copy_tree( + self.temporary_outputfiles_basename, outputfiles_basename_stripped + ) + + def _setup_run_directory(self): + """ + If using a temporary directory, the output directory is moved to the + temporary directory. + Used for Dnest4, Pymultinest, and Ultranest. + """ + check_directory_exists_and_if_not_mkdir(self.outputfiles_basename) + if self.use_temporary_directory: + temporary_outputfiles_basename = tempfile.TemporaryDirectory().name + self.temporary_outputfiles_basename = temporary_outputfiles_basename + + if os.path.exists(self.outputfiles_basename): + distutils.dir_util.copy_tree( + self.outputfiles_basename, self.temporary_outputfiles_basename + ) + check_directory_exists_and_if_not_mkdir(temporary_outputfiles_basename) + + self.kwargs["outputfiles_basename"] = self.temporary_outputfiles_basename + logger.info(f"Using temporary file {temporary_outputfiles_basename}") + else: + self.kwargs["outputfiles_basename"] = self.outputfiles_basename + logger.info(f"Using output file {self.outputfiles_basename}") + self.time_file_path = self.kwargs["outputfiles_basename"] + "/sampling_time.dat" class Error(Exception): - """ Base class for all exceptions raised by this module """ + """Base class for all exceptions raised by this module""" class SamplerError(Error): - """ Base class for Error related to samplers in this module """ + """Base class for Error related to samplers in this module""" class ResumeError(Error): - """ Class for errors arising from resuming runs """ + """Class for errors arising from resuming runs""" class SamplerNotInstalledError(SamplerError): - """ Base class for Error raised by not installed samplers """ + """Base class for Error raised by not installed samplers""" class IllegalSamplingSetError(Error): - """ Class for illegal sets of sampling parameters """ + """Class for illegal sets of sampling parameters""" class SamplingMarginalisedParameterError(IllegalSamplingSetError): - """ Class for errors that occur when sampling over marginalized parameters """ + """Class for errors that occur when sampling over marginalized parameters""" diff --git a/bilby/core/sampler/cpnest.py b/bilby/core/sampler/cpnest.py index e64365f2e423c9ac4968e8c9964f4d26cd55bc00..bc3b364656d26bcff0c14e3852bbbd394c5887cf 100644 --- a/bilby/core/sampler/cpnest.py +++ b/bilby/core/sampler/cpnest.py @@ -1,18 +1,18 @@ - import array import copy +import sys import numpy as np from numpy.lib.recfunctions import structured_to_unstructured from pandas import DataFrame -from .base_sampler import NestedSampler -from .proposal import Sample, JumpProposalCycle -from ..utils import logger, check_directory_exists_and_if_not_mkdir +from ..utils import check_directory_exists_and_if_not_mkdir, logger +from .base_sampler import NestedSampler, signal_wrapper +from .proposal import JumpProposalCycle, Sample class Cpnest(NestedSampler): - """ bilby wrapper of cpnest (https://github.com/johnveitch/cpnest) + """bilby wrapper of cpnest (https://github.com/johnveitch/cpnest) All positional and keyword arguments (i.e., the args and kwargs) passed to `run_sampler` will be propagated to `cpnest.CPNest`, see documentation @@ -39,30 +39,46 @@ class Cpnest(NestedSampler): {self.outdir}/cpnest_{self.label}/ """ - default_kwargs = dict(verbose=3, nthreads=1, nlive=500, maxmcmc=1000, - seed=None, poolsize=100, nhamiltonian=0, resume=True, - output=None, proposals=None, n_periodic_checkpoint=8000) + + default_kwargs = dict( + verbose=3, + nthreads=1, + nlive=500, + maxmcmc=1000, + seed=None, + poolsize=100, + nhamiltonian=0, + resume=True, + output=None, + proposals=None, + n_periodic_checkpoint=8000, + ) + hard_exit = True + sampling_seed_key = "seed" def _translate_kwargs(self, kwargs): - if 'nlive' not in kwargs: + kwargs = super()._translate_kwargs(kwargs) + if "nlive" not in kwargs: for equiv in self.npoints_equiv_kwargs: if equiv in kwargs: - kwargs['nlive'] = kwargs.pop(equiv) - if 'nthreads' not in kwargs: + kwargs["nlive"] = kwargs.pop(equiv) + if "nthreads" not in kwargs: for equiv in self.npool_equiv_kwargs: if equiv in kwargs: - kwargs['nthreads'] = kwargs.pop(equiv) + kwargs["nthreads"] = kwargs.pop(equiv) - if 'seed' not in kwargs: - logger.warning('No seed provided, cpnest will use 1234.') + if "seed" not in kwargs: + logger.warning("No seed provided, cpnest will use 1234.") + @signal_wrapper def run_sampler(self): - from cpnest import model as cpmodel, CPNest - from cpnest.parameter import LivePoint + from cpnest import CPNest + from cpnest import model as cpmodel from cpnest.nest2pos import compute_weights + from cpnest.parameter import LivePoint class Model(cpmodel.Model): - """ A wrapper class to pass our log_likelihood into cpnest """ + """A wrapper class to pass our log_likelihood into cpnest""" def __init__(self, names, priors): self.names = names @@ -82,14 +98,16 @@ class Cpnest(NestedSampler): def _update_bounds(self): self.bounds = [ [self.priors[key].minimum, self.priors[key].maximum] - for key in self.names] + for key in self.names + ] def new_point(self): """Draw a point from the prior""" prior_samples = self.priors.sample() self._update_bounds() point = LivePoint( - self.names, array.array('d', [prior_samples[name] for name in self.names]) + self.names, + array.array("d", [prior_samples[name] for name in self.names]), ) return point @@ -105,18 +123,14 @@ class Cpnest(NestedSampler): kwarg = remove_kwargs.pop(0) else: raise TypeError("Unable to initialise cpnest sampler") - logger.info( - "CPNest init. failed with error {}, please update" - .format(e)) - logger.info( - "Attempting to rerun with kwarg {} removed".format(kwarg)) + logger.info(f"CPNest init. failed with error {e}, please update") + logger.info(f"Attempting to rerun with kwarg {kwarg} removed") self.kwargs.pop(kwarg) try: out.run() - except SystemExit as e: - import sys - logger.info("Caught exit code {}, exiting with signal {}".format(e.args[0], self.exit_code)) - sys.exit(self.exit_code) + except SystemExit: + out.checkpoint() + self.write_current_state_and_exit() if self.plot: out.plot() @@ -125,42 +139,58 @@ class Cpnest(NestedSampler): self.result.samples = structured_to_unstructured( out.posterior_samples[self.search_parameter_keys] ) - self.result.log_likelihood_evaluations = out.posterior_samples['logL'] - self.result.nested_samples = DataFrame(out.get_nested_samples(filename='')) - self.result.nested_samples.rename(columns=dict(logL='log_likelihood'), inplace=True) - _, log_weights = compute_weights(np.array(self.result.nested_samples.log_likelihood), - np.array(out.NS.state.nlive)) - self.result.nested_samples['weights'] = np.exp(log_weights) + self.result.log_likelihood_evaluations = out.posterior_samples["logL"] + self.result.nested_samples = DataFrame(out.get_nested_samples(filename="")) + self.result.nested_samples.rename( + columns=dict(logL="log_likelihood"), inplace=True + ) + _, log_weights = compute_weights( + np.array(self.result.nested_samples.log_likelihood), + np.array(out.NS.state.nlive), + ) + self.result.nested_samples["weights"] = np.exp(log_weights) self.result.log_evidence = out.NS.state.logZ self.result.log_evidence_err = np.sqrt(out.NS.state.info / out.NS.state.nlive) self.result.information_gain = out.NS.state.info return self.result + def write_current_state_and_exit(self, signum=None, frame=None): + """ + Overwrites the base class to make sure that :code:`CPNest` terminates + properly as :code:`CPNest` handles all the multiprocessing internally. + """ + self._log_interruption(signum=signum) + sys.exit(self.exit_code) + def _verify_kwargs_against_default_kwargs(self): """ Set the directory where the output will be written and check resume and checkpoint status. """ - if not self.kwargs['output']: - self.kwargs['output'] = \ - '{}/cpnest_{}/'.format(self.outdir, self.label) - if self.kwargs['output'].endswith('/') is False: - self.kwargs['output'] = '{}/'.format(self.kwargs['output']) - check_directory_exists_and_if_not_mkdir(self.kwargs['output']) - if self.kwargs['n_periodic_checkpoint'] and not self.kwargs['resume']: - self.kwargs['n_periodic_checkpoint'] = None + if not self.kwargs["output"]: + self.kwargs["output"] = f"{self.outdir}/cpnest_{self.label}/" + if self.kwargs["output"].endswith("/") is False: + self.kwargs["output"] = f"{self.kwargs['output']}/" + check_directory_exists_and_if_not_mkdir(self.kwargs["output"]) + if self.kwargs["n_periodic_checkpoint"] and not self.kwargs["resume"]: + self.kwargs["n_periodic_checkpoint"] = None NestedSampler._verify_kwargs_against_default_kwargs(self) def _resolve_proposal_functions(self): from cpnest.proposal import ProposalCycle - if 'proposals' in self.kwargs: - if self.kwargs['proposals'] is None: + + if "proposals" in self.kwargs: + if self.kwargs["proposals"] is None: return - if type(self.kwargs['proposals']) == JumpProposalCycle: - self.kwargs['proposals'] = dict(mhs=self.kwargs['proposals'], hmc=self.kwargs['proposals']) - for key, proposal in self.kwargs['proposals'].items(): + if type(self.kwargs["proposals"]) == JumpProposalCycle: + self.kwargs["proposals"] = dict( + mhs=self.kwargs["proposals"], hmc=self.kwargs["proposals"] + ) + for key, proposal in self.kwargs["proposals"].items(): if isinstance(proposal, JumpProposalCycle): - self.kwargs['proposals'][key] = cpnest_proposal_cycle_factory(proposal) + self.kwargs["proposals"][key] = cpnest_proposal_cycle_factory( + proposal + ) elif isinstance(proposal, ProposalCycle): pass else: @@ -171,7 +201,6 @@ def cpnest_proposal_factory(jump_proposal): import cpnest.proposal class CPNestEnsembleProposal(cpnest.proposal.EnsembleProposal): - def __init__(self, jp): self.jump_proposal = jp self.ensemble = None @@ -181,8 +210,8 @@ def cpnest_proposal_factory(jump_proposal): def get_sample(self, cpnest_sample, **kwargs): sample = Sample.from_cpnest_live_point(cpnest_sample) - self.ensemble = kwargs.get('coordinates', self.ensemble) - sample = self.jump_proposal(sample=sample, sampler_name='cpnest', **kwargs) + self.ensemble = kwargs.get("coordinates", self.ensemble) + sample = self.jump_proposal(sample=sample, sampler_name="cpnest", **kwargs) self.log_J = self.jump_proposal.log_j return self._update_cpnest_sample(cpnest_sample, sample) @@ -203,11 +232,15 @@ def cpnest_proposal_cycle_factory(jump_proposals): def __init__(self): self.jump_proposals = copy.deepcopy(jump_proposals) for i, prop in enumerate(self.jump_proposals.proposal_functions): - self.jump_proposals.proposal_functions[i] = cpnest_proposal_factory(prop) + self.jump_proposals.proposal_functions[i] = cpnest_proposal_factory( + prop + ) self.jump_proposals.update_cycle() - super(CPNestProposalCycle, self).__init__(proposals=self.jump_proposals.proposal_functions, - weights=self.jump_proposals.weights, - cyclelength=self.jump_proposals.cycle_length) + super(CPNestProposalCycle, self).__init__( + proposals=self.jump_proposals.proposal_functions, + weights=self.jump_proposals.weights, + cyclelength=self.jump_proposals.cycle_length, + ) def get_sample(self, old, **kwargs): return self.jump_proposals(sample=old, coordinates=self.ensemble, **kwargs) diff --git a/bilby/core/sampler/dnest4.py b/bilby/core/sampler/dnest4.py index ef80c13e933e4dfd6fcaa5e4c3ea8f113b15928e..5c3d7566e729fb92e5427e9c8b5968c3df6c6abe 100644 --- a/bilby/core/sampler/dnest4.py +++ b/bilby/core/sampler/dnest4.py @@ -1,21 +1,17 @@ -import os -import shutil -import distutils.dir_util -import signal -import time import datetime -import sys +import time import numpy as np import pandas as pd -from ..utils import check_directory_exists_and_if_not_mkdir, logger -from .base_sampler import NestedSampler +from ..utils import logger +from .base_sampler import NestedSampler, _TemporaryFileSamplerMixin, signal_wrapper class _DNest4Model(object): - - def __init__(self, log_likelihood_func, from_prior_func, widths, centers, highs, lows): + def __init__( + self, log_likelihood_func, from_prior_func, widths, centers, highs, lows + ): """Initialize the DNest4 model. Args: log_likelihood_func: function @@ -48,7 +44,7 @@ class _DNest4Model(object): """The perturb function to perform Monte Carlo trial moves.""" idx = np.random.randint(self._n_dim) - coords[idx] += (self._widths[idx] * (np.random.uniform(size=1) - 0.5)) + coords[idx] += self._widths[idx] * (np.random.uniform(size=1) - 0.5) cw = self._widths[idx] cc = self._centers[idx] @@ -59,11 +55,13 @@ class _DNest4Model(object): @staticmethod def wrap(x, minimum, maximum): if maximum <= minimum: - raise ValueError("maximum {} <= minimum {}, when trying to wrap coordinates".format(maximum, minimum)) + raise ValueError( + f"maximum {maximum} <= minimum {minimum}, when trying to wrap coordinates" + ) return (x - minimum) % (maximum - minimum) + minimum -class DNest4(NestedSampler): +class DNest4(_TemporaryFileSamplerMixin, NestedSampler): """ Bilby wrapper of DNest4 @@ -100,35 +98,59 @@ class DNest4(NestedSampler): If True, prints information during run """ - default_kwargs = dict(max_num_levels=20, num_steps=500, - new_level_interval=10000, num_per_step=10000, - thread_steps=1, num_particles=1000, lam=10.0, - beta=100, seed=None, verbose=True, outputfiles_basename=None, - backend='memory') - - def __init__(self, likelihood, priors, outdir="outdir", label="label", use_ratio=False, plot=False, - exit_code=77, skip_import_verification=False, temporary_directory=True, **kwargs): + default_kwargs = dict( + max_num_levels=20, + num_steps=500, + new_level_interval=10000, + num_per_step=10000, + thread_steps=1, + num_particles=1000, + lam=10.0, + beta=100, + seed=None, + verbose=True, + outputfiles_basename=None, + backend="memory", + ) + short_name = "dn4" + hard_exit = True + sampling_seed_key = "seed" + + def __init__( + self, + likelihood, + priors, + outdir="outdir", + label="label", + use_ratio=False, + plot=False, + exit_code=77, + skip_import_verification=False, + temporary_directory=True, + **kwargs, + ): super(DNest4, self).__init__( - likelihood=likelihood, priors=priors, outdir=outdir, label=label, - use_ratio=use_ratio, plot=plot, skip_import_verification=skip_import_verification, - exit_code=exit_code, **kwargs) + likelihood=likelihood, + priors=priors, + outdir=outdir, + label=label, + use_ratio=use_ratio, + plot=plot, + skip_import_verification=skip_import_verification, + temporary_directory=temporary_directory, + exit_code=exit_code, + **kwargs, + ) self.num_particles = self.kwargs["num_particles"] self.max_num_levels = self.kwargs["max_num_levels"] self._verbose = self.kwargs["verbose"] self._backend = self.kwargs["backend"] - self.use_temporary_directory = temporary_directory self.start_time = np.nan self.sampler = None self._information = np.nan self._last_live_sample_info = np.nan - self._outputfiles_basename = None - self._temporary_outputfiles_basename = None - - signal.signal(signal.SIGTERM, self.write_current_state_and_exit) - signal.signal(signal.SIGINT, self.write_current_state_and_exit) - signal.signal(signal.SIGALRM, self.write_current_state_and_exit) # Get the estimates of the prior distributions' widths and centers. widths = [] @@ -155,13 +177,22 @@ class DNest4(NestedSampler): self._highs = np.array(highs) self._lows = np.array(lows) - self._dnest4_model = _DNest4Model(self.log_likelihood, self.get_random_draw_from_prior, self._widths, - self._centers, self._highs, self._lows) + self._dnest4_model = _DNest4Model( + self.log_likelihood, + self.get_random_draw_from_prior, + self._widths, + self._centers, + self._highs, + self._lows, + ) def _set_backend(self): import dnest4 - if self._backend == 'csv': - return dnest4.backends.CSVBackend("{}/dnest4{}/".format(self.outdir, self.label), sep=" ") + + if self._backend == "csv": + return dnest4.backends.CSVBackend( + f"{self.outdir}/dnest4{self.label}/", sep=" " + ) else: return dnest4.backends.MemoryBackend() @@ -169,6 +200,7 @@ class DNest4(NestedSampler): dnest4_keys = ["num_steps", "new_level_interval", "lam", "beta", "seed"] self.dnest4_kwargs = {key: self.kwargs[key] for key in dnest4_keys} + @signal_wrapper def run_sampler(self): import dnest4 @@ -181,31 +213,37 @@ class DNest4(NestedSampler): self.start_time = time.time() self.sampler = dnest4.DNest4Sampler(self._dnest4_model, backend=backend) - out = self.sampler.sample(self.max_num_levels, - num_particles=self.num_particles, - **self.dnest4_kwargs) + out = self.sampler.sample( + self.max_num_levels, num_particles=self.num_particles, **self.dnest4_kwargs + ) for i, sample in enumerate(out): if self._verbose and ((i + 1) % 100 == 0): stats = self.sampler.postprocess() - logger.info("Iteration: {0} log(Z): {1}".format(i + 1, stats['log_Z'])) + logger.info(f"Iteration: {i + 1} log(Z): {stats['log_Z']}") self._calculate_and_save_sampling_time() self._clean_up_run_directory() stats = self.sampler.postprocess(resample=1) - self.result.log_evidence = stats['log_Z'] - self._information = stats['H'] + self.result.log_evidence = stats["log_Z"] + self._information = stats["H"] self.result.log_evidence_err = np.sqrt(self._information / self.num_particles) - if self._backend == 'memory': - self._last_live_sample_info = pd.DataFrame(self.sampler.backend.sample_info[-1]) - self.result.log_likelihood_evaluations = self._last_live_sample_info['log_likelihood'] + if self._backend == "memory": + self._last_live_sample_info = pd.DataFrame( + self.sampler.backend.sample_info[-1] + ) + self.result.log_likelihood_evaluations = self._last_live_sample_info[ + "log_likelihood" + ] self.result.samples = np.array(self.sampler.backend.posterior_samples) else: - sample_info_path = './' + self.kwargs["outputfiles_basename"] + '/sample_info.txt' - sample_info = np.genfromtxt(sample_info_path, comments='#', names=True) - self.result.log_likelihood_evaluations = sample_info['log_likelihood'] + sample_info_path = ( + "./" + self.kwargs["outputfiles_basename"] + "/sample_info.txt" + ) + sample_info = np.genfromtxt(sample_info_path, comments="#", names=True) + self.result.log_likelihood_evaluations = sample_info["log_likelihood"] self.result.samples = np.array(self.sampler.backend.posterior_samples) self.result.sampler_output = out @@ -217,100 +255,12 @@ class DNest4(NestedSampler): return self.result def _translate_kwargs(self, kwargs): - if 'num_steps' not in kwargs: + kwargs = super()._translate_kwargs(kwargs) + if "num_steps" not in kwargs: for equiv in self.walks_equiv_kwargs: if equiv in kwargs: - kwargs['num_steps'] = kwargs.pop(equiv) + kwargs["num_steps"] = kwargs.pop(equiv) def _verify_kwargs_against_default_kwargs(self): self.outputfiles_basename = self.kwargs.pop("outputfiles_basename", None) super(DNest4, self)._verify_kwargs_against_default_kwargs() - - def _check_and_load_sampling_time_file(self): - self.time_file_path = self.kwargs["outputfiles_basename"] + '/sampling_time.dat' - if os.path.exists(self.time_file_path): - with open(self.time_file_path, 'r') as time_file: - self.total_sampling_time = float(time_file.readline()) - else: - self.total_sampling_time = 0 - - def _calculate_and_save_sampling_time(self): - current_time = time.time() - new_sampling_time = current_time - self.start_time - self.total_sampling_time += new_sampling_time - - with open(self.time_file_path, 'w') as time_file: - time_file.write(str(self.total_sampling_time)) - - self.start_time = current_time - - def _clean_up_run_directory(self): - if self.use_temporary_directory: - self._move_temporary_directory_to_proper_path() - self.kwargs["outputfiles_basename"] = self.outputfiles_basename - - @property - def outputfiles_basename(self): - return self._outputfiles_basename - - @outputfiles_basename.setter - def outputfiles_basename(self, outputfiles_basename): - if outputfiles_basename is None: - outputfiles_basename = "{}/dnest4{}/".format(self.outdir, self.label) - if not outputfiles_basename.endswith("/"): - outputfiles_basename += "/" - check_directory_exists_and_if_not_mkdir(self.outdir) - self._outputfiles_basename = outputfiles_basename - - @property - def temporary_outputfiles_basename(self): - return self._temporary_outputfiles_basename - - @temporary_outputfiles_basename.setter - def temporary_outputfiles_basename(self, temporary_outputfiles_basename): - if not temporary_outputfiles_basename.endswith("/"): - temporary_outputfiles_basename = "{}/".format( - temporary_outputfiles_basename - ) - self._temporary_outputfiles_basename = temporary_outputfiles_basename - if os.path.exists(self.outputfiles_basename): - shutil.copytree( - self.outputfiles_basename, self.temporary_outputfiles_basename - ) - - def write_current_state_and_exit(self, signum=None, frame=None): - """ Write current state and exit on exit_code """ - logger.info( - "Run interrupted by signal {}: checkpoint and exit on {}".format( - signum, self.exit_code - ) - ) - self._calculate_and_save_sampling_time() - if self.use_temporary_directory: - self._move_temporary_directory_to_proper_path() - sys.exit(self.exit_code) - - def _move_temporary_directory_to_proper_path(self): - """ - Move the temporary back to the proper path - - Anything in the proper path at this point is removed including links - """ - self._copy_temporary_directory_contents_to_proper_path() - shutil.rmtree(self.temporary_outputfiles_basename) - - def _copy_temporary_directory_contents_to_proper_path(self): - """ - Copy the temporary back to the proper path. - Do not delete the temporary directory. - """ - logger.info( - "Overwriting {} with {}".format( - self.outputfiles_basename, self.temporary_outputfiles_basename - ) - ) - if self.outputfiles_basename.endswith('/'): - outputfiles_basename_stripped = self.outputfiles_basename[:-1] - else: - outputfiles_basename_stripped = self.outputfiles_basename - distutils.dir_util.copy_tree(self.temporary_outputfiles_basename, outputfiles_basename_stripped) diff --git a/bilby/core/sampler/dynamic_dynesty.py b/bilby/core/sampler/dynamic_dynesty.py index 8bb6d647aad013c5be957cfde6311f10f9feda82..ef28f22ddbb2ce099d481c3adebaae1ef1d3b0cd 100644 --- a/bilby/core/sampler/dynamic_dynesty.py +++ b/bilby/core/sampler/dynamic_dynesty.py @@ -1,12 +1,10 @@ - -import os -import signal +import datetime import numpy as np -from ..utils import logger, check_directory_exists_and_if_not_mkdir -from .base_sampler import Sampler -from .dynesty import Dynesty +from ..utils import logger +from .base_sampler import Sampler, signal_wrapper +from .dynesty import Dynesty, _log_likelihood_wrapper, _prior_transform_wrapper class DynamicDynesty(Dynesty): @@ -62,33 +60,77 @@ class DynamicDynesty(Dynesty): resume: bool If true, resume run from checkpoint (if available) """ - default_kwargs = dict(bound='multi', sample='rwalk', - verbose=True, - check_point_delta_t=600, - first_update=None, - npdim=None, rstate=None, queue_size=None, pool=None, - use_pool=None, - logl_args=None, logl_kwargs=None, - ptform_args=None, ptform_kwargs=None, - enlarge=None, bootstrap=None, vol_dec=0.5, vol_check=2.0, - facc=0.5, slices=5, - walks=None, update_interval=0.6, - nlive_init=500, maxiter_init=None, maxcall_init=None, - dlogz_init=0.01, logl_max_init=np.inf, nlive_batch=500, - wt_function=None, wt_kwargs=None, maxiter_batch=None, - maxcall_batch=None, maxiter=None, maxcall=None, - maxbatch=None, stop_function=None, stop_kwargs=None, - use_stop=True, save_bounds=True, - print_progress=True, print_func=None, live_points=None, - ) - - def __init__(self, likelihood, priors, outdir='outdir', label='label', use_ratio=False, plot=False, - skip_import_verification=False, check_point=True, n_check_point=None, check_point_delta_t=600, - resume=True, **kwargs): - super(DynamicDynesty, self).__init__(likelihood=likelihood, priors=priors, - outdir=outdir, label=label, use_ratio=use_ratio, - plot=plot, skip_import_verification=skip_import_verification, - **kwargs) + + default_kwargs = dict( + bound="multi", + sample="rwalk", + verbose=True, + check_point_delta_t=600, + first_update=None, + npdim=None, + rstate=None, + queue_size=None, + pool=None, + use_pool=None, + logl_args=None, + logl_kwargs=None, + ptform_args=None, + ptform_kwargs=None, + enlarge=None, + bootstrap=None, + vol_dec=0.5, + vol_check=2.0, + facc=0.5, + slices=5, + walks=None, + update_interval=0.6, + nlive_init=500, + maxiter_init=None, + maxcall_init=None, + dlogz_init=0.01, + logl_max_init=np.inf, + nlive_batch=500, + wt_function=None, + wt_kwargs=None, + maxiter_batch=None, + maxcall_batch=None, + maxiter=None, + maxcall=None, + maxbatch=None, + stop_function=None, + stop_kwargs=None, + use_stop=True, + save_bounds=True, + print_progress=True, + print_func=None, + live_points=None, + ) + + def __init__( + self, + likelihood, + priors, + outdir="outdir", + label="label", + use_ratio=False, + plot=False, + skip_import_verification=False, + check_point=True, + n_check_point=None, + check_point_delta_t=600, + resume=True, + **kwargs, + ): + super(DynamicDynesty, self).__init__( + likelihood=likelihood, + priors=priors, + outdir=outdir, + label=label, + use_ratio=use_ratio, + plot=plot, + skip_import_verification=skip_import_verification, + **kwargs, + ) self.n_check_point = n_check_point self.check_point = check_point self.resume = resume @@ -97,39 +139,59 @@ class DynamicDynesty(Dynesty): # check_point is set to False. if np.isnan(self._log_likelihood_eval_time): self.check_point = False - n_check_point_raw = (check_point_delta_t / self._log_likelihood_eval_time) - n_check_point_rnd = int(float("{:1.0g}".format(n_check_point_raw))) + n_check_point_raw = check_point_delta_t / self._log_likelihood_eval_time + n_check_point_rnd = int(float(f"{n_check_point_raw:1.0g}")) self.n_check_point = n_check_point_rnd - self.resume_file = '{}/{}_resume.pickle'.format(self.outdir, self.label) - - signal.signal(signal.SIGTERM, self.write_current_state_and_exit) - signal.signal(signal.SIGINT, self.write_current_state_and_exit) + self.resume_file = f"{self.outdir}/{self.label}_resume.pickle" @property def external_sampler_name(self): - return 'dynesty' + return "dynesty" @property def sampler_function_kwargs(self): - keys = ['nlive_init', 'maxiter_init', 'maxcall_init', 'dlogz_init', - 'logl_max_init', 'nlive_batch', 'wt_function', 'wt_kwargs', - 'maxiter_batch', 'maxcall_batch', 'maxiter', 'maxcall', - 'maxbatch', 'stop_function', 'stop_kwargs', 'use_stop', - 'save_bounds', 'print_progress', 'print_func', 'live_points'] + keys = [ + "nlive_init", + "maxiter_init", + "maxcall_init", + "dlogz_init", + "logl_max_init", + "nlive_batch", + "wt_function", + "wt_kwargs", + "maxiter_batch", + "maxcall_batch", + "maxiter", + "maxcall", + "maxbatch", + "stop_function", + "stop_kwargs", + "use_stop", + "save_bounds", + "print_progress", + "print_func", + "live_points", + ] return {key: self.kwargs[key] for key in keys} + @signal_wrapper def run_sampler(self): import dynesty + + self._setup_pool() self.sampler = dynesty.DynamicNestedSampler( - loglikelihood=self.log_likelihood, - prior_transform=self.prior_transform, - ndim=self.ndim, **self.sampler_init_kwargs) + loglikelihood=_log_likelihood_wrapper, + prior_transform=_prior_transform_wrapper, + ndim=self.ndim, + **self.sampler_init_kwargs, + ) if self.check_point: out = self._run_external_sampler_with_checkpointing() else: out = self._run_external_sampler_without_checkpointing() + self._close_pool() # Flushes the output to force a line break if self.kwargs["verbose"]: @@ -147,13 +209,14 @@ class DynamicDynesty(Dynesty): if self.resume: resume = self.read_saved_state(continuing=True) if resume: - logger.info('Resuming from previous run.') + logger.info("Resuming from previous run.") old_ncall = self.sampler.ncall sampler_kwargs = self.sampler_function_kwargs.copy() - sampler_kwargs['maxcall'] = self.n_check_point + sampler_kwargs["maxcall"] = self.n_check_point + self.start_time = datetime.datetime.now() while True: - sampler_kwargs['maxcall'] += self.n_check_point + sampler_kwargs["maxcall"] += self.n_check_point self.sampler.run_nested(**sampler_kwargs) if self.sampler.ncall == old_ncall: break @@ -164,27 +227,8 @@ class DynamicDynesty(Dynesty): self._remove_checkpoint() return self.sampler.results - def write_current_state(self): - """ - """ - import dill - check_directory_exists_and_if_not_mkdir(self.outdir) - with open(self.resume_file, 'wb') as file: - dill.dump(self, file) - - def read_saved_state(self, continuing=False): - """ - """ - import dill - - logger.debug("Reading resume file {}".format(self.resume_file)) - if os.path.isfile(self.resume_file): - with open(self.resume_file, 'rb') as file: - self = dill.load(file) - else: - logger.debug( - "Failed to read resume file {}".format(self.resume_file)) - return False + def write_current_state_and_exit(self, signum=None, frame=None): + Sampler.write_current_state_and_exit(self=self, signum=signum, frame=frame) def _verify_kwargs_against_default_kwargs(self): Sampler._verify_kwargs_against_default_kwargs(self) diff --git a/bilby/core/sampler/dynesty.py b/bilby/core/sampler/dynesty.py index d9f1ae94bc4995c0b1f0bd88649ff3850e571085..82da609e77a17613f90c248b6b04b7b1c2854bf9 100644 --- a/bilby/core/sampler/dynesty.py +++ b/bilby/core/sampler/dynesty.py @@ -1,62 +1,51 @@ import datetime import os import sys -import signal import time import warnings import numpy as np from pandas import DataFrame +from ..result import rejection_sample from ..utils import ( - logger, check_directory_exists_and_if_not_mkdir, + latex_plot_format, + logger, reflect, safe_file_dump, - latex_plot_format, ) -from .base_sampler import Sampler, NestedSampler -from ..result import rejection_sample - -_likelihood = None -_priors = None -_search_parameter_keys = None -_use_ratio = False - - -def _initialize_global_variables( - likelihood, priors, search_parameter_keys, use_ratio -): - """ - Store a global copy of the likelihood, priors, and search keys for - multiprocessing. - """ - global _likelihood - global _priors - global _search_parameter_keys - global _use_ratio - _likelihood = likelihood - _priors = priors - _search_parameter_keys = search_parameter_keys - _use_ratio = use_ratio +from .base_sampler import NestedSampler, Sampler, signal_wrapper def _prior_transform_wrapper(theta): """Wrapper to the prior transformation. Needed for multiprocessing.""" - return _priors.rescale(_search_parameter_keys, theta) + from .base_sampler import _sampling_convenience_dump + + return _sampling_convenience_dump.priors.rescale( + _sampling_convenience_dump.search_parameter_keys, theta + ) def _log_likelihood_wrapper(theta): """Wrapper to the log likelihood. Needed for multiprocessing.""" - if _priors.evaluate_constraints({ - key: theta[ii] for ii, key in enumerate(_search_parameter_keys) - }): - params = {key: t for key, t in zip(_search_parameter_keys, theta)} - _likelihood.parameters.update(params) - if _use_ratio: - return _likelihood.log_likelihood_ratio() + from .base_sampler import _sampling_convenience_dump + + if _sampling_convenience_dump.priors.evaluate_constraints( + { + key: theta[ii] + for ii, key in enumerate(_sampling_convenience_dump.search_parameter_keys) + } + ): + params = { + key: t + for key, t in zip(_sampling_convenience_dump.search_parameter_keys, theta) + } + _sampling_convenience_dump.likelihood.parameters.update(params) + if _sampling_convenience_dump.use_ratio: + return _sampling_convenience_dump.likelihood.log_likelihood_ratio() else: - return _likelihood.log_likelihood() + return _sampling_convenience_dump.likelihood.log_likelihood() else: return np.nan_to_num(-np.inf) @@ -130,32 +119,77 @@ class Dynesty(NestedSampler): e.g., 'interval-10' prints every ten seconds, this does not print every iteration - else: print to `stdout` at every iteration """ - default_kwargs = dict(bound='multi', sample='rwalk', - periodic=None, reflective=None, - check_point_delta_t=1800, nlive=1000, - first_update=None, walks=100, - npdim=None, rstate=None, queue_size=1, pool=None, - use_pool=None, live_points=None, - logl_args=None, logl_kwargs=None, - ptform_args=None, ptform_kwargs=None, - enlarge=1.5, bootstrap=None, vol_dec=0.5, vol_check=8.0, - facc=0.2, slices=5, - update_interval=None, print_func=None, - dlogz=0.1, maxiter=None, maxcall=None, - logl_max=np.inf, add_live=True, print_progress=True, - save_bounds=False, n_effective=None, - maxmcmc=5000, nact=5, print_method="tqdm") - - def __init__(self, likelihood, priors, outdir='outdir', label='label', - use_ratio=False, plot=False, skip_import_verification=False, - check_point=True, check_point_plot=True, n_check_point=None, - check_point_delta_t=600, resume=True, nestcheck=False, exit_code=130, **kwargs): - - super(Dynesty, self).__init__(likelihood=likelihood, priors=priors, - outdir=outdir, label=label, use_ratio=use_ratio, - plot=plot, skip_import_verification=skip_import_verification, - exit_code=exit_code, - **kwargs) + + default_kwargs = dict( + bound="multi", + sample="rwalk", + print_progress=True, + periodic=None, + reflective=None, + check_point_delta_t=1800, + nlive=1000, + first_update=None, + walks=100, + npdim=None, + rstate=None, + queue_size=1, + pool=None, + use_pool=None, + live_points=None, + logl_args=None, + logl_kwargs=None, + ptform_args=None, + ptform_kwargs=None, + enlarge=1.5, + bootstrap=None, + vol_dec=0.5, + vol_check=8.0, + facc=0.2, + slices=5, + update_interval=None, + print_func=None, + dlogz=0.1, + maxiter=None, + maxcall=None, + logl_max=np.inf, + add_live=True, + save_bounds=False, + n_effective=None, + maxmcmc=5000, + nact=5, + print_method="tqdm", + ) + + def __init__( + self, + likelihood, + priors, + outdir="outdir", + label="label", + use_ratio=False, + plot=False, + skip_import_verification=False, + check_point=True, + check_point_plot=True, + n_check_point=None, + check_point_delta_t=600, + resume=True, + nestcheck=False, + exit_code=130, + **kwargs, + ): + self._translate_kwargs(kwargs) + super(Dynesty, self).__init__( + likelihood=likelihood, + priors=priors, + outdir=outdir, + label=label, + use_ratio=use_ratio, + plot=plot, + skip_import_verification=skip_import_verification, + exit_code=exit_code, + **kwargs, + ) self.n_check_point = n_check_point self.check_point = check_point self.check_point_plot = check_point_plot @@ -169,77 +203,80 @@ class Dynesty(NestedSampler): if self.n_check_point is None: self.n_check_point = 1000 self.check_point_delta_t = check_point_delta_t - logger.info("Checkpoint every check_point_delta_t = {}s" - .format(check_point_delta_t)) + logger.info(f"Checkpoint every check_point_delta_t = {check_point_delta_t}s") - self.resume_file = '{}/{}_resume.pickle'.format(self.outdir, self.label) + self.resume_file = f"{self.outdir}/{self.label}_resume.pickle" self.sampling_time = datetime.timedelta() - try: - signal.signal(signal.SIGTERM, self.write_current_state_and_exit) - signal.signal(signal.SIGINT, self.write_current_state_and_exit) - signal.signal(signal.SIGALRM, self.write_current_state_and_exit) - except AttributeError: - logger.debug( - "Setting signal attributes unavailable on this system. " - "This is likely the case if you are running on a Windows machine" - " and is no further concern.") - def __getstate__(self): - """ For pickle: remove external_sampler, which can be an unpicklable "module" """ + """For pickle: remove external_sampler, which can be an unpicklable "module" """ state = self.__dict__.copy() if "external_sampler" in state: - del state['external_sampler'] + del state["external_sampler"] return state @property def sampler_function_kwargs(self): - keys = ['dlogz', 'print_progress', 'print_func', 'maxiter', - 'maxcall', 'logl_max', 'add_live', 'save_bounds', - 'n_effective'] + keys = [ + "dlogz", + "print_progress", + "print_func", + "maxiter", + "maxcall", + "logl_max", + "add_live", + "save_bounds", + "n_effective", + ] return {key: self.kwargs[key] for key in keys} @property def sampler_init_kwargs(self): - return {key: value - for key, value in self.kwargs.items() - if key not in self.sampler_function_kwargs} + return { + key: value + for key, value in self.kwargs.items() + if key not in self.sampler_function_kwargs + } def _translate_kwargs(self, kwargs): - if 'nlive' not in kwargs: + kwargs = super()._translate_kwargs(kwargs) + if "nlive" not in kwargs: for equiv in self.npoints_equiv_kwargs: if equiv in kwargs: - kwargs['nlive'] = kwargs.pop(equiv) - if 'print_progress' not in kwargs: - if 'verbose' in kwargs: - kwargs['print_progress'] = kwargs.pop('verbose') - if 'walks' not in kwargs: + kwargs["nlive"] = kwargs.pop(equiv) + if "print_progress" not in kwargs: + if "verbose" in kwargs: + kwargs["print_progress"] = kwargs.pop("verbose") + if "walks" not in kwargs: for equiv in self.walks_equiv_kwargs: if equiv in kwargs: - kwargs['walks'] = kwargs.pop(equiv) + kwargs["walks"] = kwargs.pop(equiv) if "queue_size" not in kwargs: for equiv in self.npool_equiv_kwargs: if equiv in kwargs: - kwargs['queue_size'] = kwargs.pop(equiv) + kwargs["queue_size"] = kwargs.pop(equiv) def _verify_kwargs_against_default_kwargs(self): from tqdm.auto import tqdm - if not self.kwargs['walks']: - self.kwargs['walks'] = 100 - if not self.kwargs['update_interval']: - self.kwargs['update_interval'] = int(0.6 * self.kwargs['nlive']) - if self.kwargs['print_func'] is None: - self.kwargs['print_func'] = self._print_func + + if not self.kwargs["walks"]: + self.kwargs["walks"] = 100 + if not self.kwargs["update_interval"]: + self.kwargs["update_interval"] = int(0.6 * self.kwargs["nlive"]) + if self.kwargs["print_func"] is None: + self.kwargs["print_func"] = self._print_func print_method = self.kwargs["print_method"] if print_method == "tqdm" and self.kwargs["print_progress"]: self.pbar = tqdm(file=sys.stdout) elif "interval" in print_method: self._last_print_time = datetime.datetime.now() - self._print_interval = datetime.timedelta(seconds=float(print_method.split("-")[1])) + self._print_interval = datetime.timedelta( + seconds=float(print_method.split("-")[1]) + ) Sampler._verify_kwargs_against_default_kwargs(self) def _print_func(self, results, niter, ncall=None, dlogz=None, *args, **kwargs): - """ Replacing status update for dynesty.result.print_func """ + """Replacing status update for dynesty.result.print_func""" if "interval" in self.kwargs["print_method"]: _time = datetime.datetime.now() if _time - self._last_print_time < self._print_interval: @@ -251,17 +288,31 @@ class Dynesty(NestedSampler): total_time = self.sampling_time + _time - self.start_time # Remove fractional seconds - total_time_str = str(total_time).split('.')[0] + total_time_str = str(total_time).split(".")[0] # Extract results at the current iteration. - (worst, ustar, vstar, loglstar, logvol, logwt, - logz, logzvar, h, nc, worst_it, boundidx, bounditer, - eff, delta_logz) = results + ( + worst, + ustar, + vstar, + loglstar, + logvol, + logwt, + logz, + logzvar, + h, + nc, + worst_it, + boundidx, + bounditer, + eff, + delta_logz, + ) = results # Adjusting outputs for printing. if delta_logz > 1e6: delta_logz = np.inf - if 0. <= logzvar <= 1e6: + if 0.0 <= logzvar <= 1e6: logzerr = np.sqrt(logzvar) else: logzerr = np.nan @@ -271,38 +322,38 @@ class Dynesty(NestedSampler): loglstar = -np.inf if self.use_ratio: - key = 'logz-ratio' + key = "logz-ratio" else: - key = 'logz' + key = "logz" # Constructing output. string = list() - string.append("bound:{:d}".format(bounditer)) - string.append("nc:{:3d}".format(nc)) - string.append("ncall:{:.1e}".format(ncall)) - string.append("eff:{:0.1f}%".format(eff)) - string.append("{}={:0.2f}+/-{:0.2f}".format(key, logz, logzerr)) - string.append("dlogz:{:0.3f}>{:0.2g}".format(delta_logz, dlogz)) + string.append(f"bound:{bounditer:d}") + string.append(f"nc:{nc:3d}") + string.append(f"ncall:{ncall:.1e}") + string.append(f"eff:{eff:0.1f}%") + string.append(f"{key}={logz:0.2f}+/-{logzerr:0.2f}") + string.append(f"dlogz:{delta_logz:0.3f}>{dlogz:0.2g}") if self.kwargs["print_method"] == "tqdm": self.pbar.set_postfix_str(" ".join(string), refresh=False) self.pbar.update(niter - self.pbar.n) elif "interval" in self.kwargs["print_method"]: formatted = " ".join([total_time_str] + string) - print("{}it [{}]".format(niter, formatted), file=sys.stdout, flush=True) + print(f"{niter}it [{formatted}]", file=sys.stdout, flush=True) else: formatted = " ".join([total_time_str] + string) - print("{}it [{}]".format(niter, formatted), file=sys.stdout, flush=True) + print(f"{niter}it [{formatted}]", file=sys.stdout, flush=True) def _apply_dynesty_boundaries(self): self._periodic = list() self._reflective = list() for ii, key in enumerate(self.search_parameter_keys): - if self.priors[key].boundary == 'periodic': - logger.debug("Setting periodic boundary for {}".format(key)) + if self.priors[key].boundary == "periodic": + logger.debug(f"Setting periodic boundary for {key}") self._periodic.append(ii) - elif self.priors[key].boundary == 'reflective': - logger.debug("Setting reflective boundary for {}".format(key)) + elif self.priors[key].boundary == "reflective": + logger.debug(f"Setting reflective boundary for {key}") self._reflective.append(ii) # The periodic kwargs passed into dynesty allows the parameters to @@ -312,61 +363,26 @@ class Dynesty(NestedSampler): self.kwargs["reflective"] = self._reflective def nestcheck_data(self, out_file): - import nestcheck.data_processing import pickle + + import nestcheck.data_processing + ns_run = nestcheck.data_processing.process_dynesty_run(out_file) - nestcheck_result = "{}/{}_nestcheck.pickle".format(self.outdir, self.label) - with open(nestcheck_result, 'wb') as file_nest: + nestcheck_result = f"{self.outdir}/{self.label}_nestcheck.pickle" + with open(nestcheck_result, "wb") as file_nest: pickle.dump(ns_run, file_nest) - def _setup_pool(self): - if self.kwargs["pool"] is not None: - logger.info("Using user defined pool.") - self.pool = self.kwargs["pool"] - elif self.kwargs["queue_size"] > 1: - logger.info( - "Setting up multiproccesing pool with {} processes.".format( - self.kwargs["queue_size"] - ) - ) - import multiprocessing - self.pool = multiprocessing.Pool( - processes=self.kwargs["queue_size"], - initializer=_initialize_global_variables, - initargs=( - self.likelihood, - self.priors, - self._search_parameter_keys, - self.use_ratio - ) - ) - else: - _initialize_global_variables( - likelihood=self.likelihood, - priors=self.priors, - search_parameter_keys=self._search_parameter_keys, - use_ratio=self.use_ratio - ) - self.pool = None - self.kwargs["pool"] = self.pool - - def _close_pool(self): - if getattr(self, "pool", None) is not None: - logger.info("Starting to close worker pool.") - self.pool.close() - self.pool.join() - self.pool = None - self.kwargs["pool"] = self.pool - logger.info("Finished closing worker pool.") - + @signal_wrapper def run_sampler(self): - import dynesty import dill - logger.info("Using dynesty version {}".format(dynesty.__version__)) + import dynesty + + logger.info(f"Using dynesty version {dynesty.__version__}") if self.kwargs.get("sample", "rwalk") == "rwalk": logger.info( - "Using the bilby-implemented rwalk sample method with ACT estimated walks") + "Using the bilby-implemented rwalk sample method with ACT estimated walks" + ) dynesty.dynesty._SAMPLING["rwalk"] = sample_rwalk_bilby dynesty.nestedsamplers._SAMPLING["rwalk"] = sample_rwalk_bilby if self.kwargs.get("walks") > self.kwargs.get("maxmcmc"): @@ -375,12 +391,10 @@ class Dynesty(NestedSampler): raise DynestySetupError("Unable to run with nact < 1") elif self.kwargs.get("sample") == "rwalk_dynesty": self._kwargs["sample"] = "rwalk" - logger.info( - "Using the dynesty-implemented rwalk sample method") + logger.info("Using the dynesty-implemented rwalk sample method") elif self.kwargs.get("sample") == "rstagger_dynesty": self._kwargs["sample"] = "rstagger" - logger.info( - "Using the dynesty-implemented rstagger sample method") + logger.info("Using the dynesty-implemented rstagger sample method") self._setup_pool() @@ -388,22 +402,25 @@ class Dynesty(NestedSampler): self.resume = self.read_saved_state(continuing=True) if self.resume: - logger.info('Resume file successfully loaded.') + logger.info("Resume file successfully loaded.") else: - if self.kwargs['live_points'] is None: - self.kwargs['live_points'] = ( - self.get_initial_points_from_prior(self.kwargs['nlive']) + if self.kwargs["live_points"] is None: + self.kwargs["live_points"] = self.get_initial_points_from_prior( + self.kwargs["nlive"] ) self.sampler = dynesty.NestedSampler( loglikelihood=_log_likelihood_wrapper, prior_transform=_prior_transform_wrapper, - ndim=self.ndim, **self.sampler_init_kwargs + ndim=self.ndim, + **self.sampler_init_kwargs, ) + self.start_time = datetime.datetime.now() if self.check_point: out = self._run_external_sampler_with_checkpointing() else: out = self._run_external_sampler_without_checkpointing() + self._update_sampling_time() self._close_pool() @@ -417,8 +434,8 @@ class Dynesty(NestedSampler): if self.nestcheck: self.nestcheck_data(out) - dynesty_result = "{}/{}_dynesty.pickle".format(self.outdir, self.label) - with open(dynesty_result, 'wb') as file: + dynesty_result = f"{self.outdir}/{self.label}_dynesty.pickle" + with open(dynesty_result, "wb") as file: dill.dump(out, file) self._generate_result(out) @@ -432,21 +449,23 @@ class Dynesty(NestedSampler): def _generate_result(self, out): import dynesty from scipy.special import logsumexp + logwts = out["logwt"] - weights = np.exp(logwts - out['logz'][-1]) - nested_samples = DataFrame( - out.samples, columns=self.search_parameter_keys) - nested_samples['weights'] = weights - nested_samples['log_likelihood'] = out.logl + weights = np.exp(logwts - out["logz"][-1]) + nested_samples = DataFrame(out.samples, columns=self.search_parameter_keys) + nested_samples["weights"] = weights + nested_samples["log_likelihood"] = out.logl self.result.samples = dynesty.utils.resample_equal(out.samples, weights) self.result.nested_samples = nested_samples self.result.log_likelihood_evaluations = self.reorder_loglikelihoods( - unsorted_loglikelihoods=out.logl, unsorted_samples=out.samples, - sorted_samples=self.result.samples) + unsorted_loglikelihoods=out.logl, + unsorted_samples=out.samples, + sorted_samples=self.result.samples, + ) self.result.log_evidence = out.logz[-1] self.result.log_evidence_err = out.logzerr[-1] self.result.information_gain = out.information[-1] - self.result.num_likelihood_evaluations = getattr(self.sampler, 'ncall', 0) + self.result.num_likelihood_evaluations = getattr(self.sampler, "ncall", 0) logneff = logsumexp(logwts) * 2 - logsumexp(logwts * 2) neffsamples = int(np.exp(logneff)) @@ -454,11 +473,16 @@ class Dynesty(NestedSampler): nlikelihood=self.result.num_likelihood_evaluations, neffsamples=neffsamples, sampling_time_s=self.sampling_time.seconds, - ncores=self.kwargs.get("queue_size", 1) + ncores=self.kwargs.get("queue_size", 1), ) + def _update_sampling_time(self): + end_time = datetime.datetime.now() + self.sampling_time += end_time - self.start_time + self.start_time = end_time + def _run_nested_wrapper(self, kwargs): - """ Wrapper function to run_nested + """Wrapper function to run_nested This wrapper catches exceptions related to different versions of dynesty accepting different arguments. @@ -469,8 +493,7 @@ class Dynesty(NestedSampler): The dictionary of kwargs to pass to run_nested """ - logger.debug("Calling run_nested with sampler_function_kwargs {}" - .format(kwargs)) + logger.debug(f"Calling run_nested with sampler_function_kwargs {kwargs}") try: self.sampler.run_nested(**kwargs) except TypeError: @@ -487,9 +510,8 @@ class Dynesty(NestedSampler): old_ncall = self.sampler.ncall sampler_kwargs = self.sampler_function_kwargs.copy() - sampler_kwargs['maxcall'] = self.n_check_point - sampler_kwargs['add_live'] = True - self.start_time = datetime.datetime.now() + sampler_kwargs["maxcall"] = self.n_check_point + sampler_kwargs["add_live"] = True while True: self._run_nested_wrapper(sampler_kwargs) if self.sampler.ncall == old_ncall: @@ -499,14 +521,16 @@ class Dynesty(NestedSampler): if os.path.isfile(self.resume_file): last_checkpoint_s = time.time() - os.path.getmtime(self.resume_file) else: - last_checkpoint_s = (datetime.datetime.now() - self.start_time).total_seconds() + last_checkpoint_s = ( + datetime.datetime.now() - self.start_time + ).total_seconds() if last_checkpoint_s > self.check_point_delta_t: self.write_current_state() self.plot_current_state() if self.sampler.added_live: self.sampler._remove_live_points() - sampler_kwargs['add_live'] = True + sampler_kwargs["add_live"] = True self._run_nested_wrapper(sampler_kwargs) self.write_current_state() self.plot_current_state() @@ -534,39 +558,41 @@ class Dynesty(NestedSampler): Whether the run is continuing or terminating, if True, the loaded state is mostly written back to disk. """ - from ... import __version__ as bilby_version - from dynesty import __version__ as dynesty_version import dill + from dynesty import __version__ as dynesty_version + + from ... import __version__ as bilby_version + versions = dict(bilby=bilby_version, dynesty=dynesty_version) if os.path.isfile(self.resume_file): - logger.info("Reading resume file {}".format(self.resume_file)) - with open(self.resume_file, 'rb') as file: + logger.info(f"Reading resume file {self.resume_file}") + with open(self.resume_file, "rb") as file: sampler = dill.load(file) if not hasattr(sampler, "versions"): logger.warning( - "The resume file {} is corrupted or the version of " - "bilby has changed between runs. This resume file will " - "be ignored." - .format(self.resume_file) + f"The resume file {self.resume_file} is corrupted or " + "the version of bilby has changed between runs. This " + "resume file will be ignored." ) return False version_warning = ( "The {code} version has changed between runs. " "This may cause unpredictable behaviour and/or failure. " "Old version = {old}, new version = {new}." - ) for code in versions: if not versions[code] == sampler.versions.get(code, None): - logger.warning(version_warning.format( - code=code, - old=sampler.versions.get(code, "None"), - new=versions[code] - )) + logger.warning( + version_warning.format( + code=code, + old=sampler.versions.get(code, "None"), + new=versions[code], + ) + ) del sampler.versions self.sampler = sampler - if self.sampler.added_live and continuing: + if getattr(self.sampler, "added_live", False) and continuing: self.sampler._remove_live_points() self.sampler.nqueue = -1 self.sampler.rstate = np.random @@ -579,27 +605,13 @@ class Dynesty(NestedSampler): self.sampler.M = map return True else: - logger.info( - "Resume file {} does not exist.".format(self.resume_file)) + logger.info(f"Resume file {self.resume_file} does not exist.") return False def write_current_state_and_exit(self, signum=None, frame=None): - """ - Make sure that if a pool of jobs is running only the parent tries to - checkpoint and exit. Only the parent has a 'pool' attribute. - """ - if self.kwargs["queue_size"] == 1 or getattr(self, "pool", None) is not None: - if signum == 14: - logger.info( - "Run interrupted by alarm signal {}: checkpoint and exit on {}" - .format(signum, self.exit_code)) - else: - logger.info( - "Run interrupted by signal {}: checkpoint and exit on {}" - .format(signum, self.exit_code)) - self.write_current_state() - self._close_pool() - os._exit(self.exit_code) + if self.kwargs["print_method"] == "tqdm": + self.pbar.close() + super(Dynesty, self).write_current_state_and_exit(signum=signum, frame=frame) def write_current_state(self): """ @@ -613,29 +625,26 @@ class Dynesty(NestedSampler): normal running. """ - from ... import __version__ as bilby_version - from dynesty import __version__ as dynesty_version import dill + from dynesty import __version__ as dynesty_version + + from ... import __version__ as bilby_version if getattr(self, "sampler", None) is None: # Sampler not initialized, not able to write current state return check_directory_exists_and_if_not_mkdir(self.outdir) - end_time = datetime.datetime.now() - if hasattr(self, 'start_time'): - self.sampling_time += end_time - self.start_time - self.start_time = end_time + if hasattr(self, "start_time"): + self._update_sampling_time() self.sampler.kwargs["sampling_time"] = self.sampling_time self.sampler.kwargs["start_time"] = self.start_time - self.sampler.versions = dict( - bilby=bilby_version, dynesty=dynesty_version - ) + self.sampler.versions = dict(bilby=bilby_version, dynesty=dynesty_version) self.sampler.pool = None self.sampler.M = map if dill.pickles(self.sampler): safe_file_dump(self.sampler, self.resume_file, dill) - logger.info("Written checkpoint file {}".format(self.resume_file)) + logger.info(f"Written checkpoint file {self.resume_file}") else: logger.warning( "Cannot write pickle resume file! " @@ -657,86 +666,108 @@ class Dynesty(NestedSampler): if nsamples < 100: return - filename = "{}/{}_samples.dat".format(self.outdir, self.label) - logger.info("Writing {} current samples to {}".format(nsamples, filename)) + filename = f"{self.outdir}/{self.label}_samples.dat" + logger.info(f"Writing {nsamples} current samples to {filename}") df = DataFrame(samples, columns=self.search_parameter_keys) - df.to_csv(filename, index=False, header=True, sep=' ') + df.to_csv(filename, index=False, header=True, sep=" ") def plot_current_state(self): import matplotlib.pyplot as plt + if self.check_point_plot: import dynesty.plotting as dyplot - labels = [label.replace('_', ' ') for label in self.search_parameter_keys] + + labels = [label.replace("_", " ") for label in self.search_parameter_keys] try: - filename = "{}/{}_checkpoint_trace.png".format(self.outdir, self.label) + filename = f"{self.outdir}/{self.label}_checkpoint_trace.png" fig = dyplot.traceplot(self.sampler.results, labels=labels)[0] fig.tight_layout() fig.savefig(filename) - except (RuntimeError, np.linalg.linalg.LinAlgError, ValueError, OverflowError, Exception) as e: + except ( + RuntimeError, + np.linalg.linalg.LinAlgError, + ValueError, + OverflowError, + Exception, + ) as e: logger.warning(e) - logger.warning('Failed to create dynesty state plot at checkpoint') + logger.warning("Failed to create dynesty state plot at checkpoint") finally: plt.close("all") try: - filename = "{}/{}_checkpoint_trace_unit.png".format(self.outdir, self.label) + filename = f"{self.outdir}/{self.label}_checkpoint_trace_unit.png" from copy import deepcopy + temp = deepcopy(self.sampler.results) temp["samples"] = temp["samples_u"] fig = dyplot.traceplot(temp, labels=labels)[0] fig.tight_layout() fig.savefig(filename) - except (RuntimeError, np.linalg.linalg.LinAlgError, ValueError, OverflowError, Exception) as e: + except ( + RuntimeError, + np.linalg.linalg.LinAlgError, + ValueError, + OverflowError, + Exception, + ) as e: logger.warning(e) - logger.warning('Failed to create dynesty unit state plot at checkpoint') + logger.warning("Failed to create dynesty unit state plot at checkpoint") finally: plt.close("all") try: - filename = "{}/{}_checkpoint_run.png".format(self.outdir, self.label) + filename = f"{self.outdir}/{self.label}_checkpoint_run.png" fig, axs = dyplot.runplot( - self.sampler.results, logplot=False, use_math_text=False) + self.sampler.results, logplot=False, use_math_text=False + ) fig.tight_layout() plt.savefig(filename) except (RuntimeError, np.linalg.linalg.LinAlgError, ValueError) as e: logger.warning(e) - logger.warning('Failed to create dynesty run plot at checkpoint') + logger.warning("Failed to create dynesty run plot at checkpoint") finally: - plt.close('all') + plt.close("all") try: - filename = "{}/{}_checkpoint_stats.png".format(self.outdir, self.label) + filename = f"{self.outdir}/{self.label}_checkpoint_stats.png" fig, axs = dynesty_stats_plot(self.sampler) fig.tight_layout() plt.savefig(filename) except (RuntimeError, ValueError) as e: logger.warning(e) - logger.warning('Failed to create dynesty stats plot at checkpoint') + logger.warning("Failed to create dynesty stats plot at checkpoint") finally: - plt.close('all') + plt.close("all") def generate_trace_plots(self, dynesty_results): check_directory_exists_and_if_not_mkdir(self.outdir) - filename = '{}/{}_trace.png'.format(self.outdir, self.label) - logger.debug("Writing trace plot to {}".format(filename)) + filename = f"{self.outdir}/{self.label}_trace.png" + logger.debug(f"Writing trace plot to {filename}") from dynesty import plotting as dyplot - fig, axes = dyplot.traceplot(dynesty_results, - labels=self.result.parameter_labels) + + fig, axes = dyplot.traceplot( + dynesty_results, labels=self.result.parameter_labels + ) fig.tight_layout() fig.savefig(filename) def _run_test(self): import dynesty import pandas as pd + self.sampler = dynesty.NestedSampler( loglikelihood=self.log_likelihood, prior_transform=self.prior_transform, - ndim=self.ndim, **self.sampler_init_kwargs) + ndim=self.ndim, + **self.sampler_init_kwargs, + ) sampler_kwargs = self.sampler_function_kwargs.copy() - sampler_kwargs['maxiter'] = 2 + sampler_kwargs["maxiter"] = 2 self.sampler.run_nested(**sampler_kwargs) N = 100 - self.result.samples = pd.DataFrame( - self.priors.sample(N))[self.search_parameter_keys].values + self.result.samples = pd.DataFrame(self.priors.sample(N))[ + self.search_parameter_keys + ].values self.result.nested_samples = self.result.samples self.result.log_likelihood_evaluations = np.ones(N) self.result.log_evidence = 1 @@ -745,7 +776,7 @@ class Dynesty(NestedSampler): return self.result def prior_transform(self, theta): - """ Prior transform method that is passed into the external sampler. + """Prior transform method that is passed into the external sampler. cube we map this back to [0, 1]. Parameters @@ -762,25 +793,24 @@ class Dynesty(NestedSampler): def sample_rwalk_bilby(args): - """ Modified bilby-implemented version of dynesty.sampling.sample_rwalk """ + """Modified bilby-implemented version of dynesty.sampling.sample_rwalk""" from dynesty.utils import unitcheck # Unzipping. - (u, loglstar, axes, scale, - prior_transform, loglikelihood, kwargs) = args + (u, loglstar, axes, scale, prior_transform, loglikelihood, kwargs) = args rstate = np.random # Bounds - nonbounded = kwargs.get('nonbounded', None) - periodic = kwargs.get('periodic', None) - reflective = kwargs.get('reflective', None) + nonbounded = kwargs.get("nonbounded", None) + periodic = kwargs.get("periodic", None) + reflective = kwargs.get("reflective", None) # Setup. n = len(u) - walks = kwargs.get('walks', 100) # minimum number of steps - maxmcmc = kwargs.get('maxmcmc', 5000) # Maximum number of steps - nact = kwargs.get('nact', 5) # Number of ACT - old_act = kwargs.get('old_act', walks) + walks = kwargs.get("walks", 100) # minimum number of steps + maxmcmc = kwargs.get("maxmcmc", 5000) # Maximum number of steps + nact = kwargs.get("nact", 5) # Number of ACT + old_act = kwargs.get("old_act", walks) # Initialize internal variables accept = 0 @@ -848,19 +878,21 @@ def sample_rwalk_bilby(args): if accept + reject > walks: act = estimate_nmcmc( accept_ratio=accept / (accept + reject + nfail), - old_act=old_act, maxmcmc=maxmcmc) + old_act=old_act, + maxmcmc=maxmcmc, + ) # If we've taken too many likelihood evaluations then break if accept + reject > maxmcmc: warnings.warn( - "Hit maximum number of walks {} with accept={}, reject={}, " - "and nfail={} try increasing maxmcmc" - .format(maxmcmc, accept, reject, nfail)) + f"Hit maximum number of walks {maxmcmc} with accept={accept}," + f" reject={reject}, and nfail={nfail} try increasing maxmcmc" + ) break # If the act is finite, pick randomly from within the chain - if np.isfinite(act) and int(.5 * nact * act) < len(u_list): - idx = np.random.randint(int(.5 * nact * act), len(u_list)) + if np.isfinite(act) and int(0.5 * nact * act) < len(u_list): + idx = np.random.randint(int(0.5 * nact * act), len(u_list)) u = u_list[idx] v = v_list[idx] logl = logl_list[idx] @@ -870,7 +902,7 @@ def sample_rwalk_bilby(args): v = prior_transform(u) logl = loglikelihood(v) - blob = {'accept': accept, 'reject': reject, 'fail': nfail, 'scale': scale} + blob = {"accept": accept, "reject": reject, "fail": nfail, "scale": scale} kwargs["old_act"] = act ncall = accept + reject @@ -878,7 +910,7 @@ def sample_rwalk_bilby(args): def estimate_nmcmc(accept_ratio, old_act, maxmcmc, safety=5, tau=None): - """ Estimate autocorrelation length of chain using acceptance fraction + """Estimate autocorrelation length of chain using acceptance fraction Using ACL = (2/acc) - 1 multiplied by a safety margin. Code adapted from CPNest: @@ -905,9 +937,8 @@ def estimate_nmcmc(accept_ratio, old_act, maxmcmc, safety=5, tau=None): if accept_ratio == 0.0: Nmcmc_exact = (1 + 1 / tau) * old_act else: - Nmcmc_exact = ( - (1. - 1. / tau) * old_act + - (safety / tau) * (2. / accept_ratio - 1.) + Nmcmc_exact = (1.0 - 1.0 / tau) * old_act + (safety / tau) * ( + 2.0 / accept_ratio - 1.0 ) Nmcmc_exact = float(min(Nmcmc_exact, maxmcmc)) return max(safety, int(Nmcmc_exact)) @@ -943,7 +974,7 @@ def dynesty_stats_plot(sampler): fig, axs = plt.subplots(nrows=4, figsize=(8, 8)) for ax, name in zip(axs, ["nc", "scale"]): - ax.plot(getattr(sampler, "saved_{}".format(name)), color="blue") + ax.plot(getattr(sampler, f"saved_{name}"), color="blue") ax.set_ylabel(name.title()) lifetimes = np.arange(len(sampler.saved_it)) - sampler.saved_it axs[-2].set_ylabel("Lifetime") @@ -951,9 +982,17 @@ def dynesty_stats_plot(sampler): burn = int(geom(p=1 / nlive).isf(1 / 2 / nlive)) if len(sampler.saved_it) > burn + sampler.nlive: axs[-2].plot(np.arange(0, burn), lifetimes[:burn], color="grey") - axs[-2].plot(np.arange(burn, len(lifetimes) - nlive), lifetimes[burn: -nlive], color="blue") - axs[-2].plot(np.arange(len(lifetimes) - nlive, len(lifetimes)), lifetimes[-nlive:], color="red") - lifetimes = lifetimes[burn: -nlive] + axs[-2].plot( + np.arange(burn, len(lifetimes) - nlive), + lifetimes[burn:-nlive], + color="blue", + ) + axs[-2].plot( + np.arange(len(lifetimes) - nlive, len(lifetimes)), + lifetimes[-nlive:], + color="red", + ) + lifetimes = lifetimes[burn:-nlive] ks_result = ks_1samp(lifetimes, geom(p=1 / nlive).cdf) axs[-1].hist( lifetimes, @@ -961,19 +1000,25 @@ def dynesty_stats_plot(sampler): histtype="step", density=True, color="blue", - label=f"p value = {ks_result.pvalue:.3f}" + label=f"p value = {ks_result.pvalue:.3f}", ) axs[-1].plot( np.arange(1, 6 * nlive), geom(p=1 / nlive).pmf(np.arange(1, 6 * nlive)), - color="red" + color="red", ) axs[-1].set_xlim(0, 6 * nlive) axs[-1].legend() axs[-1].set_yscale("log") else: - axs[-2].plot(np.arange(0, len(lifetimes) - nlive), lifetimes[:-nlive], color="grey") - axs[-2].plot(np.arange(len(lifetimes) - nlive, len(lifetimes)), lifetimes[-nlive:], color="red") + axs[-2].plot( + np.arange(0, len(lifetimes) - nlive), lifetimes[:-nlive], color="grey" + ) + axs[-2].plot( + np.arange(len(lifetimes) - nlive, len(lifetimes)), + lifetimes[-nlive:], + color="red", + ) axs[-2].set_yscale("log") axs[-2].set_xlabel("Iteration") axs[-1].set_xlabel("Lifetime") diff --git a/bilby/core/sampler/emcee.py b/bilby/core/sampler/emcee.py index d976d391ed34f0871b3dc3121f6924ee395cee41..18a36fd1371aed4ccfb47d0c412cb57c77fb803b 100644 --- a/bilby/core/sampler/emcee.py +++ b/bilby/core/sampler/emcee.py @@ -1,7 +1,5 @@ import os -import signal import shutil -import sys from collections import namedtuple from distutils.version import LooseVersion from shutil import copyfile @@ -9,8 +7,11 @@ from shutil import copyfile import numpy as np from pandas import DataFrame -from ..utils import logger, check_directory_exists_and_if_not_mkdir -from .base_sampler import MCMCSampler, SamplerError +from ..utils import check_directory_exists_and_if_not_mkdir, logger +from .base_sampler import MCMCSampler, SamplerError, signal_wrapper +from .ptemcee import LikePriorEvaluator + +_evaluator = LikePriorEvaluator() class Emcee(MCMCSampler): @@ -45,81 +46,111 @@ class Emcee(MCMCSampler): """ default_kwargs = dict( - nwalkers=500, a=2, args=[], kwargs={}, postargs=None, pool=None, - live_dangerously=False, runtime_sortingfn=None, lnprob0=None, - rstate0=None, blobs0=None, iterations=100, thin=1, storechain=True, - mh_proposal=None) - - def __init__(self, likelihood, priors, outdir='outdir', label='label', - use_ratio=False, plot=False, skip_import_verification=False, - pos0=None, nburn=None, burn_in_fraction=0.25, resume=True, - burn_in_act=3, verbose=True, **kwargs): + nwalkers=500, + a=2, + args=[], + kwargs={}, + postargs=None, + pool=None, + live_dangerously=False, + runtime_sortingfn=None, + lnprob0=None, + rstate0=None, + blobs0=None, + iterations=100, + thin=1, + storechain=True, + mh_proposal=None, + ) + + def __init__( + self, + likelihood, + priors, + outdir="outdir", + label="label", + use_ratio=False, + plot=False, + skip_import_verification=False, + pos0=None, + nburn=None, + burn_in_fraction=0.25, + resume=True, + burn_in_act=3, + **kwargs, + ): import emcee - self.emcee = emcee - if LooseVersion(emcee.__version__) > LooseVersion('2.2.1'): + if LooseVersion(emcee.__version__) > LooseVersion("2.2.1"): self.prerelease = True else: self.prerelease = False super(Emcee, self).__init__( - likelihood=likelihood, priors=priors, outdir=outdir, - label=label, use_ratio=use_ratio, plot=plot, - skip_import_verification=skip_import_verification, **kwargs) - self.emcee = self._check_version() + likelihood=likelihood, + priors=priors, + outdir=outdir, + label=label, + use_ratio=use_ratio, + plot=plot, + skip_import_verification=skip_import_verification, + **kwargs, + ) + self._check_version() self.resume = resume self.pos0 = pos0 self.nburn = nburn self.burn_in_fraction = burn_in_fraction self.burn_in_act = burn_in_act - self.verbose = verbose - - signal.signal(signal.SIGTERM, self.checkpoint_and_exit) - signal.signal(signal.SIGINT, self.checkpoint_and_exit) + self.verbose = kwargs.get("verbose", True) def _check_version(self): import emcee - if LooseVersion(emcee.__version__) > LooseVersion('2.2.1'): + + if LooseVersion(emcee.__version__) > LooseVersion("2.2.1"): self.prerelease = True else: self.prerelease = False return emcee def _translate_kwargs(self, kwargs): - if 'nwalkers' not in kwargs: + kwargs = super()._translate_kwargs(kwargs) + if "nwalkers" not in kwargs: for equiv in self.nwalkers_equiv_kwargs: if equiv in kwargs: - kwargs['nwalkers'] = kwargs.pop(equiv) - if 'iterations' not in kwargs: - if 'nsteps' in kwargs: - kwargs['iterations'] = kwargs.pop('nsteps') - if 'threads' in kwargs: - if kwargs['threads'] != 1: - logger.warning("The 'threads' argument cannot be used for " - "parallelisation. This run will proceed " - "without parallelisation, but consider the use " - "of an appropriate Pool object passed to the " - "'pool' keyword.") - kwargs['threads'] = 1 + kwargs["nwalkers"] = kwargs.pop(equiv) + if "iterations" not in kwargs: + if "nsteps" in kwargs: + kwargs["iterations"] = kwargs.pop("nsteps") @property def sampler_function_kwargs(self): - keys = ['lnprob0', 'rstate0', 'blobs0', 'iterations', 'thin', - 'storechain', 'mh_proposal'] + keys = [ + "lnprob0", + "rstate0", + "blobs0", + "iterations", + "thin", + "storechain", + "mh_proposal", + ] # updated function keywords for emcee > v2.2.1 - updatekeys = {'p0': 'initial_state', - 'lnprob0': 'log_prob0', - 'storechain': 'store'} + updatekeys = { + "p0": "initial_state", + "lnprob0": "log_prob0", + "storechain": "store", + } function_kwargs = {key: self.kwargs[key] for key in keys if key in self.kwargs} - function_kwargs['p0'] = self.pos0 + function_kwargs["p0"] = self.pos0 if self.prerelease: - if function_kwargs['mh_proposal'] is not None: - logger.warning("The 'mh_proposal' option is no longer used " - "in emcee v{}, and will be ignored.".format( - self.emcee.__version__)) - del function_kwargs['mh_proposal'] + if function_kwargs["mh_proposal"] is not None: + logger.warning( + "The 'mh_proposal' option is no longer used " + "in emcee > 2.2.1, and will be ignored." + ) + del function_kwargs["mh_proposal"] for key in updatekeys: if updatekeys[key] not in function_kwargs: @@ -131,37 +162,30 @@ class Emcee(MCMCSampler): @property def sampler_init_kwargs(self): - init_kwargs = {key: value - for key, value in self.kwargs.items() - if key not in self.sampler_function_kwargs} + init_kwargs = { + key: value + for key, value in self.kwargs.items() + if key not in self.sampler_function_kwargs + } - init_kwargs['lnpostfn'] = self.lnpostfn - init_kwargs['dim'] = self.ndim + init_kwargs["lnpostfn"] = _evaluator.call_emcee + init_kwargs["dim"] = self.ndim # updated init keywords for emcee > v2.2.1 - updatekeys = {'dim': 'ndim', - 'lnpostfn': 'log_prob_fn'} + updatekeys = {"dim": "ndim", "lnpostfn": "log_prob_fn"} if self.prerelease: for key in updatekeys: if key in init_kwargs: init_kwargs[updatekeys[key]] = init_kwargs.pop(key) - oldfunckeys = ['p0', 'lnprob0', 'storechain', 'mh_proposal'] + oldfunckeys = ["p0", "lnprob0", "storechain", "mh_proposal"] for key in oldfunckeys: if key in init_kwargs: del init_kwargs[key] return init_kwargs - def lnpostfn(self, theta): - log_prior = self.log_prior(theta) - if np.isinf(log_prior): - return -np.inf, [np.nan, np.nan] - else: - log_likelihood = self.log_likelihood(theta) - return log_likelihood + log_prior, [log_likelihood, log_prior] - @property def nburn(self): if type(self.__nburn) in [float, int]: @@ -174,52 +198,54 @@ class Emcee(MCMCSampler): @nburn.setter def nburn(self, nburn): if isinstance(nburn, (float, int)): - if nburn > self.kwargs['iterations'] - 1: - raise ValueError('Number of burn-in samples must be smaller ' - 'than the total number of iterations') + if nburn > self.kwargs["iterations"] - 1: + raise ValueError( + "Number of burn-in samples must be smaller " + "than the total number of iterations" + ) self.__nburn = nburn @property def nwalkers(self): - return self.kwargs['nwalkers'] + return self.kwargs["nwalkers"] @property def nsteps(self): - return self.kwargs['iterations'] + return self.kwargs["iterations"] @nsteps.setter def nsteps(self, nsteps): - self.kwargs['iterations'] = nsteps + self.kwargs["iterations"] = nsteps @property def stored_chain(self): - """ Read the stored zero-temperature chain data in from disk """ + """Read the stored zero-temperature chain data in from disk""" return np.genfromtxt(self.checkpoint_info.chain_file, names=True) @property def stored_samples(self): - """ Returns the samples stored on disk """ + """Returns the samples stored on disk""" return self.stored_chain[self.search_parameter_keys] @property def stored_loglike(self): - """ Returns the log-likelihood stored on disk """ - return self.stored_chain['log_l'] + """Returns the log-likelihood stored on disk""" + return self.stored_chain["log_l"] @property def stored_logprior(self): - """ Returns the log-prior stored on disk """ - return self.stored_chain['log_p'] + """Returns the log-prior stored on disk""" + return self.stored_chain["log_p"] def _init_chain_file(self): with open(self.checkpoint_info.chain_file, "w+") as ff: - ff.write('walker\t{}\tlog_l\tlog_p\n'.format( - '\t'.join(self.search_parameter_keys))) + search_keys_str = "\t".join(self.search_parameter_keys) + ff.write(f"walker\t{search_keys_str}\tlog_l\tlog_p\n") @property def checkpoint_info(self): - """ Defines various things related to checkpointing and storing data + """Defines various things related to checkpointing and storing data Returns ======= @@ -231,21 +257,25 @@ class Emcee(MCMCSampler): """ out_dir = os.path.join( - self.outdir, '{}_{}'.format(self.__class__.__name__.lower(), - self.label)) + self.outdir, f"{self.__class__.__name__.lower()}_{self.label}" + ) check_directory_exists_and_if_not_mkdir(out_dir) - chain_file = os.path.join(out_dir, 'chain.dat') - sampler_file = os.path.join(out_dir, 'sampler.pickle') - chain_template =\ - '{:d}' + '\t{:.9e}' * (len(self.search_parameter_keys) + 2) + '\n' + chain_file = os.path.join(out_dir, "chain.dat") + sampler_file = os.path.join(out_dir, "sampler.pickle") + chain_template = ( + "{:d}" + "\t{:.9e}" * (len(self.search_parameter_keys) + 2) + "\n" + ) CheckpointInfo = namedtuple( - 'CheckpointInfo', ['sampler_file', 'chain_file', 'chain_template']) + "CheckpointInfo", ["sampler_file", "chain_file", "chain_template"] + ) checkpoint_info = CheckpointInfo( - sampler_file=sampler_file, chain_file=chain_file, - chain_template=chain_template) + sampler_file=sampler_file, + chain_file=chain_file, + chain_template=chain_template, + ) return checkpoint_info @@ -254,43 +284,48 @@ class Emcee(MCMCSampler): nsteps = self._previous_iterations return self.sampler.chain[:, :nsteps, :] - def checkpoint(self): - """ Writes a pickle file of the sampler to disk using dill """ + def write_current_state(self): + """Writes a pickle file of the sampler to disk using dill""" import dill - logger.info("Checkpointing sampler to file {}" - .format(self.checkpoint_info.sampler_file)) - with open(self.checkpoint_info.sampler_file, 'wb') as f: + + logger.info( + f"Checkpointing sampler to file {self.checkpoint_info.sampler_file}" + ) + with open(self.checkpoint_info.sampler_file, "wb") as f: # Overwrites the stored sampler chain with one that is truncated # to only the completed steps self.sampler._chain = self.sampler_chain + _pool = self.sampler.pool + self.sampler.pool = None dill.dump(self._sampler, f) - - def checkpoint_and_exit(self, signum, frame): - logger.info("Received signal {}".format(signum)) - self.checkpoint() - sys.exit() + self.sampler.pool = _pool def _initialise_sampler(self): - self._sampler = self.emcee.EnsembleSampler(**self.sampler_init_kwargs) + from emcee import EnsembleSampler + + self._sampler = EnsembleSampler(**self.sampler_init_kwargs) self._init_chain_file() @property def sampler(self): - """ Returns the emcee sampler object + """Returns the emcee sampler object If, already initialized, returns the stored _sampler value. Otherwise, first checks if there is a pickle file from which to load. If there is not, then initialize the sampler and set the initial random draw """ - if hasattr(self, '_sampler'): + if hasattr(self, "_sampler"): pass elif self.resume and os.path.isfile(self.checkpoint_info.sampler_file): import dill - logger.info("Resuming run from checkpoint file {}" - .format(self.checkpoint_info.sampler_file)) - with open(self.checkpoint_info.sampler_file, 'rb') as f: + + logger.info( + f"Resuming run from checkpoint file {self.checkpoint_info.sampler_file}" + ) + with open(self.checkpoint_info.sampler_file, "rb") as f: self._sampler = dill.load(f) + self._sampler.pool = self.pool self._set_pos0_for_resume() else: self._initialise_sampler() @@ -299,7 +334,7 @@ class Emcee(MCMCSampler): def write_chains_to_file(self, sample): chain_file = self.checkpoint_info.chain_file - temp_chain_file = chain_file + '.temp' + temp_chain_file = chain_file + ".temp" if os.path.isfile(chain_file): copyfile(chain_file, temp_chain_file) if self.prerelease: @@ -313,7 +348,7 @@ class Emcee(MCMCSampler): @property def _previous_iterations(self): - """ Returns the number of iterations that the sampler has saved + """Returns the number of iterations that the sampler has saved This is used when loading in a sampler from a pickle file to figure out how much of the run has already been completed @@ -325,7 +360,8 @@ class Emcee(MCMCSampler): def _draw_pos0_from_prior(self): return np.array( - [self.get_random_draw_from_prior() for _ in range(self.nwalkers)]) + [self.get_random_draw_from_prior() for _ in range(self.nwalkers)] + ) @property def _pos0_shape(self): @@ -340,8 +376,7 @@ class Emcee(MCMCSampler): self.pos0 = np.squeeze(self.pos0) if self.pos0.shape != self._pos0_shape: - raise ValueError( - 'Input pos0 should be of shape ndim, nwalkers') + raise ValueError("Input pos0 should be of shape ndim, nwalkers") logger.debug("Checking input pos0") for draw in self.pos0: self.check_draw(draw) @@ -352,38 +387,39 @@ class Emcee(MCMCSampler): def _set_pos0_for_resume(self): self.pos0 = self.sampler.chain[:, -1, :] + @signal_wrapper def run_sampler(self): + self._setup_pool() from tqdm.auto import tqdm + sampler_function_kwargs = self.sampler_function_kwargs - iterations = sampler_function_kwargs.pop('iterations') + iterations = sampler_function_kwargs.pop("iterations") iterations -= self._previous_iterations if self.prerelease: - sampler_function_kwargs['initial_state'] = self.pos0 + sampler_function_kwargs["initial_state"] = self.pos0 else: - sampler_function_kwargs['p0'] = self.pos0 + sampler_function_kwargs["p0"] = self.pos0 # main iteration loop - iterator = self.sampler.sample( - iterations=iterations, **sampler_function_kwargs - ) + iterator = self.sampler.sample(iterations=iterations, **sampler_function_kwargs) if self.verbose: iterator = tqdm(iterator, total=iterations) for sample in iterator: self.write_chains_to_file(sample) if self.verbose: iterator.close() - self.checkpoint() + self.write_current_state() self.result.sampler_output = np.nan - self.calculate_autocorrelation( - self.sampler.chain.reshape((-1, self.ndim))) + self.calculate_autocorrelation(self.sampler.chain.reshape((-1, self.ndim))) self.print_nburn_logging_info() self._generate_result() - self.result.samples = self.sampler.chain[:, self.nburn:, :].reshape( - (-1, self.ndim)) + self.result.samples = self.sampler.chain[:, self.nburn :, :].reshape( + (-1, self.ndim) + ) self.result.walkers = self.sampler.chain return self.result @@ -393,10 +429,11 @@ class Emcee(MCMCSampler): if self.result.nburn > self.nsteps: raise SamplerError( "The run has finished, but the chain is not burned in: " - "`nburn < nsteps` ({} < {}). Try increasing the " - "number of steps.".format(self.result.nburn, self.nsteps)) + f"`nburn < nsteps` ({self.result.nburn} < {self.nsteps})." + " Try increasing the number of steps." + ) blobs = np.array(self.sampler.blobs) - blobs_trimmed = blobs[self.nburn:, :, :].reshape((-1, 2)) + blobs_trimmed = blobs[self.nburn :, :, :].reshape((-1, 2)) log_likelihoods, log_priors = blobs_trimmed.T self.result.log_likelihood_evaluations = log_likelihoods self.result.log_prior_evaluations = log_priors diff --git a/bilby/core/sampler/fake_sampler.py b/bilby/core/sampler/fake_sampler.py index 8d218472d13f7769c4b88cdd0155cb8f7c04dd0d..5f375fdbad8055e6a5bdaf7dd7e99caabe330f33 100644 --- a/bilby/core/sampler/fake_sampler.py +++ b/bilby/core/sampler/fake_sampler.py @@ -1,8 +1,7 @@ - import numpy as np -from .base_sampler import Sampler from ..result import read_in_result +from .base_sampler import Sampler class FakeSampler(Sampler): @@ -17,17 +16,38 @@ class FakeSampler(Sampler): sample_file: str A string pointing to the posterior data file to be loaded. """ - default_kwargs = dict(verbose=True, logl_args=None, logl_kwargs=None, - print_progress=True) - - def __init__(self, likelihood, priors, sample_file, outdir='outdir', - label='label', use_ratio=False, plot=False, - injection_parameters=None, meta_data=None, result_class=None, - **kwargs): - super(FakeSampler, self).__init__(likelihood=likelihood, priors=priors, outdir=outdir, label=label, - use_ratio=False, plot=False, skip_import_verification=True, - injection_parameters=None, meta_data=None, result_class=None, - **kwargs) + + default_kwargs = dict( + verbose=True, logl_args=None, logl_kwargs=None, print_progress=True + ) + + def __init__( + self, + likelihood, + priors, + sample_file, + outdir="outdir", + label="label", + use_ratio=False, + plot=False, + injection_parameters=None, + meta_data=None, + result_class=None, + **kwargs + ): + super(FakeSampler, self).__init__( + likelihood=likelihood, + priors=priors, + outdir=outdir, + label=label, + use_ratio=False, + plot=False, + skip_import_verification=True, + injection_parameters=None, + meta_data=None, + result_class=None, + **kwargs + ) self._read_parameter_list_from_file(sample_file) self.result.outdir = outdir self.result.label = label @@ -41,7 +61,7 @@ class FakeSampler(Sampler): def run_sampler(self): """Compute the likelihood for the list of parameter space points.""" - self.sampler = 'fake_sampler' + self.sampler = "fake_sampler" # Flushes the output to force a line break if self.kwargs["verbose"]: @@ -59,8 +79,12 @@ class FakeSampler(Sampler): likelihood_ratios.append(logl) if self.kwargs["verbose"]: - print(self.likelihood.parameters['log_likelihood'], likelihood_ratios[-1], - self.likelihood.parameters['log_likelihood'] - likelihood_ratios[-1]) + print( + self.likelihood.parameters["log_likelihood"], + likelihood_ratios[-1], + self.likelihood.parameters["log_likelihood"] + - likelihood_ratios[-1], + ) self.result.log_likelihood_evaluations = np.array(likelihood_ratios) diff --git a/bilby/core/sampler/kombine.py b/bilby/core/sampler/kombine.py index 83947fc88378c5401508eac458192141cd9f221e..1f09387cc33520a7c8408db7cd7af2a924fa85cf 100644 --- a/bilby/core/sampler/kombine.py +++ b/bilby/core/sampler/kombine.py @@ -2,8 +2,12 @@ import os import numpy as np -from .emcee import Emcee from ..utils import logger +from .base_sampler import signal_wrapper +from .emcee import Emcee +from .ptemcee import LikePriorEvaluator + +_evaluator = LikePriorEvaluator() class Kombine(Emcee): @@ -35,21 +39,61 @@ class Kombine(Emcee): """ - default_kwargs = dict(nwalkers=500, args=[], pool=None, transd=False, - lnpost0=None, blob0=None, iterations=500, storechain=True, processes=1, update_interval=None, - kde=None, kde_size=None, spaces=None, freeze_transd=False, test_steps=16, critical_pval=0.05, - max_steps=None, burnin_verbose=False) - - def __init__(self, likelihood, priors, outdir='outdir', label='label', - use_ratio=False, plot=False, skip_import_verification=False, - pos0=None, nburn=None, burn_in_fraction=0.25, resume=True, - burn_in_act=3, autoburnin=False, **kwargs): - super(Kombine, self).__init__(likelihood=likelihood, priors=priors, outdir=outdir, label=label, - use_ratio=use_ratio, plot=plot, skip_import_verification=skip_import_verification, - pos0=pos0, nburn=nburn, burn_in_fraction=burn_in_fraction, - burn_in_act=burn_in_act, resume=resume, **kwargs) - - if self.kwargs['nwalkers'] > self.kwargs['iterations']: + default_kwargs = dict( + nwalkers=500, + args=[], + pool=None, + transd=False, + lnpost0=None, + blob0=None, + iterations=500, + storechain=True, + processes=1, + update_interval=None, + kde=None, + kde_size=None, + spaces=None, + freeze_transd=False, + test_steps=16, + critical_pval=0.05, + max_steps=None, + burnin_verbose=False, + ) + + def __init__( + self, + likelihood, + priors, + outdir="outdir", + label="label", + use_ratio=False, + plot=False, + skip_import_verification=False, + pos0=None, + nburn=None, + burn_in_fraction=0.25, + resume=True, + burn_in_act=3, + autoburnin=False, + **kwargs, + ): + super(Kombine, self).__init__( + likelihood=likelihood, + priors=priors, + outdir=outdir, + label=label, + use_ratio=use_ratio, + plot=plot, + skip_import_verification=skip_import_verification, + pos0=pos0, + nburn=nburn, + burn_in_fraction=burn_in_fraction, + burn_in_act=burn_in_act, + resume=resume, + **kwargs, + ) + + if self.kwargs["nwalkers"] > self.kwargs["iterations"]: raise ValueError("Kombine Sampler requires Iterations be > nWalkers") self.autoburnin = autoburnin @@ -57,42 +101,34 @@ class Kombine(Emcee): # set prerelease to False to prevent checks for newer emcee versions in parent class self.prerelease = False - def _translate_kwargs(self, kwargs): - if 'nwalkers' not in kwargs: - for equiv in self.nwalkers_equiv_kwargs: - if equiv in kwargs: - kwargs['nwalkers'] = kwargs.pop(equiv) - if 'iterations' not in kwargs: - if 'nsteps' in kwargs: - kwargs['iterations'] = kwargs.pop('nsteps') - # make sure processes kwarg is 1 - if 'processes' in kwargs: - if kwargs['processes'] != 1: - logger.warning("The 'processes' argument cannot be used for " - "parallelisation. This run will proceed " - "without parallelisation, but consider the use " - "of an appropriate Pool object passed to the " - "'pool' keyword.") - kwargs['processes'] = 1 - @property def sampler_function_kwargs(self): - keys = ['lnpost0', 'blob0', 'iterations', 'storechain', 'lnprop0', 'update_interval', 'kde', - 'kde_size', 'spaces', 'freeze_transd'] + keys = [ + "lnpost0", + "blob0", + "iterations", + "storechain", + "lnprop0", + "update_interval", + "kde", + "kde_size", + "spaces", + "freeze_transd", + ] function_kwargs = {key: self.kwargs[key] for key in keys if key in self.kwargs} - function_kwargs['p0'] = self.pos0 + function_kwargs["p0"] = self.pos0 return function_kwargs @property def sampler_burnin_kwargs(self): - extra_keys = ['test_steps', 'critical_pval', 'max_steps', 'burnin_verbose'] - removal_keys = ['iterations', 'spaces', 'freeze_transd'] + extra_keys = ["test_steps", "critical_pval", "max_steps", "burnin_verbose"] + removal_keys = ["iterations", "spaces", "freeze_transd"] burnin_kwargs = self.sampler_function_kwargs.copy() for key in extra_keys: if key in self.kwargs: burnin_kwargs[key] = self.kwargs[key] - if 'burnin_verbose' in burnin_kwargs.keys(): - burnin_kwargs['verbose'] = burnin_kwargs.pop('burnin_verbose') + if "burnin_verbose" in burnin_kwargs.keys(): + burnin_kwargs["verbose"] = burnin_kwargs.pop("burnin_verbose") for key in removal_keys: if key in burnin_kwargs.keys(): burnin_kwargs.pop(key) @@ -100,19 +136,21 @@ class Kombine(Emcee): @property def sampler_init_kwargs(self): - init_kwargs = {key: value - for key, value in self.kwargs.items() - if key not in self.sampler_function_kwargs and key not in self.sampler_burnin_kwargs} + init_kwargs = { + key: value + for key, value in self.kwargs.items() + if key not in self.sampler_function_kwargs + and key not in self.sampler_burnin_kwargs + } init_kwargs.pop("burnin_verbose") - init_kwargs['lnpostfn'] = self.lnpostfn - init_kwargs['ndim'] = self.ndim + init_kwargs["lnpostfn"] = _evaluator.call_emcee + init_kwargs["ndim"] = self.ndim - # have to make sure pool is None so sampler will be pickleable - init_kwargs['pool'] = None return init_kwargs def _initialise_sampler(self): import kombine + self._sampler = kombine.Sampler(**self.sampler_init_kwargs) self._init_chain_file() @@ -129,7 +167,9 @@ class Kombine(Emcee): def check_resume(self): return self.resume and os.path.isfile(self.checkpoint_info.sampler_file) + @signal_wrapper def run_sampler(self): + self._setup_pool() if self.autoburnin: if self.check_resume(): logger.info("Resuming with autoburnin=True skips burnin process:") @@ -138,29 +178,50 @@ class Kombine(Emcee): self.sampler.burnin(**self.sampler_burnin_kwargs) self.kwargs["iterations"] += self._previous_iterations self.nburn = self._previous_iterations - logger.info("Kombine auto-burnin complete. Removing {} samples from chains".format(self.nburn)) + logger.info( + f"Kombine auto-burnin complete. Removing {self.nburn} samples from chains" + ) self._set_pos0_for_resume() from tqdm.auto import tqdm + sampler_function_kwargs = self.sampler_function_kwargs - iterations = sampler_function_kwargs.pop('iterations') + iterations = sampler_function_kwargs.pop("iterations") iterations -= self._previous_iterations - sampler_function_kwargs['p0'] = self.pos0 + sampler_function_kwargs["p0"] = self.pos0 for sample in tqdm( - self.sampler.sample(iterations=iterations, **sampler_function_kwargs), - total=iterations): + self.sampler.sample(iterations=iterations, **sampler_function_kwargs), + total=iterations, + ): self.write_chains_to_file(sample) - self.checkpoint() + self.write_current_state() self.result.sampler_output = np.nan if not self.autoburnin: tmp_chain = self.sampler.chain.copy() self.calculate_autocorrelation(tmp_chain.reshape((-1, self.ndim))) self.print_nburn_logging_info() + self._close_pool() self._generate_result() self.result.log_evidence_err = np.nan - tmp_chain = self.sampler.chain[self.nburn:, :, :].copy() + tmp_chain = self.sampler.chain[self.nburn :, :, :].copy() self.result.samples = tmp_chain.reshape((-1, self.ndim)) - self.result.walkers = self.sampler.chain.reshape((self.nwalkers, self.nsteps, self.ndim)) + self.result.walkers = self.sampler.chain.reshape( + (self.nwalkers, self.nsteps, self.ndim) + ) return self.result + + def _setup_pool(self): + from kombine import SerialPool + + super(Kombine, self)._setup_pool() + if self.pool is None: + self.pool = SerialPool() + + def _close_pool(self): + from kombine import SerialPool + + if isinstance(self.pool, SerialPool): + self.pool = None + super(Kombine, self)._close_pool() diff --git a/bilby/core/sampler/nessai.py b/bilby/core/sampler/nessai.py index d8bb578a4d681c8aca425cd0b4825c651dfa73e0..d0d05037031383ff9a22a08898856e06a6ddbf8d 100644 --- a/bilby/core/sampler/nessai.py +++ b/bilby/core/sampler/nessai.py @@ -1,9 +1,10 @@ -import numpy as np import os + +import numpy as np from pandas import DataFrame +from ..utils import check_directory_exists_and_if_not_mkdir, load_json, logger from .base_sampler import NestedSampler -from ..utils import logger, check_directory_exists_and_if_not_mkdir, load_json class Nessai(NestedSampler): @@ -16,8 +17,9 @@ class Nessai(NestedSampler): Documentation: https://nessai.readthedocs.io/ """ + _default_kwargs = None - seed_equiv_kwargs = ['sampling_seed'] + sampling_seed_key = "seed" @property def default_kwargs(self): @@ -29,6 +31,7 @@ class Nessai(NestedSampler): """ if not self._default_kwargs: from inspect import signature + from nessai.flowsampler import FlowSampler from nessai.nestedsampler import NestedSampler from nessai.proposal import AugmentedFlowProposal, FlowProposal @@ -42,12 +45,14 @@ class Nessai(NestedSampler): ] for c in classes: kwargs.update( - {k: v.default for k, v in signature(c).parameters.items() if v.default is not v.empty} + { + k: v.default + for k, v in signature(c).parameters.items() + if v.default is not v.empty + } ) # Defaults for bilby that will override nessai defaults - bilby_defaults = dict( - output=None, - ) + bilby_defaults = dict(output=None, exit_code=self.exit_code) kwargs.update(bilby_defaults) self._default_kwargs = kwargs return self._default_kwargs @@ -69,8 +74,8 @@ class Nessai(NestedSampler): def run_sampler(self): from nessai.flowsampler import FlowSampler - from nessai.model import Model as BaseModel from nessai.livepoint import dict_to_live_points, live_points_to_array + from nessai.model import Model as BaseModel from nessai.posterior import compute_weights from nessai.utils import setup_logger @@ -85,6 +90,7 @@ class Nessai(NestedSampler): Priors to use for sampling. Needed for the bounds and the `sample` method. """ + def __init__(self, names, priors): self.names = names self.priors = priors @@ -103,8 +109,10 @@ class Nessai(NestedSampler): return self.log_prior(theta) def _update_bounds(self): - self.bounds = {key: [self.priors[key].minimum, self.priors[key].maximum] - for key in self.names} + self.bounds = { + key: [self.priors[key].minimum, self.priors[key].maximum] + for key in self.names + } def new_point(self, N=1): """Draw a point from the prior""" @@ -117,20 +125,22 @@ class Nessai(NestedSampler): return self.log_prior(x) # Setup the logger for nessai using the same settings as the bilby logger - setup_logger(self.outdir, label=self.label, - log_level=logger.getEffectiveLevel()) + setup_logger( + self.outdir, label=self.label, log_level=logger.getEffectiveLevel() + ) model = Model(self.search_parameter_keys, self.priors) - out = None - while out is None: - try: - out = FlowSampler(model, **self.kwargs) - except TypeError as e: - raise TypeError("Unable to initialise nessai sampler with error: {}".format(e)) try: + out = FlowSampler(model, **self.kwargs) out.run(save=True, plot=self.plot) - except SystemExit as e: + except TypeError as e: + raise TypeError(f"Unable to initialise nessai sampler with error: {e}") + except (SystemExit, KeyboardInterrupt) as e: import sys - logger.info("Caught exit code {}, exiting with signal {}".format(e.args[0], self.exit_code)) + + logger.info( + f"Caught {type(e).__name__} with args {e.args}, " + f"exiting with signal {self.exit_code}" + ) sys.exit(self.exit_code) # Manually set likelihood evaluations because parallelisation breaks the counter @@ -139,53 +149,58 @@ class Nessai(NestedSampler): self.result.samples = live_points_to_array( out.posterior_samples, self.search_parameter_keys ) - self.result.log_likelihood_evaluations = out.posterior_samples['logL'] + self.result.log_likelihood_evaluations = out.posterior_samples["logL"] self.result.nested_samples = DataFrame(out.nested_samples) self.result.nested_samples.rename( - columns=dict(logL='log_likelihood', logP='log_prior'), inplace=True) - _, log_weights = compute_weights(np.array(self.result.nested_samples.log_likelihood), - np.array(out.ns.state.nlive)) - self.result.nested_samples['weights'] = np.exp(log_weights) + columns=dict(logL="log_likelihood", logP="log_prior"), inplace=True + ) + _, log_weights = compute_weights( + np.array(self.result.nested_samples.log_likelihood), + np.array(out.ns.state.nlive), + ) + self.result.nested_samples["weights"] = np.exp(log_weights) self.result.log_evidence = out.ns.log_evidence self.result.log_evidence_err = np.sqrt(out.ns.information / out.ns.nlive) return self.result def _translate_kwargs(self, kwargs): - if 'nlive' not in kwargs: + super()._translate_kwargs(kwargs) + if "nlive" not in kwargs: for equiv in self.npoints_equiv_kwargs: if equiv in kwargs: - kwargs['nlive'] = kwargs.pop(equiv) - if 'n_pool' not in kwargs: + kwargs["nlive"] = kwargs.pop(equiv) + if "n_pool" not in kwargs: for equiv in self.npool_equiv_kwargs: if equiv in kwargs: - kwargs['n_pool'] = kwargs.pop(equiv) - if 'seed' not in kwargs: - for equiv in self.seed_equiv_kwargs: - if equiv in kwargs: - kwargs['seed'] = kwargs.pop(equiv) + kwargs["n_pool"] = kwargs.pop(equiv) + if "n_pool" not in kwargs: + kwargs["n_pool"] = self._npool def _verify_kwargs_against_default_kwargs(self): """ Set the directory where the output will be written and check resume and checkpoint status. """ - if 'config_file' in self.kwargs: - d = load_json(self.kwargs['config_file'], None) + if "config_file" in self.kwargs: + d = load_json(self.kwargs["config_file"], None) self.kwargs.update(d) - self.kwargs.pop('config_file') + self.kwargs.pop("config_file") - if not self.kwargs['plot']: - self.kwargs['plot'] = self.plot + if not self.kwargs["plot"]: + self.kwargs["plot"] = self.plot - if self.kwargs['n_pool'] == 1 and self.kwargs['max_threads'] == 1: - logger.warning('Setting pool to None (n_pool=1 & max_threads=1)') - self.kwargs['n_pool'] = None + if self.kwargs["n_pool"] == 1 and self.kwargs["max_threads"] == 1: + logger.warning("Setting pool to None (n_pool=1 & max_threads=1)") + self.kwargs["n_pool"] = None - if not self.kwargs['output']: - self.kwargs['output'] = os.path.join( - self.outdir, '{}_nessai'.format(self.label), '' + if not self.kwargs["output"]: + self.kwargs["output"] = os.path.join( + self.outdir, f"{self.label}_nessai", "" ) - check_directory_exists_and_if_not_mkdir(self.kwargs['output']) + check_directory_exists_and_if_not_mkdir(self.kwargs["output"]) NestedSampler._verify_kwargs_against_default_kwargs(self) + + def _setup_pool(self): + pass diff --git a/bilby/core/sampler/nestle.py b/bilby/core/sampler/nestle.py index f598d8b1751b217ae9515019c5963001eb0da840..41318e9628d63e996f50113448b4db36488382f2 100644 --- a/bilby/core/sampler/nestle.py +++ b/bilby/core/sampler/nestle.py @@ -1,8 +1,7 @@ - import numpy as np from pandas import DataFrame -from .base_sampler import NestedSampler +from .base_sampler import NestedSampler, signal_wrapper class Nestle(NestedSampler): @@ -25,30 +24,45 @@ class Nestle(NestedSampler): sampling """ - default_kwargs = dict(verbose=True, method='multi', npoints=500, - update_interval=None, npdim=None, maxiter=None, - maxcall=None, dlogz=None, decline_factor=None, - rstate=None, callback=None, steps=20, enlarge=1.2) + + default_kwargs = dict( + verbose=True, + method="multi", + npoints=500, + update_interval=None, + npdim=None, + maxiter=None, + maxcall=None, + dlogz=None, + decline_factor=None, + rstate=None, + callback=None, + steps=20, + enlarge=1.2, + ) def _translate_kwargs(self, kwargs): - if 'npoints' not in kwargs: + kwargs = super()._translate_kwargs(kwargs) + if "npoints" not in kwargs: for equiv in self.npoints_equiv_kwargs: if equiv in kwargs: - kwargs['npoints'] = kwargs.pop(equiv) - if 'steps' not in kwargs: + kwargs["npoints"] = kwargs.pop(equiv) + if "steps" not in kwargs: for equiv in self.walks_equiv_kwargs: if equiv in kwargs: - kwargs['steps'] = kwargs.pop(equiv) + kwargs["steps"] = kwargs.pop(equiv) def _verify_kwargs_against_default_kwargs(self): - if self.kwargs['verbose']: + if self.kwargs["verbose"]: import nestle - self.kwargs['callback'] = nestle.print_progress - self.kwargs.pop('verbose') + + self.kwargs["callback"] = nestle.print_progress + self.kwargs.pop("verbose") NestedSampler._verify_kwargs_against_default_kwargs(self) + @signal_wrapper def run_sampler(self): - """ Runs Nestle sampler with given kwargs and returns the result + """Runs Nestle sampler with given kwargs and returns the result Returns ======= @@ -56,21 +70,27 @@ class Nestle(NestedSampler): """ import nestle + out = nestle.sample( loglikelihood=self.log_likelihood, prior_transform=self.prior_transform, - ndim=self.ndim, **self.kwargs) + ndim=self.ndim, + **self.kwargs + ) print("") self.result.sampler_output = out self.result.samples = nestle.resample_equal(out.samples, out.weights) self.result.nested_samples = DataFrame( - out.samples, columns=self.search_parameter_keys) - self.result.nested_samples['weights'] = out.weights - self.result.nested_samples['log_likelihood'] = out.logl + out.samples, columns=self.search_parameter_keys + ) + self.result.nested_samples["weights"] = out.weights + self.result.nested_samples["log_likelihood"] = out.logl self.result.log_likelihood_evaluations = self.reorder_loglikelihoods( - unsorted_loglikelihoods=out.logl, unsorted_samples=out.samples, - sorted_samples=self.result.samples) + unsorted_loglikelihoods=out.logl, + unsorted_samples=out.samples, + sorted_samples=self.result.samples, + ) self.result.log_evidence = out.logz self.result.log_evidence_err = out.logzerr self.result.information_gain = out.h @@ -88,14 +108,24 @@ class Nestle(NestedSampler): """ import nestle + kwargs = self.kwargs.copy() - kwargs['maxiter'] = 2 + kwargs["maxiter"] = 2 nestle.sample( loglikelihood=self.log_likelihood, prior_transform=self.prior_transform, - ndim=self.ndim, **kwargs) + ndim=self.ndim, + **kwargs + ) self.result.samples = np.random.uniform(0, 1, (100, self.ndim)) self.result.log_evidence = np.nan self.result.log_evidence_err = np.nan self.calc_likelihood_count() return self.result + + def write_current_state(self): + """ + Nestle doesn't support checkpointing so no current state will be + written on interrupt. + """ + pass diff --git a/bilby/core/sampler/polychord.py b/bilby/core/sampler/polychord.py index 943a5c413abe7e45ff54eb4dde2c9aa8d35b7d91..e43c5d50b248ba0fb12cd8d5bca97b0fee726c45 100644 --- a/bilby/core/sampler/polychord.py +++ b/bilby/core/sampler/polychord.py @@ -1,7 +1,6 @@ - import numpy as np -from .base_sampler import NestedSampler +from .base_sampler import NestedSampler, signal_wrapper class PyPolyChord(NestedSampler): @@ -21,32 +20,67 @@ class PyPolyChord(NestedSampler): To see what the keyword arguments are for, see the docstring of PyPolyChordSettings """ - default_kwargs = dict(use_polychord_defaults=False, nlive=None, num_repeats=None, - nprior=-1, do_clustering=True, feedback=1, precision_criterion=0.001, - logzero=-1e30, max_ndead=-1, boost_posterior=0.0, posteriors=True, - equals=True, cluster_posteriors=True, write_resume=True, - write_paramnames=False, read_resume=True, write_stats=True, - write_live=True, write_dead=True, write_prior=True, - compression_factor=np.exp(-1), base_dir='outdir', - file_root='polychord', seed=-1, grade_dims=None, grade_frac=None, nlives={}) - + default_kwargs = dict( + use_polychord_defaults=False, + nlive=None, + num_repeats=None, + nprior=-1, + do_clustering=True, + feedback=1, + precision_criterion=0.001, + logzero=-1e30, + max_ndead=-1, + boost_posterior=0.0, + posteriors=True, + equals=True, + cluster_posteriors=True, + write_resume=True, + write_paramnames=False, + read_resume=True, + write_stats=True, + write_live=True, + write_dead=True, + write_prior=True, + compression_factor=np.exp(-1), + base_dir="outdir", + file_root="polychord", + seed=-1, + grade_dims=None, + grade_frac=None, + nlives={}, + ) + hard_exit = True + sampling_seed_key = "seed" + + @signal_wrapper def run_sampler(self): import pypolychord from pypolychord.settings import PolyChordSettings - if self.kwargs['use_polychord_defaults']: - settings = PolyChordSettings(nDims=self.ndim, nDerived=self.ndim, - base_dir=self._sample_file_directory, - file_root=self.label) + + if self.kwargs["use_polychord_defaults"]: + settings = PolyChordSettings( + nDims=self.ndim, + nDerived=self.ndim, + base_dir=self._sample_file_directory, + file_root=self.label, + ) else: self._setup_dynamic_defaults() pc_kwargs = self.kwargs.copy() - pc_kwargs['base_dir'] = self._sample_file_directory - pc_kwargs['file_root'] = self.label - pc_kwargs.pop('use_polychord_defaults') - settings = PolyChordSettings(nDims=self.ndim, nDerived=self.ndim, **pc_kwargs) + pc_kwargs["base_dir"] = self._sample_file_directory + pc_kwargs["file_root"] = self.label + pc_kwargs.pop("use_polychord_defaults") + settings = PolyChordSettings( + nDims=self.ndim, nDerived=self.ndim, **pc_kwargs + ) self._verify_kwargs_against_default_kwargs() - out = pypolychord.run_polychord(loglikelihood=self.log_likelihood, nDims=self.ndim, - nDerived=self.ndim, settings=settings, prior=self.prior_transform) + out = pypolychord.run_polychord( + loglikelihood=self.log_likelihood, + nDims=self.ndim, + nDerived=self.ndim, + settings=settings, + prior=self.prior_transform, + ) self.result.log_evidence = out.logZ self.result.log_evidence_err = out.logZerr log_likelihoods, physical_parameters = self._read_sample_file() @@ -56,24 +90,25 @@ class PyPolyChord(NestedSampler): return self.result def _setup_dynamic_defaults(self): - """ Sets up some interdependent default argument if none are given by the user """ - if not self.kwargs['grade_dims']: - self.kwargs['grade_dims'] = [self.ndim] - if not self.kwargs['grade_frac']: - self.kwargs['grade_frac'] = [1.0] * len(self.kwargs['grade_dims']) - if not self.kwargs['nlive']: - self.kwargs['nlive'] = self.ndim * 25 - if not self.kwargs['num_repeats']: - self.kwargs['num_repeats'] = self.ndim * 5 + """Sets up some interdependent default argument if none are given by the user""" + if not self.kwargs["grade_dims"]: + self.kwargs["grade_dims"] = [self.ndim] + if not self.kwargs["grade_frac"]: + self.kwargs["grade_frac"] = [1.0] * len(self.kwargs["grade_dims"]) + if not self.kwargs["nlive"]: + self.kwargs["nlive"] = self.ndim * 25 + if not self.kwargs["num_repeats"]: + self.kwargs["num_repeats"] = self.ndim * 5 def _translate_kwargs(self, kwargs): - if 'nlive' not in kwargs: + kwargs = super()._translate_kwargs(kwargs) + if "nlive" not in kwargs: for equiv in self.npoints_equiv_kwargs: if equiv in kwargs: - kwargs['nlive'] = kwargs.pop(equiv) + kwargs["nlive"] = kwargs.pop(equiv) def log_likelihood(self, theta): - """ Overrides the log_likelihood so that PolyChord understands it """ + """Overrides the log_likelihood so that PolyChord understands it""" return super(PyPolyChord, self).log_likelihood(theta), theta def _read_sample_file(self): @@ -87,12 +122,14 @@ class PyPolyChord(NestedSampler): array_like, array_like: The log_likelihoods and the associated parameters """ - sample_file = self._sample_file_directory + '/' + self.label + '_equal_weights.txt' + sample_file = ( + self._sample_file_directory + "/" + self.label + "_equal_weights.txt" + ) samples = np.loadtxt(sample_file) log_likelihoods = -0.5 * samples[:, 1] - physical_parameters = samples[:, -self.ndim:] + physical_parameters = samples[:, -self.ndim :] return log_likelihoods, physical_parameters @property def _sample_file_directory(self): - return self.outdir + '/chains' + return self.outdir + "/chains" diff --git a/bilby/core/sampler/proposal.py b/bilby/core/sampler/proposal.py index 2d52616588328c8b5bdb02247d20ff5d48b71e8b..023caac5744de968d338cea30125574248b91f95 100644 --- a/bilby/core/sampler/proposal.py +++ b/bilby/core/sampler/proposal.py @@ -1,13 +1,12 @@ +import random from inspect import isclass import numpy as np -import random from ..prior import Uniform class Sample(dict): - def __init__(self, dictionary=None): if dictionary is None: dictionary = dict() @@ -31,15 +30,14 @@ class Sample(dict): @classmethod def from_external_type(cls, external_sample, sampler_name): - if sampler_name == 'cpnest': + if sampler_name == "cpnest": return cls.from_cpnest_live_point(external_sample) return external_sample class JumpProposal(object): - def __init__(self, priors=None): - """ A generic class for jump proposals + """A generic class for jump proposals Parameters ========== @@ -56,7 +54,7 @@ class JumpProposal(object): self.log_j = 0.0 def __call__(self, sample, **kwargs): - """ A generic wrapper for the jump proposal function + """A generic wrapper for the jump proposal function Parameters ========== @@ -71,26 +69,35 @@ class JumpProposal(object): return self._apply_boundaries(sample) def _move_reflecting_keys(self, sample): - keys = [key for key in sample.keys() - if self.priors[key].boundary == 'reflective'] + keys = [ + key for key in sample.keys() if self.priors[key].boundary == "reflective" + ] for key in keys: - if sample[key] > self.priors[key].maximum or sample[key] < self.priors[key].minimum: + if ( + sample[key] > self.priors[key].maximum + or sample[key] < self.priors[key].minimum + ): r = self.priors[key].maximum - self.priors[key].minimum delta = (sample[key] - self.priors[key].minimum) % (2 * r) if delta > r: - sample[key] = 2 * self.priors[key].maximum - self.priors[key].minimum - delta + sample[key] = ( + 2 * self.priors[key].maximum - self.priors[key].minimum - delta + ) elif delta < r: sample[key] = self.priors[key].minimum + delta return sample def _move_periodic_keys(self, sample): - keys = [key for key in sample.keys() - if self.priors[key].boundary == 'periodic'] + keys = [key for key in sample.keys() if self.priors[key].boundary == "periodic"] for key in keys: - if sample[key] > self.priors[key].maximum or sample[key] < self.priors[key].minimum: - sample[key] = (self.priors[key].minimum + - ((sample[key] - self.priors[key].minimum) % - (self.priors[key].maximum - self.priors[key].minimum))) + if ( + sample[key] > self.priors[key].maximum + or sample[key] < self.priors[key].minimum + ): + sample[key] = self.priors[key].minimum + ( + (sample[key] - self.priors[key].minimum) + % (self.priors[key].maximum - self.priors[key].minimum) + ) return sample def _apply_boundaries(self, sample): @@ -100,9 +107,8 @@ class JumpProposal(object): class JumpProposalCycle(object): - def __init__(self, proposal_functions, weights, cycle_length=100): - """ A generic wrapper class for proposal cycles + """A generic wrapper class for proposal cycles Parameters ========== @@ -129,8 +135,12 @@ class JumpProposalCycle(object): return len(self.proposal_functions) def update_cycle(self): - self._cycle = np.random.choice(self.proposal_functions, size=self.cycle_length, - p=self.weights, replace=True) + self._cycle = np.random.choice( + self.proposal_functions, + size=self.cycle_length, + p=self.weights, + replace=True, + ) @property def proposal_functions(self): @@ -190,9 +200,13 @@ class NormJump(JumpProposal): class EnsembleWalk(JumpProposal): - - def __init__(self, random_number_generator=random.random, n_points=3, priors=None, - **random_number_generator_args): + def __init__( + self, + random_number_generator=random.random, + n_points=3, + priors=None, + **random_number_generator_args + ): """ An ensemble walk @@ -213,12 +227,16 @@ class EnsembleWalk(JumpProposal): self.random_number_generator_args = random_number_generator_args def __call__(self, sample, **kwargs): - subset = random.sample(kwargs['coordinates'], self.n_points) + subset = random.sample(kwargs["coordinates"], self.n_points) for i in range(len(subset)): - subset[i] = Sample.from_external_type(subset[i], kwargs.get('sampler_name', None)) + subset[i] = Sample.from_external_type( + subset[i], kwargs.get("sampler_name", None) + ) center_of_mass = self.get_center_of_mass(subset) for x in subset: - sample += (x - center_of_mass) * self.random_number_generator(**self.random_number_generator_args) + sample += (x - center_of_mass) * self.random_number_generator( + **self.random_number_generator_args + ) return super(EnsembleWalk, self).__call__(sample) @staticmethod @@ -227,7 +245,6 @@ class EnsembleWalk(JumpProposal): class EnsembleStretch(JumpProposal): - def __init__(self, scale=2.0, priors=None): """ Stretch move. Calculates the log Jacobian which can be used in cpnest to bias future moves. @@ -241,8 +258,10 @@ class EnsembleStretch(JumpProposal): self.scale = scale def __call__(self, sample, **kwargs): - second_sample = random.choice(kwargs['coordinates']) - second_sample = Sample.from_external_type(second_sample, kwargs.get('sampler_name', None)) + second_sample = random.choice(kwargs["coordinates"]) + second_sample = Sample.from_external_type( + second_sample, kwargs.get("sampler_name", None) + ) step = random.uniform(-1, 1) * np.log(self.scale) sample = second_sample + (sample - second_sample) * np.exp(step) self.log_j = len(sample) * step @@ -250,7 +269,6 @@ class EnsembleStretch(JumpProposal): class DifferentialEvolution(JumpProposal): - def __init__(self, sigma=1e-4, mu=1.0, priors=None): """ Differential evolution step. Takes two elements from the existing coordinates and differentially evolves the @@ -268,13 +286,12 @@ class DifferentialEvolution(JumpProposal): self.mu = mu def __call__(self, sample, **kwargs): - a, b = random.sample(kwargs['coordinates'], 2) + a, b = random.sample(kwargs["coordinates"], 2) sample = sample + (b - a) * random.gauss(self.mu, self.sigma) return super(DifferentialEvolution, self).__call__(sample) class EnsembleEigenVector(JumpProposal): - def __init__(self, priors=None): """ Ensemble step based on the ensemble eigenvectors. @@ -316,7 +333,7 @@ class EnsembleEigenVector(JumpProposal): self.eigen_values, self.eigen_vectors = np.linalg.eigh(self.covariance) def __call__(self, sample, **kwargs): - self.update_eigenvectors(kwargs['coordinates']) + self.update_eigenvectors(kwargs["coordinates"]) i = random.randrange(len(sample)) jump_size = np.sqrt(np.fabs(self.eigen_values[i])) * random.gauss(0, 1) for j, key in enumerate(sample.keys()): diff --git a/bilby/core/sampler/ptemcee.py b/bilby/core/sampler/ptemcee.py index 6191af0ec51ccbb984ef034d317f26b544cb8e9b..2534b0369d1de8d1b75e8561f3cafb4cda26ec73 100644 --- a/bilby/core/sampler/ptemcee.py +++ b/bilby/core/sampler/ptemcee.py @@ -2,17 +2,19 @@ import copy import datetime import logging import os -import signal -import sys import time from collections import namedtuple import numpy as np import pandas as pd -from ..utils import logger, check_directory_exists_and_if_not_mkdir -from .base_sampler import SamplerError, MCMCSampler - +from ..utils import check_directory_exists_and_if_not_mkdir, logger +from .base_sampler import ( + MCMCSampler, + SamplerError, + _sampling_convenience_dump, + signal_wrapper, +) ConvergenceInputs = namedtuple( "ConvergenceInputs", @@ -81,7 +83,7 @@ class Ptemcee(MCMCSampler): the Gelman-Rubin statistic). min_tau: int, (1) A minimum tau (autocorrelation time) to accept. - check_point_deltaT: float, (600) + check_point_delta_t: float, (600) The period with which to checkpoint (in seconds). threads: int, (1) If threads > 1, a MultiPool object is setup and used. @@ -163,7 +165,7 @@ class Ptemcee(MCMCSampler): gradient_mean_log_posterior=0.1, Q_tol=1.02, min_tau=1, - check_point_deltaT=600, + check_point_delta_t=600, threads=1, exit_code=77, plot=False, @@ -173,7 +175,7 @@ class Ptemcee(MCMCSampler): niterations_per_check=5, log10beta_min=None, verbose=True, - **kwargs + **kwargs, ): super(Ptemcee, self).__init__( likelihood=likelihood, @@ -184,25 +186,18 @@ class Ptemcee(MCMCSampler): plot=plot, skip_import_verification=skip_import_verification, exit_code=exit_code, - **kwargs + **kwargs, ) self.nwalkers = self.sampler_init_kwargs["nwalkers"] self.ntemps = self.sampler_init_kwargs["ntemps"] self.max_steps = 500 - # Setup up signal handling - signal.signal(signal.SIGTERM, self.write_current_state_and_exit) - signal.signal(signal.SIGINT, self.write_current_state_and_exit) - signal.signal(signal.SIGALRM, self.write_current_state_and_exit) - # Checkpointing inputs self.resume = resume - self.check_point_deltaT = check_point_deltaT + self.check_point_delta_t = check_point_delta_t self.check_point_plot = check_point_plot - self.resume_file = "{}/{}_checkpoint_resume.pickle".format( - self.outdir, self.label - ) + self.resume_file = f"{self.outdir}/{self.label}_checkpoint_resume.pickle" # Store convergence checking inputs in a named tuple convergence_inputs_dict = dict( @@ -223,7 +218,7 @@ class Ptemcee(MCMCSampler): niterations_per_check=niterations_per_check, ) self.convergence_inputs = ConvergenceInputs(**convergence_inputs_dict) - logger.info("Using convergence inputs: {}".format(self.convergence_inputs)) + logger.info(f"Using convergence inputs: {self.convergence_inputs}") # Check if threads was given as an equivalent arg if threads == 1: @@ -239,32 +234,50 @@ class Ptemcee(MCMCSampler): self.pos0 = pos0 self._periodic = [ - self.priors[key].boundary == "periodic" for key in self.search_parameter_keys + self.priors[key].boundary == "periodic" + for key in self.search_parameter_keys ] self.priors.sample() - self._minima = np.array([ - self.priors[key].minimum for key in self.search_parameter_keys - ]) - self._range = np.array([ - self.priors[key].maximum for key in self.search_parameter_keys - ]) - self._minima + self._minima = np.array( + [self.priors[key].minimum for key in self.search_parameter_keys] + ) + self._range = ( + np.array([self.priors[key].maximum for key in self.search_parameter_keys]) + - self._minima + ) self.log10beta_min = log10beta_min if self.log10beta_min is not None: betas = np.logspace(0, self.log10beta_min, self.ntemps) - logger.warning("Using betas {}".format(betas)) + logger.warning(f"Using betas {betas}") self.kwargs["betas"] = betas self.verbose = verbose + self.iteration = 0 + self.chain_array = self.get_zero_chain_array() + self.log_likelihood_array = self.get_zero_array() + self.log_posterior_array = self.get_zero_array() + self.beta_list = list() + self.tau_list = list() + self.tau_list_n = list() + self.Q_list = list() + self.time_per_check = list() + + self.nburn = np.nan + self.thin = np.nan + self.tau_int = np.nan + self.nsamples_effective = 0 + self.discard = 0 + @property def sampler_function_kwargs(self): - """ Kwargs passed to samper.sampler() """ + """Kwargs passed to samper.sampler()""" keys = ["adapt", "swap_ratios"] return {key: self.kwargs[key] for key in keys} @property def sampler_init_kwargs(self): - """ Kwargs passed to initialize ptemcee.Sampler() """ + """Kwargs passed to initialize ptemcee.Sampler()""" return { key: value for key, value in self.kwargs.items() @@ -272,14 +285,15 @@ class Ptemcee(MCMCSampler): } def _translate_kwargs(self, kwargs): - """ Translate kwargs """ + """Translate kwargs""" + kwargs = super()._translate_kwargs(kwargs) if "nwalkers" not in kwargs: for equiv in self.nwalkers_equiv_kwargs: if equiv in kwargs: kwargs["nwalkers"] = kwargs.pop(equiv) def get_pos0_from_prior(self): - """ Draw the initial positions from the prior + """Draw the initial positions from the prior Returns ======= @@ -288,16 +302,15 @@ class Ptemcee(MCMCSampler): """ logger.info("Generating pos0 samples") - return np.array([ + return np.array( [ - self.get_random_draw_from_prior() - for _ in range(self.nwalkers) + [self.get_random_draw_from_prior() for _ in range(self.nwalkers)] + for _ in range(self.kwargs["ntemps"]) ] - for _ in range(self.kwargs["ntemps"]) - ]) + ) def get_pos0_from_minimize(self, minimize_list=None): - """ Draw the initial positions using an initial minimization step + """Draw the initial positions using an initial minimization step See pos0 in the class initialization for details. @@ -318,12 +331,12 @@ class Ptemcee(MCMCSampler): else: pos0 = np.array(self.get_pos0_from_prior()) - logger.info("Attempting to set pos0 for {} from minimize".format(minimize_list)) + logger.info(f"Attempting to set pos0 for {minimize_list} from minimize") likelihood_copy = copy.copy(self.likelihood) def neg_log_like(params): - """ Internal function to minimize """ + """Internal function to minimize""" likelihood_copy.parameters.update( {key: val for key, val in zip(minimize_list, params)} ) @@ -360,9 +373,7 @@ class Ptemcee(MCMCSampler): for i, key in enumerate(minimize_list): pos0_min = np.min(success[:, i]) pos0_max = np.max(success[:, i]) - logger.info( - "Initialize {} walkers from {}->{}".format(key, pos0_min, pos0_max) - ) + logger.info(f"Initialize {key} walkers from {pos0_min}->{pos0_max}") j = self.search_parameter_keys.index(key) pos0[:, :, j] = np.random.uniform( pos0_min, @@ -375,9 +386,8 @@ class Ptemcee(MCMCSampler): if self.pos0.shape != (self.ntemps, self.nwalkers, self.ndim): raise ValueError( "Shape of starting array should be (ntemps, nwalkers, ndim). " - "In this case that is ({}, {}, {}), got {}".format( - self.ntemps, self.nwalkers, self.ndim, self.pos0.shape - ) + f"In this case that is ({self.ntemps}, {self.nwalkers}, " + f"{self.ndim}), got {self.pos0.shape}" ) else: return self.pos0 @@ -395,12 +405,13 @@ class Ptemcee(MCMCSampler): return self.get_pos0_from_array() def setup_sampler(self): - """ Either initialize the sampler or read in the resume file """ + """Either initialize the sampler or read in the resume file""" import ptemcee if os.path.isfile(self.resume_file) and self.resume is True: import dill - logger.info("Resume data {} found".format(self.resume_file)) + + logger.info(f"Resume data {self.resume_file} found") with open(self.resume_file, "rb") as file: data = dill.load(file) @@ -422,9 +433,7 @@ class Ptemcee(MCMCSampler): self.sampler.pool = self.pool self.sampler.threads = self.threads - logger.info( - "Resuming from previous run with time={}".format(self.iteration) - ) + logger.info(f"Resuming from previous run with time={self.iteration}") else: # Initialize the PTSampler @@ -433,32 +442,29 @@ class Ptemcee(MCMCSampler): dim=self.ndim, logl=self.log_likelihood, logp=self.log_prior, - **self.sampler_init_kwargs + **self.sampler_init_kwargs, ) else: self.sampler = ptemcee.Sampler( dim=self.ndim, logl=do_nothing_function, logp=do_nothing_function, - pool=self.pool, threads=self.threads, - **self.sampler_init_kwargs + **self.sampler_init_kwargs, ) - self.sampler._likeprior = LikePriorEvaluator( - self.search_parameter_keys, use_ratio=self.use_ratio - ) + self.sampler._likeprior = LikePriorEvaluator() # Initialize storing results self.iteration = 0 self.chain_array = self.get_zero_chain_array() self.log_likelihood_array = self.get_zero_array() self.log_posterior_array = self.get_zero_array() - self.beta_list = [] - self.tau_list = [] - self.tau_list_n = [] - self.Q_list = [] - self.time_per_check = [] + self.beta_list = list() + self.tau_list = list() + self.tau_list_n = list() + self.Q_list = list() + self.time_per_check = list() self.pos0 = self.get_pos0() return self.sampler @@ -470,7 +476,7 @@ class Ptemcee(MCMCSampler): return np.zeros((self.ntemps, self.nwalkers, self.max_steps)) def get_pos0(self): - """ Master logic for setting pos0 """ + """Master logic for setting pos0""" if isinstance(self.pos0, str) and self.pos0.lower() == "prior": return self.get_pos0_from_prior() elif isinstance(self.pos0, str) and self.pos0.lower() == "minimize": @@ -482,52 +488,55 @@ class Ptemcee(MCMCSampler): elif isinstance(self.pos0, dict): return self.get_pos0_from_dict() else: - raise SamplerError("pos0={} not implemented".format(self.pos0)) + raise SamplerError(f"pos0={self.pos0} not implemented") - def setup_pool(self): - """ If threads > 1, setup a MultiPool, else run in serial mode """ - if self.threads > 1: - import schwimmbad - - logger.info("Creating MultiPool with {} processes".format(self.threads)) - self.pool = schwimmbad.MultiPool( - self.threads, initializer=init, initargs=(self.likelihood, self.priors) - ) - else: - self.pool = None + def _close_pool(self): + if getattr(self.sampler, "pool", None) is not None: + self.sampler.pool = None + if "pool" in self.result.sampler_kwargs: + del self.result.sampler_kwargs["pool"] + super(Ptemcee, self)._close_pool() + @signal_wrapper def run_sampler(self): - self.setup_pool() + self._setup_pool() sampler = self.setup_sampler() t0 = datetime.datetime.now() logger.info("Starting to sample") while True: for (pos0, log_posterior, log_likelihood) in sampler.sample( - self.pos0, storechain=False, - iterations=self.convergence_inputs.niterations_per_check, - **self.sampler_function_kwargs): - pos0[:, :, self._periodic] = np.mod( - pos0[:, :, self._periodic] - self._minima[self._periodic], - self._range[self._periodic] - ) + self._minima[self._periodic] + self.pos0, + storechain=False, + iterations=self.convergence_inputs.niterations_per_check, + **self.sampler_function_kwargs, + ): + pos0[:, :, self._periodic] = ( + np.mod( + pos0[:, :, self._periodic] - self._minima[self._periodic], + self._range[self._periodic], + ) + + self._minima[self._periodic] + ) if self.iteration == self.chain_array.shape[1]: - self.chain_array = np.concatenate(( - self.chain_array, self.get_zero_chain_array()), axis=1) - self.log_likelihood_array = np.concatenate(( - self.log_likelihood_array, self.get_zero_array()), - axis=2) - self.log_posterior_array = np.concatenate(( - self.log_posterior_array, self.get_zero_array()), - axis=2) + self.chain_array = np.concatenate( + (self.chain_array, self.get_zero_chain_array()), axis=1 + ) + self.log_likelihood_array = np.concatenate( + (self.log_likelihood_array, self.get_zero_array()), axis=2 + ) + self.log_posterior_array = np.concatenate( + (self.log_posterior_array, self.get_zero_array()), axis=2 + ) self.pos0 = pos0 self.chain_array[:, self.iteration, :] = pos0[0, :, :] self.log_likelihood_array[:, :, self.iteration] = log_likelihood self.log_posterior_array[:, :, self.iteration] = log_posterior self.mean_log_posterior = np.mean( - self.log_posterior_array[:, :, :self. iteration], axis=1) + self.log_posterior_array[:, :, : self.iteration], axis=1 + ) # Calculate time per iteration self.time_per_check.append((datetime.datetime.now() - t0).total_seconds()) @@ -537,15 +546,13 @@ class Ptemcee(MCMCSampler): # Calculate minimum iteration step to discard minimum_iteration = get_minimum_stable_itertion( - self.mean_log_posterior, - frac=self.convergence_inputs.mean_logl_frac + self.mean_log_posterior, frac=self.convergence_inputs.mean_logl_frac ) - logger.debug("Minimum iteration = {}".format(minimum_iteration)) + logger.debug(f"Minimum iteration = {minimum_iteration}") # Calculate the maximum discard number discard_max = np.max( - [self.convergence_inputs.burn_in_fixed_discard, - minimum_iteration] + [self.convergence_inputs.burn_in_fixed_discard, minimum_iteration] ) if self.iteration > discard_max + self.nwalkers: @@ -565,7 +572,7 @@ class Ptemcee(MCMCSampler): self.nsamples_effective, ) = check_iteration( self.iteration, - self.chain_array[:, self.discard:self.iteration, :], + self.chain_array[:, self.discard : self.iteration, :], sampler, self.convergence_inputs, self.search_parameter_keys, @@ -588,7 +595,7 @@ class Ptemcee(MCMCSampler): else: last_checkpoint_s = np.sum(self.time_per_check) - if last_checkpoint_s > self.check_point_deltaT: + if last_checkpoint_s > self.check_point_delta_t: self.write_current_state(plot=self.check_point_plot) # Run a final checkpoint to update the plots and samples @@ -609,9 +616,14 @@ class Ptemcee(MCMCSampler): self.result.discard = self.discard log_evidence, log_evidence_err = compute_evidence( - sampler, self.log_likelihood_array, self.outdir, - self.label, self.discard, self.nburn, - self.thin, self.iteration, + sampler, + self.log_likelihood_array, + self.outdir, + self.label, + self.discard, + self.nburn, + self.thin, + self.iteration, ) self.result.log_evidence = log_evidence self.result.log_evidence_err = log_evidence_err @@ -620,21 +632,10 @@ class Ptemcee(MCMCSampler): seconds=np.sum(self.time_per_check) ) - if self.pool: - self.pool.close() + self._close_pool() return self.result - def write_current_state_and_exit(self, signum=None, frame=None): - logger.warning("Run terminated with signal {}".format(signum)) - if getattr(self, "pool", None) or self.threads == 1: - self.write_current_state(plot=False) - if getattr(self, "pool", None): - logger.info("Closing pool") - self.pool.close() - logger.info("Exit on signal {}".format(self.exit_code)) - sys.exit(self.exit_code) - def write_current_state(self, plot=True): check_directory_exists_and_if_not_mkdir(self.outdir) checkpoint( @@ -672,7 +673,7 @@ class Ptemcee(MCMCSampler): self.discard, ) except Exception as e: - logger.info("Walkers plot failed with exception {}".format(e)) + logger.info(f"Walkers plot failed with exception {e}") try: # Generate the tau plot diagnostic if DEBUG @@ -687,7 +688,7 @@ class Ptemcee(MCMCSampler): self.convergence_inputs.autocorr_tau, ) except Exception as e: - logger.info("tau plot failed with exception {}".format(e)) + logger.info(f"tau plot failed with exception {e}") try: plot_mean_log_posterior( @@ -696,7 +697,7 @@ class Ptemcee(MCMCSampler): self.label, ) except Exception as e: - logger.info("mean_logl plot failed with exception {}".format(e)) + logger.info(f"mean_logl plot failed with exception {e}") def get_minimum_stable_itertion(mean_array, frac, nsteps_min=10): @@ -728,7 +729,7 @@ def check_iteration( mean_log_posterior, verbose=True, ): - """ Per-iteration logic to calculate the convergence check + """Per-iteration logic to calculate the convergence check Parameters ========== @@ -780,8 +781,17 @@ def check_iteration( if np.isnan(tau) or np.isinf(tau): if verbose: print_progress( - iteration, sampler, time_per_check, np.nan, np.nan, - np.nan, np.nan, np.nan, False, convergence_inputs, Q, + iteration, + sampler, + time_per_check, + np.nan, + np.nan, + np.nan, + np.nan, + np.nan, + False, + convergence_inputs, + Q, ) return False, np.nan, np.nan, np.nan, np.nan @@ -796,45 +806,47 @@ def check_iteration( # Calculate convergence boolean converged = Q < ci.Q_tol and ci.nsamples < nsamples_effective - logger.debug("Convergence: Q<Q_tol={}, nsamples<nsamples_effective={}" - .format(Q < ci.Q_tol, ci.nsamples < nsamples_effective)) + logger.debug( + f"Convergence: Q<Q_tol={Q < ci.Q_tol}, " + f"nsamples<nsamples_effective={ci.nsamples < nsamples_effective}" + ) GRAD_WINDOW_LENGTH = nwalkers + 1 nsteps_to_check = ci.autocorr_tau * np.max([2 * GRAD_WINDOW_LENGTH, tau_int]) lower_tau_index = np.max([0, len(tau_list) - nsteps_to_check]) - check_taus = np.array(tau_list[lower_tau_index :]) + check_taus = np.array(tau_list[lower_tau_index:]) if not np.any(np.isnan(check_taus)) and check_taus.shape[0] > GRAD_WINDOW_LENGTH: - gradient_tau = get_max_gradient( - check_taus, axis=0, window_length=11) + gradient_tau = get_max_gradient(check_taus, axis=0, window_length=11) if gradient_tau < ci.gradient_tau: logger.debug( - "tau usable as {} < gradient_tau={}" - .format(gradient_tau, ci.gradient_tau) + f"tau usable as {gradient_tau} < gradient_tau={ci.gradient_tau}" ) tau_usable = True else: logger.debug( - "tau not usable as {} > gradient_tau={}" - .format(gradient_tau, ci.gradient_tau) + f"tau not usable as {gradient_tau} > gradient_tau={ci.gradient_tau}" ) tau_usable = False check_mean_log_posterior = mean_log_posterior[:, -nsteps_to_check:] gradient_mean_log_posterior = get_max_gradient( - check_mean_log_posterior, axis=1, window_length=GRAD_WINDOW_LENGTH, - smooth=True) + check_mean_log_posterior, + axis=1, + window_length=GRAD_WINDOW_LENGTH, + smooth=True, + ) if gradient_mean_log_posterior < ci.gradient_mean_log_posterior: logger.debug( - "tau usable as {} < gradient_mean_log_posterior={}" - .format(gradient_mean_log_posterior, ci.gradient_mean_log_posterior) + f"tau usable as {gradient_mean_log_posterior} < " + f"gradient_mean_log_posterior={ci.gradient_mean_log_posterior}" ) tau_usable *= True else: logger.debug( - "tau not usable as {} > gradient_mean_log_posterior={}" - .format(gradient_mean_log_posterior, ci.gradient_mean_log_posterior) + f"tau not usable as {gradient_mean_log_posterior} > " + f"gradient_mean_log_posterior={ci.gradient_mean_log_posterior}" ) tau_usable = False @@ -864,7 +876,7 @@ def check_iteration( gradient_mean_log_posterior, tau_usable, convergence_inputs, - Q + Q, ) stop = converged and tau_usable return stop, nburn, thin, tau_int, nsamples_effective @@ -872,13 +884,14 @@ def check_iteration( def get_max_gradient(x, axis=0, window_length=11, polyorder=2, smooth=False): from scipy.signal import savgol_filter + if smooth: - x = savgol_filter( - x, axis=axis, window_length=window_length, polyorder=3 + x = savgol_filter(x, axis=axis, window_length=window_length, polyorder=3) + return np.max( + savgol_filter( + x, axis=axis, window_length=window_length, polyorder=polyorder, deriv=1 ) - return np.max(savgol_filter( - x, axis=axis, window_length=window_length, polyorder=polyorder, - deriv=1)) + ) def get_Q_convergence(samples): @@ -887,7 +900,7 @@ def get_Q_convergence(samples): W = np.mean(np.var(samples, axis=1), axis=0) per_walker_mean = np.mean(samples, axis=1) mean = np.mean(per_walker_mean, axis=0) - B = nsteps / (nwalkers - 1.) * np.sum((per_walker_mean - mean)**2, axis=0) + B = nsteps / (nwalkers - 1.0) * np.sum((per_walker_mean - mean) ** 2, axis=0) Vhat = (nsteps - 1) / nsteps * W + (nwalkers + 1) / (nwalkers * nsteps) * B Q_per_dim = np.sqrt(Vhat / W) return np.max(Q_per_dim) @@ -910,16 +923,18 @@ def print_progress( ): # Setup acceptance string acceptance = sampler.acceptance_fraction[0, :] - acceptance_str = "{:1.2f}-{:1.2f}".format(np.min(acceptance), np.max(acceptance)) + acceptance_str = f"{np.min(acceptance):1.2f}-{np.max(acceptance):1.2f}" # Setup tswap acceptance string tswap_acceptance_fraction = sampler.tswap_acceptance_fraction - tswap_acceptance_str = "{:1.2f}-{:1.2f}".format( - np.min(tswap_acceptance_fraction), np.max(tswap_acceptance_fraction) - ) + tswap_acceptance_str = f"{np.min(tswap_acceptance_fraction):1.2f}-{np.max(tswap_acceptance_fraction):1.2f}" ave_time_per_check = np.mean(time_per_check[-3:]) - time_left = (convergence_inputs.nsamples - nsamples_effective) * ave_time_per_check / samples_per_check + time_left = ( + (convergence_inputs.nsamples - nsamples_effective) + * ave_time_per_check + / samples_per_check + ) if time_left > 0: time_left = str(datetime.timedelta(seconds=int(time_left))) else: @@ -927,46 +942,44 @@ def print_progress( sampling_time = datetime.timedelta(seconds=np.sum(time_per_check)) - tau_str = "{}(+{:0.2f},+{:0.2f})".format( - tau_int, gradient_tau, gradient_mean_log_posterior - ) + tau_str = f"{tau_int}(+{gradient_tau:0.2f},+{gradient_mean_log_posterior:0.2f})" if tau_usable: - tau_str = "={}".format(tau_str) + tau_str = f"={tau_str}" else: - tau_str = "!{}".format(tau_str) + tau_str = f"!{tau_str}" - Q_str = "{:0.2f}".format(Q) + Q_str = f"{Q:0.2f}" - evals_per_check = sampler.nwalkers * sampler.ntemps * convergence_inputs.niterations_per_check + evals_per_check = ( + sampler.nwalkers * sampler.ntemps * convergence_inputs.niterations_per_check + ) - ncalls = "{:1.1e}".format( - convergence_inputs.niterations_per_check * iteration * sampler.nwalkers * sampler.ntemps) - eval_timing = "{:1.2f}ms/ev".format(1e3 * ave_time_per_check / evals_per_check) + approximate_ncalls = ( + convergence_inputs.niterations_per_check + * iteration + * sampler.nwalkers + * sampler.ntemps + ) + ncalls = f"{approximate_ncalls:1.1e}" + eval_timing = f"{1000.0 * ave_time_per_check / evals_per_check:1.2f}ms/ev" try: print( - "{}|{}|nc:{}|a0:{}|swp:{}|n:{}<{}|t{}|q:{}|{}".format( - iteration, - str(sampling_time).split(".")[0], - ncalls, - acceptance_str, - tswap_acceptance_str, - nsamples_effective, - convergence_inputs.nsamples, - tau_str, - Q_str, - eval_timing, - ), + f"{iteration}|{str(sampling_time).split('.')[0]}|nc:{ncalls}|" + f"a0:{acceptance_str}|swp:{tswap_acceptance_str}|" + f"n:{nsamples_effective}<{convergence_inputs.nsamples}|t{tau_str}|" + f"q:{Q_str}|{eval_timing}", flush=True, ) except OSError as e: - logger.debug("Failed to print iteration due to :{}".format(e)) + logger.debug(f"Failed to print iteration due to :{e}") def calculate_tau_array(samples, search_parameter_keys, ci): - """ Compute ACT tau for 0-temperature chains """ + """Compute ACT tau for 0-temperature chains""" import emcee + nwalkers, nsteps, ndim = samples.shape tau_array = np.zeros((nwalkers, ndim)) + np.inf if nsteps > 1: @@ -976,7 +989,8 @@ def calculate_tau_array(samples, search_parameter_keys, ci): continue try: tau_array[ii, jj] = emcee.autocorr.integrated_time( - samples[ii, :, jj], c=ci.autocorr_c, tol=0)[0] + samples[ii, :, jj], c=ci.autocorr_c, tol=0 + )[0] except emcee.autocorr.AutocorrError: tau_array[ii, jj] = np.inf return tau_array @@ -1004,21 +1018,24 @@ def checkpoint( time_per_check, ): import dill + logger.info("Writing checkpoint and diagnostics") ndim = sampler.dim # Store the samples if possible if nsamples_effective > 0: - filename = "{}/{}_samples.txt".format(outdir, label) - samples = np.array(chain_array)[:, discard + nburn : iteration : thin, :].reshape( - (-1, ndim) - ) + filename = f"{outdir}/{label}_samples.txt" + samples = np.array(chain_array)[ + :, discard + nburn : iteration : thin, : + ].reshape((-1, ndim)) df = pd.DataFrame(samples, columns=search_parameter_keys) df.to_csv(filename, index=False, header=True, sep=" ") # Pickle the resume artefacts - sampler_copy = copy.copy(sampler) - del sampler_copy.pool + pool = sampler.pool + sampler.pool = None + sampler_copy = copy.deepcopy(sampler) + sampler.pool = pool data = dict( iteration=iteration, @@ -1040,10 +1057,10 @@ def checkpoint( logger.info("Finished writing checkpoint") -def plot_walkers(walkers, nburn, thin, parameter_labels, outdir, label, - discard=0): - """ Method to plot the trace of the walkers in an ensemble MCMC plot """ +def plot_walkers(walkers, nburn, thin, parameter_labels, outdir, label, discard=0): + """Method to plot the trace of the walkers in an ensemble MCMC plot""" import matplotlib.pyplot as plt + nwalkers, nsteps, ndim = walkers.shape if np.isnan(nburn): nburn = nsteps @@ -1051,51 +1068,65 @@ def plot_walkers(walkers, nburn, thin, parameter_labels, outdir, label, thin = 1 idxs = np.arange(nsteps) fig, axes = plt.subplots(nrows=ndim, ncols=2, figsize=(8, 3 * ndim)) - scatter_kwargs = dict(lw=0, marker="o", markersize=1, alpha=0.1,) + scatter_kwargs = dict( + lw=0, + marker="o", + markersize=1, + alpha=0.1, + ) # Plot the fixed burn-in if discard > 0: for i, (ax, axh) in enumerate(axes): ax.plot( - idxs[: discard], - walkers[:, : discard, i].T, + idxs[:discard], + walkers[:, :discard, i].T, color="gray", - **scatter_kwargs + **scatter_kwargs, ) # Plot the burn-in for i, (ax, axh) in enumerate(axes): ax.plot( - idxs[discard: discard + nburn + 1], - walkers[:, discard: discard + nburn + 1, i].T, + idxs[discard : discard + nburn + 1], + walkers[:, discard : discard + nburn + 1, i].T, color="C1", - **scatter_kwargs + **scatter_kwargs, ) # Plot the thinned posterior samples for i, (ax, axh) in enumerate(axes): ax.plot( - idxs[discard + nburn::thin], - walkers[:, discard + nburn::thin, i].T, + idxs[discard + nburn :: thin], + walkers[:, discard + nburn :: thin, i].T, color="C0", - **scatter_kwargs + **scatter_kwargs, + ) + axh.hist( + walkers[:, discard + nburn :: thin, i].reshape((-1)), bins=50, alpha=0.8 ) - axh.hist(walkers[:, discard + nburn::thin, i].reshape((-1)), bins=50, alpha=0.8) for i, (ax, axh) in enumerate(axes): axh.set_xlabel(parameter_labels[i]) ax.set_ylabel(parameter_labels[i]) fig.tight_layout() - filename = "{}/{}_checkpoint_trace.png".format(outdir, label) + filename = f"{outdir}/{label}_checkpoint_trace.png" fig.savefig(filename) plt.close(fig) def plot_tau( - tau_list_n, tau_list, search_parameter_keys, outdir, label, tau, autocorr_tau, + tau_list_n, + tau_list, + search_parameter_keys, + outdir, + label, + tau, + autocorr_tau, ): import matplotlib.pyplot as plt + fig, ax = plt.subplots() for i, key in enumerate(search_parameter_keys): ax.plot(tau_list_n, np.array(tau_list)[:, i], label=key) @@ -1103,7 +1134,7 @@ def plot_tau( ax.set_ylabel(r"$\langle \tau \rangle$") ax.legend() fig.tight_layout() - fig.savefig("{}/{}_checkpoint_tau.png".format(outdir, label)) + fig.savefig(f"{outdir}/{label}_checkpoint_tau.png") plt.close(fig) @@ -1119,17 +1150,30 @@ def plot_mean_log_posterior(mean_log_posterior, outdir, label): fig, ax = plt.subplots() idxs = np.arange(nsteps) ax.plot(idxs, mean_log_posterior.T) - ax.set(xlabel="Iteration", ylabel=r"$\langle\mathrm{log-posterior}\rangle$", - ylim=(ymin, ymax)) + ax.set( + xlabel="Iteration", + ylabel=r"$\langle\mathrm{log-posterior}\rangle$", + ylim=(ymin, ymax), + ) fig.tight_layout() - fig.savefig("{}/{}_checkpoint_meanlogposterior.png".format(outdir, label)) + fig.savefig(f"{outdir}/{label}_checkpoint_meanlogposterior.png") plt.close(fig) -def compute_evidence(sampler, log_likelihood_array, outdir, label, discard, nburn, thin, - iteration, make_plots=True): - """ Computes the evidence using thermodynamic integration """ +def compute_evidence( + sampler, + log_likelihood_array, + outdir, + label, + discard, + nburn, + thin, + iteration, + make_plots=True, +): + """Computes the evidence using thermodynamic integration""" import matplotlib.pyplot as plt + betas = sampler.betas # We compute the evidence without the burnin samples, but we do not thin lnlike = log_likelihood_array[:, :, discard + nburn : iteration] @@ -1141,7 +1185,7 @@ def compute_evidence(sampler, log_likelihood_array, outdir, label, discard, nbur if any(np.isinf(mean_lnlikes)): logger.warning( "mean_lnlikes contains inf: recalculating without" - " the {} infs".format(len(betas[np.isinf(mean_lnlikes)])) + f" the {len(betas[np.isinf(mean_lnlikes)])} infs" ) idxs = np.isinf(mean_lnlikes) mean_lnlikes = mean_lnlikes[~idxs] @@ -1165,33 +1209,23 @@ def compute_evidence(sampler, log_likelihood_array, outdir, label, discard, nbur ax2.semilogx(min_betas, evidence, "-o") ax2.set_ylabel( - r"$\int_{\beta_{min}}^{\beta=1}" + r"\langle \log(\mathcal{L})\rangle d\beta$", + r"$\int_{\beta_{min}}^{\beta=1}" + + r"\langle \log(\mathcal{L})\rangle d\beta$", size=16, ) ax2.set_xlabel(r"$\beta_{min}$") plt.tight_layout() - fig.savefig("{}/{}_beta_lnl.png".format(outdir, label)) + fig.savefig(f"{outdir}/{label}_beta_lnl.png") plt.close(fig) return lnZ, lnZerr def do_nothing_function(): - """ This is a do-nothing function, we overwrite the likelihood and prior elsewhere """ + """This is a do-nothing function, we overwrite the likelihood and prior elsewhere""" pass -likelihood = None -priors = None - - -def init(likelihood_in, priors_in): - global likelihood - global priors - likelihood = likelihood_in - priors = priors_in - - class LikePriorEvaluator(object): """ This class is copied and modified from ptemcee.LikePriorEvaluator, see @@ -1203,38 +1237,43 @@ class LikePriorEvaluator(object): """ - def __init__(self, search_parameter_keys, use_ratio=False): - self.search_parameter_keys = search_parameter_keys - self.use_ratio = use_ratio + def __init__(self): self.periodic_set = False def _setup_periodic(self): + priors = _sampling_convenience_dump.priors + search_parameter_keys = _sampling_convenience_dump.search_parameter_keys self._periodic = [ - priors[key].boundary == "periodic" for key in self.search_parameter_keys + priors[key].boundary == "periodic" for key in search_parameter_keys ] priors.sample() - self._minima = np.array([ - priors[key].minimum for key in self.search_parameter_keys - ]) - self._range = np.array([ - priors[key].maximum for key in self.search_parameter_keys - ]) - self._minima + self._minima = np.array([priors[key].minimum for key in search_parameter_keys]) + self._range = ( + np.array([priors[key].maximum for key in search_parameter_keys]) + - self._minima + ) self.periodic_set = True def _wrap_periodic(self, array): if not self.periodic_set: self._setup_periodic() - array[self._periodic] = np.mod( - array[self._periodic] - self._minima[self._periodic], - self._range[self._periodic] - ) + self._minima[self._periodic] + array[self._periodic] = ( + np.mod( + array[self._periodic] - self._minima[self._periodic], + self._range[self._periodic], + ) + + self._minima[self._periodic] + ) return array def logl(self, v_array): - parameters = {key: v for key, v in zip(self.search_parameter_keys, v_array)} + priors = _sampling_convenience_dump.priors + likelihood = _sampling_convenience_dump.likelihood + search_parameter_keys = _sampling_convenience_dump.search_parameter_keys + parameters = {key: v for key, v in zip(search_parameter_keys, v_array)} if priors.evaluate_constraints(parameters) > 0: likelihood.parameters.update(parameters) - if self.use_ratio: + if _sampling_convenience_dump.use_ratio: return likelihood.log_likelihood() - likelihood.noise_log_likelihood() else: return likelihood.log_likelihood() @@ -1242,9 +1281,15 @@ class LikePriorEvaluator(object): return np.nan_to_num(-np.inf) def logp(self, v_array): - params = {key: t for key, t in zip(self.search_parameter_keys, v_array)} + priors = _sampling_convenience_dump.priors + search_parameter_keys = _sampling_convenience_dump.search_parameter_keys + params = {key: t for key, t in zip(search_parameter_keys, v_array)} return priors.ln_prob(params) + def call_emcee(self, theta): + ll, lp = self.__call__(theta) + return ll + lp, [ll, lp] + def __call__(self, x): lp = self.logp(x) if np.isnan(lp): diff --git a/bilby/core/sampler/ptmcmc.py b/bilby/core/sampler/ptmcmc.py index 49b86d7392ff4d21af698fe7b7034b25eaa7ac22..42279e018ed124cd117118e75949b60d74e3a302 100644 --- a/bilby/core/sampler/ptmcmc.py +++ b/bilby/core/sampler/ptmcmc.py @@ -1,11 +1,10 @@ - import glob import shutil import numpy as np -from .base_sampler import MCMCSampler, SamplerNotInstalledError from ..utils import logger +from .base_sampler import MCMCSampler, SamplerNotInstalledError, signal_wrapper class PTMCMCSampler(MCMCSampler): @@ -42,29 +41,66 @@ class PTMCMCSampler(MCMCSampler): """ - default_kwargs = {'p0': None, 'Niter': 2 * 10 ** 4 + 1, 'neff': 10 ** 4, - 'burn': 5 * 10 ** 3, 'verbose': True, - 'ladder': None, 'Tmin': 1, 'Tmax': None, 'Tskip': 100, - 'isave': 1000, 'thin': 1, 'covUpdate': 1000, - 'SCAMweight': 1, 'AMweight': 1, 'DEweight': 1, - 'HMCweight': 0, 'MALAweight': 0, 'NUTSweight': 0, - 'HMCstepsize': 0.1, 'HMCsteps': 300, - 'groups': None, 'custom_proposals': None, - 'loglargs': {}, 'loglkwargs': {}, 'logpargs': {}, - 'logpkwargs': {}, 'logl_grad': None, 'logp_grad': None, - 'outDir': None} - - def __init__(self, likelihood, priors, outdir='outdir', label='label', - use_ratio=False, plot=False, skip_import_verification=False, - pos0=None, burn_in_fraction=0.25, **kwargs): - - super(PTMCMCSampler, self).__init__(likelihood=likelihood, priors=priors, - outdir=outdir, label=label, use_ratio=use_ratio, - plot=plot, - skip_import_verification=skip_import_verification, - **kwargs) - - self.p0 = self.get_random_draw_from_prior() + default_kwargs = { + "p0": None, + "Niter": 2 * 10**4 + 1, + "neff": 10**4, + "burn": 5 * 10**3, + "verbose": True, + "ladder": None, + "Tmin": 1, + "Tmax": None, + "Tskip": 100, + "isave": 1000, + "thin": 1, + "covUpdate": 1000, + "SCAMweight": 1, + "AMweight": 1, + "DEweight": 1, + "HMCweight": 0, + "MALAweight": 0, + "NUTSweight": 0, + "HMCstepsize": 0.1, + "HMCsteps": 300, + "groups": None, + "custom_proposals": None, + "loglargs": {}, + "loglkwargs": {}, + "logpargs": {}, + "logpkwargs": {}, + "logl_grad": None, + "logp_grad": None, + "outDir": None, + } + hard_exit = True + + def __init__( + self, + likelihood, + priors, + outdir="outdir", + label="label", + use_ratio=False, + plot=False, + skip_import_verification=False, + **kwargs, + ): + + super(PTMCMCSampler, self).__init__( + likelihood=likelihood, + priors=priors, + outdir=outdir, + label=label, + use_ratio=use_ratio, + plot=plot, + skip_import_verification=skip_import_verification, + **kwargs, + ) + + if self.kwargs["p0"] is None: + self.p0 = self.get_random_draw_from_prior() + else: + self.p0 = self.kwargs["p0"] self.likelihood = likelihood self.priors = priors @@ -73,88 +109,103 @@ class PTMCMCSampler(MCMCSampler): # which forces `__name__.lower() external_sampler_name = self.__class__.__name__ try: - self.external_sampler = __import__(external_sampler_name) + __import__(external_sampler_name) except (ImportError, SystemExit): raise SamplerNotInstalledError( - "Sampler {} is not installed on this system".format(external_sampler_name)) + f"Sampler {external_sampler_name} is not installed on this system" + ) def _translate_kwargs(self, kwargs): - if 'Niter' not in kwargs: + kwargs = super()._translate_kwargs(kwargs) + if "Niter" not in kwargs: for equiv in self.nwalkers_equiv_kwargs: if equiv in kwargs: - kwargs['Niter'] = kwargs.pop(equiv) - if 'burn' not in kwargs: + kwargs["Niter"] = kwargs.pop(equiv) + if "burn" not in kwargs: for equiv in self.nburn_equiv_kwargs: if equiv in kwargs: - kwargs['burn'] = kwargs.pop(equiv) + kwargs["burn"] = kwargs.pop(equiv) @property def custom_proposals(self): - return self.kwargs['custom_proposals'] + return self.kwargs["custom_proposals"] @property def sampler_init_kwargs(self): - keys = ['groups', - 'loglargs', - 'logp_grad', - 'logpkwargs', - 'loglkwargs', - 'logl_grad', - 'logpargs', - 'outDir', - 'verbose'] + keys = [ + "groups", + "loglargs", + "logp_grad", + "logpkwargs", + "loglkwargs", + "logl_grad", + "logpargs", + "outDir", + "verbose", + ] init_kwargs = {key: self.kwargs[key] for key in keys} - if init_kwargs['outDir'] is None: - init_kwargs['outDir'] = '{}/ptmcmc_temp_{}/'.format(self.outdir, self.label) + if init_kwargs["outDir"] is None: + init_kwargs["outDir"] = f"{self.outdir}/ptmcmc_temp_{self.label}/" return init_kwargs @property def sampler_function_kwargs(self): - keys = ['Niter', - 'neff', - 'Tmin', - 'HMCweight', - 'covUpdate', - 'SCAMweight', - 'ladder', - 'burn', - 'NUTSweight', - 'AMweight', - 'MALAweight', - 'thin', - 'HMCstepsize', - 'isave', - 'Tskip', - 'HMCsteps', - 'Tmax', - 'DEweight'] + keys = [ + "Niter", + "neff", + "Tmin", + "HMCweight", + "covUpdate", + "SCAMweight", + "ladder", + "burn", + "NUTSweight", + "AMweight", + "MALAweight", + "thin", + "HMCstepsize", + "isave", + "Tskip", + "HMCsteps", + "Tmax", + "DEweight", + ] sampler_kwargs = {key: self.kwargs[key] for key in keys} return sampler_kwargs @staticmethod def _import_external_sampler(): from PTMCMCSampler import PTMCMCSampler + return PTMCMCSampler + @signal_wrapper def run_sampler(self): PTMCMCSampler = self._import_external_sampler() - sampler = PTMCMCSampler.PTSampler(ndim=self.ndim, logp=self.log_prior, - logl=self.log_likelihood, cov=np.eye(self.ndim), - **self.sampler_init_kwargs) + sampler = PTMCMCSampler.PTSampler( + ndim=self.ndim, + logp=self.log_prior, + logl=self.log_likelihood, + cov=np.eye(self.ndim), + **self.sampler_init_kwargs, + ) if self.custom_proposals is not None: for proposal in self.custom_proposals: - logger.info('Adding {} to proposals with weight {}'.format( - proposal, self.custom_proposals[proposal][1])) - sampler.addProposalToCycle(self.custom_proposals[proposal][0], - self.custom_proposals[proposal][1]) + logger.info( + f"Adding {proposal} to proposals with weight {self.custom_proposals[proposal][1]}" + ) + sampler.addProposalToCycle( + self.custom_proposals[proposal][0], + self.custom_proposals[proposal][1], + ) sampler.sample(p0=self.p0, **self.sampler_function_kwargs) samples, meta, loglike = self.__read_in_data() self.calc_likelihood_count() - self.result.nburn = self.sampler_function_kwargs['burn'] - self.result.samples = samples[self.result.nburn:] - self.meta_data['sampler_meta'] = meta - self.result.log_likelihood_evaluations = loglike[self.result.nburn:] + self.result.nburn = self.sampler_function_kwargs["burn"] + self.result.samples = samples[self.result.nburn :] + self.meta_data["sampler_meta"] = meta + self.result.log_likelihood_evaluations = loglike[self.result.nburn :] self.result.sampler_output = np.nan self.result.walkers = np.nan self.result.log_evidence = np.nan @@ -162,30 +213,34 @@ class PTMCMCSampler(MCMCSampler): return self.result def __read_in_data(self): - """ Read the data stored by PTMCMC to disk """ - temp_outDir = self.sampler_init_kwargs['outDir'] + """Read the data stored by PTMCMC to disk""" + temp_outDir = self.sampler_init_kwargs["outDir"] try: - data = np.loadtxt('{}chain_1.txt'.format(temp_outDir)) + data = np.loadtxt(f"{temp_outDir}chain_1.txt") except OSError: - data = np.loadtxt('{}chain_1.0.txt'.format(temp_outDir)) - jumpfiles = glob.glob('{}/*jump.txt'.format(temp_outDir)) + data = np.loadtxt(f"{temp_outDir}chain_1.0.txt") + jumpfiles = glob.glob(f"{temp_outDir}/*jump.txt") jumps = map(np.loadtxt, jumpfiles) samples = data[:, :-4] loglike = data[:, -3] jump_accept = {} for ct, j in enumerate(jumps): - label = jumpfiles[ct].split('/')[-1].split('_jump.txt')[0] + label = jumpfiles[ct].split("/")[-1].split("_jump.txt")[0] jump_accept[label] = j - PT_swap = {'swap_accept': data[:, -1]} - tot_accept = {'tot_accept': data[:, -2]} - log_post = {'log_post': data[:, -4]} + PT_swap = {"swap_accept": data[:, -1]} + tot_accept = {"tot_accept": data[:, -2]} + log_post = {"log_post": data[:, -4]} meta = {} - meta['tot_accept'] = tot_accept - meta['PT_swap'] = PT_swap - meta['proposals'] = jump_accept - meta['log_post'] = log_post + meta["tot_accept"] = tot_accept + meta["PT_swap"] = PT_swap + meta["proposals"] = jump_accept + meta["log_post"] = log_post shutil.rmtree(temp_outDir) return samples, meta, loglike + + def write_current_state(self): + """TODO: implement a checkpointing method""" + pass diff --git a/bilby/core/sampler/pymc.py b/bilby/core/sampler/pymc.py new file mode 100644 index 0000000000000000000000000000000000000000..95a57dd4e94866135b50053d15f9d3e700cd8d4b --- /dev/null +++ b/bilby/core/sampler/pymc.py @@ -0,0 +1,1004 @@ +from distutils.version import StrictVersion + +import numpy as np + +from ...gw.likelihood import BasicGravitationalWaveTransient, GravitationalWaveTransient +from ..likelihood import ( + ExponentialLikelihood, + GaussianLikelihood, + PoissonLikelihood, + StudentTLikelihood, +) +from ..prior import Cosine, DeltaFunction, MultivariateGaussian, PowerLaw, Sine +from ..utils import derivatives, infer_args_from_method +from .base_sampler import MCMCSampler + + +class Pymc(MCMCSampler): + """bilby wrapper of the PyMC sampler (https://www.pymc.io/) + + All keyword arguments (i.e., the kwargs) passed to `run_sampler` will be + propapated to `pymc.sample` where appropriate, see documentation for that + class for further help. Under Other Parameters, we list commonly used + kwargs and the bilby, or where appropriate, PyMC defaults. + + Parameters + ========== + draws: int, (1000) + The number of sample draws from the posterior per chain. + chains: int, (2) + The number of independent MCMC chains to run. + cores: int, (1) + The number of CPU cores to use. + tune: int, (500) + The number of tuning (or burn-in) samples per chain. + discard_tuned_samples: bool, True + Set whether to automatically discard the tuning samples from the final + chains. + step: str, dict + Provide a step method name, or dictionary of step method names keyed to + particular variable names (these are case insensitive). If passing a + dictionary of methods, the values keyed on particular variables can be + lists of methods to form compound steps. If no method is provided for + any particular variable then PyMC will automatically decide upon a + default, with the first option being the NUTS sampler. The currently + allowed methods are 'NUTS', 'HamiltonianMC', 'Metropolis', + 'BinaryMetropolis', 'BinaryGibbsMetropolis', 'Slice', and + 'CategoricalGibbsMetropolis'. Note: you cannot provide a PyMC step + method function itself here as it is outside of the model context + manager. + step_kwargs: dict + Options for steps methods other than NUTS. The dictionary is keyed on + lowercase step method names with values being dictionaries of keywords + for the given step method. + + """ + + default_kwargs = dict( + draws=500, + step=None, + init="auto", + n_init=200000, + initvals=None, + trace=None, + chain_idx=0, + chains=2, + cores=1, + tune=500, + progressbar=True, + model=None, + random_seed=None, + discard_tuned_samples=True, + compute_convergence_checks=True, + nuts_kwargs=None, + step_kwargs=None, + ) + + default_nuts_kwargs = dict( + target_accept=None, + max_treedepth=None, + step_scale=None, + Emax=None, + gamma=None, + k=None, + t0=None, + adapt_step_size=None, + early_max_treedepth=None, + scaling=None, + is_cov=None, + potential=None, + ) + + default_kwargs.update(default_nuts_kwargs) + + sampling_seed_key = "random_seed" + + def __init__( + self, + likelihood, + priors, + outdir="outdir", + label="label", + use_ratio=False, + plot=False, + skip_import_verification=False, + **kwargs, + ): + # add default step kwargs + _, STEP_METHODS, _ = self._import_external_sampler() + self.default_step_kwargs = {m.__name__.lower(): None for m in STEP_METHODS} + self.default_kwargs.update(self.default_step_kwargs) + + super(Pymc, self).__init__( + likelihood=likelihood, + priors=priors, + outdir=outdir, + label=label, + use_ratio=use_ratio, + plot=plot, + skip_import_verification=skip_import_verification, + **kwargs, + ) + self.draws = self._kwargs["draws"] + self.chains = self._kwargs["chains"] + + @staticmethod + def _import_external_sampler(): + import pymc + from pymc.aesaraf import floatX + from pymc.step_methods import STEP_METHODS + + return pymc, STEP_METHODS, floatX + + @staticmethod + def _import_aesara(): + import aesara # noqa + import aesara.tensor as tt + from aesara.compile.ops import as_op # noqa + + return aesara, tt, as_op + + def _verify_parameters(self): + """ + Change `_verify_parameters()` to just pass, i.e., don't try and + evaluate the likelihood for PyMC. + """ + pass + + def _verify_use_ratio(self): + """ + Change `_verify_use_ratio() to just pass. + """ + pass + + def setup_prior_mapping(self): + """ + Set the mapping between predefined bilby priors and the equivalent + PyMC distributions. + """ + + prior_map = {} + self.prior_map = prior_map + + # predefined PyMC distributions + prior_map["Gaussian"] = { + "pymc": "Normal", + "argmap": {"mu": "mu", "sigma": "sigma"}, + } + prior_map["TruncatedGaussian"] = { + "pymc": "TruncatedNormal", + "argmap": { + "mu": "mu", + "sigma": "sigma", + "minimum": "lower", + "maximum": "upper", + }, + } + prior_map["HalfGaussian"] = {"pymc": "HalfNormal", "argmap": {"sigma": "sigma"}} + prior_map["Uniform"] = { + "pymc": "Uniform", + "argmap": {"minimum": "lower", "maximum": "upper"}, + } + prior_map["LogNormal"] = { + "pymc": "Lognormal", + "argmap": {"mu": "mu", "sigma": "sigma"}, + } + prior_map["Exponential"] = { + "pymc": "Exponential", + "argmap": {"mu": "lam"}, + "argtransform": {"mu": lambda mu: 1.0 / mu}, + } + prior_map["StudentT"] = { + "pymc": "StudentT", + "argmap": {"df": "nu", "mu": "mu", "scale": "sigma"}, + } + prior_map["Beta"] = { + "pymc": "Beta", + "argmap": {"alpha": "alpha", "beta": "beta"}, + } + prior_map["Logistic"] = { + "pymc": "Logistic", + "argmap": {"mu": "mu", "scale": "s"}, + } + prior_map["Cauchy"] = { + "pymc": "Cauchy", + "argmap": {"alpha": "alpha", "beta": "beta"}, + } + prior_map["Gamma"] = { + "pymc": "Gamma", + "argmap": {"k": "alpha", "theta": "beta"}, + "argtransform": {"theta": lambda theta: 1.0 / theta}, + } + prior_map["ChiSquared"] = {"pymc": "ChiSquared", "argmap": {"nu": "nu"}} + prior_map["Interped"] = { + "pymc": "Interpolated", + "argmap": {"xx": "x_points", "yy": "pdf_points"}, + } + prior_map["Normal"] = prior_map["Gaussian"] + prior_map["TruncatedNormal"] = prior_map["TruncatedGaussian"] + prior_map["HalfNormal"] = prior_map["HalfGaussian"] + prior_map["LogGaussian"] = prior_map["LogNormal"] + prior_map["Lorentzian"] = prior_map["Cauchy"] + prior_map["FromFile"] = prior_map["Interped"] + + # GW specific priors + prior_map["UniformComovingVolume"] = prior_map["Interped"] + + # internally defined mappings for bilby priors + prior_map["DeltaFunction"] = {"internal": self._deltafunction_prior} + prior_map["Sine"] = {"internal": self._sine_prior} + prior_map["Cosine"] = {"internal": self._cosine_prior} + prior_map["PowerLaw"] = {"internal": self._powerlaw_prior} + prior_map["LogUniform"] = {"internal": self._powerlaw_prior} + prior_map["MultivariateGaussian"] = { + "internal": self._multivariate_normal_prior + } + prior_map["MultivariateNormal"] = {"internal": self._multivariate_normal_prior} + + def _deltafunction_prior(self, key, **kwargs): + """ + Map the bilby delta function prior to a single value for PyMC. + """ + + # check prior is a DeltaFunction + if isinstance(self.priors[key], DeltaFunction): + return self.priors[key].peak + else: + raise ValueError(f"Prior for '{key}' is not a DeltaFunction") + + def _sine_prior(self, key): + """ + Map the bilby Sine prior to a PyMC style function + """ + + # check prior is a Sine + pymc, STEP_METHODS, floatX = self._import_external_sampler() + aesara, tt, as_op = self._import_aesara() + if isinstance(self.priors[key], Sine): + + class PymcSine(pymc.Continuous): + def __init__(self, lower=0.0, upper=np.pi): + if lower >= upper: + raise ValueError("Lower bound is above upper bound!") + + # set the mode + self.lower = lower = tt.as_tensor_variable(floatX(lower)) + self.upper = upper = tt.as_tensor_variable(floatX(upper)) + self.norm = tt.cos(lower) - tt.cos(upper) + self.mean = ( + tt.sin(upper) + + lower * tt.cos(lower) + - tt.sin(lower) + - upper * tt.cos(upper) + ) / self.norm + + transform = pymc.distributions.transforms.interval(lower, upper) + + super(PymcSine, self).__init__(transform=transform) + + def logp(self, value): + upper = self.upper + lower = self.lower + return pymc.distributions.dist_math.bound( + tt.log(tt.sin(value) / self.norm), + lower <= value, + value <= upper, + ) + + return PymcSine( + key, lower=self.priors[key].minimum, upper=self.priors[key].maximum + ) + else: + raise ValueError(f"Prior for '{key}' is not a Sine") + + def _cosine_prior(self, key): + """ + Map the bilby Cosine prior to a PyMC style function + """ + + # check prior is a Cosine + pymc, STEP_METHODS, floatX = self._import_external_sampler() + aesara, tt, as_op = self._import_aesara() + if isinstance(self.priors[key], Cosine): + + class PymcCosine(pymc.Continuous): + def __init__(self, lower=-np.pi / 2.0, upper=np.pi / 2.0): + if lower >= upper: + raise ValueError("Lower bound is above upper bound!") + + self.lower = lower = tt.as_tensor_variable(floatX(lower)) + self.upper = upper = tt.as_tensor_variable(floatX(upper)) + self.norm = tt.sin(upper) - tt.sin(lower) + self.mean = ( + upper * tt.sin(upper) + + tt.cos(upper) + - lower * tt.sin(lower) + - tt.cos(lower) + ) / self.norm + + transform = pymc.distributions.transforms.interval(lower, upper) + + super(PymcCosine, self).__init__(transform=transform) + + def logp(self, value): + upper = self.upper + lower = self.lower + return pymc.distributions.dist_math.bound( + tt.log(tt.cos(value) / self.norm), + lower <= value, + value <= upper, + ) + + return PymcCosine( + key, lower=self.priors[key].minimum, upper=self.priors[key].maximum + ) + else: + raise ValueError(f"Prior for '{key}' is not a Cosine") + + def _powerlaw_prior(self, key): + """ + Map the bilby PowerLaw prior to a PyMC style function + """ + + # check prior is a PowerLaw + pymc, STEP_METHODS, floatX = self._import_external_sampler() + aesara, tt, as_op = self._import_aesara() + if isinstance(self.priors[key], PowerLaw): + + # check power law is set + if not hasattr(self.priors[key], "alpha"): + raise AttributeError("No 'alpha' attribute set for PowerLaw prior") + + if self.priors[key].alpha < -1.0: + # use Pareto distribution + palpha = -(1.0 + self.priors[key].alpha) + + return pymc.Bound(pymc.Pareto, upper=self.priors[key].minimum)( + key, alpha=palpha, m=self.priors[key].maximum + ) + else: + + class PymcPowerLaw(pymc.Continuous): + def __init__(self, lower, upper, alpha, testval=1): + falpha = alpha + self.lower = lower = tt.as_tensor_variable(floatX(lower)) + self.upper = upper = tt.as_tensor_variable(floatX(upper)) + self.alpha = alpha = tt.as_tensor_variable(floatX(alpha)) + + if falpha == -1: + self.norm = 1.0 / (tt.log(self.upper / self.lower)) + else: + beta = 1.0 + self.alpha + self.norm = 1.0 / ( + beta + * (tt.pow(self.upper, beta) - tt.pow(self.lower, beta)) + ) + + transform = pymc.distributions.transforms.interval(lower, upper) + + super(PymcPowerLaw, self).__init__( + transform=transform, testval=testval + ) + + def logp(self, value): + upper = self.upper + lower = self.lower + alpha = self.alpha + + return pymc.distributions.dist_math.bound( + alpha * tt.log(value) + tt.log(self.norm), + lower <= value, + value <= upper, + ) + + return PymcPowerLaw( + key, + lower=self.priors[key].minimum, + upper=self.priors[key].maximum, + alpha=self.priors[key].alpha, + ) + else: + raise ValueError(f"Prior for '{key}' is not a Power Law") + + def _multivariate_normal_prior(self, key): + """ + Map the bilby MultivariateNormal prior to a PyMC style function. + """ + + # check prior is a PowerLaw + pymc, STEP_METHODS, floatX = self._import_external_sampler() + aesara, tt, as_op = self._import_aesara() + if isinstance(self.priors[key], MultivariateGaussian): + # get names of multivariate Gaussian parameters + mvpars = self.priors[key].mvg.names + + # set the prior on multiple parameters if not present yet + if not np.all([p in self.multivariate_normal_sets for p in mvpars]): + mvg = self.priors[key].mvg + + # get bounds + lower = [bound[0] for bound in mvg.bounds.values()] + upper = [bound[1] for bound in mvg.bounds.values()] + + # test values required for mixture + testvals = [] + for bound in mvg.bounds.values(): + if np.isinf(bound[0]) and np.isinf(bound[1]): + testvals.append(0.0) + elif np.isinf(bound[0]): + testvals.append(bound[1] - 1.0) + elif np.isinf(bound[1]): + testvals.append(bound[0] + 1.0) + else: + # half-way between the two bounds + testvals.append(bound[0] + (bound[1] - bound[0]) / 2.0) + + # if bounds are at +/-infinity set to 100 sigmas as infinities + # cause problems for the Bound class + maxmu = np.max(mvg.mus, axis=0) + minmu = np.min(mvg.mus, axis=0) + maxsigma = np.max(mvg.sigmas, axis=0) + for i in range(len(mvpars)): + if np.isinf(lower[i]): + lower[i] = minmu[i] - 100.0 * maxsigma[i] + if np.isinf(upper[i]): + upper[i] = maxmu[i] + 100.0 * maxsigma[i] + + # create a bounded MultivariateNormal distribution + BoundedMvN = pymc.Bound(pymc.MvNormal, lower=lower, upper=upper) + + comp_dists = [] # list of any component modes + for i in range(mvg.nmodes): + comp_dists.append( + BoundedMvN( + f"comp{i}", + mu=mvg.mus[i], + cov=mvg.covs[i], + shape=len(mvpars), + ).distribution + ) + + # create a Mixture model + setname = f"mixture{self.multivariate_normal_num_sets}" + mix = pymc.Mixture( + setname, + w=mvg.weights, + comp_dists=comp_dists, + shape=len(mvpars), + testval=testvals, + ) + + for i, p in enumerate(mvpars): + self.multivariate_normal_sets[p] = {} + self.multivariate_normal_sets[p]["prior"] = mix[i] + self.multivariate_normal_sets[p]["set"] = setname + self.multivariate_normal_sets[p]["index"] = i + + self.multivariate_normal_num_sets += 1 + + # return required parameter + return self.multivariate_normal_sets[key]["prior"] + + else: + raise ValueError(f"Prior for '{key}' is not a MultivariateGaussian") + + def run_sampler(self): + # set the step method + pymc, STEP_METHODS, floatX = self._import_external_sampler() + step_methods = {m.__name__.lower(): m.__name__ for m in STEP_METHODS} + if "step" in self._kwargs: + self.step_method = self._kwargs.pop("step") + + # 'step' could be a dictionary of methods for different parameters, + # so check for this + if self.step_method is None: + pass + elif isinstance(self.step_method, dict): + for key in self.step_method: + if key not in self._search_parameter_keys: + raise ValueError( + f"Setting a step method for an unknown parameter '{key}'" + ) + else: + # check if using a compound step (a list of step + # methods for a particular parameter) + if isinstance(self.step_method[key], list): + sms = self.step_method[key] + else: + sms = [self.step_method[key]] + for sm in sms: + if sm.lower() not in step_methods: + raise ValueError( + f"Using invalid step method '{self.step_method[key]}'" + ) + else: + # check if using a compound step (a list of step + # methods for a particular parameter) + if isinstance(self.step_method, list): + sms = self.step_method + else: + sms = [self.step_method] + + for i in range(len(sms)): + if sms[i].lower() not in step_methods: + raise ValueError(f"Using invalid step method '{sms[i]}'") + else: + self.step_method = None + + # initialise the PyMC model + self.pymc_model = pymc.Model() + + # set the prior + self.set_prior() + + # if a custom log_likelihood function requires a `sampler` argument + # then use that log_likelihood function, with the assumption that it + # takes in a Pymc Sampler, with a pymc_model attribute, and defines + # the likelihood within that context manager + likeargs = infer_args_from_method(self.likelihood.log_likelihood) + if "sampler" in likeargs: + self.likelihood.log_likelihood(sampler=self) + else: + # set the likelihood function from predefined functions + self.set_likelihood() + + # get the step method keyword arguments + step_kwargs = self.kwargs.pop("step_kwargs") + if step_kwargs is not None: + # remove all individual default step kwargs if passed together using + # step_kwargs keywords + for key in self.default_step_kwargs: + self.kwargs.pop(key) + else: + # remove any None default step keywords and place others in step_kwargs + step_kwargs = {} + for key in self.default_step_kwargs: + if self.kwargs[key] is None: + self.kwargs.pop(key) + else: + step_kwargs[key] = self.kwargs.pop(key) + + nuts_kwargs = self.kwargs.pop("nuts_kwargs") + if nuts_kwargs is not None: + # remove all individual default nuts kwargs if passed together using + # nuts_kwargs keywords + for key in self.default_nuts_kwargs: + self.kwargs.pop(key) + else: + # remove any None default nuts keywords and place others in nut_kwargs + nuts_kwargs = {} + for key in self.default_nuts_kwargs: + if self.kwargs[key] is None: + self.kwargs.pop(key) + else: + nuts_kwargs[key] = self.kwargs.pop(key) + methodslist = [] + + # set the step method + if isinstance(self.step_method, dict): + # create list of step methods (any not given will default to NUTS) + self.kwargs["step"] = [] + with self.pymc_model: + for key in self.step_method: + # check for a compound step list + if isinstance(self.step_method[key], list): + for sms in self.step_method[key]: + curmethod = sms.lower() + methodslist.append(curmethod) + nuts_kwargs = self._create_nuts_kwargs( + curmethod, + key, + nuts_kwargs, + pymc, + step_kwargs, + step_methods, + ) + else: + curmethod = self.step_method[key].lower() + methodslist.append(curmethod) + nuts_kwargs = self._create_nuts_kwargs( + curmethod, + key, + nuts_kwargs, + pymc, + step_kwargs, + step_methods, + ) + else: + with self.pymc_model: + # check for a compound step list + if isinstance(self.step_method, list): + compound = [] + for sms in self.step_method: + curmethod = sms.lower() + methodslist.append(curmethod) + args, nuts_kwargs = self._create_args_and_nuts_kwargs( + curmethod, nuts_kwargs, step_kwargs + ) + compound.append(pymc.__dict__[step_methods[curmethod]](**args)) + self.kwargs["step"] = compound + else: + self.kwargs["step"] = None + if self.step_method is not None: + curmethod = self.step_method.lower() + methodslist.append(curmethod) + args, nuts_kwargs = self._create_args_and_nuts_kwargs( + curmethod, nuts_kwargs, step_kwargs + ) + self.kwargs["step"] = pymc.__dict__[step_methods[curmethod]]( + **args + ) + else: + # re-add step_kwargs if no step methods are set + if len(step_kwargs) > 0 and StrictVersion( + pymc.__version__ + ) < StrictVersion("3.7"): + self.kwargs["step_kwargs"] = step_kwargs + + # check whether only NUTS step method has been assigned + if np.all([sm.lower() == "nuts" for sm in methodslist]): + # in this case we can let PyMC autoinitialise NUTS, so remove the step methods and re-add nuts_kwargs + self.kwargs["step"] = None + + if len(nuts_kwargs) > 0 and StrictVersion(pymc.__version__) < StrictVersion( + "3.7" + ): + self.kwargs["nuts_kwargs"] = nuts_kwargs + elif len(nuts_kwargs) > 0: + # add NUTS kwargs to standard kwargs + self.kwargs.update(nuts_kwargs) + + with self.pymc_model: + # perform the sampling + trace = pymc.sample(**self.kwargs) + + posterior = trace.posterior.to_dataframe().reset_index() + self.result.samples = posterior[self.search_parameter_keys] + self.result.log_likelihood_evaluations = np.sum( + trace.log_likelihood.likelihood.values, axis=-1 + ).flatten() + self.result.sampler_output = np.nan + self.calculate_autocorrelation(self.result.samples) + self.result.log_evidence = np.nan + self.result.log_evidence_err = np.nan + self.calc_likelihood_count() + return self.result + + def _create_args_and_nuts_kwargs(self, curmethod, nuts_kwargs, step_kwargs): + if curmethod == "nuts": + args, nuts_kwargs = self._get_nuts_args(nuts_kwargs, step_kwargs) + else: + args = step_kwargs.get(curmethod, {}) + return args, nuts_kwargs + + def _create_nuts_kwargs( + self, curmethod, key, nuts_kwargs, pymc, step_kwargs, step_methods + ): + if curmethod == "nuts": + args, nuts_kwargs = self._get_nuts_args(nuts_kwargs, step_kwargs) + else: + if step_kwargs is not None: + args = step_kwargs.get(curmethod, {}) + else: + args = {} + self.kwargs["step"].append( + pymc.__dict__[step_methods[curmethod]](vars=[self.pymc_priors[key]], **args) + ) + return nuts_kwargs + + @staticmethod + def _get_nuts_args(nuts_kwargs, step_kwargs): + if nuts_kwargs is not None: + args = nuts_kwargs + elif step_kwargs is not None: + args = step_kwargs.pop("nuts", {}) + # add values into nuts_kwargs + nuts_kwargs = args + else: + args = {} + return args, nuts_kwargs + + def _pymc_version(self): + pymc, _, _ = self._import_external_sampler() + return pymc.__version__ + + def set_prior(self): + """ + Set the PyMC prior distributions. + """ + + self.setup_prior_mapping() + + self.pymc_priors = dict() + pymc, STEP_METHODS, floatX = self._import_external_sampler() + + # initialise a dictionary of multivariate Gaussian parameters + self.multivariate_normal_sets = {} + self.multivariate_normal_num_sets = 0 + + # set the parameter prior distributions (in the model context manager) + with self.pymc_model: + for key in self.priors: + # if the prior contains ln_prob method that takes a 'sampler' argument + # then try using that + lnprobargs = infer_args_from_method(self.priors[key].ln_prob) + if "sampler" in lnprobargs: + try: + self.pymc_priors[key] = self.priors[key].ln_prob(sampler=self) + except RuntimeError: + raise RuntimeError((f"Problem setting PyMC prior for '{key}'")) + else: + # use Prior distribution name + distname = self.priors[key].__class__.__name__ + + if distname in self.prior_map: + # check if we have a predefined PyMC distribution + if ( + "pymc" in self.prior_map[distname] + and "argmap" in self.prior_map[distname] + ): + # check the required arguments for the PyMC distribution + pymcdistname = self.prior_map[distname]["pymc"] + + if pymcdistname not in pymc.__dict__: + raise ValueError( + f"Prior '{pymcdistname}' is not a known PyMC distribution." + ) + + reqargs = infer_args_from_method( + pymc.__dict__[pymcdistname].dist + ) + + # set keyword arguments + priorkwargs = {} + for (targ, parg) in self.prior_map[distname][ + "argmap" + ].items(): + if hasattr(self.priors[key], targ): + if parg in reqargs: + if "argtransform" in self.prior_map[distname]: + if ( + targ + in self.prior_map[distname][ + "argtransform" + ] + ): + tfunc = self.prior_map[distname][ + "argtransform" + ][targ] + else: + + def tfunc(x): + return x + + else: + + def tfunc(x): + return x + + priorkwargs[parg] = tfunc( + getattr(self.priors[key], targ) + ) + else: + raise ValueError(f"Unknown argument {parg}") + else: + if parg in reqargs: + priorkwargs[parg] = None + self.pymc_priors[key] = pymc.__dict__[pymcdistname]( + key, **priorkwargs + ) + elif "internal" in self.prior_map[distname]: + self.pymc_priors[key] = self.prior_map[distname][ + "internal" + ](key) + else: + raise ValueError( + f"Prior '{distname}' is not a known distribution." + ) + else: + raise ValueError( + f"Prior '{distname}' is not a known distribution." + ) + + def set_likelihood(self): + """ + Convert any bilby likelihoods to PyMC distributions. + """ + + # create aesara Op for the log likelihood if not using a predefined model + pymc, STEP_METHODS, floatX = self._import_external_sampler() + aesara, tt, as_op = self._import_aesara() + + class LogLike(tt.Op): + + itypes = [tt.dvector] + otypes = [tt.dscalar] + + def __init__(self, parameters, loglike, priors): + self.parameters = parameters + self.likelihood = loglike + self.priors = priors + + # set the fixed parameters + for key in self.priors.keys(): + if isinstance(self.priors[key], float): + self.likelihood.parameters[key] = self.priors[key] + + self.logpgrad = LogLikeGrad( + self.parameters, self.likelihood, self.priors + ) + + def perform(self, node, inputs, outputs): + (theta,) = inputs + for i, key in enumerate(self.parameters): + self.likelihood.parameters[key] = theta[i] + + outputs[0][0] = np.array(self.likelihood.log_likelihood()) + + def grad(self, inputs, g): + (theta,) = inputs + return [g[0] * self.logpgrad(theta)] + + # create aesara Op for calculating the gradient of the log likelihood + class LogLikeGrad(tt.Op): + + itypes = [tt.dvector] + otypes = [tt.dvector] + + def __init__(self, parameters, loglike, priors): + self.parameters = parameters + self.Nparams = len(parameters) + self.likelihood = loglike + self.priors = priors + + # set the fixed parameters + for key in self.priors.keys(): + if isinstance(self.priors[key], float): + self.likelihood.parameters[key] = self.priors[key] + + def perform(self, node, inputs, outputs): + (theta,) = inputs + + # define version of likelihood function to pass to derivative function + def lnlike(values): + for i, key in enumerate(self.parameters): + self.likelihood.parameters[key] = values[i] + return self.likelihood.log_likelihood() + + # calculate gradients + grads = derivatives( + theta, lnlike, abseps=1e-5, mineps=1e-12, reltol=1e-2 + ) + + outputs[0][0] = grads + + with self.pymc_model: + # check if it is a predefined likelhood function + if isinstance(self.likelihood, GaussianLikelihood): + # check required attributes exist + if ( + not hasattr(self.likelihood, "sigma") + or not hasattr(self.likelihood, "x") + or not hasattr(self.likelihood, "y") + ): + raise ValueError( + "Gaussian Likelihood does not have all the correct attributes!" + ) + + if "sigma" in self.pymc_priors: + # if sigma is suppled use that value + if self.likelihood.sigma is None: + self.likelihood.sigma = self.pymc_priors.pop("sigma") + else: + del self.pymc_priors["sigma"] + + for key in self.pymc_priors: + if key not in self.likelihood.function_keys: + raise ValueError(f"Prior key '{key}' is not a function key!") + + model = self.likelihood.func(self.likelihood.x, **self.pymc_priors) + + # set the distribution + pymc.Normal( + "likelihood", + mu=model, + sigma=self.likelihood.sigma, + observed=self.likelihood.y, + ) + elif isinstance(self.likelihood, PoissonLikelihood): + # check required attributes exist + if not hasattr(self.likelihood, "x") or not hasattr( + self.likelihood, "y" + ): + raise ValueError( + "Poisson Likelihood does not have all the correct attributes!" + ) + + for key in self.pymc_priors: + if key not in self.likelihood.function_keys: + raise ValueError(f"Prior key '{key}' is not a function key!") + + # get rate function + model = self.likelihood.func(self.likelihood.x, **self.pymc_priors) + + # set the distribution + pymc.Poisson("likelihood", mu=model, observed=self.likelihood.y) + elif isinstance(self.likelihood, ExponentialLikelihood): + # check required attributes exist + if not hasattr(self.likelihood, "x") or not hasattr( + self.likelihood, "y" + ): + raise ValueError( + "Exponential Likelihood does not have all the correct attributes!" + ) + + for key in self.pymc_priors: + if key not in self.likelihood.function_keys: + raise ValueError(f"Prior key '{key}' is not a function key!") + + # get mean function + model = self.likelihood.func(self.likelihood.x, **self.pymc_priors) + + # set the distribution + pymc.Exponential( + "likelihood", lam=1.0 / model, observed=self.likelihood.y + ) + elif isinstance(self.likelihood, StudentTLikelihood): + # check required attributes exist + if ( + not hasattr(self.likelihood, "x") + or not hasattr(self.likelihood, "y") + or not hasattr(self.likelihood, "nu") + or not hasattr(self.likelihood, "sigma") + ): + raise ValueError( + "StudentT Likelihood does not have all the correct attributes!" + ) + + if "nu" in self.pymc_priors: + # if nu is suppled use that value + if self.likelihood.nu is None: + self.likelihood.nu = self.pymc_priors.pop("nu") + else: + del self.pymc_priors["nu"] + + for key in self.pymc_priors: + if key not in self.likelihood.function_keys: + raise ValueError(f"Prior key '{key}' is not a function key!") + + model = self.likelihood.func(self.likelihood.x, **self.pymc_priors) + + # set the distribution + pymc.StudentT( + "likelihood", + nu=self.likelihood.nu, + mu=model, + sigma=self.likelihood.sigma, + observed=self.likelihood.y, + ) + elif isinstance( + self.likelihood, + (GravitationalWaveTransient, BasicGravitationalWaveTransient), + ): + # set theano Op - pass _search_parameter_keys, which only contains non-fixed variables + logl = LogLike( + self._search_parameter_keys, self.likelihood, self.pymc_priors + ) + + parameters = dict() + for key in self._search_parameter_keys: + try: + parameters[key] = self.pymc_priors[key] + except KeyError: + raise KeyError( + f"Unknown key '{key}' when setting GravitationalWaveTransient likelihood" + ) + + # convert to aesara tensor variable + values = tt.as_tensor_variable(list(parameters.values())) + + pymc.DensityDist( + "likelihood", lambda v: logl(v), observed={"v": values} + ) + else: + raise ValueError("Unknown likelihood has been provided") diff --git a/bilby/core/sampler/pymc3.py b/bilby/core/sampler/pymc3.py deleted file mode 100644 index 4ff4b232adcfb3432a1f8ce2973fb24fc4778d7b..0000000000000000000000000000000000000000 --- a/bilby/core/sampler/pymc3.py +++ /dev/null @@ -1,835 +0,0 @@ -from distutils.version import StrictVersion - -import numpy as np - -from ..utils import derivatives, infer_args_from_method -from ..prior import DeltaFunction, Sine, Cosine, PowerLaw, MultivariateGaussian -from .base_sampler import MCMCSampler -from ..likelihood import GaussianLikelihood, PoissonLikelihood, ExponentialLikelihood, \ - StudentTLikelihood -from ...gw.likelihood import BasicGravitationalWaveTransient, GravitationalWaveTransient - - -class Pymc3(MCMCSampler): - """ bilby wrapper of the PyMC3 sampler (https://docs.pymc.io/) - - All keyword arguments (i.e., the kwargs) passed to `run_sampler` will be - propapated to `pymc3.sample` where appropriate, see documentation for that - class for further help. Under Other Parameters, we list commonly used - kwargs and the bilby, or where appropriate, PyMC3 defaults. - - Parameters - ========== - draws: int, (1000) - The number of sample draws from the posterior per chain. - chains: int, (2) - The number of independent MCMC chains to run. - cores: int, (1) - The number of CPU cores to use. - tune: int, (500) - The number of tuning (or burn-in) samples per chain. - discard_tuned_samples: bool, True - Set whether to automatically discard the tuning samples from the final - chains. - step: str, dict - Provide a step method name, or dictionary of step method names keyed to - particular variable names (these are case insensitive). If passing a - dictionary of methods, the values keyed on particular variables can be - lists of methods to form compound steps. If no method is provided for - any particular variable then PyMC3 will automatically decide upon a - default, with the first option being the NUTS sampler. The currently - allowed methods are 'NUTS', 'HamiltonianMC', 'Metropolis', - 'BinaryMetropolis', 'BinaryGibbsMetropolis', 'Slice', and - 'CategoricalGibbsMetropolis'. Note: you cannot provide a PyMC3 step - method function itself here as it is outside of the model context - manager. - step_kwargs: dict - Options for steps methods other than NUTS. The dictionary is keyed on - lowercase step method names with values being dictionaries of keywords - for the given step method. - - """ - - default_kwargs = dict( - draws=500, step=None, init='auto', n_init=200000, start=None, trace=None, chain_idx=0, - chains=2, cores=1, tune=500, progressbar=True, model=None, random_seed=None, - discard_tuned_samples=True, compute_convergence_checks=True, nuts_kwargs=None, - step_kwargs=None, - ) - - default_nuts_kwargs = dict( - target_accept=None, max_treedepth=None, step_scale=None, Emax=None, - gamma=None, k=None, t0=None, adapt_step_size=None, early_max_treedepth=None, - scaling=None, is_cov=None, potential=None, - ) - - default_kwargs.update(default_nuts_kwargs) - - def __init__(self, likelihood, priors, outdir='outdir', label='label', - use_ratio=False, plot=False, - skip_import_verification=False, **kwargs): - # add default step kwargs - _, STEP_METHODS, _ = self._import_external_sampler() - self.default_step_kwargs = {m.__name__.lower(): None for m in STEP_METHODS} - self.default_kwargs.update(self.default_step_kwargs) - - super(Pymc3, self).__init__(likelihood=likelihood, priors=priors, outdir=outdir, label=label, - use_ratio=use_ratio, plot=plot, - skip_import_verification=skip_import_verification, **kwargs) - self.draws = self._kwargs['draws'] - self.chains = self._kwargs['chains'] - - @staticmethod - def _import_external_sampler(): - import pymc3 - from pymc3.sampling import STEP_METHODS - from pymc3.theanof import floatX - return pymc3, STEP_METHODS, floatX - - @staticmethod - def _import_theano(): - import theano # noqa - import theano.tensor as tt - from theano.compile.ops import as_op # noqa - return theano, tt, as_op - - def _verify_parameters(self): - """ - Change `_verify_parameters()` to just pass, i.e., don't try and - evaluate the likelihood for PyMC3. - """ - pass - - def _verify_use_ratio(self): - """ - Change `_verify_use_ratio() to just pass. - """ - pass - - def setup_prior_mapping(self): - """ - Set the mapping between predefined bilby priors and the equivalent - PyMC3 distributions. - """ - - prior_map = {} - self.prior_map = prior_map - - # predefined PyMC3 distributions - prior_map['Gaussian'] = { - 'pymc3': 'Normal', - 'argmap': {'mu': 'mu', 'sigma': 'sd'}} - prior_map['TruncatedGaussian'] = { - 'pymc3': 'TruncatedNormal', - 'argmap': {'mu': 'mu', - 'sigma': 'sd', - 'minimum': 'lower', - 'maximum': 'upper'}} - prior_map['HalfGaussian'] = { - 'pymc3': 'HalfNormal', - 'argmap': {'sigma': 'sd'}} - prior_map['Uniform'] = { - 'pymc3': 'Uniform', - 'argmap': {'minimum': 'lower', - 'maximum': 'upper'}} - prior_map['LogNormal'] = { - 'pymc3': 'Lognormal', - 'argmap': {'mu': 'mu', - 'sigma': 'sd'}} - prior_map['Exponential'] = { - 'pymc3': 'Exponential', - 'argmap': {'mu': 'lam'}, - 'argtransform': {'mu': lambda mu: 1. / mu}} - prior_map['StudentT'] = { - 'pymc3': 'StudentT', - 'argmap': {'df': 'nu', - 'mu': 'mu', - 'scale': 'sd'}} - prior_map['Beta'] = { - 'pymc3': 'Beta', - 'argmap': {'alpha': 'alpha', - 'beta': 'beta'}} - prior_map['Logistic'] = { - 'pymc3': 'Logistic', - 'argmap': {'mu': 'mu', - 'scale': 's'}} - prior_map['Cauchy'] = { - 'pymc3': 'Cauchy', - 'argmap': {'alpha': 'alpha', - 'beta': 'beta'}} - prior_map['Gamma'] = { - 'pymc3': 'Gamma', - 'argmap': {'k': 'alpha', - 'theta': 'beta'}, - 'argtransform': {'theta': lambda theta: 1. / theta}} - prior_map['ChiSquared'] = { - 'pymc3': 'ChiSquared', - 'argmap': {'nu': 'nu'}} - prior_map['Interped'] = { - 'pymc3': 'Interpolated', - 'argmap': {'xx': 'x_points', - 'yy': 'pdf_points'}} - prior_map['Normal'] = prior_map['Gaussian'] - prior_map['TruncatedNormal'] = prior_map['TruncatedGaussian'] - prior_map['HalfNormal'] = prior_map['HalfGaussian'] - prior_map['LogGaussian'] = prior_map['LogNormal'] - prior_map['Lorentzian'] = prior_map['Cauchy'] - prior_map['FromFile'] = prior_map['Interped'] - - # GW specific priors - prior_map['UniformComovingVolume'] = prior_map['Interped'] - - # internally defined mappings for bilby priors - prior_map['DeltaFunction'] = {'internal': self._deltafunction_prior} - prior_map['Sine'] = {'internal': self._sine_prior} - prior_map['Cosine'] = {'internal': self._cosine_prior} - prior_map['PowerLaw'] = {'internal': self._powerlaw_prior} - prior_map['LogUniform'] = {'internal': self._powerlaw_prior} - prior_map['MultivariateGaussian'] = {'internal': self._multivariate_normal_prior} - prior_map['MultivariateNormal'] = {'internal': self._multivariate_normal_prior} - - def _deltafunction_prior(self, key, **kwargs): - """ - Map the bilby delta function prior to a single value for PyMC3. - """ - - # check prior is a DeltaFunction - if isinstance(self.priors[key], DeltaFunction): - return self.priors[key].peak - else: - raise ValueError("Prior for '{}' is not a DeltaFunction".format(key)) - - def _sine_prior(self, key): - """ - Map the bilby Sine prior to a PyMC3 style function - """ - - # check prior is a Sine - pymc3, STEP_METHODS, floatX = self._import_external_sampler() - theano, tt, as_op = self._import_theano() - if isinstance(self.priors[key], Sine): - - class Pymc3Sine(pymc3.Continuous): - def __init__(self, lower=0., upper=np.pi): - if lower >= upper: - raise ValueError("Lower bound is above upper bound!") - - # set the mode - self.lower = lower = tt.as_tensor_variable(floatX(lower)) - self.upper = upper = tt.as_tensor_variable(floatX(upper)) - self.norm = (tt.cos(lower) - tt.cos(upper)) - self.mean = \ - (tt.sin(upper) + lower * tt.cos(lower) - - tt.sin(lower) - upper * tt.cos(upper)) / self.norm - - transform = pymc3.distributions.transforms.interval(lower, - upper) - - super(Pymc3Sine, self).__init__(transform=transform) - - def logp(self, value): - upper = self.upper - lower = self.lower - return pymc3.distributions.dist_math.bound( - tt.log(tt.sin(value) / self.norm), - lower <= value, value <= upper) - - return Pymc3Sine(key, lower=self.priors[key].minimum, - upper=self.priors[key].maximum) - else: - raise ValueError("Prior for '{}' is not a Sine".format(key)) - - def _cosine_prior(self, key): - """ - Map the bilby Cosine prior to a PyMC3 style function - """ - - # check prior is a Cosine - pymc3, STEP_METHODS, floatX = self._import_external_sampler() - theano, tt, as_op = self._import_theano() - if isinstance(self.priors[key], Cosine): - - class Pymc3Cosine(pymc3.Continuous): - def __init__(self, lower=-np.pi / 2., upper=np.pi / 2.): - if lower >= upper: - raise ValueError("Lower bound is above upper bound!") - - self.lower = lower = tt.as_tensor_variable(floatX(lower)) - self.upper = upper = tt.as_tensor_variable(floatX(upper)) - self.norm = (tt.sin(upper) - tt.sin(lower)) - self.mean = \ - (upper * tt.sin(upper) + tt.cos(upper) - - lower * tt.sin(lower) - tt.cos(lower)) / self.norm - - transform = pymc3.distributions.transforms.interval(lower, - upper) - - super(Pymc3Cosine, self).__init__(transform=transform) - - def logp(self, value): - upper = self.upper - lower = self.lower - return pymc3.distributions.dist_math.bound( - tt.log(tt.cos(value) / self.norm), - lower <= value, value <= upper) - - return Pymc3Cosine(key, lower=self.priors[key].minimum, - upper=self.priors[key].maximum) - else: - raise ValueError("Prior for '{}' is not a Cosine".format(key)) - - def _powerlaw_prior(self, key): - """ - Map the bilby PowerLaw prior to a PyMC3 style function - """ - - # check prior is a PowerLaw - pymc3, STEP_METHODS, floatX = self._import_external_sampler() - theano, tt, as_op = self._import_theano() - if isinstance(self.priors[key], PowerLaw): - - # check power law is set - if not hasattr(self.priors[key], 'alpha'): - raise AttributeError("No 'alpha' attribute set for PowerLaw prior") - - if self.priors[key].alpha < -1.: - # use Pareto distribution - palpha = -(1. + self.priors[key].alpha) - - return pymc3.Bound( - pymc3.Pareto, upper=self.priors[key].minimum)( - key, alpha=palpha, m=self.priors[key].maximum) - else: - class Pymc3PowerLaw(pymc3.Continuous): - def __init__(self, lower, upper, alpha, testval=1): - falpha = alpha - self.lower = lower = tt.as_tensor_variable(floatX(lower)) - self.upper = upper = tt.as_tensor_variable(floatX(upper)) - self.alpha = alpha = tt.as_tensor_variable(floatX(alpha)) - - if falpha == -1: - self.norm = 1. / (tt.log(self.upper / self.lower)) - else: - beta = (1. + self.alpha) - self.norm = 1. / (beta * (tt.pow(self.upper, beta) - - tt.pow(self.lower, beta))) - - transform = pymc3.distributions.transforms.interval( - lower, upper) - - super(Pymc3PowerLaw, self).__init__( - transform=transform, testval=testval) - - def logp(self, value): - upper = self.upper - lower = self.lower - alpha = self.alpha - - return pymc3.distributions.dist_math.bound( - alpha * tt.log(value) + tt.log(self.norm), - lower <= value, value <= upper) - - return Pymc3PowerLaw(key, lower=self.priors[key].minimum, - upper=self.priors[key].maximum, - alpha=self.priors[key].alpha) - else: - raise ValueError("Prior for '{}' is not a Power Law".format(key)) - - def _multivariate_normal_prior(self, key): - """ - Map the bilby MultivariateNormal prior to a PyMC3 style function. - """ - - # check prior is a PowerLaw - pymc3, STEP_METHODS, floatX = self._import_external_sampler() - theano, tt, as_op = self._import_theano() - if isinstance(self.priors[key], MultivariateGaussian): - # get names of multivariate Gaussian parameters - mvpars = self.priors[key].mvg.names - - # set the prior on multiple parameters if not present yet - if not np.all([p in self.multivariate_normal_sets for p in mvpars]): - mvg = self.priors[key].mvg - - # get bounds - lower = [bound[0] for bound in mvg.bounds.values()] - upper = [bound[1] for bound in mvg.bounds.values()] - - # test values required for mixture - testvals = [] - for bound in mvg.bounds.values(): - if np.isinf(bound[0]) and np.isinf(bound[1]): - testvals.append(0.) - elif np.isinf(bound[0]): - testvals.append(bound[1] - 1.) - elif np.isinf(bound[1]): - testvals.append(bound[0] + 1.) - else: - # half-way between the two bounds - testvals.append(bound[0] + (bound[1] - bound[0]) / 2.) - - # if bounds are at +/-infinity set to 100 sigmas as infinities - # cause problems for the Bound class - maxmu = np.max(mvg.mus, axis=0) - minmu = np.min(mvg.mus, axis=0) - maxsigma = np.max(mvg.sigmas, axis=0) - for i in range(len(mvpars)): - if np.isinf(lower[i]): - lower[i] = minmu[i] - 100. * maxsigma[i] - if np.isinf(upper[i]): - upper[i] = maxmu[i] + 100. * maxsigma[i] - - # create a bounded MultivariateNormal distribution - BoundedMvN = pymc3.Bound(pymc3.MvNormal, lower=lower, upper=upper) - - comp_dists = [] # list of any component modes - for i in range(mvg.nmodes): - comp_dists.append(BoundedMvN('comp{}'.format(i), mu=mvg.mus[i], - cov=mvg.covs[i], - shape=len(mvpars)).distribution) - - # create a Mixture model - setname = 'mixture{}'.format(self.multivariate_normal_num_sets) - mix = pymc3.Mixture(setname, w=mvg.weights, comp_dists=comp_dists, - shape=len(mvpars), testval=testvals) - - for i, p in enumerate(mvpars): - self.multivariate_normal_sets[p] = {} - self.multivariate_normal_sets[p]['prior'] = mix[i] - self.multivariate_normal_sets[p]['set'] = setname - self.multivariate_normal_sets[p]['index'] = i - - self.multivariate_normal_num_sets += 1 - - # return required parameter - return self.multivariate_normal_sets[key]['prior'] - - else: - raise ValueError("Prior for '{}' is not a MultivariateGaussian".format(key)) - - def run_sampler(self): - # set the step method - pymc3, STEP_METHODS, floatX = self._import_external_sampler() - step_methods = {m.__name__.lower(): m.__name__ for m in STEP_METHODS} - if 'step' in self._kwargs: - self.step_method = self._kwargs.pop('step') - - # 'step' could be a dictionary of methods for different parameters, - # so check for this - if self.step_method is None: - pass - elif isinstance(self.step_method, dict): - for key in self.step_method: - if key not in self._search_parameter_keys: - raise ValueError("Setting a step method for an unknown parameter '{}'".format(key)) - else: - # check if using a compound step (a list of step - # methods for a particular parameter) - if isinstance(self.step_method[key], list): - sms = self.step_method[key] - else: - sms = [self.step_method[key]] - for sm in sms: - if sm.lower() not in step_methods: - raise ValueError("Using invalid step method '{}'".format(self.step_method[key])) - else: - # check if using a compound step (a list of step - # methods for a particular parameter) - if isinstance(self.step_method, list): - sms = self.step_method - else: - sms = [self.step_method] - - for i in range(len(sms)): - if sms[i].lower() not in step_methods: - raise ValueError("Using invalid step method '{}'".format(sms[i])) - else: - self.step_method = None - - # initialise the PyMC3 model - self.pymc3_model = pymc3.Model() - - # set the prior - self.set_prior() - - # if a custom log_likelihood function requires a `sampler` argument - # then use that log_likelihood function, with the assumption that it - # takes in a Pymc3 Sampler, with a pymc3_model attribute, and defines - # the likelihood within that context manager - likeargs = infer_args_from_method(self.likelihood.log_likelihood) - if 'sampler' in likeargs: - self.likelihood.log_likelihood(sampler=self) - else: - # set the likelihood function from predefined functions - self.set_likelihood() - - # get the step method keyword arguments - step_kwargs = self.kwargs.pop("step_kwargs") - if step_kwargs is not None: - # remove all individual default step kwargs if passed together using - # step_kwargs keywords - for key in self.default_step_kwargs: - self.kwargs.pop(key) - else: - # remove any None default step keywords and place others in step_kwargs - step_kwargs = {} - for key in self.default_step_kwargs: - if self.kwargs[key] is None: - self.kwargs.pop(key) - else: - step_kwargs[key] = self.kwargs.pop(key) - - nuts_kwargs = self.kwargs.pop("nuts_kwargs") - if nuts_kwargs is not None: - # remove all individual default nuts kwargs if passed together using - # nuts_kwargs keywords - for key in self.default_nuts_kwargs: - self.kwargs.pop(key) - else: - # remove any None default nuts keywords and place others in nut_kwargs - nuts_kwargs = {} - for key in self.default_nuts_kwargs: - if self.kwargs[key] is None: - self.kwargs.pop(key) - else: - nuts_kwargs[key] = self.kwargs.pop(key) - methodslist = [] - - # set the step method - if isinstance(self.step_method, dict): - # create list of step methods (any not given will default to NUTS) - self.kwargs['step'] = [] - with self.pymc3_model: - for key in self.step_method: - # check for a compound step list - if isinstance(self.step_method[key], list): - for sms in self.step_method[key]: - curmethod = sms.lower() - methodslist.append(curmethod) - nuts_kwargs = self._create_nuts_kwargs(curmethod, key, nuts_kwargs, pymc3, step_kwargs, - step_methods) - else: - curmethod = self.step_method[key].lower() - methodslist.append(curmethod) - nuts_kwargs = self._create_nuts_kwargs(curmethod, key, nuts_kwargs, pymc3, step_kwargs, - step_methods) - else: - with self.pymc3_model: - # check for a compound step list - if isinstance(self.step_method, list): - compound = [] - for sms in self.step_method: - curmethod = sms.lower() - methodslist.append(curmethod) - args, nuts_kwargs = self._create_args_and_nuts_kwargs(curmethod, nuts_kwargs, step_kwargs) - compound.append(pymc3.__dict__[step_methods[curmethod]](**args)) - self.kwargs['step'] = compound - else: - self.kwargs['step'] = None - if self.step_method is not None: - curmethod = self.step_method.lower() - methodslist.append(curmethod) - args, nuts_kwargs = self._create_args_and_nuts_kwargs(curmethod, nuts_kwargs, step_kwargs) - self.kwargs['step'] = pymc3.__dict__[step_methods[curmethod]](**args) - else: - # re-add step_kwargs if no step methods are set - if len(step_kwargs) > 0 and StrictVersion(pymc3.__version__) < StrictVersion("3.7"): - self.kwargs['step_kwargs'] = step_kwargs - - # check whether only NUTS step method has been assigned - if np.all([sm.lower() == 'nuts' for sm in methodslist]): - # in this case we can let PyMC3 autoinitialise NUTS, so remove the step methods and re-add nuts_kwargs - self.kwargs['step'] = None - - if len(nuts_kwargs) > 0 and StrictVersion(pymc3.__version__) < StrictVersion("3.7"): - self.kwargs['nuts_kwargs'] = nuts_kwargs - elif len(nuts_kwargs) > 0: - # add NUTS kwargs to standard kwargs - self.kwargs.update(nuts_kwargs) - - with self.pymc3_model: - # perform the sampling - trace = pymc3.sample(**self.kwargs, return_inferencedata=True) - - posterior = trace.posterior.to_dataframe().reset_index() - self.result.samples = posterior[self.search_parameter_keys] - self.result.log_likelihood_evaluations = np.sum( - trace.log_likelihood.likelihood.values, axis=-1 - ).flatten() - self.result.sampler_output = np.nan - self.calculate_autocorrelation(self.result.samples) - self.result.log_evidence = np.nan - self.result.log_evidence_err = np.nan - self.calc_likelihood_count() - return self.result - - def _create_args_and_nuts_kwargs(self, curmethod, nuts_kwargs, step_kwargs): - if curmethod == 'nuts': - args, nuts_kwargs = self._get_nuts_args(nuts_kwargs, step_kwargs) - else: - args = step_kwargs.get(curmethod, {}) - return args, nuts_kwargs - - def _create_nuts_kwargs(self, curmethod, key, nuts_kwargs, pymc3, step_kwargs, step_methods): - if curmethod == 'nuts': - args, nuts_kwargs = self._get_nuts_args(nuts_kwargs, step_kwargs) - else: - if step_kwargs is not None: - args = step_kwargs.get(curmethod, {}) - else: - args = {} - self.kwargs['step'].append( - pymc3.__dict__[step_methods[curmethod]](vars=[self.pymc3_priors[key]], **args)) - return nuts_kwargs - - @staticmethod - def _get_nuts_args(nuts_kwargs, step_kwargs): - if nuts_kwargs is not None: - args = nuts_kwargs - elif step_kwargs is not None: - args = step_kwargs.pop('nuts', {}) - # add values into nuts_kwargs - nuts_kwargs = args - else: - args = {} - return args, nuts_kwargs - - def _pymc3_version(self): - pymc3, _, _ = self._import_external_sampler() - return pymc3.__version__ - - def set_prior(self): - """ - Set the PyMC3 prior distributions. - """ - - self.setup_prior_mapping() - - self.pymc3_priors = dict() - pymc3, STEP_METHODS, floatX = self._import_external_sampler() - - # initialise a dictionary of multivariate Gaussian parameters - self.multivariate_normal_sets = {} - self.multivariate_normal_num_sets = 0 - - # set the parameter prior distributions (in the model context manager) - with self.pymc3_model: - for key in self.priors: - # if the prior contains ln_prob method that takes a 'sampler' argument - # then try using that - lnprobargs = infer_args_from_method(self.priors[key].ln_prob) - if 'sampler' in lnprobargs: - try: - self.pymc3_priors[key] = self.priors[key].ln_prob(sampler=self) - except RuntimeError: - raise RuntimeError(("Problem setting PyMC3 prior for ", - "'{}'".format(key))) - else: - # use Prior distribution name - distname = self.priors[key].__class__.__name__ - - if distname in self.prior_map: - # check if we have a predefined PyMC3 distribution - if 'pymc3' in self.prior_map[distname] and 'argmap' in self.prior_map[distname]: - # check the required arguments for the PyMC3 distribution - pymc3distname = self.prior_map[distname]['pymc3'] - - if pymc3distname not in pymc3.__dict__: - raise ValueError("Prior '{}' is not a known PyMC3 distribution.".format(pymc3distname)) - - reqargs = infer_args_from_method(pymc3.__dict__[pymc3distname].__init__) - - # set keyword arguments - priorkwargs = {} - for (targ, parg) in self.prior_map[distname]['argmap'].items(): - if hasattr(self.priors[key], targ): - if parg in reqargs: - if 'argtransform' in self.prior_map[distname]: - if targ in self.prior_map[distname]['argtransform']: - tfunc = self.prior_map[distname]['argtransform'][targ] - else: - def tfunc(x): - return x - else: - def tfunc(x): - return x - - priorkwargs[parg] = tfunc(getattr(self.priors[key], targ)) - else: - raise ValueError("Unknown argument {}".format(parg)) - else: - if parg in reqargs: - priorkwargs[parg] = None - self.pymc3_priors[key] = pymc3.__dict__[pymc3distname](key, **priorkwargs) - elif 'internal' in self.prior_map[distname]: - self.pymc3_priors[key] = self.prior_map[distname]['internal'](key) - else: - raise ValueError("Prior '{}' is not a known distribution.".format(distname)) - else: - raise ValueError("Prior '{}' is not a known distribution.".format(distname)) - - def set_likelihood(self): - """ - Convert any bilby likelihoods to PyMC3 distributions. - """ - - # create theano Op for the log likelihood if not using a predefined model - pymc3, STEP_METHODS, floatX = self._import_external_sampler() - theano, tt, as_op = self._import_theano() - - class LogLike(tt.Op): - - itypes = [tt.dvector] - otypes = [tt.dscalar] - - def __init__(self, parameters, loglike, priors): - self.parameters = parameters - self.likelihood = loglike - self.priors = priors - - # set the fixed parameters - for key in self.priors.keys(): - if isinstance(self.priors[key], float): - self.likelihood.parameters[key] = self.priors[key] - - self.logpgrad = LogLikeGrad(self.parameters, self.likelihood, self.priors) - - def perform(self, node, inputs, outputs): - theta, = inputs - for i, key in enumerate(self.parameters): - self.likelihood.parameters[key] = theta[i] - - outputs[0][0] = np.array(self.likelihood.log_likelihood()) - - def grad(self, inputs, g): - theta, = inputs - return [g[0] * self.logpgrad(theta)] - - # create theano Op for calculating the gradient of the log likelihood - class LogLikeGrad(tt.Op): - - itypes = [tt.dvector] - otypes = [tt.dvector] - - def __init__(self, parameters, loglike, priors): - self.parameters = parameters - self.Nparams = len(parameters) - self.likelihood = loglike - self.priors = priors - - # set the fixed parameters - for key in self.priors.keys(): - if isinstance(self.priors[key], float): - self.likelihood.parameters[key] = self.priors[key] - - def perform(self, node, inputs, outputs): - theta, = inputs - - # define version of likelihood function to pass to derivative function - def lnlike(values): - for i, key in enumerate(self.parameters): - self.likelihood.parameters[key] = values[i] - return self.likelihood.log_likelihood() - - # calculate gradients - grads = derivatives(theta, lnlike, abseps=1e-5, mineps=1e-12, reltol=1e-2) - - outputs[0][0] = grads - - with self.pymc3_model: - # check if it is a predefined likelhood function - if isinstance(self.likelihood, GaussianLikelihood): - # check required attributes exist - if (not hasattr(self.likelihood, 'sigma') or - not hasattr(self.likelihood, 'x') or - not hasattr(self.likelihood, 'y')): - raise ValueError("Gaussian Likelihood does not have all the correct attributes!") - - if 'sigma' in self.pymc3_priors: - # if sigma is suppled use that value - if self.likelihood.sigma is None: - self.likelihood.sigma = self.pymc3_priors.pop('sigma') - else: - del self.pymc3_priors['sigma'] - - for key in self.pymc3_priors: - if key not in self.likelihood.function_keys: - raise ValueError("Prior key '{}' is not a function key!".format(key)) - - model = self.likelihood.func(self.likelihood.x, **self.pymc3_priors) - - # set the distribution - pymc3.Normal('likelihood', mu=model, sd=self.likelihood.sigma, - observed=self.likelihood.y) - elif isinstance(self.likelihood, PoissonLikelihood): - # check required attributes exist - if (not hasattr(self.likelihood, 'x') or - not hasattr(self.likelihood, 'y')): - raise ValueError("Poisson Likelihood does not have all the correct attributes!") - - for key in self.pymc3_priors: - if key not in self.likelihood.function_keys: - raise ValueError("Prior key '{}' is not a function key!".format(key)) - - # get rate function - model = self.likelihood.func(self.likelihood.x, **self.pymc3_priors) - - # set the distribution - pymc3.Poisson('likelihood', mu=model, observed=self.likelihood.y) - elif isinstance(self.likelihood, ExponentialLikelihood): - # check required attributes exist - if (not hasattr(self.likelihood, 'x') or - not hasattr(self.likelihood, 'y')): - raise ValueError("Exponential Likelihood does not have all the correct attributes!") - - for key in self.pymc3_priors: - if key not in self.likelihood.function_keys: - raise ValueError("Prior key '{}' is not a function key!".format(key)) - - # get mean function - model = self.likelihood.func(self.likelihood.x, **self.pymc3_priors) - - # set the distribution - pymc3.Exponential('likelihood', lam=1. / model, observed=self.likelihood.y) - elif isinstance(self.likelihood, StudentTLikelihood): - # check required attributes exist - if (not hasattr(self.likelihood, 'x') or - not hasattr(self.likelihood, 'y') or - not hasattr(self.likelihood, 'nu') or - not hasattr(self.likelihood, 'sigma')): - raise ValueError("StudentT Likelihood does not have all the correct attributes!") - - if 'nu' in self.pymc3_priors: - # if nu is suppled use that value - if self.likelihood.nu is None: - self.likelihood.nu = self.pymc3_priors.pop('nu') - else: - del self.pymc3_priors['nu'] - - for key in self.pymc3_priors: - if key not in self.likelihood.function_keys: - raise ValueError("Prior key '{}' is not a function key!".format(key)) - - model = self.likelihood.func(self.likelihood.x, **self.pymc3_priors) - - # set the distribution - pymc3.StudentT('likelihood', nu=self.likelihood.nu, mu=model, sd=self.likelihood.sigma, - observed=self.likelihood.y) - elif isinstance(self.likelihood, (GravitationalWaveTransient, BasicGravitationalWaveTransient)): - # set theano Op - pass _search_parameter_keys, which only contains non-fixed variables - logl = LogLike(self._search_parameter_keys, self.likelihood, self.pymc3_priors) - - parameters = dict() - for key in self._search_parameter_keys: - try: - parameters[key] = self.pymc3_priors[key] - except KeyError: - raise KeyError( - "Unknown key '{}' when setting GravitationalWaveTransient likelihood".format(key)) - - # convert to theano tensor variable - values = tt.as_tensor_variable(list(parameters.values())) - - pymc3.DensityDist('likelihood', lambda v: logl(v), observed={'v': values}) - else: - raise ValueError("Unknown likelihood has been provided") diff --git a/bilby/core/sampler/pymultinest.py b/bilby/core/sampler/pymultinest.py index d9869362256ad60c8029acdd0e19020a31dea8f8..6f0349fe33964ad381675dbc713edfe2dcc4ab1f 100644 --- a/bilby/core/sampler/pymultinest.py +++ b/bilby/core/sampler/pymultinest.py @@ -1,20 +1,15 @@ +import datetime import importlib import os -import shutil -import distutils.dir_util -import signal import time -import datetime -import sys import numpy as np -from ..utils import check_directory_exists_and_if_not_mkdir from ..utils import logger -from .base_sampler import NestedSampler +from .base_sampler import NestedSampler, _TemporaryFileSamplerMixin, signal_wrapper -class Pymultinest(NestedSampler): +class Pymultinest(_TemporaryFileSamplerMixin, NestedSampler): """ bilby wrapper of pymultinest (https://github.com/JohannesBuchner/PyMultiNest) @@ -65,6 +60,9 @@ class Pymultinest(NestedSampler): init_MPI=False, dump_callback=None, ) + short_name = "pm" + hard_exit = True + sampling_seed_key = "seed" def __init__( self, @@ -94,6 +92,7 @@ class Pymultinest(NestedSampler): plot=plot, skip_import_verification=skip_import_verification, exit_code=exit_code, + temporary_directory=temporary_directory, **kwargs ) self._apply_multinest_boundaries() @@ -105,11 +104,8 @@ class Pymultinest(NestedSampler): ) self.use_temporary_directory = temporary_directory and not using_mpi - signal.signal(signal.SIGTERM, self.write_current_state_and_exit) - signal.signal(signal.SIGINT, self.write_current_state_and_exit) - signal.signal(signal.SIGALRM, self.write_current_state_and_exit) - def _translate_kwargs(self, kwargs): + kwargs = super()._translate_kwargs(kwargs) if "n_live_points" not in kwargs: for equiv in self.npoints_equiv_kwargs: if equiv in kwargs: @@ -141,74 +137,7 @@ class Pymultinest(NestedSampler): else: self.kwargs["wrapped_params"].append(0) - @property - def outputfiles_basename(self): - return self._outputfiles_basename - - @outputfiles_basename.setter - def outputfiles_basename(self, outputfiles_basename): - if outputfiles_basename is None: - outputfiles_basename = "{}/pm_{}/".format(self.outdir, self.label) - if not outputfiles_basename.endswith("/"): - outputfiles_basename += "/" - check_directory_exists_and_if_not_mkdir(self.outdir) - self._outputfiles_basename = outputfiles_basename - - @property - def temporary_outputfiles_basename(self): - return self._temporary_outputfiles_basename - - @temporary_outputfiles_basename.setter - def temporary_outputfiles_basename(self, temporary_outputfiles_basename): - if not temporary_outputfiles_basename.endswith("/"): - temporary_outputfiles_basename = "{}/".format( - temporary_outputfiles_basename - ) - self._temporary_outputfiles_basename = temporary_outputfiles_basename - if os.path.exists(self.outputfiles_basename): - shutil.copytree( - self.outputfiles_basename, self.temporary_outputfiles_basename - ) - - def write_current_state_and_exit(self, signum=None, frame=None): - """Write current state and exit on exit_code""" - logger.info( - "Run interrupted by signal {}: checkpoint and exit on {}".format( - signum, self.exit_code - ) - ) - self._calculate_and_save_sampling_time() - if self.use_temporary_directory: - self._move_temporary_directory_to_proper_path() - sys.exit(self.exit_code) - - def _copy_temporary_directory_contents_to_proper_path(self): - """ - Copy the temporary back to the proper path. - Do not delete the temporary directory. - """ - logger.info( - "Overwriting {} with {}".format( - self.outputfiles_basename, self.temporary_outputfiles_basename - ) - ) - if self.outputfiles_basename.endswith("/"): - outputfiles_basename_stripped = self.outputfiles_basename[:-1] - else: - outputfiles_basename_stripped = self.outputfiles_basename - distutils.dir_util.copy_tree( - self.temporary_outputfiles_basename, outputfiles_basename_stripped - ) - - def _move_temporary_directory_to_proper_path(self): - """ - Copy the temporary back to the proper path - - Anything in the temporary directory at this point is removed - """ - self._copy_temporary_directory_contents_to_proper_path() - shutil.rmtree(self.temporary_outputfiles_basename) - + @signal_wrapper def run_sampler(self): import pymultinest @@ -247,27 +176,6 @@ class Pymultinest(NestedSampler): self.result.nested_samples = self._nested_samples return self.result - def _check_and_load_sampling_time_file(self): - self.time_file_path = self.kwargs["outputfiles_basename"] + "/sampling_time.dat" - if os.path.exists(self.time_file_path): - with open(self.time_file_path, "r") as time_file: - self.total_sampling_time = float(time_file.readline()) - else: - self.total_sampling_time = 0 - - def _calculate_and_save_sampling_time(self): - current_time = time.time() - new_sampling_time = current_time - self.start_time - self.total_sampling_time += new_sampling_time - self.start_time = current_time - with open(self.time_file_path, "w") as time_file: - time_file.write(str(self.total_sampling_time)) - - def _clean_up_run_directory(self): - if self.use_temporary_directory: - self._move_temporary_directory_to_proper_path() - self.kwargs["outputfiles_basename"] = self.outputfiles_basename - @property def _nested_samples(self): """ diff --git a/bilby/core/sampler/ultranest.py b/bilby/core/sampler/ultranest.py index 2348319e4b6048eb2669e798e94c6a06af9b6e0e..4cc14a9fa7ff9ba1ce4f19979571f8dde2c71e7b 100644 --- a/bilby/core/sampler/ultranest.py +++ b/bilby/core/sampler/ultranest.py @@ -1,20 +1,15 @@ - import datetime -import distutils.dir_util import inspect -import os -import shutil -import signal import time import numpy as np from pandas import DataFrame -from ..utils import check_directory_exists_and_if_not_mkdir, logger -from .base_sampler import NestedSampler +from ..utils import logger +from .base_sampler import NestedSampler, _TemporaryFileSamplerMixin, signal_wrapper -class Ultranest(NestedSampler): +class Ultranest(_TemporaryFileSamplerMixin, NestedSampler): """ bilby wrapper of ultranest (https://johannesbuchner.github.io/UltraNest/index.html) @@ -73,6 +68,8 @@ class Ultranest(NestedSampler): step_sampler=None, ) + short_name = "ultra" + def __init__( self, likelihood, @@ -96,31 +93,32 @@ class Ultranest(NestedSampler): plot=plot, skip_import_verification=skip_import_verification, exit_code=exit_code, + temporary_directory=temporary_directory, **kwargs, ) self._apply_ultranest_boundaries() - self.use_temporary_directory = temporary_directory if self.use_temporary_directory: # set callback interval, so copying of results does not thrash the # disk (ultranest will call viz_callback quite a lot) self.callback_interval = callback_interval - signal.signal(signal.SIGTERM, self.write_current_state_and_exit) - signal.signal(signal.SIGINT, self.write_current_state_and_exit) - signal.signal(signal.SIGALRM, self.write_current_state_and_exit) - def _translate_kwargs(self, kwargs): + kwargs = super()._translate_kwargs(kwargs) if "num_live_points" not in kwargs: for equiv in self.npoints_equiv_kwargs: if equiv in kwargs: kwargs["num_live_points"] = kwargs.pop(equiv) - if "verbose" in kwargs and "show_status" not in kwargs: kwargs["show_status"] = kwargs.pop("verbose") + resume = kwargs.get("resume", False) + if resume is True: + kwargs["resume"] = "overwrite" + elif resume is False: + kwargs["resume"] = "overwrite" def _verify_kwargs_against_default_kwargs(self): - """ Check the kwargs """ + """Check the kwargs""" self.outputfiles_basename = self.kwargs.pop("log_dir", None) if self.kwargs["viz_callback"] is None: @@ -148,76 +146,13 @@ class Ultranest(NestedSampler): else: self.kwargs["wrapped_params"].append(0) - @property - def outputfiles_basename(self): - return self._outputfiles_basename - - @outputfiles_basename.setter - def outputfiles_basename(self, outputfiles_basename): - if outputfiles_basename is None: - outputfiles_basename = os.path.join( - self.outdir, "ultra_{}/".format(self.label) - ) - if not outputfiles_basename.endswith("/"): - outputfiles_basename += "/" - check_directory_exists_and_if_not_mkdir(self.outdir) - self._outputfiles_basename = outputfiles_basename - - @property - def temporary_outputfiles_basename(self): - return self._temporary_outputfiles_basename - - @temporary_outputfiles_basename.setter - def temporary_outputfiles_basename(self, temporary_outputfiles_basename): - if not temporary_outputfiles_basename.endswith("/"): - temporary_outputfiles_basename = "{}/".format( - temporary_outputfiles_basename - ) - self._temporary_outputfiles_basename = temporary_outputfiles_basename - if os.path.exists(self.outputfiles_basename): - shutil.copytree( - self.outputfiles_basename, self.temporary_outputfiles_basename - ) - - def write_current_state_and_exit(self, signum=None, frame=None): - """ Write current state and exit on exit_code """ - logger.info( - "Run interrupted by signal {}: checkpoint and exit on {}".format( - signum, self.exit_code - ) - ) - self._calculate_and_save_sampling_time() - if self.use_temporary_directory: - self._move_temporary_directory_to_proper_path() - os._exit(self.exit_code) - def _copy_temporary_directory_contents_to_proper_path(self): """ Copy the temporary back to the proper path. Do not delete the temporary directory. """ if inspect.stack()[1].function != "_viz_callback": - logger.info( - "Overwriting {} with {}".format( - self.outputfiles_basename, self.temporary_outputfiles_basename - ) - ) - if self.outputfiles_basename.endswith("/"): - outputfiles_basename_stripped = self.outputfiles_basename[:-1] - else: - outputfiles_basename_stripped = self.outputfiles_basename - distutils.dir_util.copy_tree( - self.temporary_outputfiles_basename, outputfiles_basename_stripped - ) - - def _move_temporary_directory_to_proper_path(self): - """ - Move the temporary back to the proper path - - Anything in the proper path at this point is removed including links - """ - self._copy_temporary_directory_contents_to_proper_path() - shutil.rmtree(self.temporary_outputfiles_basename) + super(Ultranest, self)._copy_temporary_directory_contents_to_proper_path() @property def sampler_function_kwargs(self): @@ -271,6 +206,7 @@ class Ultranest(NestedSampler): return init_kwargs + @signal_wrapper def run_sampler(self): import ultranest import ultranest.stepsampler @@ -285,7 +221,7 @@ class Ultranest(NestedSampler): stepsampler = self.kwargs.pop("step_sampler", None) self._setup_run_directory() - self.kwargs["log_dir"] = self.kwargs.pop("outputfiles_basename") + self.kwargs["log_dir"] = self.kwargs["outputfiles_basename"] self._check_and_load_sampling_time_file() # use reactive nested sampler when no live points are given @@ -317,7 +253,6 @@ class Ultranest(NestedSampler): results = sampler.run(**self.sampler_function_kwargs) self._calculate_and_save_sampling_time() - # Clean up self._clean_up_run_directory() self._generate_result(results) @@ -325,27 +260,6 @@ class Ultranest(NestedSampler): return self.result - def _clean_up_run_directory(self): - if self.use_temporary_directory: - self._move_temporary_directory_to_proper_path() - self.kwargs["log_dir"] = self.outputfiles_basename - - def _check_and_load_sampling_time_file(self): - self.time_file_path = os.path.join(self.kwargs["log_dir"], "sampling_time.dat") - if os.path.exists(self.time_file_path): - with open(self.time_file_path, "r") as time_file: - self.total_sampling_time = float(time_file.readline()) - else: - self.total_sampling_time = 0 - - def _calculate_and_save_sampling_time(self): - current_time = time.time() - new_sampling_time = current_time - self.start_time - self.total_sampling_time += new_sampling_time - with open(self.time_file_path, "w") as time_file: - time_file.write(str(self.total_sampling_time)) - self.start_time = current_time - def _generate_result(self, out): # extract results data = np.array(out["weighted_samples"]["points"]) @@ -357,16 +271,22 @@ class Ultranest(NestedSampler): nested_samples = DataFrame(data, columns=self.search_parameter_keys) nested_samples["weights"] = weights nested_samples["log_likelihood"] = out["weighted_samples"]["logl"] - self.result.log_likelihood_evaluations = np.array(out["weighted_samples"]["logl"])[ - mask - ] + self.result.log_likelihood_evaluations = np.array( + out["weighted_samples"]["logl"] + )[mask] self.result.sampler_output = out self.result.samples = data[mask, :] self.result.nested_samples = nested_samples self.result.log_evidence = out["logz"] self.result.log_evidence_err = out["logzerr"] if self.kwargs["num_live_points"] is not None: - self.result.information_gain = np.power(out["logzerr"], 2) * self.kwargs["num_live_points"] + self.result.information_gain = ( + np.power(out["logzerr"], 2) * self.kwargs["num_live_points"] + ) self.result.outputfiles_basename = self.outputfiles_basename self.result.sampling_time = datetime.timedelta(seconds=self.total_sampling_time) + + def log_likelihood(self, theta): + log_l = super(Ultranest, self).log_likelihood(theta=theta) + return np.nan_to_num(log_l) diff --git a/bilby/core/sampler/zeus.py b/bilby/core/sampler/zeus.py index 78c3529ea00c1c9ee518a8698e2f70bc29fe194d..c7ae40da222201e5b29c53635c16c3edc94744f0 100644 --- a/bilby/core/sampler/zeus.py +++ b/bilby/core/sampler/zeus.py @@ -1,18 +1,17 @@ import os -import signal import shutil -import sys -from collections import namedtuple from shutil import copyfile import numpy as np -from pandas import DataFrame -from ..utils import logger, check_directory_exists_and_if_not_mkdir -from .base_sampler import MCMCSampler, SamplerError +from .base_sampler import SamplerError, signal_wrapper +from .emcee import Emcee +from .ptemcee import LikePriorEvaluator +_evaluator = LikePriorEvaluator() -class Zeus(MCMCSampler): + +class Zeus(Emcee): """bilby wrapper for Zeus (https://zeus-mcmc.readthedocs.io/) All positional and keyword arguments (i.e., the args and kwargs) passed to @@ -65,12 +64,8 @@ class Zeus(MCMCSampler): burn_in_fraction=0.25, resume=True, burn_in_act=3, - **kwargs + **kwargs, ): - import zeus - - self.zeus = zeus - super(Zeus, self).__init__( likelihood=likelihood, priors=priors, @@ -79,25 +74,16 @@ class Zeus(MCMCSampler): use_ratio=use_ratio, plot=plot, skip_import_verification=skip_import_verification, - **kwargs + pos0=pos0, + nburn=nburn, + burn_in_fraction=burn_in_fraction, + resume=resume, + burn_in_act=burn_in_act, + **kwargs, ) - self.resume = resume - self.pos0 = pos0 - self.nburn = nburn - self.burn_in_fraction = burn_in_fraction - self.burn_in_act = burn_in_act - - signal.signal(signal.SIGTERM, self.checkpoint_and_exit) - signal.signal(signal.SIGINT, self.checkpoint_and_exit) def _translate_kwargs(self, kwargs): - if "nwalkers" not in kwargs: - for equiv in self.nwalkers_equiv_kwargs: - if equiv in kwargs: - kwargs["nwalkers"] = kwargs.pop(equiv) - if "iterations" not in kwargs: - if "nsteps" in kwargs: - kwargs["iterations"] = kwargs.pop("nsteps") + super(Zeus, self)._translate_kwargs(kwargs=kwargs) # check if using emcee-style arguments if "start" not in kwargs: @@ -107,17 +93,6 @@ class Zeus(MCMCSampler): if "lnprob0" in kwargs: kwargs["log_prob0"] = kwargs.pop("lnprob0") - if "threads" in kwargs: - if kwargs["threads"] != 1: - logger.warning( - "The 'threads' argument cannot be used for " - "parallelisation. This run will proceed " - "without parallelisation, but consider the use " - "of an appropriate Pool object passed to the " - "'pool' keyword." - ) - kwargs["threads"] = 1 - @property def sampler_function_kwargs(self): keys = ["log_prob0", "start", "blobs0", "iterations", "thin", "progress"] @@ -134,168 +109,21 @@ class Zeus(MCMCSampler): if key not in self.sampler_function_kwargs } - init_kwargs["logprob_fn"] = self.lnpostfn + init_kwargs["logprob_fn"] = _evaluator.call_emcee init_kwargs["ndim"] = self.ndim return init_kwargs - def lnpostfn(self, theta): - log_prior = self.log_prior(theta) - if np.isinf(log_prior): - return -np.inf, [np.nan, np.nan] - else: - log_likelihood = self.log_likelihood(theta) - return log_likelihood + log_prior, [log_likelihood, log_prior] - - @property - def nburn(self): - if type(self.__nburn) in [float, int]: - return int(self.__nburn) - elif self.result.max_autocorrelation_time is None: - return int(self.burn_in_fraction * self.nsteps) - else: - return int(self.burn_in_act * self.result.max_autocorrelation_time) - - @nburn.setter - def nburn(self, nburn): - if isinstance(nburn, (float, int)): - if nburn > self.kwargs["iterations"] - 1: - raise ValueError( - "Number of burn-in samples must be smaller " - "than the total number of iterations" - ) - - self.__nburn = nburn - - @property - def nwalkers(self): - return self.kwargs["nwalkers"] - - @property - def nsteps(self): - return self.kwargs["iterations"] - - @nsteps.setter - def nsteps(self, nsteps): - self.kwargs["iterations"] = nsteps - - @property - def stored_chain(self): - """Read the stored zero-temperature chain data in from disk""" - return np.genfromtxt(self.checkpoint_info.chain_file, names=True) - - @property - def stored_samples(self): - """Returns the samples stored on disk""" - return self.stored_chain[self.search_parameter_keys] - - @property - def stored_loglike(self): - """Returns the log-likelihood stored on disk""" - return self.stored_chain["log_l"] - - @property - def stored_logprior(self): - """Returns the log-prior stored on disk""" - return self.stored_chain["log_p"] - - def _init_chain_file(self): - with open(self.checkpoint_info.chain_file, "w+") as ff: - ff.write( - "walker\t{}\tlog_l\tlog_p\n".format( - "\t".join(self.search_parameter_keys) - ) - ) - - @property - def checkpoint_info(self): - """Defines various things related to checkpointing and storing data - - Returns - ======= - checkpoint_info: named_tuple - An object with attributes `sampler_file`, `chain_file`, and - `chain_template`. The first two give paths to where the sampler and - chain data is stored, the last a formatted-str-template with which - to write the chain data to disk - - """ - out_dir = os.path.join( - self.outdir, "{}_{}".format(self.__class__.__name__.lower(), self.label) - ) - check_directory_exists_and_if_not_mkdir(out_dir) - - chain_file = os.path.join(out_dir, "chain.dat") - sampler_file = os.path.join(out_dir, "sampler.pickle") - chain_template = ( - "{:d}" + "\t{:.9e}" * (len(self.search_parameter_keys) + 2) + "\n" - ) - - CheckpointInfo = namedtuple( - "CheckpointInfo", ["sampler_file", "chain_file", "chain_template"] - ) - - checkpoint_info = CheckpointInfo( - sampler_file=sampler_file, - chain_file=chain_file, - chain_template=chain_template, - ) - - return checkpoint_info - - @property - def sampler_chain(self): - nsteps = self._previous_iterations - return self.sampler.chain[:, :nsteps, :] - - def checkpoint(self): - """Writes a pickle file of the sampler to disk using dill""" - import dill - - logger.info( - "Checkpointing sampler to file {}".format(self.checkpoint_info.sampler_file) - ) - with open(self.checkpoint_info.sampler_file, "wb") as f: - # Overwrites the stored sampler chain with one that is truncated - # to only the completed steps - self.sampler._chain = self.sampler_chain - dill.dump(self._sampler, f) - - def checkpoint_and_exit(self, signum, frame): - logger.info("Received signal {}".format(signum)) - self.checkpoint() - sys.exit() + def write_current_state(self): + self._sampler.distribute = map + super(Zeus, self).write_current_state() + self._sampler.distribute = getattr(self._sampler.pool, "map", map) def _initialise_sampler(self): - self._sampler = self.zeus.EnsembleSampler(**self.sampler_init_kwargs) - self._init_chain_file() + from zeus import EnsembleSampler - @property - def sampler(self): - """Returns the Zeus sampler object - - If, already initialized, returns the stored _sampler value. Otherwise, - first checks if there is a pickle file from which to load. If there is - not, then initialize the sampler and set the initial random draw - - """ - if hasattr(self, "_sampler"): - pass - elif self.resume and os.path.isfile(self.checkpoint_info.sampler_file): - import dill - - logger.info( - "Resuming run from checkpoint file {}".format( - self.checkpoint_info.sampler_file - ) - ) - with open(self.checkpoint_info.sampler_file, "rb") as f: - self._sampler = dill.load(f) - self._set_pos0_for_resume() - else: - self._initialise_sampler() - self._set_pos0() - return self._sampler + self._sampler = EnsembleSampler(**self.sampler_init_kwargs) + self._init_chain_file() def write_chains_to_file(self, sample): chain_file = self.checkpoint_info.chain_file @@ -310,48 +138,12 @@ class Zeus(MCMCSampler): ff.write(self.checkpoint_info.chain_template.format(ii, *point)) shutil.move(temp_chain_file, chain_file) - @property - def _previous_iterations(self): - """Returns the number of iterations that the sampler has saved - - This is used when loading in a sampler from a pickle file to figure out - how much of the run has already been completed - """ - try: - return len(self.sampler.get_blobs()) - except AttributeError: - return 0 - - def _draw_pos0_from_prior(self): - return np.array( - [self.get_random_draw_from_prior() for _ in range(self.nwalkers)] - ) - - @property - def _pos0_shape(self): - return (self.nwalkers, self.ndim) - - def _set_pos0(self): - if self.pos0 is not None: - logger.debug("Using given initial positions for walkers") - if isinstance(self.pos0, DataFrame): - self.pos0 = self.pos0[self.search_parameter_keys].values - elif type(self.pos0) in (list, np.ndarray): - self.pos0 = np.squeeze(self.pos0) - - if self.pos0.shape != self._pos0_shape: - raise ValueError("Input pos0 should be of shape ndim, nwalkers") - logger.debug("Checking input pos0") - for draw in self.pos0: - self.check_draw(draw) - else: - logger.debug("Generating initial walker positions from prior") - self.pos0 = self._draw_pos0_from_prior() - def _set_pos0_for_resume(self): self.pos0 = self.sampler.get_last_sample() + @signal_wrapper def run_sampler(self): + self._setup_pool() sampler_function_kwargs = self.sampler_function_kwargs iterations = sampler_function_kwargs.pop("iterations") iterations -= self._previous_iterations @@ -363,7 +155,8 @@ class Zeus(MCMCSampler): iterations=iterations, **sampler_function_kwargs ): self.write_chains_to_file(sample) - self.checkpoint() + self._close_pool() + self.write_current_state() self.result.sampler_output = np.nan self.calculate_autocorrelation(self.sampler.chain.reshape((-1, self.ndim))) @@ -381,10 +174,12 @@ class Zeus(MCMCSampler): if self.result.nburn > self.nsteps: raise SamplerError( "The run has finished, but the chain is not burned in: " - "`nburn < nsteps` ({} < {}). Try increasing the " - "number of steps.".format(self.result.nburn, self.nsteps) + f"`nburn < nsteps` ({self.result.nburn} < {self.nsteps})." + " Try increasing the number of steps." ) - blobs = np.array(self.sampler.get_blobs(flat=True, discard=self.nburn)).reshape((-1, 2)) + blobs = np.array(self.sampler.get_blobs(flat=True, discard=self.nburn)).reshape( + (-1, 2) + ) log_likelihoods, log_priors = blobs.T self.result.log_likelihood_evaluations = log_likelihoods self.result.log_prior_evaluations = log_priors diff --git a/bilby/core/utils/cmd.py b/bilby/core/utils/cmd.py index 2305d7fee2ff59fe2ca4ce939e119cc354a0f7cc..eba784bb8dc2b66ced02f08598e5930a5322136d 100644 --- a/bilby/core/utils/cmd.py +++ b/bilby/core/utils/cmd.py @@ -111,7 +111,7 @@ def run_commandline(cl, log_level=20, raise_error=True, return_output=True): else: out = 0 os.system('\n') - return(out) + return out else: process = subprocess.Popen(cl, shell=True) process.communicate() diff --git a/bilby/core/utils/introspection.py b/bilby/core/utils/introspection.py index 3d92b5f7e644b6b378075fcf45b9582500db657d..70073f995916f18d41a27bc060818acde2023d0e 100644 --- a/bilby/core/utils/introspection.py +++ b/bilby/core/utils/introspection.py @@ -94,11 +94,8 @@ def infer_args_from_function_except_n_args(func, n=1): ['c', 'd'] """ - try: - parameters = inspect.getfullargspec(func).args - except AttributeError: - parameters = inspect.getargspec(func).args - del(parameters[:n]) + parameters = inspect.getfullargspec(func).args + del parameters[:n] return parameters diff --git a/bilby/core/utils/log.py b/bilby/core/utils/log.py index d9db7581c9bf4a08d50bf4329c30d2b0f628e293..dd9bcfd95b471bbe70f7300758ea317d31051026 100644 --- a/bilby/core/utils/log.py +++ b/bilby/core/utils/log.py @@ -1,5 +1,4 @@ import logging -import os from pathlib import Path import sys @@ -60,13 +59,8 @@ def setup_logger(outdir='.', label=None, log_level='INFO', print_version=False): def get_version_information(): - version_file = os.path.join( - os.path.dirname(os.path.dirname(os.path.dirname(__file__))), '.version') - try: - with open(version_file, 'r') as f: - return f.readline().rstrip() - except EnvironmentError: - print("No version information file '.version' found") + from bilby import __version__ + return __version__ def loaded_modules_dict(): diff --git a/bilby/gw/__init__.py b/bilby/gw/__init__.py index 3242f0ebd92a0b0c3b5c6f14ae1f27c80de2d08e..b5115766b2c421fc6d1585809c44570a3c6bdb9e 100644 --- a/bilby/gw/__init__.py +++ b/bilby/gw/__init__.py @@ -1,6 +1,6 @@ from . import (conversion, cosmology, detector, eos, likelihood, prior, result, source, utils, waveform_generator) -from .waveform_generator import WaveformGenerator +from .waveform_generator import WaveformGenerator, LALCBCWaveformGenerator from .likelihood import GravitationalWaveTransient from .detector import calibration diff --git a/bilby/gw/conversion.py b/bilby/gw/conversion.py index d52e05ae8d21f7bff9054da180dcc3fb1ecbeb6d..0a2c7039b3bb0c6fb2eb1976053371103a5effd7 100644 --- a/bilby/gw/conversion.py +++ b/bilby/gw/conversion.py @@ -210,67 +210,8 @@ def convert_to_lal_binary_black_hole_parameters(parameters): converted_parameters[key[:-7]] = converted_parameters[key] * ( 1 + converted_parameters['redshift']) - if 'chirp_mass' in converted_parameters.keys(): - if "mass_1" in converted_parameters.keys(): - converted_parameters["mass_ratio"] = chirp_mass_and_primary_mass_to_mass_ratio( - converted_parameters["chirp_mass"], converted_parameters["mass_1"]) - if 'total_mass' in converted_parameters.keys(): - converted_parameters['symmetric_mass_ratio'] =\ - chirp_mass_and_total_mass_to_symmetric_mass_ratio( - converted_parameters['chirp_mass'], - converted_parameters['total_mass']) - if 'symmetric_mass_ratio' in converted_parameters.keys() and "mass_ratio" not in converted_parameters: - converted_parameters['mass_ratio'] =\ - symmetric_mass_ratio_to_mass_ratio( - converted_parameters['symmetric_mass_ratio']) - if 'total_mass' not in converted_parameters.keys(): - converted_parameters['total_mass'] =\ - chirp_mass_and_mass_ratio_to_total_mass( - converted_parameters['chirp_mass'], - converted_parameters['mass_ratio']) - converted_parameters['mass_1'], converted_parameters['mass_2'] = \ - total_mass_and_mass_ratio_to_component_masses( - converted_parameters['mass_ratio'], - converted_parameters['total_mass']) - elif 'total_mass' in converted_parameters.keys(): - if 'symmetric_mass_ratio' in converted_parameters.keys(): - converted_parameters['mass_ratio'] = \ - symmetric_mass_ratio_to_mass_ratio( - converted_parameters['symmetric_mass_ratio']) - if 'mass_ratio' in converted_parameters.keys(): - converted_parameters['mass_1'], converted_parameters['mass_2'] =\ - total_mass_and_mass_ratio_to_component_masses( - converted_parameters['mass_ratio'], - converted_parameters['total_mass']) - elif 'mass_1' in converted_parameters.keys(): - converted_parameters['mass_2'] =\ - converted_parameters['total_mass'] -\ - converted_parameters['mass_1'] - elif 'mass_2' in converted_parameters.keys(): - converted_parameters['mass_1'] = \ - converted_parameters['total_mass'] - \ - converted_parameters['mass_2'] - elif 'symmetric_mass_ratio' in converted_parameters.keys(): - converted_parameters['mass_ratio'] =\ - symmetric_mass_ratio_to_mass_ratio( - converted_parameters['symmetric_mass_ratio']) - if 'mass_1' in converted_parameters.keys(): - converted_parameters['mass_2'] =\ - converted_parameters['mass_1'] *\ - converted_parameters['mass_ratio'] - elif 'mass_2' in converted_parameters.keys(): - converted_parameters['mass_1'] =\ - converted_parameters['mass_2'] /\ - converted_parameters['mass_ratio'] - elif 'mass_ratio' in converted_parameters.keys(): - if 'mass_1' in converted_parameters.keys(): - converted_parameters['mass_2'] =\ - converted_parameters['mass_1'] *\ - converted_parameters['mass_ratio'] - if 'mass_2' in converted_parameters.keys(): - converted_parameters['mass_1'] = \ - converted_parameters['mass_2'] /\ - converted_parameters['mass_ratio'] + # we do not require the component masses be added if no mass parameters are present + converted_parameters = generate_component_masses(converted_parameters, require_add=False) for idx in ['1', '2']: key = 'chi_{}'.format(idx) @@ -480,6 +421,33 @@ def total_mass_and_mass_ratio_to_component_masses(mass_ratio, total_mass): return mass_1, mass_2 +def chirp_mass_and_mass_ratio_to_component_masses(chirp_mass, mass_ratio): + """ + Convert total mass and mass ratio of a binary to its component masses. + + Parameters + ========== + chirp_mass: float + Chirp mass of the binary + mass_ratio: float + Mass ratio (mass_2/mass_1) of the binary + + Returns + ======= + mass_1: float + Mass of the heavier object + mass_2: float + Mass of the lighter object + """ + total_mass = chirp_mass_and_mass_ratio_to_total_mass(chirp_mass=chirp_mass, + mass_ratio=mass_ratio) + mass_1, mass_2 = ( + total_mass_and_mass_ratio_to_component_masses( + total_mass=total_mass, mass_ratio=mass_ratio) + ) + return mass_1, mass_2 + + def symmetric_mass_ratio_to_mass_ratio(symmetric_mass_ratio): """ Convert the symmetric mass ratio to the normal mass ratio. @@ -678,6 +646,30 @@ def mass_1_and_chirp_mass_to_mass_ratio(mass_1, chirp_mass): return mass_ratio +def mass_2_and_chirp_mass_to_mass_ratio(mass_2, chirp_mass): + """ + Calculate mass ratio from mass_1 and chirp_mass. + + This involves solving mc = m2 * (1/q)**(3/5) / (1 + (1/q))**(1/5). + + Parameters + ========== + mass_2: float + Mass of the lighter object + chirp_mass: float + Chirp mass of the binary + + Returns + ======= + mass_ratio: float + Mass ratio of the binary + """ + # Passing mass_2, the expression from the function above + # returns 1/q (because chirp mass is invariant under + # mass_1 <-> mass_2) + return 1 / mass_1_and_chirp_mass_to_mass_ratio(mass_2, chirp_mass) + + def lambda_1_lambda_2_to_lambda_tilde(lambda_1, lambda_2, mass_1, mass_2): """ Convert from individual tidal parameters to domainant tidal term. @@ -838,12 +830,8 @@ def _generate_all_cbc_parameters(sample, defaults, base_conversion, output_sample = fill_from_fixed_priors(output_sample, priors) output_sample, _ = base_conversion(output_sample) if likelihood is not None: - if ( - hasattr(likelihood, 'phase_marginalization') or - hasattr(likelihood, 'time_marginalization') or - hasattr(likelihood, 'distance_marginalization') or - hasattr(likelihood, 'calibration_marginalization') - ): + marginalized_parameters = getattr(likelihood, "_marginalized_parameters", list()) + if len(marginalized_parameters) > 0: try: generate_posterior_samples_from_marginalized_likelihood( samples=output_sample, likelihood=likelihood, npool=npool) @@ -854,10 +842,17 @@ def _generate_all_cbc_parameters(sample, defaults, base_conversion, "interpretation.".format(e) ) if priors is not None: - for par, name in zip( - ['distance', 'phase', 'time'], - ['luminosity_distance', 'phase', 'geocent_time']): - if getattr(likelihood, '{}_marginalization'.format(par), False): + misnamed_marginalizations = dict( + distance="luminosity_distance", + time="geocent_time", + calibration="recalib_index", + ) + for par in marginalized_parameters: + name = misnamed_marginalizations.get(par, par) + if ( + getattr(likelihood, f'{par}_marginalization', False) + and name in likelihood.priors + ): priors[name] = likelihood.priors[name] if ( @@ -1006,33 +1001,220 @@ def fill_from_fixed_priors(sample, priors): return output_sample -def generate_mass_parameters(sample): +def generate_component_masses(sample, require_add=False, source=False): + """" + Add the component masses to the dataframe/dictionary + We add: + mass_1, mass_2 + We also add any other masses which may be necessary for + intermediate steps, i.e. typically the total mass is necessary, along + with the mass ratio, so these will usually be added to the dictionary + + If `require_add` is True, then having an incomplete set of mass + parameters (so that the component mass parameters cannot be added) + will throw an error, otherwise it will quietly add nothing to the + dictionary. + + Parameters + ========= + sample : dict + The input dictionary with at least one + component with overall mass scaling (i.e. + chirp_mass, mass_1, mass_2, total_mass) and + then any other mass parameter. + source : bool, default False + If True, then perform the conversions for source mass parameters + i.e. mass_1_source instead of mass_1 + + Returns + dict : the updated dictionary + """ + def check_and_return_quietly(require_add, sample): + if require_add: + raise KeyError("Insufficient mass parameters in input dictionary") + else: + return sample + output_sample = sample.copy() + + if source: + mass_1_key = "mass_1_source" + mass_2_key = "mass_2_source" + total_mass_key = "total_mass_source" + chirp_mass_key = "chirp_mass_source" + else: + mass_1_key = "mass_1" + mass_2_key = "mass_2" + total_mass_key = "total_mass" + chirp_mass_key = "chirp_mass" + + if mass_1_key in sample.keys(): + if mass_2_key in sample.keys(): + return output_sample + if total_mass_key in sample.keys(): + output_sample[mass_2_key] = output_sample[total_mass_key] - ( + output_sample[mass_1_key] + ) + return output_sample + + elif "mass_ratio" in sample.keys(): + pass + elif "symmetric_mass_ratio" in sample.keys(): + output_sample["mass_ratio"] = ( + symmetric_mass_ratio_to_mass_ratio( + output_sample["symmetric_mass_ratio"]) + ) + elif chirp_mass_key in sample.keys(): + output_sample["mass_ratio"] = ( + mass_1_and_chirp_mass_to_mass_ratio( + mass_1=output_sample[mass_1_key], + chirp_mass=output_sample[chirp_mass_key]) + ) + else: + return check_and_return_quietly(require_add, sample) + + output_sample[mass_2_key] = ( + output_sample["mass_ratio"] * output_sample[mass_1_key] + ) + + return output_sample + + elif mass_2_key in sample.keys(): + # mass_1 is not in the dict + if total_mass_key in sample.keys(): + output_sample[mass_1_key] = ( + output_sample[total_mass_key] - output_sample[mass_2_key] + ) + return output_sample + elif "mass_ratio" in sample.keys(): + pass + elif "symmetric_mass_ratio" in sample.keys(): + output_sample["mass_ratio"] = ( + symmetric_mass_ratio_to_mass_ratio( + output_sample["symmetric_mass_ratio"]) + ) + elif chirp_mass_key in sample.keys(): + output_sample["mass_ratio"] = ( + mass_2_and_chirp_mass_to_mass_ratio( + mass_2=output_sample[mass_2_key], + chirp_mass=output_sample[chirp_mass_key]) + ) + else: + check_and_return_quietly(require_add, sample) + + output_sample[mass_1_key] = 1 / output_sample["mass_ratio"] * ( + output_sample[mass_2_key] + ) + + return output_sample + + # Only if neither mass_1 or mass_2 is in the input sample + if total_mass_key in sample.keys(): + if "mass_ratio" in sample.keys(): + pass # We have everything we need already + elif "symmetric_mass_ratio" in sample.keys(): + output_sample["mass_ratio"] = ( + symmetric_mass_ratio_to_mass_ratio( + output_sample["symmetric_mass_ratio"]) + ) + elif chirp_mass_key in sample.keys(): + output_sample["symmetric_mass_ratio"] = ( + chirp_mass_and_total_mass_to_symmetric_mass_ratio( + chirp_mass=output_sample[chirp_mass_key], + total_mass=output_sample[total_mass_key]) + ) + output_sample["mass_ratio"] = ( + symmetric_mass_ratio_to_mass_ratio( + output_sample["symmetric_mass_ratio"]) + ) + else: + return check_and_return_quietly(require_add, sample) + + elif chirp_mass_key in sample.keys(): + if "mass_ratio" in sample.keys(): + pass + elif "symmetric_mass_ratio" in sample.keys(): + output_sample["mass_ratio"] = ( + symmetric_mass_ratio_to_mass_ratio( + sample["symmetric_mass_ratio"]) + ) + else: + return check_and_return_quietly(require_add, sample) + + output_sample[total_mass_key] = ( + chirp_mass_and_mass_ratio_to_total_mass( + chirp_mass=output_sample[chirp_mass_key], + mass_ratio=output_sample["mass_ratio"]) + ) + + # We haven't matched any of the criteria + if total_mass_key not in output_sample.keys() or ( + "mass_ratio" not in output_sample.keys()): + return check_and_return_quietly(require_add, sample) + mass_1, mass_2 = ( + total_mass_and_mass_ratio_to_component_masses( + total_mass=output_sample[total_mass_key], + mass_ratio=output_sample["mass_ratio"]) + ) + output_sample[mass_1_key] = mass_1 + output_sample[mass_2_key] = mass_2 + + return output_sample + + +def generate_mass_parameters(sample, source=False): """ - Add the known mass parameters to the data frame/dictionary. + Add the known mass parameters to the data frame/dictionary. We do + not recompute keys already present in the dictionary - We add: - chirp mass, total mass, symmetric mass ratio, mass ratio + We add, potentially: + chirp mass, total mass, symmetric mass ratio, mass ratio, mass_1, mass_2 Parameters ========== sample : dict - The input dictionary with component masses 'mass_1' and 'mass_2' - + The input dictionary with two "spanning" mass parameters + e.g. (mass_1, mass_2), or (chirp_mass, mass_ratio), but not e.g. only + (mass_ratio, symmetric_mass_ratio) Returns ======= dict: The updated dictionary """ - output_sample = sample.copy() - output_sample['chirp_mass'] =\ - component_masses_to_chirp_mass(sample['mass_1'], sample['mass_2']) - output_sample['total_mass'] =\ - component_masses_to_total_mass(sample['mass_1'], sample['mass_2']) - output_sample['symmetric_mass_ratio'] =\ - component_masses_to_symmetric_mass_ratio(sample['mass_1'], - sample['mass_2']) - output_sample['mass_ratio'] =\ - component_masses_to_mass_ratio(sample['mass_1'], sample['mass_2']) + # Only add the parameters if they're not already present + intermediate_sample = generate_component_masses(sample, source=source) + output_sample = intermediate_sample.copy() + + if source: + mass_1_key = 'mass_1_source' + mass_2_key = 'mass_2_source' + total_mass_key = 'total_mass_source' + chirp_mass_key = 'chirp_mass_source' + else: + mass_1_key = 'mass_1' + mass_2_key = 'mass_2' + total_mass_key = 'total_mass' + chirp_mass_key = 'chirp_mass' + + if chirp_mass_key not in output_sample.keys(): + output_sample[chirp_mass_key] = ( + component_masses_to_chirp_mass(output_sample[mass_1_key], + output_sample[mass_2_key]) + ) + if total_mass_key not in output_sample.keys(): + output_sample[total_mass_key] = ( + component_masses_to_total_mass(output_sample[mass_1_key], + output_sample[mass_2_key]) + ) + if 'symmetric_mass_ratio' not in output_sample.keys(): + output_sample['symmetric_mass_ratio'] = ( + component_masses_to_symmetric_mass_ratio(output_sample[mass_1_key], + output_sample[mass_2_key]) + ) + if 'mass_ratio' not in output_sample.keys(): + output_sample['mass_ratio'] = ( + component_masses_to_mass_ratio(output_sample[mass_1_key], + output_sample[mass_2_key]) + ) return output_sample @@ -1227,9 +1409,14 @@ def compute_snrs(sample, likelihood, npool=1): from tqdm.auto import tqdm logger.info('Computing SNRs for every sample.') - fill_args = [(ii, row, likelihood) for ii, row in sample.iterrows()] + fill_args = [(ii, row) for ii, row in sample.iterrows()] if npool > 1: - pool = multiprocessing.Pool(processes=npool) + from ..core.sampler.base_sampler import _initialize_global_variables + pool = multiprocessing.Pool( + processes=npool, + initializer=_initialize_global_variables, + initargs=(likelihood, None, None, False), + ) logger.info( "Using a pool with size {} for nsamples={}".format(npool, len(sample)) ) @@ -1237,6 +1424,8 @@ def compute_snrs(sample, likelihood, npool=1): pool.close() pool.join() else: + from ..core.sampler.base_sampler import _sampling_convenience_dump + _sampling_convenience_dump.likelihood = likelihood new_samples = [_compute_snrs(xx) for xx in tqdm(fill_args, file=sys.stdout)] for ii, ifo in enumerate(likelihood.interferometers): @@ -1257,7 +1446,9 @@ def compute_snrs(sample, likelihood, npool=1): def _compute_snrs(args): """A wrapper of computing the SNRs to enable multiprocessing""" - ii, sample, likelihood = args + from ..core.sampler.base_sampler import _sampling_convenience_dump + likelihood = _sampling_convenience_dump.likelihood + ii, sample = args sample = dict(sample).copy() likelihood.parameters.update(sample) signal_polarizations = likelihood.waveform_generator.frequency_domain_strain( @@ -1296,10 +1487,8 @@ def generate_posterior_samples_from_marginalized_likelihood( sample: DataFrame Returns the posterior with new samples. """ - if not any([likelihood.phase_marginalization, - likelihood.distance_marginalization, - likelihood.time_marginalization, - likelihood.calibration_marginalization]): + marginalized_parameters = getattr(likelihood, "_marginalized_parameters", list()) + if len(marginalized_parameters) == 0: return samples # pass through a dictionary @@ -1318,11 +1507,15 @@ def generate_posterior_samples_from_marginalized_likelihood( use_cache = False if use_cache and os.path.exists(cache_filename) and not command_line_args.clean: - with open(cache_filename, "rb") as f: - cached_samples_dict = pickle.load(f) + try: + with open(cache_filename, "rb") as f: + cached_samples_dict = pickle.load(f) + except EOFError: + logger.warning("Cache file is empty") + cached_samples_dict = None # Check the samples are identical between the cache and current - if cached_samples_dict["_samples"].equals(samples): + if (cached_samples_dict is not None) and (cached_samples_dict["_samples"].equals(samples)): # Calculate reconstruction percentage and print a log message nsamples_converted = np.sum( [len(val) for key, val in cached_samples_dict.items() if key != "_samples"] @@ -1342,15 +1535,22 @@ def generate_posterior_samples_from_marginalized_likelihood( # Set up the multiprocessing if npool > 1: - pool = multiprocessing.Pool(processes=npool) + from ..core.sampler.base_sampler import _initialize_global_variables + pool = multiprocessing.Pool( + processes=npool, + initializer=_initialize_global_variables, + initargs=(likelihood, None, None, False), + ) logger.info( "Using a pool with size {} for nsamples={}" .format(npool, len(samples)) ) else: + from ..core.sampler.base_sampler import _sampling_convenience_dump + _sampling_convenience_dump.likelihood = likelihood pool = None - fill_args = [(ii, row, likelihood) for ii, row in samples.iterrows()] + fill_args = [(ii, row) for ii, row in samples.iterrows()] ii = 0 pbar = tqdm(total=len(samples), file=sys.stdout) while ii < len(samples): @@ -1382,11 +1582,8 @@ def generate_posterior_samples_from_marginalized_likelihood( [np.array(val) for key, val in cached_samples_dict.items() if key != "_samples"] ) - samples['geocent_time'] = new_samples[:, 0] - samples['luminosity_distance'] = new_samples[:, 1] - samples['phase'] = new_samples[:, 2] - if likelihood.calibration_marginalization: - samples['recalib_index'] = new_samples[:, 3] + for ii, key in enumerate(marginalized_parameters): + samples[key] = new_samples[:, ii] return samples @@ -1412,14 +1609,11 @@ def generate_sky_frame_parameters(samples, likelihood): def fill_sample(args): - ii, sample, likelihood = args + from ..core.sampler.base_sampler import _sampling_convenience_dump + likelihood = _sampling_convenience_dump.likelihood + ii, sample = args + marginalized_parameters = getattr(likelihood, "_marginalized_parameters", list()) sample = dict(sample).copy() likelihood.parameters.update(dict(sample).copy()) new_sample = likelihood.generate_posterior_sample_from_marginalized_likelihood() - - if not likelihood.calibration_marginalization: - return new_sample["geocent_time"], new_sample["luminosity_distance"],\ - new_sample["phase"] - else: - return new_sample["geocent_time"], new_sample["luminosity_distance"],\ - new_sample["phase"], new_sample['recalib_index'] + return tuple((new_sample[key] for key in marginalized_parameters)) diff --git a/bilby/gw/detector/geometry.py b/bilby/gw/detector/geometry.py index 5ed8ec2e789c86396e32f4a12ae1f1f19412e41c..d7e1433decbccaef03990c8dc9f1fa99a2350c2e 100644 --- a/bilby/gw/detector/geometry.py +++ b/bilby/gw/detector/geometry.py @@ -1,4 +1,5 @@ import numpy as np +from bilby_cython.geometry import calculate_arm, detector_tensor from .. import utils as gwutils @@ -263,7 +264,7 @@ class InterferometerGeometry(object): if not self._x_updated or not self._y_updated: _, _ = self.x, self.y # noqa if not self._detector_tensor_updated: - self._detector_tensor = 0.5 * (np.einsum('i,j->ij', self.x, self.x) - np.einsum('i,j->ij', self.y, self.y)) + self._detector_tensor = detector_tensor(x=self.x, y=self.y) self._detector_tensor_updated = True return self._detector_tensor @@ -288,19 +289,18 @@ class InterferometerGeometry(object): """ if arm == 'x': - return self._calculate_arm(self._xarm_tilt, self._xarm_azimuth) + return calculate_arm( + arm_tilt=self._xarm_tilt, + arm_azimuth=self._xarm_azimuth, + longitude=self._longitude, + latitude=self._latitude + ) elif arm == 'y': - return self._calculate_arm(self._yarm_tilt, self._yarm_azimuth) + return calculate_arm( + arm_tilt=self._yarm_tilt, + arm_azimuth=self._yarm_azimuth, + longitude=self._longitude, + latitude=self._latitude + ) else: raise ValueError("Arm must either be 'x' or 'y'.") - - def _calculate_arm(self, arm_tilt, arm_azimuth): - e_long = np.array([-np.sin(self._longitude), np.cos(self._longitude), 0]) - e_lat = np.array([-np.sin(self._latitude) * np.cos(self._longitude), - -np.sin(self._latitude) * np.sin(self._longitude), np.cos(self._latitude)]) - e_h = np.array([np.cos(self._latitude) * np.cos(self._longitude), - np.cos(self._latitude) * np.sin(self._longitude), np.sin(self._latitude)]) - - return (np.cos(arm_tilt) * np.cos(arm_azimuth) * e_long + - np.cos(arm_tilt) * np.sin(arm_azimuth) * e_lat + - np.sin(arm_tilt) * e_h) diff --git a/bilby/gw/detector/interferometer.py b/bilby/gw/detector/interferometer.py index 06b298386e3d2d8a8887f89af3d65f3e58919efd..08290f2e578a97e7afcfbd49b32120425f52b48c 100644 --- a/bilby/gw/detector/interferometer.py +++ b/bilby/gw/detector/interferometer.py @@ -1,6 +1,11 @@ import os import numpy as np +from bilby_cython.geometry import ( + get_polarization_tensor, + three_by_three_matrix_contraction, + time_delay_from_geocenter, +) from ...core import utils from ...core.utils import docstring, logger, PropertyAccessor @@ -268,11 +273,11 @@ class Interferometer(object): Returns ======= - array_like: A 3x3 array representation of the antenna response for the specified mode + float: The antenna response for the specified mode and time/location """ - polarization_tensor = gwutils.get_polarization_tensor(ra, dec, time, psi, mode) - return np.einsum('ij,ij->', self.geometry.detector_tensor, polarization_tensor) + polarization_tensor = get_polarization_tensor(ra, dec, time, psi, mode) + return three_by_three_matrix_contraction(self.geometry.detector_tensor, polarization_tensor) def get_detector_response(self, waveform_polarizations, parameters): """ Get the detector response for a particular waveform @@ -527,7 +532,7 @@ class Interferometer(object): ======= float: The time delay from geocenter in seconds """ - return gwutils.time_delay_geocentric(self.geometry.vertex, np.array([0, 0, 0]), ra, dec, time) + return time_delay_from_geocenter(self.geometry.vertex, ra, dec, time) def vertex_position_geocentric(self): """ diff --git a/bilby/gw/likelihood/base.py b/bilby/gw/likelihood/base.py index d4d8eca345bb8f6dfca921f4cd20bfcbc3c5cb6c..6ed82c7ba6e9789a2a6f0b922d0ee0b12b5cecd7 100644 --- a/bilby/gw/likelihood/base.py +++ b/bilby/gw/likelihood/base.py @@ -448,8 +448,7 @@ class GravitationalWaveTransient(Likelihood): This involves a deepcopy of the signal to avoid issues with waveform caching, as the signal is overwritten in place. """ - if any([self.phase_marginalization, self.distance_marginalization, - self.time_marginalization, self.calibration_marginalization]): + if len(self._marginalized_parameters) > 0: signal_polarizations = copy.deepcopy( self.waveform_generator.frequency_domain_strain( self.parameters)) @@ -898,8 +897,9 @@ class GravitationalWaveTransient(Likelihood): for key in pairs: if key not in loaded_file: return False, key - elif not np.array_equal(np.atleast_1d(loaded_file[key]), - np.atleast_1d(pairs[key])): + elif not np.allclose(np.atleast_1d(loaded_file[key]), + np.atleast_1d(pairs[key]), + rtol=1e-15): return False, key return True, None diff --git a/bilby/gw/likelihood/multiband.py b/bilby/gw/likelihood/multiband.py index f361742c123af9cd5f27d236b76d1f3e1a4efc7b..9d0b7e1d154774a95469154918ab55601bf626a3 100644 --- a/bilby/gw/likelihood/multiband.py +++ b/bilby/gw/likelihood/multiband.py @@ -570,7 +570,7 @@ class MBGravitationalWaveTransient(GravitationalWaveTransient): self.banded_frequency_points, prefix='recalib_{}_'.format(interferometer.name), **self.parameters) strain *= np.exp(-1j * 2. * np.pi * self.banded_frequency_points * ifo_time) - strain *= np.conjugate(calib_factor) + strain *= calib_factor d_inner_h = np.dot(strain, self.linear_coeffs[interferometer.name]) diff --git a/bilby/gw/likelihood/roq.py b/bilby/gw/likelihood/roq.py index 42cfd83140b040ec5867e9088a391079cf7a9330..f7ba3b1db5da686e693dfcde267d7ae5c6e418fe 100644 --- a/bilby/gw/likelihood/roq.py +++ b/bilby/gw/likelihood/roq.py @@ -371,8 +371,10 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient): else: time_ref = self.parameters['geocent_time'] - size_linear = len(self.waveform_generator.waveform_arguments['frequency_nodes_linear']) - size_quadratic = len(self.waveform_generator.waveform_arguments['frequency_nodes_quadratic']) + frequency_nodes_linear = self.waveform_generator.waveform_arguments['frequency_nodes_linear'] + frequency_nodes_quadratic = self.waveform_generator.waveform_arguments['frequency_nodes_quadratic'] + size_linear = len(frequency_nodes_linear) + size_quadratic = len(frequency_nodes_quadratic) h_linear = np.zeros(size_linear, dtype=complex) h_quadratic = np.zeros(size_quadratic, dtype=complex) for mode in waveform_polarizations['linear']: @@ -385,9 +387,9 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient): h_quadratic += waveform_polarizations['quadratic'][mode] * response calib_linear = interferometer.calibration_model.get_calibration_factor( - size_linear, prefix='recalib_{}_'.format(interferometer.name), **self.parameters) + frequency_nodes_linear, prefix='recalib_{}_'.format(interferometer.name), **self.parameters) calib_quadratic = interferometer.calibration_model.get_calibration_factor( - size_quadratic, prefix='recalib_{}_'.format(interferometer.name), **self.parameters) + frequency_nodes_quadratic, prefix='recalib_{}_'.format(interferometer.name), **self.parameters) h_linear *= calib_linear h_quadratic *= calib_quadratic diff --git a/bilby/gw/prior.py b/bilby/gw/prior.py index 54f803401cac2f64eeaaca46d307eba68d7efc7d..1f605f56f1a85509b09f0fc55e75e491aa7f3a63 100644 --- a/bilby/gw/prior.py +++ b/bilby/gw/prior.py @@ -1183,7 +1183,7 @@ class CalibrationPriorDict(PriorDict): @staticmethod def constant_uncertainty_spline( amplitude_sigma, phase_sigma, minimum_frequency, maximum_frequency, - n_nodes, label): + n_nodes, label, boundary="reflective"): """ Make prior assuming constant in frequency calibration uncertainty. @@ -1203,6 +1203,8 @@ class CalibrationPriorDict(PriorDict): Number of nodes for the spline. label: str Label for the names of the parameters, e.g., `recalib_H1_` + boundary: None, 'reflective', 'periodic' + The type of prior boundary to assign Returns ======= @@ -1225,14 +1227,14 @@ class CalibrationPriorDict(PriorDict): prior[name] = Gaussian(mu=amplitude_mean_nodes[ii], sigma=amplitude_sigma_nodes[ii], name=name, latex_label=latex_label, - boundary='reflective') + boundary=boundary) for ii in range(n_nodes): name = "recalib_{}_phase_{}".format(label, ii) latex_label = r"$\phi^{}_{}$".format(label, ii) prior[name] = Gaussian(mu=phase_mean_nodes[ii], sigma=phase_sigma_nodes[ii], name=name, latex_label=latex_label, - boundary='reflective') + boundary=boundary) for ii in range(n_nodes): name = "recalib_{}_frequency_{}".format(label, ii) latex_label = "$f^{}_{}$".format(label, ii) diff --git a/bilby/gw/prior_files/GW150914.prior b/bilby/gw/prior_files/GW150914.prior index 2a48c390735e58f9c11ece2429842796aac7d23c..b97de3fa4e5f803f5b8eb0bfb0baeec4dda20575 100644 --- a/bilby/gw/prior_files/GW150914.prior +++ b/bilby/gw/prior_files/GW150914.prior @@ -1,5 +1,5 @@ mass_ratio = bilby.gw.prior.UniformInComponentsMassRatio(name='mass_ratio', minimum=0.125, maximum=1) -chirp_mass = bilby.gw.prior.UniformInComponentsChirpMass(name='chirp_mass', minimum=25, maximum=31) +chirp_mass = bilby.gw.prior.UniformInComponentsChirpMass(name='chirp_mass', minimum=25, maximum=35) mass_1 = Constraint(name='mass_1', minimum=10, maximum=80) mass_2 = Constraint(name='mass_2', minimum=10, maximum=80) a_1 = Uniform(name='a_1', minimum=0, maximum=0.99) diff --git a/bilby/gw/source.py b/bilby/gw/source.py index 5ea9415e98fb0bb83bc8e3fb214c2d4654d8c549..4d7793b92fe8124e6e0c3f4397df1bfacc3ca91d 100644 --- a/bilby/gw/source.py +++ b/bilby/gw/source.py @@ -882,11 +882,10 @@ def sinegaussian(frequency_array, hrss, Q, frequency, **kwargs): (np.exp(-fm**2 * np.pi**2 * tau**2) - np.exp(-fp**2 * np.pi**2 * tau**2))) - return{'plus': h_plus, 'cross': h_cross} + return {'plus': h_plus, 'cross': h_cross} -def supernova( - frequency_array, realPCs, imagPCs, file_path, luminosity_distance, **kwargs): +def supernova(frequency_array, luminosity_distance, **kwargs): """ A source model that reads a simulation from a text file. @@ -897,8 +896,6 @@ def supernova( ---------- frequency_array: array-like Unused - realPCs: UNUSED - imagPCs: UNUSED file_path: str Path to the file containing the NR simulation. The format of this file should be readable by :code:`numpy.loadtxt` and have four columns @@ -907,7 +904,8 @@ def supernova( luminosity_distance: float The distance to the source in kpc, this scales the amplitude of the signal. The simulation is assumed to be at 10kpc. - kwargs: UNUSED + kwargs: + extra keyword arguments, this should include the :code:`file_path` Returns ------- @@ -915,20 +913,20 @@ def supernova( A dictionary containing the plus and cross components of the signal. """ - realhplus, imaghplus, realhcross, imaghcross = np.loadtxt( - file_path, usecols=(0, 1, 2, 3), unpack=True) + file_path = kwargs["file_path"] + data = np.genfromtxt(file_path) # waveform in file at 10kpc scaling = 1e-3 * (10.0 / luminosity_distance) - h_plus = scaling * (realhplus + 1.0j * imaghplus) - h_cross = scaling * (realhcross + 1.0j * imaghcross) + h_plus = scaling * (data[:, 0] + 1j * data[:, 1]) + h_cross = scaling * (data[:, 2] + 1j * data[:, 3]) return {'plus': h_plus, 'cross': h_cross} def supernova_pca_model( - frequency_array, pc_coeff1, pc_coeff2, pc_coeff3, pc_coeff4, pc_coeff5, - luminosity_distance, **kwargs): + frequency_array, pc_coeff1, pc_coeff2, pc_coeff3, pc_coeff4, pc_coeff5, luminosity_distance, **kwargs +): r""" Signal model based on a five-component principal component decomposition of a model. @@ -966,22 +964,19 @@ def supernova_pca_model( The plus and cross polarizations of the signal """ - realPCs = kwargs['realPCs'] - imagPCs = kwargs['imagPCs'] + principal_components = kwargs["realPCs"] + 1j * kwargs["imagPCs"] + coefficients = [pc_coeff1, pc_coeff2, pc_coeff3, pc_coeff4, pc_coeff5] - pc1 = realPCs[:, 0] + 1.0j * imagPCs[:, 0] - pc2 = realPCs[:, 1] + 1.0j * imagPCs[:, 1] - pc3 = realPCs[:, 2] + 1.0j * imagPCs[:, 2] - pc4 = realPCs[:, 3] + 1.0j * imagPCs[:, 3] - pc5 = realPCs[:, 4] + 1.0j * imagPCs[:, 5] + strain = np.sum( + [coeff * principal_components[:, ii] for ii, coeff in enumerate(coefficients)], + axis=0 + ) # file at 10kpc scaling = 1e-23 * (10.0 / luminosity_distance) - h_plus = scaling * (pc_coeff1 * pc1 + pc_coeff2 * pc2 + pc_coeff3 * pc3 + - pc_coeff4 * pc4 + pc_coeff5 * pc5) - h_cross = scaling * (pc_coeff1 * pc1 + pc_coeff2 * pc2 + pc_coeff3 * pc3 + - pc_coeff4 * pc4 + pc_coeff5 * pc5) + h_plus = scaling * strain + h_cross = scaling * strain return {'plus': h_plus, 'cross': h_cross} diff --git a/bilby/gw/utils.py b/bilby/gw/utils.py index 34211e82b9f31e0a1c9bcb8e2d1ff28c39b269bb..da9956d2c9b9e1d8e24163e1d183077bd61c8d48 100644 --- a/bilby/gw/utils.py +++ b/bilby/gw/utils.py @@ -1,14 +1,16 @@ import json import os from functools import lru_cache -from math import fmod import numpy as np from scipy.interpolate import interp1d from scipy.special import i0e +from bilby_cython.geometry import ( + zenith_azimuth_to_theta_phi as _zenith_azimuth_to_theta_phi, +) +from bilby_cython.time import greenwich_mean_sidereal_time -from ..core.utils import (ra_dec_to_theta_phi, - speed_of_light, logger, run_commandline, +from ..core.utils import (logger, run_commandline, check_directory_exists_and_if_not_mkdir, SamplesSummary, theta_phi_to_ra_dec) from ..core.utils.constants import solar_mass @@ -53,90 +55,6 @@ def psd_from_freq_series(freq_data, df): return np.power(asd_from_freq_series(freq_data, df), 2) -def time_delay_geocentric(detector1, detector2, ra, dec, time): - """ - Calculate time delay between two detectors in geocentric coordinates based on XLALArrivaTimeDiff in TimeDelay.c - - Parameters - ========== - detector1: array_like - Cartesian coordinate vector for the first detector in the geocentric frame - generated by the Interferometer class as self.vertex. - detector2: array_like - Cartesian coordinate vector for the second detector in the geocentric frame. - To get time delay from Earth center, use detector2 = np.array([0,0,0]) - ra: float - Right ascension of the source in radians - dec: float - Declination of the source in radians - time: float - GPS time in the geocentric frame - - Returns - ======= - float: Time delay between the two detectors in the geocentric frame - - """ - gmst = fmod(greenwich_mean_sidereal_time(time), 2 * np.pi) - theta, phi = ra_dec_to_theta_phi(ra, dec, gmst) - omega = np.array([np.sin(theta) * np.cos(phi), np.sin(theta) * np.sin(phi), np.cos(theta)]) - delta_d = detector2 - detector1 - return np.dot(omega, delta_d) / speed_of_light - - -def get_polarization_tensor(ra, dec, time, psi, mode): - """ - Calculate the polarization tensor for a given sky location and time - - See Nishizawa et al. (2009) arXiv:0903.0528 for definitions of the polarisation tensors. - [u, v, w] represent the Earth-frame - [m, n, omega] represent the wave-frame - Note: there is a typo in the definition of the wave-frame in Nishizawa et al. - - Parameters - ========== - ra: float - right ascension in radians - dec: float - declination in radians - time: float - geocentric GPS time - psi: float - binary polarisation angle counter-clockwise about the direction of propagation - mode: str - polarisation mode - - Returns - ======= - array_like: A 3x3 representation of the polarization_tensor for the specified mode. - - """ - gmst = fmod(greenwich_mean_sidereal_time(time), 2 * np.pi) - theta, phi = ra_dec_to_theta_phi(ra, dec, gmst) - u = np.array([np.cos(phi) * np.cos(theta), np.cos(theta) * np.sin(phi), -np.sin(theta)]) - v = np.array([-np.sin(phi), np.cos(phi), 0]) - m = -u * np.sin(psi) - v * np.cos(psi) - n = -u * np.cos(psi) + v * np.sin(psi) - - if mode.lower() == 'plus': - return np.einsum('i,j->ij', m, m) - np.einsum('i,j->ij', n, n) - elif mode.lower() == 'cross': - return np.einsum('i,j->ij', m, n) + np.einsum('i,j->ij', n, m) - elif mode.lower() == 'breathing': - return np.einsum('i,j->ij', m, m) + np.einsum('i,j->ij', n, n) - - # Calculating omega here to avoid calculation when model in [plus, cross, breathing] - omega = np.cross(m, n) - if mode.lower() == 'longitudinal': - return np.einsum('i,j->ij', omega, omega) - elif mode.lower() == 'x': - return np.einsum('i,j->ij', m, omega) + np.einsum('i,j->ij', omega, m) - elif mode.lower() == 'y': - return np.einsum('i,j->ij', n, omega) + np.einsum('i,j->ij', omega, n) - else: - raise ValueError("{} not a polarization mode!".format(mode)) - - def get_vertex_position_geocentric(latitude, longitude, elevation): """ Calculate the position of the IFO vertex in geocentric coordinates in meters. @@ -310,56 +228,6 @@ def overlap(signal_a, signal_b, power_spectral_density=None, delta_frequency=Non return sum(integral).real -__cached_euler_matrix = None -__cached_delta_x = None - - -def euler_rotation(delta_x): - """ - Calculate the rotation matrix mapping the vector (0, 0, 1) to delta_x - while preserving the origin of the azimuthal angle. - - This is decomposed into three Euler angle, alpha, beta, gamma, which rotate - about the z-, y-, and z- axes respectively. - - Parameters - ========== - delta_x: array-like (3,) - Vector onto which (0, 0, 1) should be mapped. - - Returns - ======= - total_rotation: array-like (3,3) - Rotation matrix which maps vectors from the frame in which delta_x is - aligned with the z-axis to the target frame. - """ - global __cached_delta_x - global __cached_euler_matrix - - delta_x = delta_x / np.sum(delta_x**2)**0.5 - if np.array_equal(delta_x, __cached_delta_x): - return __cached_euler_matrix - else: - __cached_delta_x = delta_x - alpha = np.arctan(- delta_x[1] * delta_x[2] / delta_x[0]) - beta = np.arccos(delta_x[2]) - gamma = np.arctan(delta_x[1] / delta_x[0]) - rotation_1 = np.array([ - [np.cos(alpha), -np.sin(alpha), 0], [np.sin(alpha), np.cos(alpha), 0], - [0, 0, 1]]) - rotation_2 = np.array([ - [np.cos(beta), 0, - np.sin(beta)], [0, 1, 0], - [np.sin(beta), 0, np.cos(beta)]]) - rotation_3 = np.array([ - [np.cos(gamma), -np.sin(gamma), 0], [np.sin(gamma), np.cos(gamma), 0], - [0, 0, 1]]) - total_rotation = np.einsum( - 'ij,jk,kl->il', rotation_3, rotation_2, rotation_1) - __cached_delta_x = delta_x - __cached_euler_matrix = total_rotation - return total_rotation - - def zenith_azimuth_to_theta_phi(zenith, azimuth, ifos): """ Convert from the 'detector frame' to the Earth frame. @@ -379,15 +247,7 @@ def zenith_azimuth_to_theta_phi(zenith, azimuth, ifos): The zenith and azimuthal angles in the earth frame. """ delta_x = ifos[0].geometry.vertex - ifos[1].geometry.vertex - omega_prime = np.array([ - np.sin(zenith) * np.cos(azimuth), - np.sin(zenith) * np.sin(azimuth), - np.cos(zenith)]) - rotation_matrix = euler_rotation(delta_x) - omega = np.dot(rotation_matrix, omega_prime) - theta = np.arccos(omega[2]) - phi = np.arctan2(omega[1], omega[0]) % (2 * np.pi) - return theta, phi + return _zenith_azimuth_to_theta_phi(zenith, azimuth, delta_x) def zenith_azimuth_to_ra_dec(zenith, azimuth, geocent_time, ifos): @@ -1005,27 +865,6 @@ def plot_spline_pos(log_freqs, samples, nfreqs=100, level=0.9, color='k', label= plt.xlim(freq_points.min() - .5, freq_points.max() + 50) -def greenwich_mean_sidereal_time(time): - """ - Compute the greenwich mean sidereal time from a GPS time. - - This is just a wrapper around :code:`lal.GreenwichMeanSiderealTime` . - - Parameters - ---------- - time: float - The GPS time to convert. - - Returns - ------- - float - The sidereal time. - """ - from lal import GreenwichMeanSiderealTime - time = float(time) - return GreenwichMeanSiderealTime(time) - - def ln_i0(value): """ A numerically stable method to evaluate ln(I_0) a modified Bessel function diff --git a/bilby/gw/waveform_generator.py b/bilby/gw/waveform_generator.py index f4cd5a6feeea9cb0804dbf1750d33cfe65addb12..f85e42a964c2f1e079eb80e7b112911bbfa041c3 100644 --- a/bilby/gw/waveform_generator.py +++ b/bilby/gw/waveform_generator.py @@ -4,6 +4,7 @@ from ..core import utils from ..core.series import CoupledTimeAndFrequencySeries from ..core.utils import PropertyAccessor from .conversion import convert_to_lal_binary_black_hole_parameters +from .utils import lalsim_GetApproximantFromString class WaveformGenerator(object): @@ -253,3 +254,20 @@ class WaveformGenerator(object): raise AttributeError('Either time or frequency domain source ' 'model must be provided.') return set(utils.infer_parameters_from_function(model)) + + +class LALCBCWaveformGenerator(WaveformGenerator): + """ A waveform generator with specific checks for LAL CBC waveforms """ + LAL_SIM_INSPIRAL_SPINS_FLOW = 1 + + def __init__(self, **kwargs): + super().__init__(**kwargs) + self.validate_reference_frequency() + + def validate_reference_frequency(self): + from lalsimulation import SimInspiralGetSpinFreqFromApproximant + waveform_approximant = self.waveform_arguments["waveform_approximant"] + waveform_approximant_number = lalsim_GetApproximantFromString(waveform_approximant) + if SimInspiralGetSpinFreqFromApproximant(waveform_approximant_number) == self.LAL_SIM_INSPIRAL_SPINS_FLOW: + if self.waveform_arguments["reference_frequency"] != self.waveform_arguments["minimum_frequency"]: + raise ValueError(f"For {waveform_approximant}, reference_frequency must equal minimum_frequency") diff --git a/containers/dockerfile-template b/containers/dockerfile-template index 0d90276e1fc878ad1d4d6b6669f10ba3c5181801..1f5532cda5ad1e6238690c9b1b2074ece501826e 100644 --- a/containers/dockerfile-template +++ b/containers/dockerfile-template @@ -44,10 +44,6 @@ RUN apt-get install -y gfortran RUN git clone https://github.com/PolyChord/PolyChordLite.git \ && (cd PolyChordLite && python setup.py --no-mpi install) -# Install PTMCMCSampler -RUN git clone https://github.com/jellis18/PTMCMCSampler.git \ -&& (cd PTMCMCSampler && python setup.py install) - # Install GW packages RUN conda install -n ${{conda_env}} -c conda-forge python-lalsimulation bilby.cython RUN pip install ligo-gracedb gwpy ligo.skymap @@ -60,5 +56,5 @@ RUN mkdir roq_basis \ && wget https://git.ligo.org/lscsoft/ROQ_data/raw/master/IMRPhenomPv2/4s/fnodes_linear.npy \ && wget https://git.ligo.org/lscsoft/ROQ_data/raw/master/IMRPhenomPv2/4s/fnodes_quadratic.npy \ && wget https://git.ligo.org/lscsoft/ROQ_data/raw/master/IMRPhenomPv2/4s/params.dat \ - && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis.hdf5 \ - && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis_multiband.hdf5 + && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis_addcal.hdf5 \ + && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis_multiband_addcal.hdf5 diff --git a/containers/v3-dockerfile-test-suite-python310 b/containers/v3-dockerfile-test-suite-python310 index f4c888d067de9a8dfd5e1d0581f88df5dc3ee229..96d8324bdd2d1e3ae4b38bae7d4d1f39be66b371 100644 --- a/containers/v3-dockerfile-test-suite-python310 +++ b/containers/v3-dockerfile-test-suite-python310 @@ -46,10 +46,6 @@ RUN apt-get install -y gfortran RUN git clone https://github.com/PolyChord/PolyChordLite.git \ && (cd PolyChordLite && python setup.py --no-mpi install) -# Install PTMCMCSampler -RUN git clone https://github.com/jellis18/PTMCMCSampler.git \ -&& (cd PTMCMCSampler && python setup.py install) - # Install GW packages RUN conda install -n ${conda_env} -c conda-forge python-lalsimulation bilby.cython RUN pip install ligo-gracedb gwpy ligo.skymap @@ -62,5 +58,5 @@ RUN mkdir roq_basis \ && wget https://git.ligo.org/lscsoft/ROQ_data/raw/master/IMRPhenomPv2/4s/fnodes_linear.npy \ && wget https://git.ligo.org/lscsoft/ROQ_data/raw/master/IMRPhenomPv2/4s/fnodes_quadratic.npy \ && wget https://git.ligo.org/lscsoft/ROQ_data/raw/master/IMRPhenomPv2/4s/params.dat \ - && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis.hdf5 \ - && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis_multiband.hdf5 + && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis_addcal.hdf5 \ + && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis_multiband_addcal.hdf5 diff --git a/containers/v3-dockerfile-test-suite-python38 b/containers/v3-dockerfile-test-suite-python38 index a45a4ab5be24de1271afdaa8e52cfc48438bfe4a..4c3df21441d80b8f8ffbbc2c581235df577ba619 100644 --- a/containers/v3-dockerfile-test-suite-python38 +++ b/containers/v3-dockerfile-test-suite-python38 @@ -46,10 +46,6 @@ RUN apt-get install -y gfortran RUN git clone https://github.com/PolyChord/PolyChordLite.git \ && (cd PolyChordLite && python setup.py --no-mpi install) -# Install PTMCMCSampler -RUN git clone https://github.com/jellis18/PTMCMCSampler.git \ -&& (cd PTMCMCSampler && python setup.py install) - # Install GW packages RUN conda install -n ${conda_env} -c conda-forge python-lalsimulation bilby.cython RUN pip install ligo-gracedb gwpy ligo.skymap @@ -62,5 +58,5 @@ RUN mkdir roq_basis \ && wget https://git.ligo.org/lscsoft/ROQ_data/raw/master/IMRPhenomPv2/4s/fnodes_linear.npy \ && wget https://git.ligo.org/lscsoft/ROQ_data/raw/master/IMRPhenomPv2/4s/fnodes_quadratic.npy \ && wget https://git.ligo.org/lscsoft/ROQ_data/raw/master/IMRPhenomPv2/4s/params.dat \ - && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis.hdf5 \ - && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis_multiband.hdf5 + && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis_addcal.hdf5 \ + && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis_multiband_addcal.hdf5 diff --git a/containers/v3-dockerfile-test-suite-python39 b/containers/v3-dockerfile-test-suite-python39 index a15c0e188063889495b1c7ccf3c08a1bc19860af..af4da1c1a8ce2009c7ccb5c22ad2f7950b903def 100644 --- a/containers/v3-dockerfile-test-suite-python39 +++ b/containers/v3-dockerfile-test-suite-python39 @@ -46,10 +46,6 @@ RUN apt-get install -y gfortran RUN git clone https://github.com/PolyChord/PolyChordLite.git \ && (cd PolyChordLite && python setup.py --no-mpi install) -# Install PTMCMCSampler -RUN git clone https://github.com/jellis18/PTMCMCSampler.git \ -&& (cd PTMCMCSampler && python setup.py install) - # Install GW packages RUN conda install -n ${conda_env} -c conda-forge python-lalsimulation bilby.cython RUN pip install ligo-gracedb gwpy ligo.skymap @@ -62,5 +58,5 @@ RUN mkdir roq_basis \ && wget https://git.ligo.org/lscsoft/ROQ_data/raw/master/IMRPhenomPv2/4s/fnodes_linear.npy \ && wget https://git.ligo.org/lscsoft/ROQ_data/raw/master/IMRPhenomPv2/4s/fnodes_quadratic.npy \ && wget https://git.ligo.org/lscsoft/ROQ_data/raw/master/IMRPhenomPv2/4s/params.dat \ - && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis.hdf5 \ - && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis_multiband.hdf5 + && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis_addcal.hdf5 \ + && wget https://git.ligo.org/soichiro.morisaki/roq_basis/raw/main/IMRPhenomD/16s_nospins/basis_multiband_addcal.hdf5 diff --git a/docs/likelihood.txt b/docs/likelihood.txt index 46c38102bc83d2e06d8476eb4b5a5502fa181898..79f917ff4f0fd8f17ec13802f40332d979087c65 100644 --- a/docs/likelihood.txt +++ b/docs/likelihood.txt @@ -128,9 +128,7 @@ In :code:`bilby`, we can code this up as a likelihood in the following way:: self.function = function # These lines of code infer the parameters from the provided function - parameters = inspect.getargspec(function).args - parameters.pop(0) - super().__init__(parameters=dict.fromkeys(parameters)) + super().__init__(parameters=dict()) def log_likelihood(self): @@ -197,10 +195,10 @@ instantiating the likelihood:: self.function = function # These lines of code infer the parameters from the provided function - parameters = inspect.getargspec(function).args - parameters.pop(0) + parameters = inspect.getfullargspec(function).args + del parameters[0] super().__init__(parameters=dict.fromkeys(parameters)) - self.parameters = dict.fromkeys(parameters) + self.parameters = dict.fromkeys(parameters) self.function_keys = self.parameters.keys() if self.sigma is None: diff --git a/docs/samplers.txt b/docs/samplers.txt index fad1d62ba2953e46bce4e635c98269c0e8aeecb1..69699dad0e3b22725b4d3f3f6d942763406df0da 100644 --- a/docs/samplers.txt +++ b/docs/samplers.txt @@ -69,7 +69,7 @@ MCMC samplers - bilby-mcmc :code:`bilby.bilby_mcmc.sampler.Bilby_MCMC` - emcee :code:`bilby.core.sampler.emcee.Emcee` - ptemcee :code:`bilby.core.sampler.ptemcee.Ptemcee` -- pymc3 :code:`bilby.core.sampler.pymc3.Pymc3` +- pymc :code:`bilby.core.sampler.pymc.Pymc` - zeus :code:`bilby.core.sampler.zeus.Zeus` diff --git a/examples/core_examples/alternative_samplers/linear_regression_pymc3.py b/examples/core_examples/alternative_samplers/linear_regression_pymc.py similarity index 97% rename from examples/core_examples/alternative_samplers/linear_regression_pymc3.py rename to examples/core_examples/alternative_samplers/linear_regression_pymc.py index 75cbf16aed72a7c8e572df342a5817dc092499c7..0efc872beadb35acde686846681c10890a4b2dae 100644 --- a/examples/core_examples/alternative_samplers/linear_regression_pymc3.py +++ b/examples/core_examples/alternative_samplers/linear_regression_pymc.py @@ -11,7 +11,7 @@ import numpy as np from bilby.core.likelihood import GaussianLikelihood # A few simple setup steps -label = "linear_regression_pymc3" +label = "linear_regression_pymc" outdir = "outdir" bilby.utils.check_directory_exists_and_if_not_mkdir(outdir) @@ -58,7 +58,7 @@ priors["c"] = bilby.core.prior.Uniform(-2, 2, "c") result = bilby.run_sampler( likelihood=likelihood, priors=priors, - sampler="pymc3", + sampler="pymc", injection_parameters=injection_parameters, outdir=outdir, draws=2000, diff --git a/examples/core_examples/alternative_samplers/linear_regression_pymc3_custom_likelihood.py b/examples/core_examples/alternative_samplers/linear_regression_pymc_custom_likelihood.py similarity index 77% rename from examples/core_examples/alternative_samplers/linear_regression_pymc3_custom_likelihood.py rename to examples/core_examples/alternative_samplers/linear_regression_pymc_custom_likelihood.py index d2074304f83064167facf1166e7ec582f8056fb7..e9763770c8ad96b32adbf256cc44aabf0ceffb1e 100644 --- a/examples/core_examples/alternative_samplers/linear_regression_pymc3_custom_likelihood.py +++ b/examples/core_examples/alternative_samplers/linear_regression_pymc_custom_likelihood.py @@ -11,10 +11,10 @@ would give equivalent results as using the pre-defined 'Gaussian Likelihood' import bilby import matplotlib.pyplot as plt import numpy as np -import pymc3 as pm +import pymc as pm # A few simple setup steps -label = "linear_regression_pymc3_custom_likelihood" +label = "linear_regression_pymc_custom_likelihood" outdir = "outdir" bilby.utils.check_directory_exists_and_if_not_mkdir(outdir) @@ -50,7 +50,7 @@ fig.savefig("{}/{}_data.png".format(outdir, label)) # Parameter estimation: we now define a Gaussian Likelihood class relevant for # our model. -class GaussianLikelihoodPyMC3(bilby.core.likelihood.GaussianLikelihood): +class GaussianLikelihoodPyMC(bilby.core.likelihood.GaussianLikelihood): def __init__(self, x, y, sigma, func): """ A general Gaussian likelihood - the parameters are inferred from the @@ -68,45 +68,44 @@ class GaussianLikelihoodPyMC3(bilby.core.likelihood.GaussianLikelihood): will require a prior and will be sampled over (unless a fixed value is given). """ - super(GaussianLikelihoodPyMC3, self).__init__(x=x, y=y, func=func, sigma=sigma) + super(GaussianLikelihoodPyMC, self).__init__(x=x, y=y, func=func, sigma=sigma) def log_likelihood(self, sampler=None): """ Parameters ---------- - sampler: :class:`bilby.core.sampler.Pymc3` + sampler: :class:`bilby.core.sampler.Pymc` A Sampler object must be passed containing the prior distributions and PyMC3 :class:`~pymc3.Model` to use as a context manager. If this is not passed, the super class is called and the regular likelihood is evaluated. """ - from bilby.core.sampler import Pymc3 + from bilby.core.sampler import Pymc - if not isinstance(sampler, Pymc3): - print(sampler, type(sampler)) - return super(GaussianLikelihoodPyMC3, self).log_likelihood() + if not isinstance(sampler, Pymc): + return super(GaussianLikelihoodPyMC, self).log_likelihood() - if not hasattr(sampler, "pymc3_model"): - raise AttributeError("Sampler has not PyMC3 model attribute") + if not hasattr(sampler, "pymc_model"): + raise AttributeError("Sampler has not PyMC model attribute") - with sampler.pymc3_model: - mdist = sampler.pymc3_priors["m"] - cdist = sampler.pymc3_priors["c"] + with sampler.pymc_model: + mdist = sampler.pymc_priors["m"] + cdist = sampler.pymc_priors["c"] mu = model(time, mdist, cdist) # set the likelihood distribution - pm.Normal("likelihood", mu=mu, sd=self.sigma, observed=self.y) + pm.Normal("likelihood", mu=mu, sigma=self.sigma, observed=self.y) # Now lets instantiate a version of our GaussianLikelihood, giving it # the time, data and signal model -likelihood = GaussianLikelihoodPyMC3(time, data, sigma, model) +likelihood = GaussianLikelihoodPyMC(time, data, sigma, model) -# Define a custom prior for one of the parameter for use with PyMC3 -class PyMC3UniformPrior(bilby.core.prior.Uniform): +# Define a custom prior for one of the parameter for use with PyMC +class PyMCUniformPrior(bilby.core.prior.Uniform): def __init__(self, minimum, maximum, name=None, latex_label=None): """ Uniform prior with bounds (should be equivalent to bilby.prior.Uniform) @@ -124,10 +123,10 @@ class PyMC3UniformPrior(bilby.core.prior.Uniform): float or array to be passed to the superclass. """ - from bilby.core.sampler import Pymc3 + from bilby.core.sampler import Pymc - if not isinstance(sampler, Pymc3): - return super(PyMC3UniformPrior, self).ln_prob(sampler) + if not isinstance(sampler, Pymc): + return super(PyMCUniformPrior, self).ln_prob(sampler) return pm.Uniform(self.name, lower=self.minimum, upper=self.maximum) @@ -136,13 +135,13 @@ class PyMC3UniformPrior(bilby.core.prior.Uniform): # We make a prior priors = dict() priors["m"] = bilby.core.prior.Uniform(0, 5, "m") -priors["c"] = PyMC3UniformPrior(-2, 2, "c") +priors["c"] = PyMCUniformPrior(-2, 2, "c") # And run sampler result = bilby.run_sampler( likelihood=likelihood, priors=priors, - sampler="pymc3", + sampler="pymc", draws=1000, tune=1000, discard_tuned_samples=True, diff --git a/examples/core_examples/gaussian_process_celerite_example.py b/examples/core_examples/gaussian_process_celerite_example.py index 417493f57745ba211b333d70094d731bed0291cf..574566a9af00c4208667f62b11572ff3892afc76 100644 --- a/examples/core_examples/gaussian_process_celerite_example.py +++ b/examples/core_examples/gaussian_process_celerite_example.py @@ -1,13 +1,11 @@ -import matplotlib.pyplot as plt -import numpy as np from pathlib import Path -import celerite.terms - import bilby +import celerite.terms +import matplotlib.pyplot as plt +import numpy as np from bilby.core.prior import Uniform - # In this example we show how we can use the `celerite` package within `bilby`. # We begin by synthesizing some data and then use a simple Gaussian Process # model to fit and interpolate the data. diff --git a/examples/core_examples/gaussian_process_george_example.py b/examples/core_examples/gaussian_process_george_example.py index 2c2946583cbe7ab32aa4ddd106e1b2f44559e76e..969a56a72f5182962a8f7087041b57e791c48248 100644 --- a/examples/core_examples/gaussian_process_george_example.py +++ b/examples/core_examples/gaussian_process_george_example.py @@ -1,13 +1,11 @@ -import matplotlib.pyplot as plt -import numpy as np from pathlib import Path -import george - import bilby +import george +import matplotlib.pyplot as plt +import numpy as np from bilby.core.prior import Uniform - # In this example we show how we can use the `george` package within # `bilby`. We begin by synthesizing some data and then use a simple Gaussian # Process model to fit and interpolate the data. `bilby` implements a diff --git a/examples/core_examples/hyper_parameter_example.py b/examples/core_examples/hyper_parameter_example.py index 638d47edabaa280881bfc04703f5504402cbb5f8..288e9c21b07aa254da6725f57d95b7e3eb05fa99 100644 --- a/examples/core_examples/hyper_parameter_example.py +++ b/examples/core_examples/hyper_parameter_example.py @@ -4,7 +4,6 @@ An example of how to use bilby to perform parameter estimation for hyper params """ import matplotlib.pyplot as plt import numpy as np - from bilby.core.likelihood import GaussianLikelihood from bilby.core.prior import Uniform from bilby.core.result import make_pp_plot diff --git a/examples/core_examples/slabspike_example.py b/examples/core_examples/slabspike_example.py index 21df0790ff55d88a183686ec76c0f5c96b08d3d2..2c42c174bda64e8535017cfce190850e3e9faad5 100644 --- a/examples/core_examples/slabspike_example.py +++ b/examples/core_examples/slabspike_example.py @@ -13,11 +13,10 @@ To install `PyMultiNest` call $ conda install -c conda-forge pymultinest """ +import bilby import matplotlib.pyplot as plt import numpy as np -import bilby - outdir = "outdir" label = "slabspike" bilby.utils.check_directory_exists_and_if_not_mkdir(outdir) diff --git a/examples/gw_examples/injection_examples/australian_detector.py b/examples/gw_examples/injection_examples/australian_detector.py index 6b903a9fc0695a279ef777e0d0fa166aa7fae140..85c5cf03e7cb640207e27e731b95c1b3acae7820 100644 --- a/examples/gw_examples/injection_examples/australian_detector.py +++ b/examples/gw_examples/injection_examples/australian_detector.py @@ -3,52 +3,54 @@ Tutorial to demonstrate a new interferometer We place a new instrument in Gingin, with an A+ sensitivity in a network of A+ -interferometers at Hanford and Livingston -""" +interferometers at Hanford and Livingston. -import numpy as np +This requires :code:`gwinc` to be installed. This is available via conda-forge. +""" import bilby import gwinc +import numpy as np # Set the duration and sampling frequency of the data segment that we're going # to inject the signal into -duration = 4. -sampling_frequency = 2048. +duration = 4 +sampling_frequency = 1024 # Specify the output directory and the name of the simulation. -outdir = 'outdir' -label = 'australian_detector' +outdir = "outdir" +label = "australian_detector" bilby.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. This is optional! np.random.seed(88170232) # create a new detector using a PyGwinc sensitivity curve -frequencies = np.logspace(0, 3, 1000) -budget, gwinc_ifo, _, _ = gwinc.load_ifo('Aplus') -gwinc_ifo = gwinc.precompIFO(frequencies, gwinc_ifo) -gwinc_traces = budget(frequencies, ifo=gwinc_ifo).calc_trace() -gwinc_noises = {n: d[0] for n, d in gwinc_traces.items()} - -Aplus_psd = gwinc_noises['Total'] +curve = gwinc.load_budget("Aplus").run() # Set up the detector as a four-kilometer detector in Gingin # The location of this detector is not defined in Bilby, so we need to add it AusIFO = bilby.gw.detector.Interferometer( power_spectral_density=bilby.gw.detector.PowerSpectralDensity( - frequency_array=frequencies, psd_array=Aplus_psd), - name='AusIFO', length=4, - minimum_frequency=min(frequencies), maximum_frequency=max(frequencies), - latitude=-31.34, longitude=115.91, - elevation=0., xarm_azimuth=2., yarm_azimuth=125.) + frequency_array=curve.freq, psd_array=curve.psd + ), + name="AusIFO", + length=4, + minimum_frequency=20, + maximum_frequency=sampling_frequency / 2, + latitude=-31.34, + longitude=115.91, + elevation=0.0, + xarm_azimuth=2.0, + yarm_azimuth=125.0, +) # Set up two other detectors at Hanford and Livingston -interferometers = bilby.gw.detector.InterferometerList(['H1', 'L1']) -for interferometer in interferometers: - interferometer.power_spectral_density =\ - bilby.gw.detector.PowerSpectralDensity( - frequency_array=frequencies, psd_array=Aplus_psd) +interferometers = bilby.gw.detector.InterferometerList(["H1", "L1"]) +for ifo in interferometers: + ifo.power_spectral_density = bilby.gw.detector.PowerSpectralDensity( + frequency_array=curve.freq, psd_array=curve.psd + ) # append the Australian detector to the list of other detectors interferometers.append(AusIFO) @@ -58,53 +60,88 @@ interferometers.append(AusIFO) # as we're using a three-detector network of A+, we inject a GW150914-like # signal at 4 Gpc injection_parameters = dict( - mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, - phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=0.2108) + mass_1=36.0, + mass_2=29.0, + a_1=0.4, + a_2=0.3, + tilt_1=0.5, + tilt_2=1.0, + phi_12=1.7, + phi_jl=0.3, + luminosity_distance=4000.0, + theta_jn=0.4, + psi=2.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=0.2108, +) # Fixed arguments passed into the source model -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=50.) +waveform_arguments = dict(waveform_approximant="IMRPhenomXP", reference_frequency=50.0) # Create the waveform_generator using a LAL BinaryBlackHole source function waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, - waveform_arguments=waveform_arguments) + waveform_arguments=waveform_arguments, +) -start_time = injection_parameters['geocent_time'] + 2 - duration +start_time = injection_parameters["geocent_time"] + 2 - duration # inject the signal into the interferometers -for interferometer in interferometers: - interferometer.set_strain_data_from_power_spectral_density( - sampling_frequency=sampling_frequency, duration=duration) - interferometer.inject_signal( - parameters=injection_parameters, waveform_generator=waveform_generator) +for ifo in interferometers: + ifo.set_strain_data_from_power_spectral_density( + sampling_frequency=sampling_frequency, duration=duration + ) + ifo.inject_signal( + parameters=injection_parameters, waveform_generator=waveform_generator + ) # plot the data for sanity - signal = interferometer.get_detector_response( - waveform_generator.frequency_domain_strain(), injection_parameters) - interferometer.plot_data(signal=signal, outdir=outdir, label=label) + signal = ifo.get_detector_response( + waveform_generator.frequency_domain_strain(), injection_parameters + ) + ifo.plot_data(signal=signal, outdir=outdir, label=label) # set up priors priors = bilby.gw.prior.BBHPriorDict() -for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'psi', - 'geocent_time', 'phase']: +for key in [ + "a_1", + "a_2", + "tilt_1", + "tilt_2", + "phi_12", + "phi_jl", + "psi", + "geocent_time", + "phase", + "ra", + "dec", + "luminosity_distance", + "theta_jn", +]: priors[key] = injection_parameters[key] # Initialise the likelihood by passing in the interferometer data (IFOs) # and the waveoform generator likelihood = bilby.gw.GravitationalWaveTransient( - interferometers=interferometers, waveform_generator=waveform_generator, - time_marginalization=False, phase_marginalization=False, - distance_marginalization=False, priors=priors) + interferometers=interferometers, + waveform_generator=waveform_generator, +) result = bilby.run_sampler( - likelihood=likelihood, priors=priors, npoints=1000, - injection_parameters=injection_parameters, outdir=outdir, label=label) + likelihood=likelihood, + priors=priors, + npoints=1000, + injection_parameters=injection_parameters, + outdir=outdir, + label=label, +) # make some plots of the outputs result.plot_corner() diff --git a/examples/gw_examples/injection_examples/binary_neutron_star_example.py b/examples/gw_examples/injection_examples/binary_neutron_star_example.py index e6aa18a9a47c9594f05a446d47d6294a31fc6032..90308c3c5b3d2bc973335eb1658647af685a6380 100644 --- a/examples/gw_examples/injection_examples/binary_neutron_star_example.py +++ b/examples/gw_examples/injection_examples/binary_neutron_star_example.py @@ -9,13 +9,12 @@ tidal deformabilities """ -import numpy as np - import bilby +import numpy as np # Specify the output directory and the name of the simulation. -outdir = 'outdir' -label = 'bns_example' +outdir = "outdir" +label = "bns_example" bilby.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. This is optional! @@ -26,39 +25,56 @@ np.random.seed(88170235) # parameters, including masses of the two black holes (mass_1, mass_2), # aligned spins of both black holes (chi_1, chi_2), etc. injection_parameters = dict( - mass_1=1.5, mass_2=1.3, chi_1=0.02, chi_2=0.02, luminosity_distance=50., - theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, - ra=1.375, dec=-1.2108, lambda_1=400, lambda_2=450) + mass_1=1.5, + mass_2=1.3, + chi_1=0.02, + chi_2=0.02, + luminosity_distance=50.0, + theta_jn=0.4, + psi=2.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-1.2108, + lambda_1=400, + lambda_2=450, +) # Set the duration and sampling frequency of the data segment that we're going # to inject the signal into. For the # TaylorF2 waveform, we cut the signal close to the isco frequency duration = 32 -sampling_frequency = 2 * 1024 -start_time = injection_parameters['geocent_time'] + 2 - duration +sampling_frequency = 2048 +start_time = injection_parameters["geocent_time"] + 2 - duration # Fixed arguments passed into the source model. The analysis starts at 40 Hz. -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2_NRTidal', - reference_frequency=50., minimum_frequency=40.0) +waveform_arguments = dict( + waveform_approximant="IMRPhenomPv2_NRTidal", + reference_frequency=50.0, + minimum_frequency=40.0, +) # Create the waveform_generator using a LAL Binary Neutron Star source function waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_neutron_star, parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_neutron_star_parameters, - waveform_arguments=waveform_arguments) + waveform_arguments=waveform_arguments, +) # Set up interferometers. In this case we'll use three interferometers # (LIGO-Hanford (H1), LIGO-Livingston (L1), and Virgo (V1)). # These default to their design sensitivity and start at 40 Hz. -interferometers = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) +interferometers = bilby.gw.detector.InterferometerList(["H1", "L1", "V1"]) for interferometer in interferometers: interferometer.minimum_frequency = 40 interferometers.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=start_time) -interferometers.inject_signal(parameters=injection_parameters, - waveform_generator=waveform_generator) + sampling_frequency=sampling_frequency, duration=duration, start_time=start_time +) +interferometers.inject_signal( + parameters=injection_parameters, waveform_generator=waveform_generator +) # Load the default prior for binary neutron stars. # We're going to sample in chirp_mass, symmetric_mass_ratio, lambda_tilde, and @@ -66,31 +82,45 @@ interferometers.inject_signal(parameters=injection_parameters, # BNS have aligned spins by default, if you want to allow precessing spins # pass aligned_spin=False to the BNSPriorDict priors = bilby.gw.prior.BNSPriorDict() -for key in ['psi', 'geocent_time', 'ra', 'dec', 'chi_1', 'chi_2', - 'theta_jn', 'luminosity_distance', 'phase']: +for key in [ + "psi", + "geocent_time", + "ra", + "dec", + "chi_1", + "chi_2", + "theta_jn", + "luminosity_distance", + "phase", +]: priors[key] = injection_parameters[key] -priors.pop('mass_ratio') -priors.pop('lambda_1') -priors.pop('lambda_2') -priors['chirp_mass'] = bilby.core.prior.Gaussian( - 1.215, 0.1, name='chirp_mass', unit='$M_{\\odot}$') -priors['symmetric_mass_ratio'] = bilby.core.prior.Uniform( - 0.1, 0.25, name='symmetric_mass_ratio') -priors['lambda_tilde'] = bilby.core.prior.Uniform(0, 5000, name='lambda_tilde') -priors['delta_lambda'] = bilby.core.prior.Uniform( - -5000, 5000, name='delta_lambda') +del priors["mass_ratio"], priors["lambda_1"], priors["lambda_2"] +priors["chirp_mass"] = bilby.core.prior.Gaussian( + 1.215, 0.1, name="chirp_mass", unit="$M_{\\odot}$" +) +priors["symmetric_mass_ratio"] = bilby.core.prior.Uniform( + 0.1, 0.25, name="symmetric_mass_ratio" +) +priors["lambda_tilde"] = bilby.core.prior.Uniform(0, 5000, name="lambda_tilde") +priors["delta_lambda"] = bilby.core.prior.Uniform(-5000, 5000, name="delta_lambda") # Initialise the likelihood by passing in the interferometer data (IFOs) # and the waveform generator likelihood = bilby.gw.GravitationalWaveTransient( - interferometers=interferometers, waveform_generator=waveform_generator, - time_marginalization=False, phase_marginalization=False, - distance_marginalization=False, priors=priors) + interferometers=interferometers, + waveform_generator=waveform_generator, +) # Run sampler. In this case we're going to use the `nestle` sampler result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='nestle', npoints=100, - injection_parameters=injection_parameters, outdir=outdir, label=label, - conversion_function=bilby.gw.conversion.generate_all_bns_parameters) + likelihood=likelihood, + priors=priors, + sampler="nestle", + npoints=100, + injection_parameters=injection_parameters, + outdir=outdir, + label=label, + conversion_function=bilby.gw.conversion.generate_all_bns_parameters, +) result.plot_corner() diff --git a/examples/gw_examples/injection_examples/bns_eos_example.py b/examples/gw_examples/injection_examples/bns_eos_example.py index 5e32138b94bf6b6f402f7618fc07a0d12bcc3c61..881cc5ae8f09f02e2d2c2b705023a5fe5ca4207b 100644 --- a/examples/gw_examples/injection_examples/bns_eos_example.py +++ b/examples/gw_examples/injection_examples/bns_eos_example.py @@ -1,22 +1,20 @@ #!/usr/bin/env python """ Tutorial to demonstrate running parameter estimation on a binary neutron star -system taking into account tidal deformabilities. +system taking into account tidal deformabilities with a physically motivated +model for the tidal deformabilities. -This example estimates the masses using a uniform prior in both component masses -and also estimates the tidal deformabilities using a uniform prior in both -tidal deformabilities +WARNING: The code is extremely slow. """ -import numpy as np - import bilby -from bilby.gw.eos import TabularEOS, EOSFamily +import numpy as np +from bilby.gw.eos import EOSFamily, TabularEOS # Specify the output directory and the name of the simulation. -outdir = 'outdir' -label = 'bns_eos_example' +outdir = "outdir" +label = "bns_eos_example" bilby.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. This is optional! @@ -32,7 +30,7 @@ np.random.seed(88170235) # assuming a specific equation of state, and calculating # corresponding tidal deformability parameters from the EoS and # masses. -mpa1_eos = TabularEOS('MPA1') +mpa1_eos = TabularEOS("MPA1") mpa1_fam = EOSFamily(mpa1_eos) mass_1 = 1.5 @@ -42,41 +40,58 @@ lambda_2 = mpa1_fam.lambda_from_mass(mass_2) injection_parameters = dict( - mass_1=mass_1, mass_2=mass_2, chi_1=0.02, chi_2=0.02, luminosity_distance=50., - theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, - ra=1.375, dec=-1.2108, lambda_1=lambda_1, lambda_2=lambda_2) + mass_1=mass_1, + mass_2=mass_2, + chi_1=0.02, + chi_2=0.02, + luminosity_distance=50.0, + theta_jn=0.4, + psi=2.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-1.2108, + lambda_1=lambda_1, + lambda_2=lambda_2, +) # Set the duration and sampling frequency of the data segment that we're going # to inject the signal into. For the # TaylorF2 waveform, we cut the signal close to the isco frequency duration = 32 -sampling_frequency = 2 * 1024 -start_time = injection_parameters['geocent_time'] + 2 - duration +sampling_frequency = 2048 +start_time = injection_parameters["geocent_time"] + 2 - duration # Fixed arguments passed into the source model. The analysis starts at 40 Hz. # Note that the EoS sampling is agnostic to waveform model as long as the approximant # can include tides. -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2_NRTidal', - reference_frequency=50., minimum_frequency=40.0) +waveform_arguments = dict( + waveform_approximant="IMRPhenomPv2_NRTidal", + reference_frequency=50.0, + minimum_frequency=40.0, +) # Create the waveform_generator using a LAL Binary Neutron Star source function waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_neutron_star, parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_neutron_star_parameters, - waveform_arguments=waveform_arguments) + waveform_arguments=waveform_arguments, +) # Set up interferometers. In this case we'll use three interferometers # (LIGO-Hanford (H1), LIGO-Livingston (L1), and Virgo (V1)). # These default to their design sensitivity and start at 40 Hz. -interferometers = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) +interferometers = bilby.gw.detector.InterferometerList(["H1", "L1", "V1"]) for interferometer in interferometers: interferometer.minimum_frequency = 40 interferometers.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=start_time) -interferometers.inject_signal(parameters=injection_parameters, - waveform_generator=waveform_generator) + sampling_frequency=sampling_frequency, duration=duration, start_time=start_time +) +interferometers.inject_signal( + parameters=injection_parameters, waveform_generator=waveform_generator +) # We're going to sample in chirp_mass, symmetric_mass_ratio, and # specific EoS model parameters. We're using a 4-parameter @@ -84,38 +99,62 @@ interferometers.inject_signal(parameters=injection_parameters, # BNS have aligned spins by default, if you want to allow precessing spins # pass aligned_spin=False to the BNSPriorDict priors = bilby.gw.prior.BNSPriorDict() -for key in ['psi', 'geocent_time', 'ra', 'dec', 'chi_1', 'chi_2', - 'theta_jn', 'luminosity_distance', 'phase']: +for key in [ + "psi", + "geocent_time", + "ra", + "dec", + "chi_1", + "chi_2", + "theta_jn", + "luminosity_distance", + "phase", +]: priors[key] = injection_parameters[key] -priors.pop('mass_1') -priors.pop('mass_2') -priors.pop('lambda_1') -priors.pop('lambda_2') -priors.pop('mass_ratio') -priors['chirp_mass'] = bilby.core.prior.Gaussian(1.215, 0.1, name='chirp_mass', unit='$M_{\\odot}$') -priors['symmetric_mass_ratio'] = bilby.core.prior.Uniform(0.1, 0.25, name='symmetric_mass_ratio') -priors['eos_spectral_gamma_0'] = bilby.core.prior.Uniform(0.2, 2.0, name='gamma0', latex_label='$\\gamma_0') -priors['eos_spectral_gamma_1'] = bilby.core.prior.Uniform(-1.6, 1.7, name='gamma1', latex_label='$\\gamma_1') -priors['eos_spectral_gamma_2'] = bilby.core.prior.Uniform(-0.6, 0.6, name='gamma2', latex_label='$\\gamma_2') -priors['eos_spectral_gamma_3'] = bilby.core.prior.Uniform(-0.02, 0.02, name='gamma3', latex_label='$\\gamma_3') +for key in ["mass_1", "mass_2", "lambda_1", "lambda_2", "mass_ratio"]: + del priors[key] +priors["chirp_mass"] = bilby.core.prior.Gaussian( + 1.215, 0.1, name="chirp_mass", unit="$M_{\\odot}$" +) +priors["symmetric_mass_ratio"] = bilby.core.prior.Uniform( + 0.1, 0.25, name="symmetric_mass_ratio" +) +priors["eos_spectral_gamma_0"] = bilby.core.prior.Uniform( + 0.2, 2.0, name="gamma0", latex_label="$\\gamma_0" +) +priors["eos_spectral_gamma_1"] = bilby.core.prior.Uniform( + -1.6, 1.7, name="gamma1", latex_label="$\\gamma_1" +) +priors["eos_spectral_gamma_2"] = bilby.core.prior.Uniform( + -0.6, 0.6, name="gamma2", latex_label="$\\gamma_2" +) +priors["eos_spectral_gamma_3"] = bilby.core.prior.Uniform( + -0.02, 0.02, name="gamma3", latex_label="$\\gamma_3" +) # The eos_check prior imposes several hard physical constraints on samples like # enforcing causality and monotinicity of the EoSs. In almost ever conceivable # sampling scenario, this should be enabled. -priors['eos_check'] = bilby.gw.prior.EOSCheck() +priors["eos_check"] = bilby.gw.prior.EOSCheck() # Initialise the likelihood by passing in the interferometer data (IFOs) # and the waveform generator likelihood = bilby.gw.GravitationalWaveTransient( - interferometers=interferometers, waveform_generator=waveform_generator, - time_marginalization=False, phase_marginalization=False, - distance_marginalization=False, priors=priors) + interferometers=interferometers, + waveform_generator=waveform_generator, +) # Run sampler. In this case we're going to use the `dynesty` sampler result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000, - injection_parameters=injection_parameters, outdir=outdir, label=label, + likelihood=likelihood, + priors=priors, + sampler="dynesty", + npoints=1000, + injection_parameters=injection_parameters, + outdir=outdir, + label=label, conversion_function=bilby.gw.conversion.generate_all_bns_parameters, - resume=True) + resume=True, +) result.plot_corner() diff --git a/examples/gw_examples/injection_examples/calibration_example.py b/examples/gw_examples/injection_examples/calibration_example.py index 8b9556f48ca43a2419629cc1d4f8fdb1daa25b96..cd5c4da87b9ef79acc53af50167a67c1aa343c19 100644 --- a/examples/gw_examples/injection_examples/calibration_example.py +++ b/examples/gw_examples/injection_examples/calibration_example.py @@ -2,20 +2,23 @@ """ Tutorial to demonstrate running parameter estimation with calibration uncertainties included. + +We set up the full problem as is required and then just sample over a small +number of calibration parameters. """ -import numpy as np import bilby +import numpy as np # Set the duration and sampling frequency of the data segment # that we're going to create and inject the signal into. -duration = 4. -sampling_frequency = 2048. +duration = 4 +sampling_frequency = 1024 # Specify the output directory and the name of the simulation. -outdir = 'outdir' -label = 'calibration' +outdir = "outdir" +label = "calibration" bilby.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. This is optional! @@ -26,37 +29,58 @@ np.random.seed(88170235) # parameters, including masses of the two black holes (mass_1, mass_2), # spins of both black holes (a, tilt, phi), etc. injection_parameters = dict( - mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., theta_jn=0.4, psi=2.659, - phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) + mass_1=36.0, + mass_2=29.0, + a_1=0.4, + a_2=0.3, + tilt_1=0.5, + tilt_2=1.0, + phi_12=1.7, + phi_jl=0.3, + luminosity_distance=2000.0, + theta_jn=0.4, + psi=2.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-1.2108, +) # Fixed arguments passed into the source model -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=50.) +waveform_arguments = dict(waveform_approximant="IMRPhenomXP", reference_frequency=50.0) # Create the waveform_generator using a LAL BinaryBlackHole source function waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, - parameters=injection_parameters, waveform_arguments=waveform_arguments) + parameters=injection_parameters, + waveform_arguments=waveform_arguments, +) # Set up interferometers. In this case we'll use three interferometers # (LIGO-Hanford (H1), LIGO-Livingston (L1), and Virgo (V1)). # These default to their design sensitivity -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1", "V1"]) for ifo in ifos: - injection_parameters.update({ - 'recalib_{}_amplitude_{}'.format(ifo.name, ii): 0.1 for ii in range(5)}) - injection_parameters.update({ - 'recalib_{}_phase_{}'.format(ifo.name, ii): 0.01 for ii in range(5)}) + injection_parameters.update( + {f"recalib_{ifo.name}_amplitude_{ii}": 0.1 for ii in range(5)} + ) + injection_parameters.update( + {f"recalib_{ifo.name}_phase_{ii}": 0.01 for ii in range(5)} + ) ifo.calibration_model = bilby.gw.calibration.CubicSpline( - prefix='recalib_{}_'.format(ifo.name), + prefix=f"recalib_{ifo.name}_", minimum_frequency=ifo.minimum_frequency, - maximum_frequency=ifo.maximum_frequency, n_points=5) + maximum_frequency=ifo.maximum_frequency, + n_points=5, + ) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration) -ifos.inject_signal(parameters=injection_parameters, - waveform_generator=waveform_generator) + sampling_frequency=sampling_frequency, duration=duration +) +ifos.inject_signal( + parameters=injection_parameters, waveform_generator=waveform_generator +) # Set up prior, which is a dictionary # Here we fix the injected cbc parameters and most of the calibration parameters @@ -64,21 +88,30 @@ ifos.inject_signal(parameters=injection_parameters, # We allow a subset of the calibration parameters to vary. priors = injection_parameters.copy() for key in injection_parameters: - if 'recalib' in key: + if "recalib" in key: priors[key] = injection_parameters[key] -for name in ['recalib_H1_amplitude_0', 'recalib_H1_amplitude_1']: - priors[name] = bilby.prior.Gaussian( - mu=0, sigma=0.2, name=name, latex_label='H1 $A_{}$'.format(name[-1])) +for name in ["recalib_H1_amplitude_0", "recalib_H1_amplitude_1"]: + priors[name] = bilby.core.prior.Gaussian( + mu=0, sigma=0.2, name=name, latex_label=f"H1 $A_{name[-1]}$" + ) # Initialise the likelihood by passing in the interferometer data (IFOs) and # the waveform generator likelihood = bilby.gw.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator) + interferometers=ifos, waveform_generator=waveform_generator +) # Run sampler. In this case we're going to use the `dynesty` sampler result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000, - injection_parameters=injection_parameters, outdir=outdir, label=label) + likelihood=likelihood, + priors=priors, + sampler="dynesty", + npoints=1000, + sample="unif", + injection_parameters=injection_parameters, + outdir=outdir, + label=label, +) # make some plots of the outputs result.plot_corner() diff --git a/examples/gw_examples/injection_examples/calibration_marginalization_example.py b/examples/gw_examples/injection_examples/calibration_marginalization_example.py index 73279aadbf4435d59d51ce08b33d59569e475028..2f8dc326a04299df5dba5168097f67dcf04723fb 100644 --- a/examples/gw_examples/injection_examples/calibration_marginalization_example.py +++ b/examples/gw_examples/injection_examples/calibration_marginalization_example.py @@ -4,19 +4,20 @@ Tutorial to demonstrate running parameter estimation with calibration uncertainties marginalized over using a finite set of realizations. """ -import numpy as np +from copy import deepcopy + import bilby -from copy import copy import matplotlib.pyplot as plt +import numpy as np # Set the duration and sampling frequency of the data segment # that we're going to create and inject the signal into. -duration = 4. -sampling_frequency = 2048. +duration = 4 +sampling_frequency = 1024 # Specify the output directory and the name of the simulation. -outdir = 'outdir' -label = 'calibration_marginalization' +outdir = "outdir" +label = "calibration_marginalization" bilby.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. This is optional! @@ -27,110 +28,169 @@ np.random.seed(170817) # parameters, including masses of the two black holes (mass_1, mass_2), # spins of both black holes (a, tilt, phi), etc. injection_parameters = dict( - mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., theta_jn=0.4, psi=2.659, - phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) -start_time = injection_parameters['geocent_time'] - duration + 2 + mass_1=36.0, + mass_2=29.0, + a_1=0.4, + a_2=0.3, + tilt_1=0.5, + tilt_2=1.0, + phi_12=1.7, + phi_jl=0.3, + luminosity_distance=2000.0, + theta_jn=0.4, + psi=2.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-1.2108, +) +start_time = injection_parameters["geocent_time"] - duration + 2 # Fixed arguments passed into the source model -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=50.) +waveform_arguments = dict(waveform_approximant="IMRPhenomXP", reference_frequency=50.0) # Create the waveform_generator using a LAL BinaryBlackHole source function waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, - parameters=injection_parameters, waveform_arguments=waveform_arguments) -waveform_generator_rew = copy(waveform_generator) + parameters=injection_parameters, + waveform_arguments=waveform_arguments, +) +waveform_generator_rew = deepcopy(waveform_generator) # Set up interferometers. In this case we'll use three interferometers # (LIGO-Hanford (H1), LIGO-Livingston (L1), and Virgo (V1)). # These default to their design sensitivity -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1", "V1"]) for ifo in ifos: - injection_parameters.update({ - 'recalib_{}_amplitude_{}'.format(ifo.name, ii): 0.0 for ii in range(10)}) - injection_parameters.update({ - 'recalib_{}_phase_{}'.format(ifo.name, ii): 0.0 for ii in range(10)}) + injection_parameters.update( + {f"recalib_{ifo.name}_amplitude_{ii}": 0.0 for ii in range(10)} + ) + injection_parameters.update( + {f"recalib_{ifo.name}_phase_{ii}": 0.0 for ii in range(10)} + ) ifo.calibration_model = bilby.gw.calibration.CubicSpline( - prefix='recalib_{}_'.format(ifo.name), + prefix=f"recalib_{ifo.name}_", minimum_frequency=ifo.minimum_frequency, - maximum_frequency=ifo.maximum_frequency, n_points=10) + maximum_frequency=ifo.maximum_frequency, + n_points=10, + ) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, start_time=start_time) -ifos.inject_signal(parameters=injection_parameters, - waveform_generator=waveform_generator) -ifos_rew = copy(ifos) + sampling_frequency=sampling_frequency, duration=duration, start_time=start_time +) +ifos.inject_signal( + parameters=injection_parameters, waveform_generator=waveform_generator +) +ifos_rew = deepcopy(ifos) # Set up prior, which is a dictionary # Here we fix the injected cbc parameters (except the distance) # to the injected values. priors = injection_parameters.copy() -priors['luminosity_distance'] = bilby.prior.Uniform( - injection_parameters['luminosity_distance'] - 1000, injection_parameters['luminosity_distance'] + 1000, - name='luminosity_distance', latex_label='$d_L$') +priors["luminosity_distance"] = bilby.prior.Uniform( + injection_parameters["luminosity_distance"] - 1000, + injection_parameters["luminosity_distance"] + 1000, + name="luminosity_distance", + latex_label="$d_L$", +) for key in injection_parameters: - if 'recalib' in key: + if "recalib" in key: priors[key] = injection_parameters[key] # Convert to prior dictionary to replace the floats with delta function priors priors = bilby.core.prior.PriorDict(priors) -priors_rew = copy(priors) +priors_rew = deepcopy(priors) # Initialise the likelihood by passing in the interferometer data (IFOs) and # the waveform generator. Here we assume there is no calibration uncertainty likelihood = bilby.gw.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator, priors=priors) + interferometers=ifos, waveform_generator=waveform_generator, priors=priors +) # Run sampler. In this case we're going to use the `dynesty` sampler result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='dynesty', npoints=500, - injection_parameters=injection_parameters, outdir=outdir, label=label) + likelihood=likelihood, + priors=priors, + sampler="dynesty", + npoints=500, + walks=20, + nact=3, + injection_parameters=injection_parameters, + outdir=outdir, + label=label, +) # Setting the log likelihood to actually be the log likelihood and not the log likelihood ratio... # This is used the for reweighting -result.posterior['log_likelihood'] = result.posterior['log_likelihood'] + result.log_noise_evidence +result.posterior["log_likelihood"] = ( + result.posterior["log_likelihood"] + result.log_noise_evidence +) # Setting the priors we want on the calibration response curve parameters - as an example. -for name in ['recalib_H1_amplitude_1', 'recalib_H1_amplitude_4']: +for name in ["recalib_H1_amplitude_1", "recalib_H1_amplitude_4"]: priors_rew[name] = bilby.prior.Gaussian( - mu=0, sigma=0.03, name=name, latex_label='H1 $A_{}$'.format(name[-1])) + mu=0, sigma=0.03, name=name, latex_label=f"H1 $A_{name[-1]}$" + ) # Setting up the calibration marginalized likelihood. # We save the calibration response curve files into the output directory under {ifo.name}_calibration_file.h5 cal_likelihood = bilby.gw.GravitationalWaveTransient( - interferometers=ifos_rew, waveform_generator=waveform_generator_rew, - calibration_marginalization=True, priors=priors_rew, + interferometers=ifos_rew, + waveform_generator=waveform_generator_rew, + calibration_marginalization=True, + priors=priors_rew, number_of_response_curves=100, - calibration_lookup_table={ifos[i].name: f'{outdir}/{ifos[i].name}_calibration_file.h5' for i in range(len(ifos))}) + calibration_lookup_table={ + ifos[i].name: f"{outdir}/{ifos[i].name}_calibration_file.h5" + for i in range(len(ifos)) + }, +) # Plot the magnitude of the curves to be used in the marginalization -plt.semilogx(ifos[0].frequency_array[ifos[0].frequency_mask][0:-1], - cal_likelihood.calibration_draws[ifos[0].name][:, 0:-1].T) +plt.semilogx( + ifos[0].frequency_array[ifos[0].frequency_mask][0:-1], + cal_likelihood.calibration_draws[ifos[0].name][:, 0:-1].T, +) plt.xlim(20, 1024) -plt.ylabel('Magnitude') -plt.xlabel('Frequency [Hz]') +plt.ylabel("Magnitude") +plt.xlabel("Frequency [Hz]") plt.savefig(f"{outdir}/calibration_draws.pdf") plt.clf() # Reweight the posterior samples from a distribution with no calibration uncertainty to one with uncertainty. # This method utilizes rejection sampling which can be inefficient at drawing samples at higher SNRs. -result_rew = bilby.core.result.reweight(result, - new_likelihood=cal_likelihood, - conversion_function=bilby.gw.conversion.generate_all_bbh_parameters) +result_rew = bilby.core.result.reweight( + result, + new_likelihood=cal_likelihood, + conversion_function=bilby.gw.conversion.generate_all_bbh_parameters, +) # Plot distance posterior with and without the calibration -for res, label in zip([result, result_rew], ["No calibration uncertainty", "Calibration uncertainty"]): - plt.hist(res.posterior['luminosity_distance'], label=label, bins=50, histtype='step', density=True) +for res, label in zip( + [result, result_rew], ["No calibration uncertainty", "Calibration uncertainty"] +): + plt.hist( + res.posterior["luminosity_distance"], + label=label, + bins=50, + histtype="step", + density=True, + ) plt.legend() -plt.xlabel('Luminosity distance [Mpc]') +plt.xlabel("Luminosity distance [Mpc]") plt.savefig(f"{outdir}/luminosity_distance_posterior.pdf") plt.clf() plt.hist( - result_rew.posterior['recalib_index'], - bins=np.linspace(0, cal_likelihood.number_of_response_curves - 1, cal_likelihood.number_of_response_curves), - density=True) + result_rew.posterior["recalib_index"], + bins=np.linspace( + 0, + cal_likelihood.number_of_response_curves - 1, + cal_likelihood.number_of_response_curves, + ), + density=True, +) plt.xlim(0, cal_likelihood.number_of_response_curves - 1) -plt.xlabel('Calibration index') +plt.xlabel("Calibration index") plt.savefig(f"{outdir}/calibration_index_histogram.pdf") diff --git a/examples/gw_examples/injection_examples/change_sampled_parameters.py b/examples/gw_examples/injection_examples/change_sampled_parameters.py index 4e0266d08b6290395d2a5e8dc47bdf0dc6ca9432..10eedb7a6d0c19c3e9fae60a214bd6093bf170ef 100644 --- a/examples/gw_examples/injection_examples/change_sampled_parameters.py +++ b/examples/gw_examples/injection_examples/change_sampled_parameters.py @@ -10,71 +10,107 @@ The cosmology is according to the Planck 2015 data release. import bilby import numpy as np - bilby.core.utils.setup_logger(log_level="info") -duration = 4. -sampling_frequency = 2048. -outdir = 'outdir' +duration = 4 +sampling_frequency = 2048 +outdir = "outdir" +label = "different_parameters" np.random.seed(151226) injection_parameters = dict( - total_mass=66., mass_ratio=0.9, a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=2000, theta_jn=0.4, psi=2.659, - phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) + total_mass=66.0, + mass_ratio=0.9, + a_1=0.4, + a_2=0.3, + tilt_1=0.5, + tilt_2=1.0, + phi_12=1.7, + phi_jl=0.3, + luminosity_distance=2000, + theta_jn=0.4, + psi=2.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-1.2108, +) -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=50.) +waveform_arguments = dict(waveform_approximant="IMRPhenomXP", reference_frequency=50.0) # Create the waveform_generator using a LAL BinaryBlackHole source function # We specify a function which transforms a dictionary of parameters into the # appropriate parameters for the source model. waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( - sampling_frequency=sampling_frequency, duration=duration, + sampling_frequency=sampling_frequency, + duration=duration, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters, - waveform_arguments=waveform_arguments) + waveform_arguments=waveform_arguments, +) # Set up interferometers. -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1', 'K1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1", "V1", "K1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 2, +) +ifos.inject_signal( + waveform_generator=waveform_generator, parameters=injection_parameters +) # Set up prior # Note it is possible to sample in different parameters to those that were # injected. priors = bilby.gw.prior.BBHPriorDict() -priors.pop('mass_1') -priors.pop('mass_2') -priors.pop('luminosity_distance') -priors['chirp_mass'] = bilby.prior.Uniform( - name='chirp_mass', latex_label='$m_c$', minimum=13, maximum=45, - unit='$M_{\\odot}$') -priors['symmetric_mass_ratio'] = bilby.prior.Uniform( - name='symmetric_mass_ratio', latex_label='q', minimum=0.1, maximum=0.25) -priors['redshift'] = bilby.prior.Uniform( - name='redshift', latex_label='$z$', minimum=0, maximum=0.5) + +del priors["mass_ratio"] +priors["symmetric_mass_ratio"] = bilby.prior.Uniform( + name="symmetric_mass_ratio", latex_label="q", minimum=0.1, maximum=0.25 +) + +del priors["luminosity_distance"] +priors["redshift"] = bilby.prior.Uniform( + name="redshift", latex_label="$z$", minimum=0, maximum=0.5 +) # These parameters will not be sampled -for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'psi', - 'ra', 'dec', 'geocent_time', 'phase']: +for key in [ + "a_1", + "a_2", + "tilt_1", + "tilt_2", + "phi_12", + "phi_jl", + "psi", + "ra", + "dec", + "geocent_time", + "phase", +]: priors[key] = injection_parameters[key] -priors.pop('theta_jn') -priors['cos_theta_jn'] = np.cos(injection_parameters['theta_jn']) +del priors["theta_jn"] +priors["cos_theta_jn"] = np.cos(injection_parameters["theta_jn"]) print(priors) # Initialise GravitationalWaveTransient likelihood = bilby.gw.likelihood.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator) + interferometers=ifos, waveform_generator=waveform_generator +) # Run sampler # Note we've added a post-processing conversion function, this will generate # many useful additional parameters, e.g., source-frame masses. result = bilby.core.sampler.run_sampler( - likelihood=likelihood, priors=priors, sampler='dynesty', outdir=outdir, - injection_parameters=injection_parameters, label='DifferentParameters', - conversion_function=bilby.gw.conversion.generate_all_bbh_parameters) + likelihood=likelihood, + priors=priors, + sampler="dynesty", + walks=25, + nact=5, + outdir=outdir, + injection_parameters=injection_parameters, + label=label, + conversion_function=bilby.gw.conversion.generate_all_bbh_parameters, +) result.plot_corner() diff --git a/examples/gw_examples/injection_examples/create_your_own_source_model.py b/examples/gw_examples/injection_examples/create_your_own_source_model.py index f755363f091a12f11df425ccaea3d7d7831090c2..77f576a0bd80cc38aaaef1050c04ac4a63fb7eb4 100644 --- a/examples/gw_examples/injection_examples/create_your_own_source_model.py +++ b/examples/gw_examples/injection_examples/create_your_own_source_model.py @@ -6,48 +6,97 @@ import bilby import numpy as np # First set up logging and some output directories and labels -outdir = 'outdir' -label = 'create_your_own_source_model' +outdir = "outdir" +label = "create_your_own_source_model" sampling_frequency = 4096 duration = 1 # Here we define out source model - this is the sine-Gaussian model in the # frequency domain. -def sine_gaussian(f, A, f0, tau, phi0, geocent_time, ra, dec, psi): - arg = -(np.pi * tau * (f - f0))**2 + 1j * phi0 - plus = np.sqrt(np.pi) * A * tau * np.exp(arg) / 2. +def gaussian(frequency_array, amplitude, f0, tau, phi0): + r""" + Our custom source model, this is just a Gaussian in frequency with + variable global phase. + + .. math:: + + \tilde{h}_{\plus}(f) = \frac{A \tau}{2\sqrt{\pi}}} + e^{- \pi \tau (f - f_{0})^2 + i \phi_{0}} \\ + \tilde{h}_{\times}(f) = \tilde{h}_{\plus}(f) e^{i \pi / 2} + + + Parameters + ---------- + frequency_array: array-like + The frequencies to evaluate the model at. This is required for all + Bilby source models. + amplitude: float + An overall amplitude prefactor. + f0: float + The central frequency. + tau: float + The damping rate. + phi0: float + The reference phase. + + Returns + ------- + dict: + A dictionary containing "plus" and "cross" entries. + + """ + arg = -((np.pi * tau * (frequency_array - f0)) ** 2) + 1j * phi0 + plus = np.sqrt(np.pi) * amplitude * tau * np.exp(arg) / 2.0 cross = plus * np.exp(1j * np.pi / 2) - return {'plus': plus, 'cross': cross} + return {"plus": plus, "cross": cross} # We now define some parameters that we will inject -injection_parameters = dict(A=1e-23, f0=100, tau=1, phi0=0, geocent_time=0, - ra=0, dec=0, psi=0) +injection_parameters = dict( + amplitude=1e-23, f0=100, tau=1, phi0=0, geocent_time=0, ra=0, dec=0, psi=0 +) # Now we pass our source function to the WaveformGenerator waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, - frequency_domain_source_model=sine_gaussian) + duration=duration, + sampling_frequency=sampling_frequency, + frequency_domain_source_model=gaussian, +) # Set up interferometers. -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 0.5, +) +ifos.inject_signal( + waveform_generator=waveform_generator, + parameters=injection_parameters, + raise_error=False, +) # Here we define the priors for the search. We use the injection parameters # except for the amplitude, f0, and geocent_time prior = injection_parameters.copy() -prior['A'] = bilby.core.prior.LogUniform(minimum=1e-25, maximum=1e-21, name='A') -prior['f0'] = bilby.core.prior.Uniform(90, 110, 'f') +prior["amplitude"] = bilby.core.prior.LogUniform( + minimum=1e-25, maximum=1e-21, latex_label="$\\mathcal{A}$" +) +prior["f0"] = bilby.core.prior.Uniform(90, 110, latex_label="$f_{0}$") likelihood = bilby.gw.likelihood.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator) + interferometers=ifos, waveform_generator=waveform_generator +) result = bilby.core.sampler.run_sampler( - likelihood, prior, sampler='dynesty', outdir=outdir, label=label, - resume=False, sample='unif', injection_parameters=injection_parameters) + likelihood, + prior, + sampler="dynesty", + outdir=outdir, + label=label, + resume=False, + sample="unif", + injection_parameters=injection_parameters, +) result.plot_corner() diff --git a/examples/gw_examples/injection_examples/create_your_own_time_domain_source_model.py b/examples/gw_examples/injection_examples/create_your_own_time_domain_source_model.py index 11290fde30e52f9d1851654d3ffa4349f697fbe8..1427f8ceb2813a262db031a9e494a0ce580c012f 100644 --- a/examples/gw_examples/injection_examples/create_your_own_time_domain_source_model.py +++ b/examples/gw_examples/injection_examples/create_your_own_time_domain_source_model.py @@ -6,62 +6,114 @@ noise in two interferometers (LIGO Livingston and Hanford at design sensitivity), and then recovered. """ -import numpy as np import bilby +import numpy as np # define the time-domain model -def time_domain_damped_sinusoid( - time, amplitude, damping_time, frequency, phase, t0): - """ +def time_domain_damped_sinusoid(time, amplitude, damping_time, frequency, phase, t0): + r""" This example only creates a linearly polarised signal with only plus polarisation. + + .. math:: + + h_{\plus}(t) = + \Theta(t - t_{0}) A + e^{-(t - t_{0}) / \tau} + \sin \left( 2 \pi f t + \phi \right) + + Parameters + ---------- + time: array-like + The times at which to evaluate the model. This is required for all + time-domain models. + amplitude: float + The peak amplitude. + damping_time: float + The damping time of the exponential. + frequency: float + The frequency of the oscillations. + phase: float + The initial phase of the signal. + t0: float + The offset of the start of the signal from the start time. + + Returns + ------- + dict: + A dictionary containing "plus" and "cross" entries. + """ plus = np.zeros(len(time)) tidx = time >= t0 - plus[tidx] = amplitude * np.exp(-(time[tidx] - t0) / damping_time) *\ - np.sin(2 * np.pi * frequency * (time[tidx] - t0) + phase) + plus[tidx] = ( + amplitude + * np.exp(-(time[tidx] - t0) / damping_time) + * np.sin(2 * np.pi * frequency * (time[tidx] - t0) + phase) + ) cross = np.zeros(len(time)) - return {'plus': plus, 'cross': cross} + return {"plus": plus, "cross": cross} # define parameters to inject. -injection_parameters = dict(amplitude=5e-22, damping_time=0.1, frequency=50, - phase=0, ra=0, dec=0, psi=0, t0=0., geocent_time=0.) +injection_parameters = dict( + amplitude=5e-22, + damping_time=0.1, + frequency=50, + phase=0, + ra=0, + dec=0, + psi=0, + t0=0.0, + geocent_time=0.0, +) -duration = 1.0 +duration = 1 sampling_frequency = 1024 -outdir = 'outdir' -label = 'time_domain_source_model' +outdir = "outdir" +label = "time_domain_source_model" # call the waveform_generator to create our waveform model. waveform = bilby.gw.waveform_generator.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, time_domain_source_model=time_domain_damped_sinusoid, - start_time=injection_parameters['geocent_time'] - 0.5) + start_time=injection_parameters["geocent_time"] - 0.5, +) # inject the signal into three interferometers -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 0.5) -ifos.inject_signal(waveform_generator=waveform, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 0.5, +) +ifos.inject_signal( + waveform_generator=waveform, parameters=injection_parameters, raise_error=False +) # create the priors prior = injection_parameters.copy() -prior['amplitude'] = bilby.core.prior.LogUniform(1e-23, 1e-21, r'$h_0$') -prior['damping_time'] = bilby.core.prior.Uniform( - 0.01, 1, r'damping time', unit='$s$') -prior['frequency'] = bilby.core.prior.Uniform(0, 200, r'frequency', unit='Hz') -prior['phase'] = bilby.core.prior.Uniform(-np.pi / 2, np.pi / 2, r'$\phi$') +prior["amplitude"] = bilby.core.prior.LogUniform(1e-23, 1e-21, r"$h_0$") +prior["damping_time"] = bilby.core.prior.Uniform(0.01, 1, r"damping time", unit="$s$") +prior["frequency"] = bilby.core.prior.Uniform(0, 200, r"frequency", unit="Hz") +prior["phase"] = bilby.core.prior.Uniform(-np.pi / 2, np.pi / 2, r"$\phi$") # define likelihood likelihood = bilby.gw.likelihood.GravitationalWaveTransient(ifos, waveform) # launch sampler result = bilby.core.sampler.run_sampler( - likelihood, prior, sampler='dynesty', npoints=1000, - injection_parameters=injection_parameters, outdir=outdir, label=label) + likelihood, + prior, + sampler="dynesty", + npoints=500, + walks=5, + nact=3, + injection_parameters=injection_parameters, + outdir=outdir, + label=label, +) result.plot_corner() diff --git a/examples/gw_examples/injection_examples/custom_proposal_example.py b/examples/gw_examples/injection_examples/custom_proposal_example.py index 2a19f4ee6944ff7aceff31591dad3c837ce0a73c..47019dc858da3d9cd640395a5174955bb40ac012 100644 --- a/examples/gw_examples/injection_examples/custom_proposal_example.py +++ b/examples/gw_examples/injection_examples/custom_proposal_example.py @@ -1,71 +1,105 @@ #!/usr/bin/env python """ Tutorial for running cpnest with custom jump proposals. + +This example takes longer than most to run. + +Due to how cpnest creates parallel processes, the multiprocessing start method +needs to be set on some operating systems. """ +import multiprocessing + +multiprocessing.set_start_method("fork") # noqa -import numpy as np import bilby.gw.sampler.proposal +import numpy as np from bilby.core.sampler import proposal - # The set up here is the same as in fast_tutorial.py. Look there for descriptive explanations. -duration = 4. -sampling_frequency = 2048. +duration = 4 +sampling_frequency = 1024 -outdir = 'outdir' -label = 'custom_jump_proposals' +outdir = "outdir" +label = "custom_jump_proposals" bilby.core.utils.setup_logger(outdir=outdir, label=label) np.random.seed(88170235) injection_parameters = dict( - mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., theta_jn=0.4, psi=2.659, - phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=50., minimum_frequency=20.) + mass_1=36.0, + mass_2=29.0, + a_1=0.4, + a_2=0.3, + tilt_1=0.5, + tilt_2=1.0, + phi_12=1.7, + phi_jl=0.3, + luminosity_distance=2000.0, + theta_jn=0.4, + psi=2.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-1.2108, +) +waveform_arguments = dict( + waveform_approximant="IMRPhenomPv2", + reference_frequency=50.0, + minimum_frequency=20.0, +) waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, - waveform_arguments=waveform_arguments) -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) + waveform_arguments=waveform_arguments, +) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 2, +) +ifos.inject_signal( + waveform_generator=waveform_generator, parameters=injection_parameters +) priors = bilby.gw.prior.BBHPriorDict() -priors['geocent_time'] = bilby.core.prior.Uniform( - minimum=injection_parameters['geocent_time'] - 1, - maximum=injection_parameters['geocent_time'] + 1, - name='geocent_time', latex_label='$t_c$', unit='$s$') -for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'geocent_time']: +for key in ["a_1", "a_2", "tilt_1", "tilt_2", "phi_12", "phi_jl", "geocent_time"]: priors[key] = injection_parameters[key] likelihood = bilby.gw.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator) + interferometers=ifos, waveform_generator=waveform_generator +) # Definition of the custom jump proposals. Define a JumpProposalCycle. The first argument is a list # of all allowed jump proposals. The second argument is a list of weights for the respective jump # proposal. jump_proposals = proposal.JumpProposalCycle( - [proposal.EnsembleWalk(priors=priors), - proposal.EnsembleStretch(priors=priors), - proposal.DifferentialEvolution(priors=priors), - proposal.EnsembleEigenVector(priors=priors), - bilby.gw.sampler.proposal.SkyLocationWanderJump(priors=priors), - bilby.gw.sampler.proposal.CorrelatedPolarisationPhaseJump(priors=priors), - bilby.gw.sampler.proposal.PolarisationPhaseJump(priors=priors), - proposal.DrawFlatPrior(priors=priors)], - weights=[2, 2, 5, 1, 1, 1, 1, 1]) + [ + proposal.EnsembleWalk(priors=priors), + proposal.EnsembleStretch(priors=priors), + proposal.DifferentialEvolution(priors=priors), + proposal.EnsembleEigenVector(priors=priors), + bilby.gw.sampler.proposal.SkyLocationWanderJump(priors=priors), + bilby.gw.sampler.proposal.CorrelatedPolarisationPhaseJump(priors=priors), + bilby.gw.sampler.proposal.PolarisationPhaseJump(priors=priors), + proposal.DrawFlatPrior(priors=priors), + ], + weights=[2, 2, 5, 1, 1, 1, 1, 1], +) # Run cpnest with the proposals kwarg specified. # Make sure to have a version of cpnest installed that supports custom proposals. result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='cpnest', npoints=1000, - injection_parameters=injection_parameters, outdir=outdir, label=label, - proposals=jump_proposals) + likelihood=likelihood, + priors=priors, + sampler="cpnest", + npoints=1000, + injection_parameters=injection_parameters, + outdir=outdir, + label=label, + proposals=jump_proposals, +) # Make a corner plot. result.plot_corner() diff --git a/examples/gw_examples/injection_examples/eccentric_inspiral.py b/examples/gw_examples/injection_examples/eccentric_inspiral.py index d081cb575bc15855f1e05d06e5ec0426c62ac82d..55a5853ea4e7f135ef5bb37b7aa1e3c79e775cdd 100644 --- a/examples/gw_examples/injection_examples/eccentric_inspiral.py +++ b/examples/gw_examples/injection_examples/eccentric_inspiral.py @@ -6,84 +6,121 @@ similar to GW150914. This uses the same binary parameters that were used to make Figures 1, 2 & 5 in Lower et al. (2018) -> arXiv:1806.05350. - -For a more comprehensive look at what goes on in each step, refer to the -"basic_tutorial.py" example. """ -import numpy as np import bilby +import numpy as np -duration = 64. -sampling_frequency = 256. +duration = 64 +sampling_frequency = 256 -outdir = 'outdir' -label = 'eccentric_GW140914' +outdir = "outdir" +label = "eccentric_GW150914" bilby.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. np.random.seed(150914) injection_parameters = dict( - mass_1=35., mass_2=30., eccentricity=0.1, luminosity_distance=440., - theta_jn=0.4, psi=0.1, phase=1.2, geocent_time=1180002601.0, ra=45, dec=5.73) - -waveform_arguments = dict(waveform_approximant='EccentricFD', - reference_frequency=10., minimum_frequency=10.) + mass_1=35.0, + mass_2=30.0, + eccentricity=0.1, + luminosity_distance=440.0, + theta_jn=0.4, + psi=0.1, + phase=1.2, + geocent_time=1180002601.0, + ra=45, + dec=5.73, +) + +waveform_arguments = dict( + waveform_approximant="EccentricFD", reference_frequency=10.0, minimum_frequency=10.0 +) # Create the waveform_generator using the LAL eccentric black hole no spins # source function waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_eccentric_binary_black_hole_no_spins, - parameters=injection_parameters, waveform_arguments=waveform_arguments) + parameters=injection_parameters, + waveform_arguments=waveform_arguments, +) # Setting up three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1), and # Virgo (V1)) at their design sensitivities. The maximum frequency is set just # prior to the point at which the waveform model terminates. This is to avoid # any biases introduced from using a sharply terminating waveform model. -minimum_frequency = 10. -maximum_frequency = 128. +minimum_frequency = 10.0 +maximum_frequency = 128.0 -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1"]) for ifo in ifos: ifo.minimum_frequency = minimum_frequency ifo.maximum_frequency = maximum_frequency ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] + 2 - duration, +) +ifos.inject_signal( + waveform_generator=waveform_generator, parameters=injection_parameters +) # Now we set up the priors on each of the binary parameters. priors = bilby.core.prior.PriorDict() priors["mass_1"] = bilby.core.prior.Uniform( - name='mass_1', minimum=5, maximum=60, unit='$M_{\\odot}$') + name="mass_1", minimum=5, maximum=60, unit="$M_{\\odot}$", latex_label="$m_1$" +) priors["mass_2"] = bilby.core.prior.Uniform( - name='mass_2', minimum=5, maximum=60, unit='$M_{\\odot}$') + name="mass_2", minimum=5, maximum=60, unit="$M_{\\odot}$", latex_label="$m_2$" +) priors["eccentricity"] = bilby.core.prior.LogUniform( - name='eccentricity', latex_label='$e$', minimum=1e-4, maximum=0.4) -priors["luminosity_distance"] = bilby.gw.prior.UniformComovingVolume( - name='luminosity_distance', minimum=1e2, maximum=2e3) -priors["dec"] = bilby.core.prior.Cosine(name='dec') + name="eccentricity", latex_label="$e$", minimum=1e-4, maximum=0.4 +) +priors["luminosity_distance"] = bilby.gw.prior.UniformSourceFrame( + name="luminosity_distance", minimum=1e2, maximum=2e3 +) +priors["dec"] = bilby.core.prior.Cosine(name="dec") priors["ra"] = bilby.core.prior.Uniform( - name='ra', minimum=0, maximum=2 * np.pi) -priors["theta_jn"] = bilby.core.prior.Sine(name='theta_jn') -priors["psi"] = bilby.core.prior.Uniform(name='psi', minimum=0, maximum=np.pi) + name="ra", minimum=0, maximum=2 * np.pi, boundary="periodic" +) +priors["theta_jn"] = bilby.core.prior.Sine(name="theta_jn") +priors["psi"] = bilby.core.prior.Uniform( + name="psi", minimum=0, maximum=np.pi, boundary="periodic" +) priors["phase"] = bilby.core.prior.Uniform( - name='phase', minimum=0, maximum=2 * np.pi) + name="phase", minimum=0, maximum=2 * np.pi, boundary="periodic" +) priors["geocent_time"] = bilby.core.prior.Uniform( - 1180002600.9, 1180002601.1, name='geocent_time', unit='s') + injection_parameters["geocent_time"] - 0.1, + injection_parameters["geocent_time"] + 0.1, + name="geocent_time", + unit="s", +) # Initialising the likelihood function. likelihood = bilby.gw.likelihood.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator) + interferometers=ifos, + waveform_generator=waveform_generator, + priors=priors, + time_marginalization=True, + distance_marginalization=True, + phase_marginalization=True, +) # Now we run sampler (PyMultiNest in our case). result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='pymultinest', npoints=1000, - injection_parameters=injection_parameters, outdir=outdir, label=label) + likelihood=likelihood, + priors=priors, + sampler="pymultinest", + npoints=500, + injection_parameters=injection_parameters, + outdir=outdir, + label=label, +) # And finally we make some plots of the output posteriors. result.plot_corner() diff --git a/examples/gw_examples/injection_examples/fake_sampler_example.py b/examples/gw_examples/injection_examples/fake_sampler_example.py index e1e7d600d88be737405d12dcdd21be3d5fbcba90..e4632ccb633d6306a8cae177cbe26b7c17a6252f 100755 --- a/examples/gw_examples/injection_examples/fake_sampler_example.py +++ b/examples/gw_examples/injection_examples/fake_sampler_example.py @@ -1,119 +1,143 @@ #!/usr/bin/env python """ -Read ROQ posterior and calculate full likelihood at same parameter space points. +Demonstrate using the FakeSampler to reweight a result to include higher-order +emission modes. This is a simplified version of the method presented in +arXiv:1905.05477, however, the method can be applied to a much wider range of +initial and more complex likelihoods. """ -import numpy as np -import deepdish as dd import bilby import matplotlib.pyplot as plt +import numpy as np -def make_comparison_histograms(file_full, file_roq): - # Returns a dictionary - data_full = dd.io.load(file_full) - data_roq = dd.io.load(file_roq) - - # These are pandas dataframes - pos_full = data_full['posterior'] - pos_roq = data_roq['posterior'] +def make_comparison_histograms(result_1, result_2): + pos_full = result_1.posterior + pos_simple = result_2.posterior plt.figure() - plt.hist(pos_full['log_likelihood_evaluations'], 50, label='full', histtype='step') - plt.hist(pos_roq['log_likelihood_evaluations'], 50, label='roq', histtype='step') - plt.xlabel(r'delta_logl') + plt.hist( + pos_full["log_likelihood"], + 50, + label=result_1.label, + histtype="step", + density=True, + ) + plt.hist( + pos_simple["log_likelihood"], + 50, + label=result_2.label, + histtype="step", + density=True, + ) + plt.xlabel(r"delta_logl") plt.legend(loc=2) - plt.savefig('delta_logl.pdf') - plt.close() - - plt.figure() - delta_dlogl = pos_full['log_likelihood_evaluations'] - pos_roq['log_likelihood_evaluations'] - plt.hist(delta_dlogl, 50) - plt.xlabel(r'delta_logl_full - delta_logl_roq') - plt.savefig('delta_delta_logl.pdf') - plt.close() - - plt.figure() - delta_dlogl = np.abs(pos_full['log_likelihood_evaluations'] - pos_roq['log_likelihood_evaluations']) - bins = np.logspace(np.log10(delta_dlogl.min()), np.log10(delta_dlogl.max()), 25) - plt.hist(delta_dlogl, bins=bins) - plt.xscale('log') - plt.xlabel(r'|delta_logl_full - delta_logl_roq|') - plt.savefig('log_abs_delta_delta_logl.pdf') + plt.savefig(f"{result_1.outdir}/delta_logl.pdf") plt.close() def main(): - outdir = 'outdir_full' - label = 'full' + outdir = "outdir" np.random.seed(170808) duration = 4 - sampling_frequency = 2048 - noise = 'zero' - - sampler = 'fake_sampler' - # This example assumes that the following posterior file exists. - # It comes from a run using the full likelihood using the same - # injection and sampling parameters, but the ROQ likelihood. - # See roq_example.py for such an example. - sample_file = 'outdir_dynesty_zero_noise_SNR22/roq_result.h5' + sampling_frequency = 1024 injection_parameters = dict( - chirp_mass=36., mass_ratio=0.9, a_1=0.4, a_2=0.3, tilt_1=0.0, tilt_2=0.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., iota=0.4, psi=0.659, - phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) - - waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=20.0, minimum_frequency=20.0) + chirp_mass=36.0, + mass_ratio=0.2, + chi_1=0.4, + chi_2=0.3, + luminosity_distance=2000.0, + theta_jn=0.4, + psi=0.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-1.2108, + ) + + waveform_arguments = dict( + waveform_approximant="IMRPhenomXAS", + reference_frequency=20.0, + minimum_frequency=20.0, + ) waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, waveform_arguments=waveform_arguments, - parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters) - - ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) - - if noise == 'Gaussian': - ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) - elif noise == 'zero': - ifos.set_strain_data_from_zero_noise( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) - - ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) - - priors = bilby.gw.prior.BBHPriorDict() - for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'iota', 'psi', 'ra', - 'dec', 'phi_12', 'phi_jl', 'luminosity_distance']: + parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters, + ) + + ifos = bilby.gw.detector.InterferometerList(["H1", "L1", "V1"]) + + ifos.set_strain_data_from_zero_noise( + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 2, + ) + + ifos.inject_signal( + waveform_generator=waveform_generator, + parameters=injection_parameters, + ) + + priors = bilby.gw.prior.BBHPriorDict(aligned_spin=True) + for key in [ + "luminosity_distance", + "theta_jn", + "phase", + "psi", + "ra", + "dec", + "geocent_time", + ]: priors[key] = injection_parameters[key] - priors.pop('mass_1') - priors.pop('mass_2') - priors['chirp_mass'] = bilby.core.prior.Uniform( - 15, 40, latex_label='$\\mathcal{M}$') - priors['mass_ratio'] = bilby.core.prior.Uniform(0.5, 1, latex_label='$q$') - priors['geocent_time'] = bilby.core.prior.Uniform( - injection_parameters['geocent_time'] - 0.1, - injection_parameters['geocent_time'] + 0.1, latex_label='$t_c$', unit='s') - - likelihood = bilby.gw.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator) - - result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler=sampler, sample_file=sample_file, - injection_parameters=injection_parameters, outdir=outdir, label=label) - - # Make a corner plot. - result.plot_corner() - - # Compare full and ROQ likelihoods - make_comparison_histograms(outdir + '/%s_result.h5' % label, sample_file) - - -if __name__ == '__main__': + priors["chirp_mass"].maximum = 45 + + likelihood = bilby.gw.likelihood.GravitationalWaveTransient( + interferometers=ifos, waveform_generator=waveform_generator + ) + + # perform the initial sampling with our simple model + original_result = bilby.run_sampler( + likelihood=likelihood, + priors=priors, + sampler="dynesty", + walks=10, + nact=3, + bound="single", + injection_parameters=injection_parameters, + outdir=outdir, + label="primary_mode_only", + save="hdf5", + ) + + # update the waveform generator to use our higher-order mode waveform + likelihood.waveform_generator.waveform_arguments[ + "waveform_approximant" + ] = "IMRPhenomXHM" + + # call the FakeSampler to compute the new likelihoods + new_result = bilby.run_sampler( + likelihood=likelihood, + priors=priors, + sampler="fake_sampler", + sample_file=f"{outdir}/{original_result.label}_result.hdf5", + injection_parameters=injection_parameters, + outdir=outdir, + verbose=False, + label="higher_order_mode", + save="hdf5", + ) + + # make some comparison plots + bilby.core.result.plot_multiple([original_result, new_result]) + make_comparison_histograms(new_result, original_result) + + +if __name__ == "__main__": main() diff --git a/examples/gw_examples/injection_examples/fast_tutorial.py b/examples/gw_examples/injection_examples/fast_tutorial.py index 3a2e18fc135b6225e369e28643d5749d0b9db50d..f462008a70994982d47c9cbd69179161c96aae3c 100644 --- a/examples/gw_examples/injection_examples/fast_tutorial.py +++ b/examples/gw_examples/injection_examples/fast_tutorial.py @@ -8,18 +8,18 @@ and distance using a uniform in comoving volume prior on luminosity distance between luminosity distances of 100Mpc and 5Gpc, the cosmology is Planck15. """ -import numpy as np import bilby +import numpy as np # Set the duration and sampling frequency of the data segment that we're # going to inject the signal into -duration = 4. -sampling_frequency = 2048. +duration = 4.0 +sampling_frequency = 2048.0 minimum_frequency = 20 # Specify the output directory and the name of the simulation. -outdir = 'outdir' -label = 'fast_tutorial' +outdir = "outdir" +label = "fast_tutorial" bilby.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. This is optional! @@ -30,31 +30,51 @@ np.random.seed(88170235) # parameters, including masses of the two black holes (mass_1, mass_2), # spins of both black holes (a, tilt, phi), etc. injection_parameters = dict( - mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., theta_jn=0.4, psi=2.659, - phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) + mass_1=36.0, + mass_2=29.0, + a_1=0.4, + a_2=0.3, + tilt_1=0.5, + tilt_2=1.0, + phi_12=1.7, + phi_jl=0.3, + luminosity_distance=2000.0, + theta_jn=0.4, + psi=2.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-1.2108, +) # Fixed arguments passed into the source model -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=50., - minimum_frequency=minimum_frequency) +waveform_arguments = dict( + waveform_approximant="IMRPhenomPv2", + reference_frequency=50.0, + minimum_frequency=minimum_frequency, +) # Create the waveform_generator using a LAL BinaryBlackHole source function waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters, - waveform_arguments=waveform_arguments) + waveform_arguments=waveform_arguments, +) # Set up interferometers. In this case we'll use two interferometers # (LIGO-Hanford (H1), LIGO-Livingston (L1). These default to their design # sensitivity -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 2, +) +ifos.inject_signal( + waveform_generator=waveform_generator, parameters=injection_parameters +) # Set up a PriorDict, which inherits from dict. # By default we will sample all terms in the signal models. However, this will @@ -67,12 +87,19 @@ ifos.inject_signal(waveform_generator=waveform_generator, # distance, which means those are the parameters that will be included in the # sampler. If we do nothing, then the default priors get used. priors = bilby.gw.prior.BBHPriorDict() -priors['geocent_time'] = bilby.core.prior.Uniform( - minimum=injection_parameters['geocent_time'] - 0.1, - maximum=injection_parameters['geocent_time'] + 0.1, - name='geocent_time', latex_label='$t_c$', unit='$s$') -for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'psi', 'ra', - 'dec', 'geocent_time', 'phase']: +for key in [ + "a_1", + "a_2", + "tilt_1", + "tilt_2", + "phi_12", + "phi_jl", + "psi", + "ra", + "dec", + "geocent_time", + "phase", +]: priors[key] = injection_parameters[key] # Perform a check that the prior does not extend to a parameter space longer than the data @@ -81,12 +108,19 @@ priors.validate_prior(duration, minimum_frequency) # Initialise the likelihood by passing in the interferometer data (ifos) and # the waveform generator likelihood = bilby.gw.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator) + interferometers=ifos, waveform_generator=waveform_generator +) # Run sampler. In this case we're going to use the `dynesty` sampler result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000, - injection_parameters=injection_parameters, outdir=outdir, label=label) + likelihood=likelihood, + priors=priors, + sampler="dynesty", + npoints=1000, + injection_parameters=injection_parameters, + outdir=outdir, + label=label, +) # Make a corner plot. result.plot_corner() diff --git a/examples/gw_examples/injection_examples/how_to_specify_the_prior.py b/examples/gw_examples/injection_examples/how_to_specify_the_prior.py index 851a3aab37cfbc1ce915af5e80e104dddf4b3a80..816288c5a727dc482c1524f7357e638004271228 100644 --- a/examples/gw_examples/injection_examples/how_to_specify_the_prior.py +++ b/examples/gw_examples/injection_examples/how_to_specify_the_prior.py @@ -4,58 +4,94 @@ Tutorial to demonstrate how to specify the prior distributions used for parameter estimation. """ -import numpy as np import bilby +import numpy as np - -duration = 4. -sampling_frequency = 2048. -outdir = 'outdir' +duration = 4 +sampling_frequency = 1024 +outdir = "outdir" np.random.seed(151012) injection_parameters = dict( - mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, - phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) + mass_1=36.0, + mass_2=29.0, + a_1=0.4, + a_2=0.3, + tilt_1=0.5, + tilt_2=1.0, + phi_12=1.7, + phi_jl=0.3, + luminosity_distance=4000.0, + theta_jn=0.4, + psi=2.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-1.2108, +) -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=50., minimum_frequency=20.) +waveform_arguments = dict( + waveform_approximant="IMRPhenomXPHM", + reference_frequency=50.0, + minimum_frequency=20.0, +) # Create the waveform_generator using a LAL BinaryBlackHole source function waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, - waveform_arguments=waveform_arguments) + waveform_arguments=waveform_arguments, +) # Set up interferometers. -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 2, +) +ifos.inject_signal( + waveform_generator=waveform_generator, parameters=injection_parameters +) # Set up prior # This loads in a predefined set of priors for BBHs. priors = bilby.gw.prior.BBHPriorDict() # These parameters will not be sampled -for key in ['tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'phase', 'theta_jn', 'ra', - 'dec', 'geocent_time', 'psi']: +for key in [ + "tilt_1", + "tilt_2", + "phi_12", + "phi_jl", + "phase", + "theta_jn", + "ra", + "dec", + "geocent_time", + "psi", +]: priors[key] = injection_parameters[key] # We can make uniform distributions. -priors['mass_2'] = bilby.core.prior.Uniform( - name='mass_2', minimum=20, maximum=40, unit='$M_{\\odot}$') +del priors["chirp_mass"], priors["mass_ratio"] +# We can make uniform distributions. +priors["mass_1"] = bilby.core.prior.Uniform( + name="mass_1", minimum=20, maximum=40, unit="$M_{\\odot}$" +) +priors["mass_2"] = bilby.core.prior.Uniform( + name="mass_2", minimum=20, maximum=40, unit="$M_{\\odot}$" +) # We can make a power-law distribution, p(x) ~ x^{alpha} # Note: alpha=0 is a uniform distribution, alpha=-1 is uniform-in-log -priors['a_1'] = bilby.core.prior.PowerLaw( - name='a_1', alpha=-1, minimum=1e-2, maximum=1) +priors["a_1"] = bilby.core.prior.PowerLaw(name="a_1", alpha=-1, minimum=1e-2, maximum=1) # We can define a prior from an array as follows. # Note: this doesn't have to be properly normalised. a_2 = np.linspace(0, 1, 1001) -p_a_2 = a_2 ** 4 -priors['a_2'] = bilby.core.prior.Interped( - name='a_2', xx=a_2, yy=p_a_2, minimum=0, maximum=0.5) +p_a_2 = a_2**4 +priors["a_2"] = bilby.core.prior.Interped( + name="a_2", xx=a_2, yy=p_a_2, minimum=0, maximum=0.5 +) # Additionally, we have Gaussian, TruncatedGaussian, Sine and Cosine. # It's also possible to load an interpolate a prior from a file. # Finally, if you don't specify any necessary parameters it will be filled in @@ -64,10 +100,16 @@ priors['a_2'] = bilby.core.prior.Interped( # Initialise GravitationalWaveTransient likelihood = bilby.gw.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator) + interferometers=ifos, waveform_generator=waveform_generator +) # Run sampler result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='dynesty', outdir=outdir, - injection_parameters=injection_parameters, label='specify_prior') + likelihood=likelihood, + priors=priors, + sampler="dynesty", + outdir=outdir, + injection_parameters=injection_parameters, + label="specify_prior", +) result.plot_corner() diff --git a/examples/gw_examples/injection_examples/marginalized_likelihood.py b/examples/gw_examples/injection_examples/marginalized_likelihood.py index c28efca13d4d9ddda064d4e6eef14c72b8086407..55cd2d4c7774613b5f520cbadccbad915804aa03 100644 --- a/examples/gw_examples/injection_examples/marginalized_likelihood.py +++ b/examples/gw_examples/injection_examples/marginalized_likelihood.py @@ -9,55 +9,90 @@ parameter can be recovered in post-processing. import bilby import numpy as np - -duration = 4. -sampling_frequency = 2048. -outdir = 'outdir' -label = 'marginalized_likelihood' +duration = 4 +sampling_frequency = 1024 +outdir = "outdir" +label = "marginalized_likelihood" np.random.seed(170608) injection_parameters = dict( - mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, - phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) + mass_1=36.0, + mass_2=29.0, + a_1=0.4, + a_2=0.3, + tilt_1=0.5, + tilt_2=1.0, + phi_12=1.7, + phi_jl=0.3, + luminosity_distance=4000.0, + theta_jn=0.4, + psi=2.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-1.2108, +) -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=50.) +waveform_arguments = dict(waveform_approximant="IMRPhenomXP", reference_frequency=50) # Create the waveform_generator using a LAL BinaryBlackHole source function waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, - waveform_arguments=waveform_arguments) + waveform_arguments=waveform_arguments, +) # Set up interferometers. -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 2, +) +ifos.inject_signal( + waveform_generator=waveform_generator, parameters=injection_parameters +) # Set up prior priors = bilby.gw.prior.BBHPriorDict() -priors['geocent_time'] = bilby.core.prior.Uniform( - minimum=injection_parameters['geocent_time'] - 1, - maximum=injection_parameters['geocent_time'] + 1, - name='geocent_time', latex_label='$t_c$', unit='$s$') +priors["geocent_time"] = bilby.core.prior.Uniform( + minimum=injection_parameters["geocent_time"] - 0.1, + maximum=injection_parameters["geocent_time"] + 0.1, + name="geocent_time", + latex_label="$t_c$", + unit="$s$", +) # These parameters will not be sampled -for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'theta_jn', 'ra', - 'dec', 'mass_1', 'mass_2']: +for key in [ + "a_1", + "a_2", + "tilt_1", + "tilt_2", + "phi_12", + "phi_jl", + "theta_jn", + "ra", + "dec", + "mass_1", + "mass_2", +]: priors[key] = injection_parameters[key] +del priors["chirp_mass"], priors["mass_ratio"] # Initialise GravitationalWaveTransient # Note that we now need to pass the: priors and flags for each thing that's # being marginalised. A lookup table is used for distance marginalisation which # takes a few minutes to build. likelihood = bilby.gw.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator, priors=priors, - distance_marginalization=True, phase_marginalization=True, - time_marginalization=True) + interferometers=ifos, + waveform_generator=waveform_generator, + priors=priors, + distance_marginalization=True, + phase_marginalization=True, + time_marginalization=True, +) # Run sampler # Note that we've added an additional argument `conversion_function`, this is @@ -66,7 +101,12 @@ likelihood = bilby.gw.GravitationalWaveTransient( # reconstructs posterior distributions for the parameters which were # marginalised over in the likelihood. result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='dynesty', - injection_parameters=injection_parameters, outdir=outdir, label=label, - conversion_function=bilby.gw.conversion.generate_all_bbh_parameters) + likelihood=likelihood, + priors=priors, + sampler="dynesty", + injection_parameters=injection_parameters, + outdir=outdir, + label=label, + conversion_function=bilby.gw.conversion.generate_all_bbh_parameters, +) result.plot_corner() diff --git a/examples/gw_examples/injection_examples/multiband_example.py b/examples/gw_examples/injection_examples/multiband_example.py index ce6c9f436319a96695d0c9337b3e69701d454bec..e43b6ca2190a399442723639b9fd79ef06c418d6 100644 --- a/examples/gw_examples/injection_examples/multiband_example.py +++ b/examples/gw_examples/injection_examples/multiband_example.py @@ -4,72 +4,104 @@ Example of how to use the multi-banding method (see Morisaki, (2021) arXiv: 2104.07813) for a binary neutron star simulated signal in Gaussian noise. """ -import numpy as np - import bilby +import numpy as np -outdir = 'outdir' -label = 'multibanding' +outdir = "outdir" +label = "multibanding" np.random.seed(170808) -minimum_frequency = 20. -reference_frequency = 100. -duration = 256. -sampling_frequency = 4096. -approximant = 'IMRPhenomD' +minimum_frequency = 20 +reference_frequency = 100 +duration = 256 +sampling_frequency = 4096 +approximant = "IMRPhenomD" injection_parameters = dict( - chirp_mass=1.2, mass_ratio=0.8, chi_1=0., chi_2=0., - ra=3.44616, dec=-0.408084, luminosity_distance=200., - theta_jn=0.4, psi=0.659, phase=1.3, geocent_time=1187008882) + chirp_mass=1.2, + mass_ratio=0.8, + chi_1=0.0, + chi_2=0.0, + ra=3.44616, + dec=-0.408084, + luminosity_distance=200.0, + theta_jn=0.4, + psi=0.659, + phase=1.3, + geocent_time=1187008882, +) # inject signal waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, - waveform_arguments=dict(waveform_approximant=approximant, - reference_frequency=reference_frequency), - parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters) -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) + waveform_arguments=dict( + waveform_approximant=approximant, reference_frequency=reference_frequency + ), + parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters, +) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1", "V1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - duration + 2.) -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - duration + 2, +) +ifos.inject_signal( + waveform_generator=waveform_generator, parameters=injection_parameters +) for ifo in ifos: ifo.minimum_frequency = minimum_frequency # make waveform generator for likelihood evaluations search_waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.binary_black_hole_frequency_sequence, - waveform_arguments=dict(waveform_approximant=approximant, - reference_frequency=reference_frequency), - parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters) + waveform_arguments=dict( + waveform_approximant=approximant, reference_frequency=reference_frequency + ), + parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters, +) # make prior priors = bilby.gw.prior.BNSPriorDict() -priors['chi_1'] = 0. -priors['chi_2'] = 0. -priors.pop('lambda_1') -priors.pop('lambda_2') -priors['chirp_mass'] = bilby.core.prior.Uniform(name='chirp_mass', minimum=1.15, maximum=1.25) -priors['geocent_time'] = bilby.core.prior.Uniform( - injection_parameters['geocent_time'] - 0.1, - injection_parameters['geocent_time'] + 0.1, latex_label='$t_c$', unit='s') +priors["chi_1"] = 0 +priors["chi_2"] = 0 +del priors["lambda_1"], priors["lambda_2"] +priors["chirp_mass"] = bilby.core.prior.Uniform( + name="chirp_mass", minimum=1.15, maximum=1.25 +) +priors["geocent_time"] = bilby.core.prior.Uniform( + injection_parameters["geocent_time"] - 0.1, + injection_parameters["geocent_time"] + 0.1, + latex_label="$t_c$", + unit="s", +) # make multi-banded likelihood likelihood = bilby.gw.likelihood.MBGravitationalWaveTransient( - interferometers=ifos, waveform_generator=search_waveform_generator, priors=priors, - reference_chirp_mass=priors['chirp_mass'].minimum, - distance_marginalization=True, phase_marginalization=True + interferometers=ifos, + waveform_generator=search_waveform_generator, + priors=priors, + reference_chirp_mass=priors["chirp_mass"].minimum, + distance_marginalization=True, + phase_marginalization=True, ) # sampling result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='dynesty', - nlive=500, walks=100, maxmcmc=5000, nact=5, - injection_parameters=injection_parameters, outdir=outdir, label=label) + likelihood=likelihood, + priors=priors, + sampler="dynesty", + nlive=500, + walks=100, + maxmcmc=5000, + nact=5, + injection_parameters=injection_parameters, + outdir=outdir, + label=label, +) # Make a corner plot. result.plot_corner() diff --git a/examples/gw_examples/injection_examples/non_tensor.py b/examples/gw_examples/injection_examples/non_tensor.py index 6c44216954f92aab978cac1be612d3ebbc17b042..1020a10002a869afffb9d82384844649b67f8c61 100644 --- a/examples/gw_examples/injection_examples/non_tensor.py +++ b/examples/gw_examples/injection_examples/non_tensor.py @@ -28,69 +28,99 @@ def vector_tensor_sine_gaussian(frequency_array, hrss, Q, frequency, epsilon): Relative size of the vector modes compared to the tensor modes. """ waveform_polarizations = bilby.gw.source.sinegaussian( - frequency_array, hrss, Q, frequency) + frequency_array, hrss, Q, frequency + ) - waveform_polarizations['x'] = epsilon * waveform_polarizations['plus'] - waveform_polarizations['y'] = epsilon * waveform_polarizations['cross'] + waveform_polarizations["x"] = epsilon * waveform_polarizations["plus"] + waveform_polarizations["y"] = epsilon * waveform_polarizations["cross"] return waveform_polarizations -duration = 4. -sampling_frequency = 2048. +duration = 1 +sampling_frequency = 512 -outdir = 'outdir' -label = 'vector_tensor' +outdir = "outdir" +label = "vector_tensor" bilby.core.utils.setup_logger(outdir=outdir, label=label) np.random.seed(170801) injection_parameters = dict( - hrss=1e-22, Q=5.0, frequency=200.0, ra=1.375, dec=-1.2108, - geocent_time=1126259642.413, psi=2.659, epsilon=0.2) - -waveform_generator =\ - bilby.gw.waveform_generator.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, - frequency_domain_source_model=vector_tensor_sine_gaussian) - -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) + hrss=1e-22, + Q=5.0, + frequency=200.0, + ra=1.375, + dec=-1.2108, + geocent_time=1126259642.413, + psi=2.659, + epsilon=0.2, +) + +waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( + duration=duration, + sampling_frequency=sampling_frequency, + frequency_domain_source_model=vector_tensor_sine_gaussian, +) + +ifos = bilby.gw.detector.InterferometerList(["H1", "L1", "V1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) - -priors = dict() -for key in ['psi', 'geocent_time', 'hrss', 'Q', 'frequency']: + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 0.5, +) +ifos.inject_signal( + waveform_generator=waveform_generator, + parameters=injection_parameters, + raise_error=False, +) + +priors = bilby.core.prior.PriorDict() +for key in ["psi", "geocent_time", "hrss", "Q", "frequency"]: priors[key] = injection_parameters[key] -priors['ra'] = bilby.core.prior.Uniform(0, 2 * np.pi, latex_label='$\\alpha$') -priors['dec'] = bilby.core.prior.Cosine(latex_label='$\\delta$') -priors['epsilon'] = bilby.core.prior.Uniform(0, 1, latex_label='$\\epsilon$') +priors["ra"] = bilby.core.prior.Uniform(0, 2 * np.pi, latex_label="$\\alpha$") +priors["dec"] = bilby.core.prior.Cosine(latex_label="$\\delta$") +priors["epsilon"] = bilby.core.prior.Uniform(0, 1, latex_label="$\\epsilon$") vector_tensor_likelihood = bilby.gw.likelihood.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator) + interferometers=ifos, waveform_generator=waveform_generator +) # Run sampler. In this case we're going to use the `dynesty` sampler vector_tensor_result = bilby.core.sampler.run_sampler( - likelihood=vector_tensor_likelihood, priors=priors, sampler='nestle', - npoints=1000, injection_parameters=injection_parameters, - outdir=outdir, label='vector_tensor') + likelihood=vector_tensor_likelihood, + priors=priors, + sampler="nestle", + nlive=1000, + injection_parameters=injection_parameters, + outdir=outdir, + label="vector_tensor", +) vector_tensor_result.plot_corner() tensor_likelihood = bilby.gw.likelihood.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator) + interferometers=ifos, waveform_generator=waveform_generator +) -priors['epsilon'] = 0 +priors["epsilon"] = 0 -# Run sampler. In this case we're going to use the `dynesty` sampler +# Run sampler. In this case we're going to use the `nestle` sampler tensor_result = bilby.core.sampler.run_sampler( - likelihood=tensor_likelihood, priors=priors, sampler='nestle', npoints=1000, - injection_parameters=injection_parameters, outdir=outdir, label='tensor') + likelihood=tensor_likelihood, + priors=priors, + sampler="nestle", + nlive=1000, + injection_parameters=injection_parameters, + outdir=outdir, + label="tensor", +) # make some plots of the outputs tensor_result.plot_corner() bilby.result.plot_multiple( - [tensor_result, vector_tensor_result], labels=['Tensor', 'Vector + Tensor'], - parameters=dict(ra=1.375, dec=-1.2108), evidences=True) + [tensor_result, vector_tensor_result], + labels=["Tensor", "Vector + Tensor"], + parameters=dict(ra=1.375, dec=-1.2108), + evidences=True, +) diff --git a/examples/gw_examples/injection_examples/plot_skymap.py b/examples/gw_examples/injection_examples/plot_skymap.py index 4c7ecb9a3e3abbaa4bab6099330b1332d5846909..7d0dbb98eca15dab0f19ea5e83506614e527182c 100644 --- a/examples/gw_examples/injection_examples/plot_skymap.py +++ b/examples/gw_examples/injection_examples/plot_skymap.py @@ -5,47 +5,85 @@ skymap """ import bilby -duration = 4. -sampling_frequency = 2048. -outdir = 'outdir' -label = 'plot_skymap' +duration = 4 +sampling_frequency = 1024 +outdir = "outdir" +label = "plot_skymap" injection_parameters = dict( - mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., theta_jn=0.4, psi=2.659, - phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-0.2108) + mass_1=36.0, + mass_2=29.0, + a_1=0.4, + a_2=0.3, + tilt_1=0.5, + tilt_2=1.0, + phi_12=1.7, + phi_jl=0.3, + luminosity_distance=4000.0, + theta_jn=0.4, + psi=2.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-0.2108, +) -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=50.) +waveform_arguments = dict(waveform_approximant="IMRPhenomXP", reference_frequency=50.0) waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, - parameters=injection_parameters, waveform_arguments=waveform_arguments) + parameters=injection_parameters, + waveform_arguments=waveform_arguments, +) -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 2, +) +ifos.inject_signal( + waveform_generator=waveform_generator, parameters=injection_parameters +) priors = bilby.gw.prior.BBHPriorDict() -for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'psi', - 'mass_1', 'mass_2', 'phase', 'geocent_time', 'luminosity_distance', - 'theta_jn']: +for key in [ + "a_1", + "a_2", + "tilt_1", + "tilt_2", + "phi_12", + "phi_jl", + "psi", + "mass_1", + "mass_2", + "phase", + "geocent_time", + "theta_jn", +]: priors[key] = injection_parameters[key] +del priors["chirp_mass"], priors["mass_ratio"] likelihood = bilby.gw.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator, - time_marginalization=True, phase_marginalization=True, - distance_marginalization=False, priors=priors) + interferometers=ifos, waveform_generator=waveform_generator +) result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000, - injection_parameters=injection_parameters, outdir=outdir, label=label, result_class=bilby.gw.result.CBCResult) + likelihood=likelihood, + priors=priors, + sampler="nestle", + npoints=250, + injection_parameters=injection_parameters, + outdir=outdir, + label=label, + result_class=bilby.gw.result.CBCResult, +) # make some plots of the outputs result.plot_corner() # will require installation of ligo.skymap (pip install ligo.skymap) -result.plot_skymap(maxpts=5000) +# the skymap generation code is fairly slow when using many points so limit +# ourselves to 500 points in the fit +result.plot_skymap(maxpts=500) diff --git a/examples/gw_examples/injection_examples/plot_time_domain_data.py b/examples/gw_examples/injection_examples/plot_time_domain_data.py index 4e572e8a53a330a0be47a9bfc5f2b50b6879cd0a..707c0f18c101a3d7ac59e3c143a699a7ed1c88db 100644 --- a/examples/gw_examples/injection_examples/plot_time_domain_data.py +++ b/examples/gw_examples/injection_examples/plot_time_domain_data.py @@ -1,37 +1,64 @@ #!/usr/bin/env python """ +This example demonstrates how to simulate some data, add an injected signal +and plot the data. """ import numpy as np -import bilby +from bilby.gw.detector import get_empty_interferometer +from bilby.gw.source import lal_binary_black_hole +from bilby.gw.waveform_generator import WaveformGenerator np.random.seed(1) duration = 4 -sampling_frequency = 2048. +sampling_frequency = 2048.0 -outdir = 'outdir' -label = 'example' +outdir = "outdir" +label = "example" injection_parameters = dict( - mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=1000., theta_jn=0.4, psi=2.659, - phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) + mass_1=36.0, + mass_2=29.0, + a_1=0.4, + a_2=0.3, + tilt_1=0.5, + tilt_2=1.0, + phi_12=1.7, + phi_jl=0.3, + luminosity_distance=1000.0, + theta_jn=0.4, + psi=2.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-1.2108, +) -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=50.) +waveform_arguments = dict( + waveform_approximant="IMRPhenomTPHM", reference_frequency=50.0 +) -waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, - frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, - parameters=injection_parameters, waveform_arguments=waveform_arguments) +waveform_generator = WaveformGenerator( + duration=duration, + sampling_frequency=sampling_frequency, + frequency_domain_source_model=lal_binary_black_hole, + parameters=injection_parameters, + waveform_arguments=waveform_arguments, +) hf_signal = waveform_generator.frequency_domain_strain(injection_parameters) -H1 = bilby.gw.detector.get_interferometer_with_fake_noise_and_injection( - 'H1', injection_polarizations=hf_signal, - injection_parameters=injection_parameters, duration=duration, - sampling_frequency=sampling_frequency, outdir=outdir) +ifo = get_empty_interferometer("H1") +ifo.set_strain_data_from_power_spectral_density( + duration=duration, sampling_frequency=sampling_frequency +) +ifo.inject_signal(injection_polarizations=hf_signal, parameters=injection_parameters) -t0 = injection_parameters['geocent_time'] -H1.plot_time_domain_data(outdir=outdir, label=label, notches=[50], - bandpass_frequencies=(50, 200), start_end=(-0.5, 0.5), - t0=t0) +t0 = injection_parameters["geocent_time"] +ifo.plot_time_domain_data( + outdir=outdir, + label=label, + notches=[50], + bandpass_frequencies=(50, 200), + start_end=(-0.5, 0.5), + t0=t0, +) diff --git a/examples/gw_examples/injection_examples/reproduce_mpa1_eos.py b/examples/gw_examples/injection_examples/reproduce_mpa1_eos.py index 699b56c102d6b4fb462ce1bd2ba16d1f73787899..6d2ee4fc2f1e0bf83391b41f5087ed016b80bfdc 100644 --- a/examples/gw_examples/injection_examples/reproduce_mpa1_eos.py +++ b/examples/gw_examples/injection_examples/reproduce_mpa1_eos.py @@ -9,19 +9,25 @@ from bilby.gw import eos # First, we specify the spectral parameter values for the MPA1 EoS. MPA1_gammas = [1.0215, 0.1653, -0.0235, -0.0004] -MPA1_p0 = 1.51e33 # Pressure in CGS -MPA1_e0_c2 = 2.04e14 # \epsilon_0 / c^2 in CGS -MPA1_xmax = 6.63 # Dimensionless ending pressure +MPA1_p0 = 1.51e33 # Pressure in CGS +MPA1_e0_c2 = 2.04e14 # \epsilon_0 / c^2 in CGS +MPA1_xmax = 6.63 # Dimensionless ending pressure # Create the spectral decomposition EoS class -MPA1_spectral = eos.SpectralDecompositionEOS(MPA1_gammas, p0=MPA1_p0, e0=MPA1_e0_c2, xmax=MPA1_xmax, npts=100) +MPA1_spectral = eos.SpectralDecompositionEOS( + MPA1_gammas, p0=MPA1_p0, e0=MPA1_e0_c2, xmax=MPA1_xmax, npts=100 +) # And create another from tabulated data -MPA1_tabulated = eos.TabularEOS('MPA1') +MPA1_tabulated = eos.TabularEOS("MPA1") # Now let's plot them # To do so, we specify a representation and plot ranges. -MPA1_spectral_plot = MPA1_spectral.plot('pressure-energy_density', xlim=[1e22, 1e36], ylim=[1e9, 1e36]) -MPA1_tabular_plot = MPA1_tabulated.plot('pressure-energy_density', xlim=[1e22, 1e36], ylim=[1e9, 1e36]) -MPA1_spectral_plot.savefig('spectral_mpa1.pdf') -MPA1_tabular_plot.savefig('tabular_mpa1.pdf') +MPA1_spectral_plot = MPA1_spectral.plot( + "pressure-energy_density", xlim=[1e22, 1e36], ylim=[1e9, 1e36] +) +MPA1_tabular_plot = MPA1_tabulated.plot( + "pressure-energy_density", xlim=[1e22, 1e36], ylim=[1e9, 1e36] +) +MPA1_spectral_plot.savefig("spectral_mpa1.pdf") +MPA1_tabular_plot.savefig("tabular_mpa1.pdf") diff --git a/examples/gw_examples/injection_examples/roq_example.py b/examples/gw_examples/injection_examples/roq_example.py index 82f87d3e418620c5b86f136b2a81b0da7bfec3b7..254e29aad0e15e27075186cdf40ac5ae579b09e1 100644 --- a/examples/gw_examples/injection_examples/roq_example.py +++ b/examples/gw_examples/injection_examples/roq_example.py @@ -7,14 +7,16 @@ Gaussian noise. This requires files specifying the appropriate basis weights. These aren't shipped with Bilby, but are available on LDG clusters and from the public repository https://git.ligo.org/lscsoft/ROQ_data. -""" -import numpy as np +We also reweight the result using the regular waveform model to check how +correct the ROQ result is. +""" import bilby +import numpy as np -outdir = 'outdir' -label = 'roq' +outdir = "outdir" +label = "roq" # The ROQ bases can be given an overall scaling. # Note how this is applied to durations, frequencies and masses. @@ -33,9 +35,9 @@ freq_nodes_quadratic = np.load("fnodes_quadratic.npy") * scale_factor params = np.genfromtxt("params.dat", names=True) # Get scaled ROQ quantities -minimum_chirp_mass = params['chirpmassmin'] / scale_factor -maximum_chirp_mass = params['chirpmassmax'] / scale_factor -minimum_component_mass = params['compmin'] / scale_factor +minimum_chirp_mass = params["chirpmassmin"] / scale_factor +maximum_chirp_mass = params["chirpmassmax"] / scale_factor +minimum_component_mass = params["compmin"] / scale_factor np.random.seed(170808) @@ -43,73 +45,144 @@ duration = 4 / scale_factor sampling_frequency = 2048 * scale_factor injection_parameters = dict( - mass_1=36.0, mass_2=29.0, a_1=0.4, a_2=0.3, tilt_1=0.0, tilt_2=0.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=1000., theta_jn=0.4, psi=0.659, - phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) - -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=20. * scale_factor) + mass_1=36.0, + mass_2=29.0, + a_1=0.4, + a_2=0.3, + tilt_1=0.0, + tilt_2=0.0, + phi_12=1.7, + phi_jl=0.3, + luminosity_distance=1000.0, + theta_jn=0.4, + psi=0.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-1.2108, +) + +waveform_arguments = dict( + waveform_approximant="IMRPhenomPv2", reference_frequency=20.0 * scale_factor +) waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, waveform_arguments=waveform_arguments, - parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters) + parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters, +) -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1", "V1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3 / scale_factor) -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 2 / scale_factor, +) +ifos.inject_signal( + waveform_generator=waveform_generator, parameters=injection_parameters +) for ifo in ifos: ifo.minimum_frequency = 20 * scale_factor # make ROQ waveform generator search_waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.binary_black_hole_roq, waveform_arguments=dict( frequency_nodes_linear=freq_nodes_linear, frequency_nodes_quadratic=freq_nodes_quadratic, - reference_frequency=20. * scale_factor, waveform_approximant='IMRPhenomPv2'), - parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters) + reference_frequency=20.0 * scale_factor, + waveform_approximant="IMRPhenomPv2", + ), + parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters, +) # Here we add constraints on chirp mass and mass ratio to the prior, these are # determined by the domain of validity of the ROQ basis. priors = bilby.gw.prior.BBHPriorDict() -for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'theta_jn', 'phase', 'psi', 'ra', - 'dec', 'phi_12', 'phi_jl', 'luminosity_distance']: +for key in [ + "a_1", + "a_2", + "tilt_1", + "tilt_2", + "theta_jn", + "phase", + "psi", + "ra", + "dec", + "phi_12", + "phi_jl", + "luminosity_distance", +]: priors[key] = injection_parameters[key] -for key in ['mass_1', 'mass_2']: +for key in ["mass_1", "mass_2"]: priors[key].minimum = max(priors[key].minimum, minimum_component_mass) -priors['chirp_mass'] = bilby.core.prior.Uniform( - name='chirp_mass', minimum=float(minimum_chirp_mass), - maximum=float(maximum_chirp_mass)) -priors['mass_ratio'] = bilby.core.prior.Uniform(0.125, 1, name='mass_ratio') -priors['geocent_time'] = bilby.core.prior.Uniform( - injection_parameters['geocent_time'] - 0.1, - injection_parameters['geocent_time'] + 0.1, latex_label='$t_c$', unit='s') +priors["chirp_mass"] = bilby.core.prior.Uniform( + name="chirp_mass", + minimum=float(minimum_chirp_mass), + maximum=float(maximum_chirp_mass), +) +# The roq parameters typically store the mass ratio bounds as m1/m2 not m2/m1 as in the +# Bilby convention. +priors["mass_ratio"] = bilby.core.prior.Uniform( + 1 / params["qmax"], 1, name="mass_ratio" +) +priors["geocent_time"] = bilby.core.prior.Uniform( + injection_parameters["geocent_time"] - 0.1, + injection_parameters["geocent_time"] + 0.1, + latex_label="$t_c$", + unit="s", +) likelihood = bilby.gw.likelihood.ROQGravitationalWaveTransient( - interferometers=ifos, waveform_generator=search_waveform_generator, - linear_matrix=basis_matrix_linear, quadratic_matrix=basis_matrix_quadratic, - priors=priors, roq_params=params, roq_scale_factor=scale_factor) + interferometers=ifos, + waveform_generator=search_waveform_generator, + linear_matrix=basis_matrix_linear, + quadratic_matrix=basis_matrix_quadratic, + priors=priors, + roq_params=params, + roq_scale_factor=scale_factor, +) # write the weights to file so they can be loaded multiple times -likelihood.save_weights('weights.npz') +likelihood.save_weights("weights.npz") # remove the basis matrices as these are big for longer bases del basis_matrix_linear, basis_matrix_quadratic # load the weights from the file likelihood = bilby.gw.likelihood.ROQGravitationalWaveTransient( - interferometers=ifos, waveform_generator=search_waveform_generator, - weights='weights.npz', priors=priors) + interferometers=ifos, + waveform_generator=search_waveform_generator, + weights="weights.npz", + priors=priors, +) result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='dynesty', npoints=500, - injection_parameters=injection_parameters, outdir=outdir, label=label) - -# Make a corner plot. -result.plot_corner() + likelihood=likelihood, + priors=priors, + sampler="dynesty", + npoints=500, + injection_parameters=injection_parameters, + outdir=outdir, + label=label, +) + +# Resample the result using the full waveform model with the FakeSampler. +# This will give us an idea of how good a job the ROQ does. +full_likelihood = bilby.gw.likelihood.GravitationalWaveTransient( + interferometers=ifos, waveform_generator=waveform_generator +) +resampled_result = bilby.run_sampler( + likelihood=full_likelihood, + priors=priors, + sampler="fake_sampler", + label="roq_resampled", + outdir=outdir, +) + +# Make a comparison corner plot with the two likelihoods. +bilby.core.result.plot_multiple([result, resampled_result], labels=["ROQ", "Regular"]) diff --git a/examples/gw_examples/injection_examples/sine_gaussian_example.py b/examples/gw_examples/injection_examples/sine_gaussian_example.py index d40cb68e89e37a28409c8a292dad4176117a9c20..d253826ea6129ec56a9619b64d097a147b179504 100644 --- a/examples/gw_examples/injection_examples/sine_gaussian_example.py +++ b/examples/gw_examples/injection_examples/sine_gaussian_example.py @@ -8,12 +8,12 @@ import numpy as np # Set the duration and sampling frequency of the data segment that we're going # to inject the signal into -duration = 4. -sampling_frequency = 2048. +duration = 1 +sampling_frequency = 512 # Specify the output directory and the name of the simulation. -outdir = 'outdir' -label = 'sine_gaussian' +outdir = "outdir" +label = "sine_gaussian" bilby.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. This is optional! @@ -23,42 +23,64 @@ np.random.seed(170801) # dictionary of parameters that includes all of the different waveform # parameters injection_parameters = dict( - hrss=1e-22, Q=5.0, frequency=200.0, ra=1.375, dec=-1.2108, - geocent_time=1126259642.413, psi=2.659) + hrss=1e-22, + Q=5.0, + frequency=200.0, + ra=1.375, + dec=-1.2108, + geocent_time=1126259642.413, + psi=2.659, +) # Create the waveform_generator using a sine Gaussian source function waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, - frequency_domain_source_model=bilby.gw.source.sinegaussian) + duration=duration, + sampling_frequency=sampling_frequency, + frequency_domain_source_model=bilby.gw.source.sinegaussian, +) # Set up interferometers. In this case we'll use three interferometers # (LIGO-Hanford (H1), LIGO-Livingston (L1), and Virgo (V1)). These default to # their design sensitivity -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1", "V1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 0.5, +) +ifos.inject_signal( + waveform_generator=waveform_generator, + parameters=injection_parameters, + raise_error=False, +) -# Set up prior, which is a dictionary -priors = dict() -for key in ['psi', 'ra', 'dec', 'geocent_time']: +# Set up the prior. We will fix the "extrinsic" parameters to their true values. +priors = bilby.core.prior.PriorDict() +for key in ["psi", "ra", "dec", "geocent_time"]: priors[key] = injection_parameters[key] -priors['Q'] = bilby.core.prior.Uniform(2, 50, 'Q') -priors['frequency'] = bilby.core.prior.Uniform(30, 1000, 'frequency', unit='Hz') -priors['hrss'] = bilby.core.prior.Uniform(1e-23, 1e-21, 'hrss') +priors["Q"] = bilby.core.prior.Uniform(2, 50, "Q") +priors["frequency"] = bilby.core.prior.Uniform(160, 240, "frequency", unit="Hz") +priors["hrss"] = bilby.core.prior.Uniform(1e-23, 1e-21, "hrss") # Initialise the likelihood by passing in the interferometer data (IFOs) and # the waveoform generator likelihood = bilby.gw.likelihood.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator) + interferometers=ifos, waveform_generator=waveform_generator +) # Run sampler. In this case we're going to use the `dynesty` sampler result = bilby.core.sampler.run_sampler( - likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000, - injection_parameters=injection_parameters, outdir=outdir, label=label) + likelihood=likelihood, + priors=priors, + sampler="dynesty", + nlive=1000, + walks=10, + nact=5, + injection_parameters=injection_parameters, + outdir=outdir, + label=label, +) # make some plots of the outputs result.plot_corner() diff --git a/examples/gw_examples/injection_examples/standard_15d_cbc_tutorial.py b/examples/gw_examples/injection_examples/standard_15d_cbc_tutorial.py index 0e084c051a740537621b2c1e55dfeb88c62708fe..db8222e1e7b86425905225b5483d4b298546b2ed 100644 --- a/examples/gw_examples/injection_examples/standard_15d_cbc_tutorial.py +++ b/examples/gw_examples/injection_examples/standard_15d_cbc_tutorial.py @@ -3,18 +3,20 @@ Tutorial to demonstrate running parameter estimation on a full 15 parameter space for an injected cbc signal. This is the standard injection analysis script one can modify for the study of injected CBC events. + +This will take many hours to run. """ -import numpy as np import bilby +import numpy as np # Set the duration and sampling frequency of the data segment that we're # going to inject the signal into -duration = 4. -sampling_frequency = 2048. +duration = 4.0 +sampling_frequency = 1024.0 # Specify the output directory and the name of the simulation. -outdir = 'outdir' -label = 'full_15_parameters' +outdir = "outdir" +label = "full_15_parameters" bilby.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. This is optional! @@ -25,75 +27,120 @@ np.random.seed(88170235) # parameters, including masses of the two black holes (mass_1, mass_2), # spins of both black holes (a, tilt, phi), etc. injection_parameters = dict( - mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, - phi_12=1.7, phi_jl=0.3, luminosity_distance=2000., theta_jn=0.4, psi=2.659, - phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) + mass_1=36.0, + mass_2=29.0, + a_1=0.4, + a_2=0.3, + tilt_1=0.5, + tilt_2=1.0, + phi_12=1.7, + phi_jl=0.3, + luminosity_distance=2000.0, + theta_jn=0.4, + psi=2.659, + phase=1.3, + geocent_time=1126259642.413, + ra=1.375, + dec=-1.2108, +) # Fixed arguments passed into the source model -waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=50., minimum_frequency=20.) +waveform_arguments = dict( + waveform_approximant="IMRPhenomXPHM", + reference_frequency=50.0, + minimum_frequency=20.0, +) # Create the waveform_generator using a LAL BinaryBlackHole source function # the generator will convert all the parameters waveform_generator = bilby.gw.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters, - waveform_arguments=waveform_arguments) + waveform_arguments=waveform_arguments, +) # Set up interferometers. In this case we'll use two interferometers # (LIGO-Hanford (H1), LIGO-Livingston (L1). These default to their design # sensitivity -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) - -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 2, +) +ifos.inject_signal( + waveform_generator=waveform_generator, parameters=injection_parameters +) # For this analysis, we implement the standard BBH priors defined, except for # the definition of the time prior, which is defined as uniform about the # injected value. -# Furthermore, we decide to sample in chirp mass and mass ratio, due to the -# preferred shape for the associated posterior distributions. +# We change the mass boundaries to be more targeted for the source we +# injected. +# We define priors in the time at the Hanford interferometer and two +# parameters (zenith, azimuth) defining the sky position wrt the two +# interferometers. priors = bilby.gw.prior.BBHPriorDict() -priors.pop('mass_1') -priors.pop('mass_2') -priors['chirp_mass'] = bilby.prior.Uniform( - name='chirp_mass', latex_label='$M$', minimum=10.0, maximum=100.0, - unit='$M_{\\odot}$') - -priors['mass_ratio'] = bilby.prior.Uniform( - name='mass_ratio', latex_label='$q$', minimum=0.5, maximum=1.0) - -priors['geocent_time'] = bilby.core.prior.Uniform( - minimum=injection_parameters['geocent_time'] - 0.1, - maximum=injection_parameters['geocent_time'] + 0.1, - name='geocent_time', latex_label='$t_c$', unit='$s$') +time_delay = ifos[0].time_delay_from_geocenter( + injection_parameters["ra"], + injection_parameters["dec"], + injection_parameters["geocent_time"], +) +priors["H1_time"] = bilby.core.prior.Uniform( + minimum=injection_parameters["geocent_time"] + time_delay - 0.1, + maximum=injection_parameters["geocent_time"] + time_delay + 0.1, + name="H1_time", + latex_label="$t_H$", + unit="$s$", +) +del priors["ra"], priors["dec"] +priors["zenith"] = bilby.core.prior.Sine(latex_label="$\\kappa$") +priors["azimuth"] = bilby.core.prior.Uniform( + minimum=0, maximum=2 * np.pi, latex_label="$\\epsilon$", boundary="periodic" +) # Initialise the likelihood by passing in the interferometer data (ifos) and # the waveoform generator, as well the priors. -# The explicit time, distance, and phase marginalizations are turned on to -# improve convergence, and the parameters are recovered by the conversion -# function. +# The explicit distance marginalization is turned on to improve +# convergence, and the posterior is recovered by the conversion function. likelihood = bilby.gw.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=waveform_generator, priors=priors, - distance_marginalization=True, phase_marginalization=True, time_marginalization=True) - -# Run sampler. In this case we're going to use the `cpnest` sampler -# Note that the maxmcmc parameter is increased so that between each iteration of -# the nested sampler approach, the walkers will move further using an mcmc -# approach, searching the full parameter space. -# The conversion function will determine the distance, phase and coalescence -# time posteriors in post processing. + interferometers=ifos, + waveform_generator=waveform_generator, + priors=priors, + distance_marginalization=True, + phase_marginalization=False, + time_marginalization=False, + reference_frame="H1L1", + time_reference="H1", +) + +# Run sampler. In this case we're going to use the `dynesty` sampler +# Note that the `walks`, `nact`, and `maxmcmc` parameter are specified +# to ensure sufficient convergence of the analysis. +# We set `npool=4` to parallelize the analysis over four cores. +# The conversion function will determine the distance posterior in post processing result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='cpnest', npoints=2000, - injection_parameters=injection_parameters, outdir=outdir, - label=label, maxmcmc=2000, - conversion_function=bilby.gw.conversion.generate_all_bbh_parameters) + likelihood=likelihood, + priors=priors, + sampler="dynesty", + nlive=1000, + walks=20, + nact=50, + maxmcmc=2000, + npool=4, + injection_parameters=injection_parameters, + outdir=outdir, + label=label, + conversion_function=bilby.gw.conversion.generate_all_bbh_parameters, + result_class=bilby.gw.result.CBCResult, +) + +# Plot the inferred waveform superposed on the actual data. +result.plot_waveform_posterior(n_samples=1000) # Make a corner plot. result.plot_corner() diff --git a/examples/gw_examples/injection_examples/using_gwin.py b/examples/gw_examples/injection_examples/using_gwin.py deleted file mode 100644 index de68a82886ed8f262d0f5bef5ddf98629be13b8d..0000000000000000000000000000000000000000 --- a/examples/gw_examples/injection_examples/using_gwin.py +++ /dev/null @@ -1,92 +0,0 @@ -#!/usr/bin/env python -""" -An example of how to use bilby with `gwin` (https://github.com/gwastro/gwin) to -perform CBC parameter estimation. - -To run this example, it is sufficient to use the pip-installable pycbc package, -but the source installation of gwin. You can install this by cloning the -repository (https://github.com/gwastro/gwin) and running - -$ python setup.py install - -A practical difference between gwin and bilby is that while fixed parameters -are specified via the prior in bilby, in gwin, these are fixed at instantiation -of the model. So, in the following, we only create priors for the parameters -to be searched over. - -""" -import numpy as np -import bilby - -import gwin -from pycbc import psd as pypsd -from pycbc.waveform.generator import (FDomainDetFrameGenerator, - FDomainCBCGenerator) - -label = 'using_gwin' - -# Search priors -priors = dict() -priors['distance'] = bilby.core.prior.Uniform(500, 2000, 'distance') -priors['polarization'] = bilby.core.prior.Uniform(0, np.pi, 'theta_jn') - -# Data variables -seglen = 4 -sample_rate = 2048 -N = seglen * sample_rate / 2 + 1 -fmin = 30. - -# Injected signal variables -injection_parameters = dict(mass1=38.6, mass2=29.3, spin1z=0, spin2z=0, - tc=0, ra=3.1, dec=1.37, polarization=2.76, - distance=1500) - -# These lines figure out which parameters are to be searched over -variable_parameters = priors.keys() -fixed_parameters = injection_parameters.copy() -for key in priors: - fixed_parameters.pop(key) - -# These lines generate the `model` object - see -# https://gwin.readthedocs.io/en/latest/api/gwin.models.gaussian_noise.html -generator = FDomainDetFrameGenerator( - FDomainCBCGenerator, 0., - variable_args=variable_parameters, detectors=['H1', 'L1'], - delta_f=1. / seglen, f_lower=fmin, - approximant='IMRPhenomPv2', **fixed_parameters) -signal = generator.generate(**injection_parameters) -psd = pypsd.aLIGOZeroDetHighPower(int(N), 1. / seglen, 20.) -psds = {'H1': psd, 'L1': psd} -model = gwin.models.GaussianNoise( - variable_parameters, signal, generator, fmin, psds=psds) -model.update(**injection_parameters) - - -# This create a dummy class to convert the model into a bilby.likelihood object -class GWINLikelihood(bilby.core.likelihood.Likelihood): - - def __init__(self, model): - """ A likelihood to wrap around GWIN model objects - - Parameters - ---------- - model: gwin.model.GaussianNoise - A gwin model - - """ - self.model = model - self.parameters = {x: None for x in self.model.variable_params} - - def log_likelihood(self): - self.model.update(**self.parameters) - return self.model.loglikelihood - - -likelihood = GWINLikelihood(model) - - -# Now run the inference -result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='dynesty', npoints=500, - label=label) -result.plot_corner() diff --git a/examples/gw_examples/supernova_example/supernova_example.py b/examples/gw_examples/supernova_example/supernova_example.py index b5de9f40775a91f27dce75a2a3fe549d6ca4a2c8..1d79fc650bcb6d63d5734d8715bccab1dc67ef0a 100644 --- a/examples/gw_examples/supernova_example/supernova_example.py +++ b/examples/gw_examples/supernova_example/supernova_example.py @@ -6,18 +6,22 @@ supernova injected signal. Signal model is made by applying PCA to a set of supernova waveforms. The first few PCs are then linearly combined with a scale factor. (See https://arxiv.org/pdf/1202.3256.pdf) +For this example we use `PyMultiNest`, this can be installed using + +conda install -c conda-forge pymultinest """ -import numpy as np import bilby +import numpy as np # Set the duration and sampling frequency of the data segment that we're going -# to inject the signal into -duration = 3. -sampling_frequency = 4096. +# to inject the signal into. +# These are fixed by the resolution in the injection file that we are using. +duration = 3 +sampling_frequency = 4096 # Specify the output directory and the name of the simulation. -outdir = 'outdir' -label = 'supernova' +outdir = "outdir" +label = "supernova" bilby.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. This is optional! @@ -27,70 +31,92 @@ np.random.seed(170801) # of parameters that includes all of the different waveform parameters. It will # read in a signal to inject from a txt file. -injection_parameters = dict(file_path='MuellerL15_example_inj.txt', - luminosity_distance=7.0, ra=4.6499, - dec=-0.5063, geocent_time=1126259642.413, - psi=2.659) +injection_parameters = dict( + luminosity_distance=7.0, + ra=4.6499, + dec=-0.5063, + geocent_time=1126259642.413, + psi=2.659, +) # Create the waveform_generator using a supernova source function waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.supernova, - parameters=injection_parameters) + parameters=injection_parameters, + parameter_conversion=lambda parameters: (parameters, list()), + waveform_arguments=dict(file_path="MuellerL15_example_inj.txt"), +) # Set up interferometers. In this case we'll use three interferometers # (LIGO-Hanford (H1), LIGO-Livingston (L1), and Virgo (V1)). These default to # their design sensitivity -ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) +ifos = bilby.gw.detector.InterferometerList(["H1", "L1"]) ifos.set_strain_data_from_power_spectral_densities( - sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time'] - 3) -ifos.inject_signal(waveform_generator=waveform_generator, - parameters=injection_parameters) + sampling_frequency=sampling_frequency, + duration=duration, + start_time=injection_parameters["geocent_time"] - 1.5, +) +ifos.inject_signal( + waveform_generator=waveform_generator, + parameters=injection_parameters, + raise_error=False, +) # read in from a file the PCs used to create the signal model. -realPCs = np.loadtxt('SupernovaRealPCs.txt') -imagPCs = np.loadtxt('SupernovaImagPCs.txt') +realPCs = np.genfromtxt("SupernovaRealPCs.txt") +imagPCs = np.genfromtxt("SupernovaImagPCs.txt") # Now we make another waveform_generator because the signal model is # not the same as the injection in this case. -simulation_parameters = dict( - realPCs=realPCs, imagPCs=imagPCs) +simulation_parameters = dict(realPCs=realPCs, imagPCs=imagPCs) search_waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( - duration=duration, sampling_frequency=sampling_frequency, + duration=duration, + sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.supernova_pca_model, - waveform_arguments=simulation_parameters) + waveform_arguments=simulation_parameters, +) # Set up prior -priors = dict() -for key in ['psi', 'geocent_time']: +priors = bilby.core.prior.PriorDict() +for key in ["psi", "geocent_time"]: priors[key] = injection_parameters[key] -priors['luminosity_distance'] = bilby.core.prior.Uniform( - 2, 20, 'luminosity_distance', unit='$kpc$') -priors['pc_coeff1'] = bilby.core.prior.Uniform(-1, 1, 'pc_coeff1') -priors['pc_coeff2'] = bilby.core.prior.Uniform(-1, 1, 'pc_coeff2') -priors['pc_coeff3'] = bilby.core.prior.Uniform(-1, 1, 'pc_coeff3') -priors['pc_coeff4'] = bilby.core.prior.Uniform(-1, 1, 'pc_coeff4') -priors['pc_coeff5'] = bilby.core.prior.Uniform(-1, 1, 'pc_coeff5') -priors['ra'] = bilby.core.prior.Uniform(minimum=0, maximum=2 * np.pi, - name='ra') -priors['dec'] = bilby.core.prior.Sine(name='dec') -priors['geocent_time'] = bilby.core.prior.Uniform( - injection_parameters['geocent_time'] - 1, - injection_parameters['geocent_time'] + 1, - 'geocent_time', unit='$s$') +priors["luminosity_distance"] = bilby.core.prior.Uniform( + 2, 20, "luminosity_distance", unit="$kpc$" +) +priors["pc_coeff1"] = bilby.core.prior.Uniform(-1, 1, "pc_coeff1") +priors["pc_coeff2"] = bilby.core.prior.Uniform(-1, 1, "pc_coeff2") +priors["pc_coeff3"] = bilby.core.prior.Uniform(-1, 1, "pc_coeff3") +priors["pc_coeff4"] = bilby.core.prior.Uniform(-1, 1, "pc_coeff4") +priors["pc_coeff5"] = bilby.core.prior.Uniform(-1, 1, "pc_coeff5") +priors["ra"] = bilby.core.prior.Uniform( + minimum=0, maximum=2 * np.pi, name="ra", boundary="periodic" +) +priors["dec"] = bilby.core.prior.Sine(name="dec") +priors["geocent_time"] = bilby.core.prior.Uniform( + injection_parameters["geocent_time"] - 1, + injection_parameters["geocent_time"] + 1, + "geocent_time", + unit="$s$", +) # Initialise the likelihood by passing in the interferometer data (IFOs) and # the waveoform generator likelihood = bilby.gw.likelihood.GravitationalWaveTransient( - interferometers=ifos, waveform_generator=search_waveform_generator) + interferometers=ifos, waveform_generator=search_waveform_generator +) # Run sampler. result = bilby.run_sampler( - likelihood=likelihood, priors=priors, sampler='dynesty', npoints=500, - outdir=outdir, label=label) + likelihood=likelihood, + priors=priors, + sampler="pymultinest", + npoints=500, + outdir=outdir, + label=label, +) # make some plots of the outputs result.plot_corner() -print(result) diff --git a/examples/tutorials/fitting_with_x_and_y_errors.ipynb b/examples/tutorials/fitting_with_x_and_y_errors.ipynb index 6cda25778ac0c0ec54c1b0dd43677e1d94cd72de..56d2969053d44698519b5737f86d1c039ccf19ad 100644 --- a/examples/tutorials/fitting_with_x_and_y_errors.ipynb +++ b/examples/tutorials/fitting_with_x_and_y_errors.ipynb @@ -6,20 +6,7 @@ "source": [ "# Fitting a model to data with both x and y errors with `Bilby`\n", "\n", - "Usually when we fit a model to data with a Gaussian Likelihood we assume that we know x values exactly. This is almost never the case. Here we show how to fit a model with errors in both x and y.\n", - "\n", - "Since we are using a very simple model we will use the `nestle` sampler.\n", - "This can be installed using\n", - "\n", - "```console\n", - "$ conda install -c conda-forge nestle\n", - "```\n", - "\n", - "or\n", - "\n", - "```console\n", - "$ pip install nestle\n", - "```" + "Usually when we fit a model to data with a Gaussian Likelihood we assume that we know x values exactly. This is almost never the case. Here we show how to fit a model with errors in both x and y." ] }, { @@ -62,10 +49,10 @@ " xtrue = np.linspace(0, 100, points)\n", " ytrue = model(x=xtrue, m=m, c=c)\n", "\n", - " xerr = xerr * np.random.randn(points)\n", - " yerr = yerr * np.random.randn(points)\n", - " xobs = xtrue + xerr\n", - " yobs = ytrue + yerr\n", + " xerr_vals = xerr * np.random.randn(points)\n", + " yerr_vals = yerr * np.random.randn(points)\n", + " xobs = xtrue + xerr_vals\n", + " yobs = ytrue + yerr_vals\n", "\n", " plt.errorbar(xobs, yobs, xerr=xerr, yerr=yerr, fmt=\"x\")\n", " plt.errorbar(xtrue, ytrue, yerr=yerr, color=\"black\", alpha=0.5)\n", @@ -108,7 +95,7 @@ " m=bilby.core.prior.Uniform(0, 30, \"m\"), c=bilby.core.prior.Uniform(0, 30, \"c\")\n", ")\n", "\n", - "sampler_kwargs = dict(priors=priors, sampler=\"nestle\", nlive=1000, outdir=\"outdir\", verbose=False)" + "sampler_kwargs = dict(priors=priors, sampler=\"bilby_mcmc\", nsamples=1000, printdt=5, outdir=\"outdir\", verbose=False, clean=True)" ] }, { diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..41b21bf9462e969b24d03bfea6bd0ef33f5e474a --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,10 @@ +[build-system] +requires = [ + "setuptools>=42", + "setuptools_scm[toml]>=3.4.3", + "wheel", +] +build-backend = "setuptools.build_meta" + +[tool.setuptools_scm] +write_to = "bilby/_version.py" \ No newline at end of file diff --git a/requirements.txt b/requirements.txt index 70e457fcaca3e0d459bcf524f47300af8f1d9e93..b69a3c7ce373c9df519b9d75a35b3e7260bf43cc 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,3 +1,4 @@ +bilby.cython>=0.3.0 dynesty<1.1 emcee corner diff --git a/sampler_requirements.txt b/sampler_requirements.txt index d60093c8b1b3e2abd5af5397f02f1986655f5e04..64d2c8c50bdf1d44292952d97f780423c3c6c213 100644 --- a/sampler_requirements.txt +++ b/sampler_requirements.txt @@ -3,7 +3,7 @@ dynesty emcee nestle ptemcee -pymc3>=3.6 +pymc>=4.0.0 pymultinest kombine ultranest>=3.0.0 diff --git a/setup.py b/setup.py index 1bb6b864940ecea1ba0704dc000960936050b19f..e8b575d2949fb429fa569af8ee7a575815c2e4d3 100644 --- a/setup.py +++ b/setup.py @@ -1,7 +1,6 @@ #!/usr/bin/env python from setuptools import setup -import subprocess import sys import os @@ -10,44 +9,6 @@ if python_version < (3, 8): sys.exit("Python < 3.8 is not supported, aborting setup") -def write_version_file(version): - """Writes a file with version information to be used at run time - - Parameters - ---------- - version: str - A string containing the current version information - - Returns - ------- - version_file: str - A path to the version file - - """ - try: - git_log = subprocess.check_output( - ["git", "log", "-1", "--pretty=%h %ai"] - ).decode("utf-8") - git_diff = ( - subprocess.check_output(["git", "diff", "."]) - + subprocess.check_output(["git", "diff", "--cached", "."]) - ).decode("utf-8") - if git_diff == "": - git_status = "(CLEAN) " + git_log - else: - git_status = "(UNCLEAN) " + git_log - except Exception as e: - print("Unable to obtain git version information, exception: {}".format(e)) - git_status = "release" - - version_file = ".version" - if os.path.isfile(version_file) is False: - with open("bilby/" + version_file, "w+") as f: - f.write("{}: {}".format(version, git_status)) - - return version_file - - def get_long_description(): """Finds the README and reads in the description""" here = os.path.abspath(os.path.dirname(__file__)) @@ -73,8 +34,6 @@ def readfile(filename): return filecontents -VERSION = '1.1.5' -version_file = write_version_file(VERSION) long_description = get_long_description() setup( @@ -86,7 +45,6 @@ setup( author="Greg Ashton, Moritz Huebner, Paul Lasky, Colm Talbot", author_email="paul.lasky@monash.edu", license="MIT", - version=VERSION, packages=[ "bilby", "bilby.bilby_mcmc", @@ -107,7 +65,6 @@ setup( "bilby.gw": ["prior_files/*"], "bilby.gw.detector": ["noise_curves/*.txt", "detectors/*"], "bilby.gw.eos": ["eos_tables/*.dat"], - "bilby": [version_file], }, python_requires=">=3.8", install_requires=get_requirements(), diff --git a/test/bilby_mcmc/test_sampler.py b/test/bilby_mcmc/test_sampler.py index aa52967da16cbfbf754279deed3c83139632d1e7..746eb1a9e1150732e93d5c31664751040e7b639c 100644 --- a/test/bilby_mcmc/test_sampler.py +++ b/test/bilby_mcmc/test_sampler.py @@ -3,7 +3,7 @@ import shutil import unittest import bilby -from bilby.bilby_mcmc.sampler import Bilby_MCMC, BilbyMCMCSampler, _initialize_global_variables +from bilby.bilby_mcmc.sampler import Bilby_MCMC, BilbyMCMCSampler from bilby.bilby_mcmc.utils import ConvergenceInputs from bilby.core.sampler.base_sampler import SamplerError import numpy as np @@ -44,7 +44,12 @@ class TestBilbyMCMCSampler(unittest.TestCase): search_parameter_keys = ['m', 'c'] use_ratio = False - _initialize_global_variables(likelihood, priors, search_parameter_keys, use_ratio) + bilby.core.sampler.base_sampler._initialize_global_variables( + likelihood, + priors, + search_parameter_keys, + use_ratio, + ) def tearDown(self): if os.path.isdir(self.outdir): diff --git a/test/check_author_list.py b/test/check_author_list.py index 98352318a503eb588b566d6b6b368e24caa5f1d9..752f6d2debe715e94ddf6958b544c82a7d730f52 100644 --- a/test/check_author_list.py +++ b/test/check_author_list.py @@ -26,7 +26,7 @@ def remove_accents(raw_text): raw_text = re.sub(u"[ß]", 'ss', raw_text) raw_text = re.sub(u"[ñ]", 'n', raw_text) - return(raw_text) + return raw_text fail_test = False diff --git a/test/core/prior/conditional_test.py b/test/core/prior/conditional_test.py index 3f7e8873169572ab0d6a096c6ddc8ad4f67078d2..94a869936fc6cd71cc3647e51a5a372e08ed4544 100644 --- a/test/core/prior/conditional_test.py +++ b/test/core/prior/conditional_test.py @@ -1,7 +1,10 @@ +import os +import shutil import unittest from unittest import mock import numpy as np +import pandas as pd import bilby @@ -320,6 +323,43 @@ class TestConditionalPriorDict(unittest.TestCase): expected.append(expected[-1] * self.test_sample[f"var_{ii}"]) self.assertListEqual(expected, res) + def test_rescale_with_joint_prior(self): + """ + Add a joint prior into the conditional prior dictionary and check that + the returned list is flat. + """ + + # set multivariate Gaussian distribution + names = ["mvgvar_0", "mvgvar_1"] + mu = [[0.79, -0.83]] + cov = [[[0.03, 0.], [0., 0.04]]] + mvg = bilby.core.prior.MultivariateGaussianDist(names, mus=mu, covs=cov) + + priordict = bilby.core.prior.ConditionalPriorDict( + dict( + var_3=self.prior_3, + var_2=self.prior_2, + var_0=self.prior_0, + var_1=self.prior_1, + mvgvar_0=bilby.core.prior.MultivariateGaussian(mvg, "mvgvar_0"), + mvgvar_1=bilby.core.prior.MultivariateGaussian(mvg, "mvgvar_1"), + ) + ) + + ref_variables = list(self.test_sample.values()) + [0.4, 0.1] + keys = list(self.test_sample.keys()) + names + res = priordict.rescale(keys=keys, theta=ref_variables) + + self.assertIsInstance(res, list) + self.assertEqual(np.shape(res), (6,)) + self.assertListEqual([isinstance(r, float) for r in res], 6 * [True]) + + # check conditional values are still as expected + expected = [self.test_sample["var_0"]] + for ii in range(1, 4): + expected.append(expected[-1] * self.test_sample[f"var_{ii}"]) + self.assertListEqual(expected, res[0:4]) + def test_cdf(self): """ Test that the CDF method is the inverse of the rescale method. @@ -371,5 +411,33 @@ class TestConditionalPriorDict(unittest.TestCase): print(res) +class TestDirichletPrior(unittest.TestCase): + + def setUp(self): + self.priors = bilby.core.prior.DirichletPriorDict(5) + + def tearDown(self): + if os.path.isdir("priors"): + shutil.rmtree("priors") + + def test_samples_sum_to_less_than_one(self): + """ + Test that the samples sum to less than one as required for the + Dirichlet distribution. + """ + samples = pd.DataFrame(self.priors.sample(10000)).values + self.assertLess(max(np.sum(samples, axis=1)), 1) + + def test_read_write_file(self): + self.priors.to_file(outdir="priors", label="test") + test = bilby.core.prior.PriorDict(filename="priors/test.prior") + self.assertEqual(self.priors, test) + + def test_read_write_json(self): + self.priors.to_json(outdir="priors", label="test") + test = bilby.core.prior.PriorDict.from_json(filename="priors/test_prior.json") + self.assertEqual(self.priors, test) + + if __name__ == "__main__": unittest.main() diff --git a/test/core/prior/joint_test.py b/test/core/prior/joint_test.py index 20b88a69e6e749f6ba8ec9091132103dd2a7ed48..ebadfcfaeb96ed1cd017a212097c8ff65f5c477c 100644 --- a/test/core/prior/joint_test.py +++ b/test/core/prior/joint_test.py @@ -39,5 +39,61 @@ MultivariateGaussianDist( ) +class TestMultivariateGaussianDistParameterScales(unittest.TestCase): + def _test_mvg_ln_prob_diff_expected(self, mvg, mus, sigmas, corrcoefs): + # the columns of the Cholesky decompsition give the directions along which + # the multivariate Gaussian PDF will decrease by exact differences per unit + # sigma; test that these are as expected + ln_prob_mus = mvg.ln_prob(mus) + d = np.linalg.cholesky(corrcoefs) + for i in np.ndindex(4, 4, 4): + ln_prob_mus_sigmas_d_i = mvg.ln_prob(mus + sigmas * (d @ i)) + diff_ln_prob = ln_prob_mus - ln_prob_mus_sigmas_d_i + diff_ln_prob_expected = 0.5 * np.sum(np.array(i)**2) + self.assertTrue( + np.allclose(diff_ln_prob, diff_ln_prob_expected) + ) + + def test_mvg_unit_scales(self): + # test using order-unity standard deviations and correlations + sigmas = 0.3 * np.ones(3) + corrcoefs = np.identity(3) + mus = np.array([3, 1, 2]) + mvg = bilby.core.prior.MultivariateGaussianDist( + names=['a', 'b', 'c'], + mus=mus, + sigmas=sigmas, + corrcoefs=corrcoefs, + ) + + self._test_mvg_ln_prob_diff_expected(mvg, mus, sigmas, corrcoefs) + + def test_mvg_cw_scales(self): + # test using standard deviations and correlations from the + # inverse Fisher information matrix for the frequency/spindown + # parameters of a continuous wave signal + T = 365.25 * 86400 + rho = 10 + sigmas = np.array([ + 5 * np.sqrt(3) / (2 * np.pi * T * rho), + 6 * np.sqrt(5) / (np.pi * T**2 * rho), + 60 * np.sqrt(7) / (np.pi * T**3 * rho) + ]) + corrcoefs = np.identity(3) + corrcoefs[0, 2] = corrcoefs[2, 0] = -np.sqrt(21) / 5 + + # test MultivariateGaussianDist() can handle parameters with very different scales: + # - f ~ 100, fd ~ 1/T, fdd ~ 1/T^2 + mus = [123.4, -5.6e-8, 9e-18] + mvg = bilby.core.prior.MultivariateGaussianDist( + names=["f", "fd", "fdd"], + mus=mus, + sigmas=sigmas, + corrcoefs=corrcoefs, + ) + + self._test_mvg_ln_prob_diff_expected(mvg, mus, sigmas, corrcoefs) + + if __name__ == "__main__": unittest.main() diff --git a/test/core/prior/prior_test.py b/test/core/prior/prior_test.py index 9241945433cca240af4a4dc740b537d24aa59c83..3fd77af938a4abf8fad832a669e89f797ea87f5f 100644 --- a/test/core/prior/prior_test.py +++ b/test/core/prior/prior_test.py @@ -673,7 +673,7 @@ class TestPriorClasses(unittest.TestCase): "bilby.core.prior.MultivariateGaussianDist", ) elif isinstance(prior, bilby.gw.prior.HealPixPrior): - repr_prior_string = "bilby.gw.prior." + repr(prior) + repr_prior_string = repr(prior) repr_prior_string = repr_prior_string.replace( "HealPixMapPriorDist", "bilby.gw.prior.HealPixMapPriorDist" ) diff --git a/test/core/sampler/base_sampler_test.py b/test/core/sampler/base_sampler_test.py index 30be5e2ba542205d4cdbef10c6f8e9d681bcbbf1..4856a9e7df4922bf94fe26746972bb1864774535 100644 --- a/test/core/sampler/base_sampler_test.py +++ b/test/core/sampler/base_sampler_test.py @@ -1,7 +1,9 @@ import copy import os +import shutil import unittest from unittest.mock import MagicMock +from parameterized import parameterized import numpy as np @@ -60,6 +62,15 @@ class TestSampler(unittest.TestCase): def test_label(self): self.assertEqual(self.sampler.label, "label") + @parameterized.expand(["sampling_seed", "seed", "random_seed"]) + def test_translate_kwargs(self, key): + self.sampler.sampling_seed_key = key + for k in self.sampler.sampling_seed_equiv_kwargs: + kwargs = {k: 1234} + updated_kwargs = self.sampler._translate_kwargs(kwargs) + self.assertDictEqual(updated_kwargs, {key: 1234}) + self.sampler.sampling_seed_key = None + def test_prior_transform_transforms_search_parameter_keys(self): self.sampler.prior_transform([0]) expected_prior = prior.Uniform(0, 1) @@ -102,22 +113,100 @@ class TestSampler(unittest.TestCase): self.sampler._check_bad_value(val=np.nan, warning=False, theta=None, label=None) def test_bad_value_np_abs_nan(self): - self.sampler._check_bad_value(val=np.abs(np.nan), warning=False, theta=None, label=None) + self.sampler._check_bad_value( + val=np.abs(np.nan), warning=False, theta=None, label=None + ) def test_bad_value_abs_nan(self): - self.sampler._check_bad_value(val=abs(np.nan), warning=False, theta=None, label=None) + self.sampler._check_bad_value( + val=abs(np.nan), warning=False, theta=None, label=None + ) def test_bad_value_pos_inf(self): self.sampler._check_bad_value(val=np.inf, warning=False, theta=None, label=None) def test_bad_value_neg_inf(self): - self.sampler._check_bad_value(val=-np.inf, warning=False, theta=None, label=None) + self.sampler._check_bad_value( + val=-np.inf, warning=False, theta=None, label=None + ) def test_bad_value_pos_inf_nan_to_num(self): - self.sampler._check_bad_value(val=np.nan_to_num(np.inf), warning=False, theta=None, label=None) + self.sampler._check_bad_value( + val=np.nan_to_num(np.inf), warning=False, theta=None, label=None + ) def test_bad_value_neg_inf_nan_to_num(self): - self.sampler._check_bad_value(val=np.nan_to_num(-np.inf), warning=False, theta=None, label=None) + self.sampler._check_bad_value( + val=np.nan_to_num(-np.inf), warning=False, theta=None, label=None + ) + + +samplers = [ + "bilby_mcmc", + "dynamic_dynesty", + "dynesty", + "emcee", + "kombine", + "ptemcee", + "zeus", +] + + +class GenericSamplerTest(unittest.TestCase): + def setUp(self): + self.likelihood = bilby.core.likelihood.Likelihood(dict()) + self.priors = bilby.core.prior.PriorDict( + dict(a=bilby.core.prior.Uniform(0, 1), b=bilby.core.prior.Uniform(0, 1)) + ) + + def tearDown(self): + if os.path.isdir("outdir"): + shutil.rmtree("outdir") + + @parameterized.expand(samplers) + def test_pool_creates_properly_no_pool(self, sampler_name): + sampler = bilby.core.sampler.IMPLEMENTED_SAMPLERS[sampler_name]( + self.likelihood, self.priors + ) + sampler._setup_pool() + if sampler_name == "kombine": + from kombine import SerialPool + + self.assertIsInstance(sampler.pool, SerialPool) + pass + else: + self.assertIsNone(sampler.pool) + + @parameterized.expand(samplers) + def test_pool_creates_properly_pool(self, sampler): + sampler = bilby.core.sampler.IMPLEMENTED_SAMPLERS[sampler]( + self.likelihood, self.priors, npool=2 + ) + sampler._setup_pool() + if hasattr(sampler, "setup_sampler"): + sampler.setup_sampler() + self.assertEqual(sampler.pool._processes, 2) + sampler._close_pool() + + +class ReorderLikelihoodsTest(unittest.TestCase): + def setUp(self): + self.unsorted_ln_likelihoods = np.array([1, 5, 2, 5, 1]) + self.unsorted_samples = np.array([[0, 1], [1, 1], [1, 0], [0, 0], [0, 1]]) + self.sorted_samples = np.array([[0, 1], [0, 1], [1, 0], [1, 1], [0, 0]]) + self.sorted_ln_likelihoods = np.array([1, 1, 2, 5, 5]) + + def tearDown(self): + pass + + def test_ordering(self): + func = bilby.core.sampler.base_sampler.NestedSampler.reorder_loglikelihoods + sorted_ln_likelihoods = func( + self.unsorted_ln_likelihoods, self.unsorted_samples, self.sorted_samples + ) + self.assertTrue( + np.array_equal(sorted_ln_likelihoods, self.sorted_ln_likelihoods) + ) if __name__ == "__main__": diff --git a/test/core/sampler/nessai_test.py b/test/core/sampler/nessai_test.py index 86b03fb38e74afb5ce75c06b5fbd91add3d7f49e..7f6ec21a8a5d26b606e8c6f8aa3cae3ede905ca2 100644 --- a/test/core/sampler/nessai_test.py +++ b/test/core/sampler/nessai_test.py @@ -20,9 +20,11 @@ class TestNessai(unittest.TestCase): use_ratio=False, plot=False, skip_import_verification=True, + sampling_seed=150914, ) self.expected = self.sampler.default_kwargs self.expected['output'] = 'outdir/label_nessai/' + self.expected['seed'] = 150914 def tearDown(self): del self.likelihood @@ -54,14 +56,7 @@ class TestNessai(unittest.TestCase): self.assertDictEqual(expected, self.sampler.kwargs) def test_translate_kwargs_seed(self): - expected = self.expected.copy() - expected["seed"] = 150914 - for equiv in bilby.core.sampler.nessai.Nessai.seed_equiv_kwargs: - new_kwargs = self.sampler.kwargs.copy() - del new_kwargs["seed"] - new_kwargs[equiv] = 150914 - self.sampler.kwargs = new_kwargs - self.assertDictEqual(expected, self.sampler.kwargs) + assert self.expected["seed"] == 150914 def test_npool_max_threads(self): expected = self.expected.copy() diff --git a/test/core/sampler/pymc3_test.py b/test/core/sampler/pymc_test.py similarity index 89% rename from test/core/sampler/pymc3_test.py rename to test/core/sampler/pymc_test.py index b3bb758d3270602debdda62f12e6279f9c48d534..c904e1fd880d2fc2ad6c4864ad1dac68424917c2 100644 --- a/test/core/sampler/pymc3_test.py +++ b/test/core/sampler/pymc_test.py @@ -1,22 +1,16 @@ import unittest from unittest.mock import MagicMock -import pytest - import bilby -@pytest.mark.xfail( - raises=AttributeError, - reason="Dependency issue with pymc3 causes attribute error on import", -) -class TestPyMC3(unittest.TestCase): +class TestPyMC(unittest.TestCase): def setUp(self): self.likelihood = MagicMock() self.priors = bilby.core.prior.PriorDict( dict(a=bilby.core.prior.Uniform(0, 1), b=bilby.core.prior.Uniform(0, 1)) ) - self.sampler = bilby.core.sampler.Pymc3( + self.sampler = bilby.core.sampler.Pymc( self.likelihood, self.priors, outdir="outdir", @@ -37,7 +31,7 @@ class TestPyMC3(unittest.TestCase): step=None, init="auto", n_init=200000, - start=None, + initvals=None, trace=None, chain_idx=0, chains=2, @@ -61,7 +55,7 @@ class TestPyMC3(unittest.TestCase): step=None, init="auto", n_init=200000, - start=None, + initvals=None, trace=None, chain_idx=0, chains=2, diff --git a/test/core/sampler/ultranest_test.py b/test/core/sampler/ultranest_test.py index dc578cd71932c877f0de8414361781cc86837789..be22c1a1f50b8d304000fcb8d0e4816e57c9c1b9 100644 --- a/test/core/sampler/ultranest_test.py +++ b/test/core/sampler/ultranest_test.py @@ -28,7 +28,7 @@ class TestUltranest(unittest.TestCase): def test_default_kwargs(self): expected = dict( - resume=True, + resume="overwrite", show_status=True, num_live_points=None, wrapped_params=None, @@ -63,7 +63,7 @@ class TestUltranest(unittest.TestCase): def test_translate_kwargs(self): expected = dict( - resume=True, + resume="overwrite", show_status=True, num_live_points=123, wrapped_params=None, diff --git a/test/gw/conversion_test.py b/test/gw/conversion_test.py index 54dd064f08e956587debb4951dcf08270efaa612..dbe2ae75a5f65a1c9af6eb13048d3ae4d399f4e7 100644 --- a/test/gw/conversion_test.py +++ b/test/gw/conversion_test.py @@ -3,6 +3,7 @@ import unittest import numpy as np import pandas as pd + import bilby from bilby.gw import conversion @@ -99,6 +100,13 @@ class TestBasicConversions(unittest.TestCase): ) self.assertAlmostEqual(self.total_mass, total_mass) + def test_chirp_mass_and_mass_ratio_to_component_masses(self): + mass_1, mass_2 = \ + conversion.chirp_mass_and_mass_ratio_to_component_masses( + self.chirp_mass, self.mass_ratio) + self.assertAlmostEqual(self.mass_1, mass_1) + self.assertAlmostEqual(self.mass_2, mass_2) + def test_component_masses_to_chirp_mass(self): chirp_mass = conversion.component_masses_to_chirp_mass(self.mass_1, self.mass_2) self.assertAlmostEqual(self.chirp_mass, chirp_mass) @@ -465,6 +473,39 @@ class TestGenerateAllParameters(unittest.TestCase): for key in expected: self.assertIn(key, new_parameters) + def test_generate_bbh_paramters_with_likelihood(self): + priors = bilby.gw.prior.BBHPriorDict() + priors["geocent_time"] = bilby.core.prior.Uniform(0.4, 0.6) + ifos = bilby.gw.detector.InterferometerList(["H1"]) + ifos.set_strain_data_from_power_spectral_densities(duration=1, sampling_frequency=256) + wfg = bilby.gw.waveform_generator.WaveformGenerator( + frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole + ) + likelihood = bilby.gw.likelihood.GravitationalWaveTransient( + interferometers=ifos, + waveform_generator=wfg, + priors=priors, + phase_marginalization=True, + time_marginalization=True, + reference_frame="H1L1", + ) + self.parameters["zenith"] = 0.0 + self.parameters["azimuth"] = 0.0 + del self.parameters["ra"], self.parameters["dec"] + converted = bilby.gw.conversion.generate_all_bbh_parameters( + sample=self.parameters, likelihood=likelihood, priors=priors + ) + extra_expected = [ + "geocent_time", + "phase", + "H1_optimal_snr", + "H1_matched_filter_snr", + "ra", + "dec", + ] + for key in extra_expected: + self.assertIn(key, converted) + class TestDistanceTransformations(unittest.TestCase): def setUp(self): @@ -490,5 +531,130 @@ class TestDistanceTransformations(unittest.TestCase): self.assertAlmostEqual(max(abs(dl - self.distances)), 0, 4) +class TestGenerateMassParameters(unittest.TestCase): + def setUp(self): + self.expected_values = {'mass_1': 2.0, + 'mass_2': 1.0, + 'chirp_mass': 1.2167286837864113, + 'total_mass': 3.0, + 'mass_1_source': 4.0, + 'mass_2_source': 2.0, + 'chirp_mass_source': 2.433457367572823, + 'total_mass_source': 6, + 'symmetric_mass_ratio': 0.2222222222222222, + 'mass_ratio': 0.5} + + def helper_generation_from_keys(self, keys, expected_values, source=False): + # Explicitly test the helper generate_component_masses + local_test_vars = \ + {key: expected_values[key] for key in keys} + local_test_vars_with_component_masses = \ + conversion.generate_component_masses(local_test_vars, source=source) + if source: + self.assertTrue("mass_1_source" in local_test_vars_with_component_masses.keys()) + self.assertTrue("mass_2_source" in local_test_vars_with_component_masses.keys()) + else: + self.assertTrue("mass_1" in local_test_vars_with_component_masses.keys()) + self.assertTrue("mass_2" in local_test_vars_with_component_masses.keys()) + for key in local_test_vars_with_component_masses.keys(): + self.assertAlmostEqual( + local_test_vars_with_component_masses[key], + self.expected_values[key]) + + # Test the function more generally + local_all_mass_parameters = \ + conversion.generate_mass_parameters(local_test_vars, source=source) + if source: + self.assertEqual( + set(local_all_mass_parameters.keys()), + set(["mass_1_source", + "mass_2_source", + "chirp_mass_source", + "total_mass_source", + "symmetric_mass_ratio", + "mass_ratio", + ] + ) + ) + else: + self.assertEqual( + set(local_all_mass_parameters.keys()), + set(["mass_1", + "mass_2", + "chirp_mass", + "total_mass", + "symmetric_mass_ratio", + "mass_ratio", + ] + ) + ) + for key in local_all_mass_parameters.keys(): + self.assertAlmostEqual(expected_values[key], local_all_mass_parameters[key]) + + def test_from_mass_1_and_mass_2(self): + self.helper_generation_from_keys(["mass_1", "mass_2"], + self.expected_values) + + def test_from_mass_1_and_mass_ratio(self): + self.helper_generation_from_keys(["mass_1", "mass_ratio"], + self.expected_values) + + def test_from_mass_2_and_mass_ratio(self): + self.helper_generation_from_keys(["mass_2", "mass_ratio"], + self.expected_values) + + def test_from_mass_1_and_total_mass(self): + self.helper_generation_from_keys(["mass_2", "total_mass"], + self.expected_values) + + def test_from_chirp_mass_and_mass_ratio(self): + self.helper_generation_from_keys(["chirp_mass", "mass_ratio"], + self.expected_values) + + def test_from_chirp_mass_and_symmetric_mass_ratio(self): + self.helper_generation_from_keys(["chirp_mass", "symmetric_mass_ratio"], + self.expected_values) + + def test_from_chirp_mass_and_symmetric_mass_1(self): + self.helper_generation_from_keys(["chirp_mass", "mass_1"], + self.expected_values) + + def test_from_chirp_mass_and_symmetric_mass_2(self): + self.helper_generation_from_keys(["chirp_mass", "mass_2"], + self.expected_values) + + def test_from_mass_1_source_and_mass_2_source(self): + self.helper_generation_from_keys(["mass_1_source", "mass_2_source"], + self.expected_values, source=True) + + def test_from_mass_1_source_and_mass_ratio(self): + self.helper_generation_from_keys(["mass_1_source", "mass_ratio"], + self.expected_values, source=True) + + def test_from_mass_2_source_and_mass_ratio(self): + self.helper_generation_from_keys(["mass_2_source", "mass_ratio"], + self.expected_values, source=True) + + def test_from_mass_1_source_and_total_mass(self): + self.helper_generation_from_keys(["mass_2_source", "total_mass_source"], + self.expected_values, source=True) + + def test_from_chirp_mass_source_and_mass_ratio(self): + self.helper_generation_from_keys(["chirp_mass_source", "mass_ratio"], + self.expected_values, source=True) + + def test_from_chirp_mass_source_and_symmetric_mass_ratio(self): + self.helper_generation_from_keys(["chirp_mass_source", "symmetric_mass_ratio"], + self.expected_values, source=True) + + def test_from_chirp_mass_source_and_symmetric_mass_1(self): + self.helper_generation_from_keys(["chirp_mass_source", "mass_1_source"], + self.expected_values, source=True) + + def test_from_chirp_mass_source_and_symmetric_mass_2(self): + self.helper_generation_from_keys(["chirp_mass_source", "mass_2_source"], + self.expected_values, source=True) + + if __name__ == "__main__": unittest.main() diff --git a/test/gw/detector/geometry_test.py b/test/gw/detector/geometry_test.py index 3960c196471dfe4fd6856f0ecebd2aafc401f187..358825b237cda9729cecf635c3179c02d38d7b8d 100644 --- a/test/gw/detector/geometry_test.py +++ b/test/gw/detector/geometry_test.py @@ -138,81 +138,56 @@ class TestInterferometerGeometry(unittest.TestCase): self.geometry.latitude = 0 self.assertTrue(np.array_equal(self.geometry.y, np.array([1]))) - def test_detector_tensor_without_update(self): - _ = self.geometry.detector_tensor - with mock.patch("numpy.einsum") as m: - m.return_value = 1 - expected = np.array( - [ - [-9.24529394e-06, 1.02425803e-04, 3.24550668e-04], - [1.02425803e-04, 1.37390844e-03, -8.61137566e-03], - [3.24550668e-04, -8.61137566e-03, -1.36466315e-03], - ] - ) - self.assertTrue(np.allclose(expected, self.geometry.detector_tensor)) - def test_detector_tensor_with_x_azimuth_update(self): - _ = self.geometry.detector_tensor - with mock.patch("numpy.einsum") as m: - m.return_value = 1 - self.geometry.xarm_azimuth = 1 - self.assertEqual(0, self.geometry.detector_tensor) + original = self.geometry.detector_tensor + self.geometry.xarm_azimuth += 1 + self.assertNotEqual(np.max(abs(self.geometry.detector_tensor - original)), 0) def test_detector_tensor_with_y_azimuth_update(self): - _ = self.geometry.detector_tensor - with mock.patch("numpy.einsum") as m: - m.return_value = 1 - self.geometry.yarm_azimuth = 1 - self.assertEqual(0, self.geometry.detector_tensor) + original = self.geometry.detector_tensor + self.geometry.yarm_azimuth += 1 + self.assertNotEqual(np.max(abs(self.geometry.detector_tensor - original)), 0) def test_detector_tensor_with_x_tilt_update(self): - _ = self.geometry.detector_tensor - with mock.patch("numpy.einsum") as m: - m.return_value = 1 - self.geometry.xarm_tilt = 1 - self.assertEqual(0, self.geometry.detector_tensor) + original = self.geometry.detector_tensor + self.geometry.xarm_tilt += 1 + self.assertNotEqual(np.max(abs(self.geometry.detector_tensor - original)), 0) def test_detector_tensor_with_y_tilt_update(self): - _ = self.geometry.detector_tensor - with mock.patch("numpy.einsum") as m: - m.return_value = 1 - self.geometry.yarm_tilt = 1 - self.assertEqual(0, self.geometry.detector_tensor) + original = self.geometry.detector_tensor + self.geometry.yarm_tilt += 1 + self.assertNotEqual(np.max(abs(self.geometry.detector_tensor - original)), 0) def test_detector_tensor_with_longitude_update(self): - with mock.patch("numpy.einsum") as m: - m.return_value = 1 - self.geometry.longitude = 1 - self.assertEqual(0, self.geometry.detector_tensor) + original = self.geometry.detector_tensor + self.geometry.longitude += 1 + self.assertNotEqual(np.max(abs(self.geometry.detector_tensor - original)), 0) def test_detector_tensor_with_latitude_update(self): - with mock.patch("numpy.einsum") as m: - _ = self.geometry.detector_tensor - m.return_value = 1 - self.geometry.latitude = 1 - self.assertEqual(self.geometry.detector_tensor, 0) + original = self.geometry.detector_tensor + self.geometry.latitude += 1 + self.assertNotEqual(np.max(abs(self.geometry.detector_tensor - original)), 0) def test_unit_vector_along_arm_default(self): with self.assertRaises(ValueError): self.geometry.unit_vector_along_arm("z") def test_unit_vector_along_arm_x(self): - with mock.patch("numpy.array") as m: - m.return_value = 1 - self.geometry.xarm_tilt = 0 - self.geometry.xarm_azimuth = 0 - self.geometry.yarm_tilt = 0 - self.geometry.yarm_azimuth = 90 - self.assertAlmostEqual(self.geometry.unit_vector_along_arm("x"), 1) + self.geometry.longitude = 0 + self.geometry.latitude = 0 + self.geometry.xarm_tilt = 0 + self.geometry.xarm_azimuth = 0 + arm = self.geometry.unit_vector_along_arm("x") + self.assertTrue(np.allclose(arm, np.array([0, 1, 0]))) def test_unit_vector_along_arm_y(self): - with mock.patch("numpy.array") as m: - m.return_value = 1 - self.geometry.xarm_tilt = 0 - self.geometry.xarm_azimuth = 90 - self.geometry.yarm_tilt = 0 - self.geometry.yarm_azimuth = 180 - self.assertAlmostEqual(self.geometry.unit_vector_along_arm("y"), -1) + self.geometry.longitude = 0 + self.geometry.latitude = 0 + self.geometry.yarm_tilt = 0 + self.geometry.yarm_azimuth = 90 + arm = self.geometry.unit_vector_along_arm("y") + print(arm) + self.assertTrue(np.allclose(arm, np.array([0, 0, 1]))) def test_repr(self): expected = ( diff --git a/test/gw/detector/interferometer_test.py b/test/gw/detector/interferometer_test.py index 3eea3c59d4667bd3fad5232bfb866ca5b98b636d..ad324e00726980b555fec731eb61eeaa2418fffe 100644 --- a/test/gw/detector/interferometer_test.py +++ b/test/gw/detector/interferometer_test.py @@ -97,21 +97,6 @@ class TestInterferometer(unittest.TestCase): def test_max_freq_setting(self): self.assertEqual(self.ifo.strain_data.maximum_frequency, self.maximum_frequency) - def test_antenna_response_default(self): - with mock.patch("bilby.gw.utils.get_polarization_tensor") as m: - with mock.patch("numpy.einsum") as n: - m.return_value = 0 - n.return_value = 1 - self.assertEqual(self.ifo.antenna_response(234, 52, 54, 76, "plus"), 1) - - def test_antenna_response_einsum(self): - with mock.patch("bilby.gw.utils.get_polarization_tensor") as m: - m.return_value = np.ones((3, 3)) - self.assertAlmostEqual( - self.ifo.antenna_response(234, 52, 54, 76, "plus"), - self.ifo.detector_tensor.sum(), - ) - def test_get_detector_response_default_behaviour(self): self.ifo.antenna_response = mock.MagicMock(return_value=1) self.ifo.time_delay_from_geocenter = mock.MagicMock(return_value=0) @@ -315,16 +300,6 @@ class TestInterferometer(unittest.TestCase): with self.assertRaises(ValueError): self.ifo.inject_signal(injection_polarizations=None, parameters=None) - def test_time_delay_from_geocenter(self): - with mock.patch("bilby.gw.utils.time_delay_geocentric") as m: - m.return_value = 1 - self.assertEqual(self.ifo.time_delay_from_geocenter(1, 2, 3), 1) - - def test_vertex_position_geocentric(self): - with mock.patch("bilby.gw.utils.get_vertex_position_geocentric") as m: - m.return_value = 1 - self.assertEqual(self.ifo.vertex_position_geocentric(), 1) - def test_optimal_snr_squared(self): """ Merely checks parameters are given in the right order and the frequency @@ -563,6 +538,25 @@ class TestInterferometerAntennaPatternAgainstLAL(unittest.TestCase): with self.subTest(':'.join((ifo_name, pol))): self.assertAlmostEqual(std[m], 0.0, places=7) + def test_time_delay_vs_lal(self): + delays = np.zeros(self.trial) + + for n, ifo_name in enumerate(self.ifo_names): + ifo = self.ifos[n] + det = lal.cached_detector_by_prefix[self.lal_prefixes[ifo_name]] + for i in range(self.trial): + gpstime = np.random.uniform(1205303144, 1405303144) + ra = 2. * np.pi * np.random.uniform() + dec = np.pi * np.random.uniform() - np.pi / 2. + delays[i] = ( + lal.TimeDelayFromEarthCenter(det.location, ra, dec, gpstime) + - ifo.time_delay_from_geocenter(ra, dec, gpstime) + ) + + std = max(abs(delays)) + with self.subTest(ifo_name): + self.assertAlmostEqual(std, 0.0, places=10) + if __name__ == "__main__": unittest.main() diff --git a/test/gw/likelihood_test.py b/test/gw/likelihood_test.py index 5937df0a6000db86ac45df7a020b36bee4ca409d..eeef6c65c420f740739577fef883e6912e928f63 100644 --- a/test/gw/likelihood_test.py +++ b/test/gw/likelihood_test.py @@ -1,3 +1,4 @@ +import itertools import os import pytest import unittest @@ -648,6 +649,43 @@ class TestMarginalizations(unittest.TestCase): prior=prior, ) + @parameterized.expand( + itertools.product(["regular", "roq"], *itertools.repeat([True, False], 3)), + name_func=lambda func, num, param: ( + f"{func.__name__}_{num}__{param.args[0]}_" + "_".join([ + ["D", "P", "T"][ii] for ii, val + in enumerate(param.args[1:]) if val + ]) + ) + ) + def test_marginalization_reconstruction(self, kind, distance, phase, time): + if time and kind == "roq": + pytest.skip("Time reconstruction not supported for ROQ likelihood") + marginalizations = dict( + geocent_time=time, + luminosity_distance=distance, + phase=phase, + ) + like = self.get_likelihood( + kind=kind, + distance_marginalization=distance, + time_marginalization=time, + phase_marginalization=phase, + ) + params = self.parameters.copy() + reference_values = dict( + luminosity_distance=self.priors["luminosity_distance"].rescale(0.5), + geocent_time=self.interferometers.start_time, + phase=0.0, + ) + for key in marginalizations: + if marginalizations[key]: + params[key] = reference_values[key] + like.parameters.update(params) + output = like.generate_posterior_sample_from_marginalized_likelihood() + for key in marginalizations: + self.assertFalse(marginalizations[key] and reference_values[key] == output[key]) + class TestROQLikelihood(unittest.TestCase): def setUp(self): @@ -1010,8 +1048,8 @@ class TestROQLikelihoodHDF5(unittest.TestCase): """ - _path_to_basis = "/roq_basis/basis.hdf5" - _path_to_basis_mb = "/roq_basis/basis_multiband.hdf5" + _path_to_basis = "/roq_basis/basis_addcal.hdf5" + _path_to_basis_mb = "/roq_basis/basis_multiband_addcal.hdf5" def setUp(self): self.minimum_frequency = 20 @@ -1114,11 +1152,12 @@ class TestROQLikelihoodHDF5(unittest.TestCase): product( [_path_to_basis, _path_to_basis_mb], [_path_to_basis, _path_to_basis_mb], - [(8, 9), (8, 10.5), (8, 11.5), (8, 12.5), (8, 14)], - [1, 2] + [(8, 9), (8, 14)], + [1, 2], + [False, True] ) ) - def test_likelihood_accuracy(self, basis_linear, basis_quadratic, mc_range, roq_scale_factor): + def test_likelihood_accuracy(self, basis_linear, basis_quadratic, mc_range, roq_scale_factor, add_cal_errors): "Compare with log likelihood ratios computed by the non-ROQ likelihood" self.minimum_frequency *= roq_scale_factor self.sampling_frequency *= roq_scale_factor @@ -1139,6 +1178,25 @@ class TestROQLikelihoodHDF5(unittest.TestCase): duration=self.duration, start_time=self.injection_parameters["geocent_time"] - self.duration + 1 ) + + if add_cal_errors: + spline_calibration_nodes = 10 + np.random.seed(170817) + for ifo in interferometers: + prefix = f"recalib_{ifo.name}_" + ifo.calibration_model = bilby.gw.calibration.CubicSpline( + prefix=prefix, + minimum_frequency=ifo.minimum_frequency, + maximum_frequency=ifo.maximum_frequency, + n_points=spline_calibration_nodes + ) + for i in range(spline_calibration_nodes): + # 5% in amplitude, 5deg in phase + self.injection_parameters[f"{prefix}amplitude_{i}"] = \ + np.random.normal(loc=0, scale=0.05) + self.injection_parameters[f"{prefix}phase_{i}"] = \ + np.random.normal(loc=0, scale=5 * np.pi / 180) + waveform_generator = bilby.gw.WaveformGenerator( duration=self.duration, sampling_frequency=self.sampling_frequency, @@ -1176,9 +1234,9 @@ class TestROQLikelihoodHDF5(unittest.TestCase): # The maximum error of log likelihood ratio. It is set to be larger for roq_scale_factor=1 as the injected SNR # is higher. if roq_scale_factor == 1: - max_llr_error = 1e-1 + max_llr_error = 5e-1 elif roq_scale_factor == 2: - max_llr_error = 1e-2 + max_llr_error = 5e-2 else: raise for mc in np.linspace(self.priors["chirp_mass"].minimum, self.priors["chirp_mass"].maximum, 11): @@ -1200,8 +1258,8 @@ class TestCreateROQLikelihood(unittest.TestCase): """ - _path_to_basis = "/roq_basis/basis.hdf5" - _path_to_basis_mb = "/roq_basis/basis_multiband.hdf5" + _path_to_basis = "/roq_basis/basis_addcal.hdf5" + _path_to_basis_mb = "/roq_basis/basis_multiband_addcal.hdf5" @parameterized.expand(product([_path_to_basis, _path_to_basis_mb], [_path_to_basis, _path_to_basis_mb])) def test_from_hdf5(self, basis_linear, basis_quadratic): @@ -1487,9 +1545,9 @@ class TestInOutROQWeights(unittest.TestCase): ) if multiband: - path_to_basis = "/roq_basis/basis_multiband.hdf5" + path_to_basis = "/roq_basis/basis_multiband_addcal.hdf5" else: - path_to_basis = "/roq_basis/basis.hdf5" + path_to_basis = "/roq_basis/basis_addcal.hdf5" return bilby.gw.likelihood.ROQGravitationalWaveTransient( interferometers=interferometers, priors=priors, @@ -1542,6 +1600,24 @@ class TestMBLikelihood(unittest.TestCase): for ifo in ifos: ifo.minimum_frequency = fmin + spline_calibration_nodes = 10 + self.calibration_parameters = {} + for ifo in ifos: + ifo.calibration_model = bilby.gw.calibration.CubicSpline( + prefix=f"recalib_{ifo.name}_", + minimum_frequency=ifo.minimum_frequency, + maximum_frequency=ifo.maximum_frequency, + n_points=spline_calibration_nodes + ) + for i in range(spline_calibration_nodes): + self.test_parameters[f"recalib_{ifo.name}_amplitude_{i}"] = 0 + self.test_parameters[f"recalib_{ifo.name}_phase_{i}"] = 0 + # Calibration errors of 5% in amplitude and 5 degrees in phase + self.calibration_parameters[f"recalib_{ifo.name}_amplitude_{i}"] = \ + np.random.normal(loc=0, scale=0.05) + self.calibration_parameters[f"recalib_{ifo.name}_phase_{i}"] = \ + np.random.normal(loc=0, scale=5 * np.pi / 180) + priors = bilby.gw.prior.BBHPriorDict() priors.pop("mass_1") priors.pop("mass_2") @@ -1625,32 +1701,44 @@ class TestMBLikelihood(unittest.TestCase): self.mb_more_accurate ) - def test_matches_non_mb(self): + @parameterized.expand([(False, ), (True, )]) + def test_matches_non_mb(self, add_cal_errors): self.non_mb_22.parameters.update(self.test_parameters) self.mb_22.parameters.update(self.test_parameters) + if add_cal_errors: + self.non_mb_22.parameters.update(self.calibration_parameters) + self.mb_22.parameters.update(self.calibration_parameters) self.assertLess( abs(self.non_mb_22.log_likelihood_ratio() - self.mb_22.log_likelihood_ratio()), - 1e-2 + 1.5e-2 ) - def test_ifft_fft(self): + @parameterized.expand([(False, ), (True, )]) + def test_ifft_fft(self, add_cal_errors): """ Check if multi-banding likelihood with (h, h) computed with the IFFT-FFT algorithm matches the original likelihood. """ self.non_mb_22.parameters.update(self.test_parameters) self.mb_ifftfft_22.parameters.update(self.test_parameters) + if add_cal_errors: + self.non_mb_22.parameters.update(self.calibration_parameters) + self.mb_ifftfft_22.parameters.update(self.calibration_parameters) self.assertLess( abs(self.non_mb_22.log_likelihood_ratio() - self.mb_ifftfft_22.log_likelihood_ratio()), - 5e-3 + 6e-3 ) - def test_homs(self): + @parameterized.expand([(False, ), (True, )]) + def test_homs(self, add_cal_errors): """ Check if multi-banding likelihood matches the original likelihood for higher-order moments. """ self.non_mb_homs.parameters.update(self.test_parameters) self.mb_homs.parameters.update(self.test_parameters) + if add_cal_errors: + self.non_mb_homs.parameters.update(self.calibration_parameters) + self.mb_homs.parameters.update(self.calibration_parameters) self.assertLess( abs(self.non_mb_homs.log_likelihood_ratio() - self.mb_homs.log_likelihood_ratio()), 1e-3 diff --git a/test/gw/utils_test.py b/test/gw/utils_test.py index c5f3af46bb84558ab5be67f832de5657f027720d..7946a99c83b99958160636f482f4593103f6c7fe 100644 --- a/test/gw/utils_test.py +++ b/test/gw/utils_test.py @@ -36,34 +36,6 @@ class TestGWUtils(unittest.TestCase): psd = gwutils.psd_from_freq_series(freq_data, df) self.assertTrue(np.all(psd == (freq_data * 2 * df ** 0.5) ** 2)) - def test_time_delay_from_geocenter(self): - """ - The difference in the two detector case is due to rounding error. - Different hardware gives different numbers in the last decimal place. - """ - det1 = np.array([0.1, 0.2, 0.3]) - det2 = np.array([0.1, 0.2, 0.5]) - ra = 0.5 - dec = 0.2 - time = 10 - self.assertEqual(gwutils.time_delay_geocentric(det1, det1, ra, dec, time), 0) - self.assertAlmostEqual( - gwutils.time_delay_geocentric(det1, det2, ra, dec, time), - 1.3253791114055397e-10, - 14, - ) - - def test_get_polarization_tensor(self): - ra = 1 - dec = 2.0 - time = 10 - psi = 0.1 - for mode in ["plus", "cross", "breathing", "longitudinal", "x", "y"]: - p = gwutils.get_polarization_tensor(ra, dec, time, psi, mode) - self.assertEqual(p.shape, (3, 3)) - with self.assertRaises(ValueError): - gwutils.get_polarization_tensor(ra, dec, time, psi, "not-a-mode") - def test_inner_product(self): aa = np.array([1, 2, 3]) bb = np.array([5, 6, 7]) diff --git a/test/gw/waveform_generator_test.py b/test/gw/waveform_generator_test.py index f2564c6d539fcc8d0dd0f100d87ac47f345dd29b..c4bd5729f32257cecea81d5731c2e6238e16b88c 100644 --- a/test/gw/waveform_generator_test.py +++ b/test/gw/waveform_generator_test.py @@ -1,6 +1,8 @@ import unittest from unittest import mock + import bilby +import lalsimulation import numpy as np @@ -159,6 +161,69 @@ class TestWaveformArgumentsSetting(unittest.TestCase): ) +class TestLALCBCWaveformArgumentsSetting(unittest.TestCase): + def setUp(self): + self.kwargs = dict( + duration=4, + frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, + sampling_frequency=2048, + ) + + def tearDown(self): + del self.kwargs + + def test_spin_reference_enumeration(self): + """ + Verify that the value of the reference enumerator hasn't changed by comparing + against a known approximant. + """ + self.assertEqual( + lalsimulation.SimInspiralGetSpinFreqFromApproximant(lalsimulation.SEOBNRv3), + bilby.gw.waveform_generator.LALCBCWaveformGenerator.LAL_SIM_INSPIRAL_SPINS_FLOW, + ) + + def test_create_waveform_generator_non_precessing(self): + self.kwargs["waveform_arguments"] = dict( + minimum_frequency=20.0, + reference_frequency=50.0, + waveform_approximant="TaylorF2", + ) + wfg = bilby.gw.waveform_generator.LALCBCWaveformGenerator(**self.kwargs) + self.assertDictEqual( + wfg.waveform_arguments, + dict( + minimum_frequency=20.0, + reference_frequency=50.0, + waveform_approximant="TaylorF2", + ), + ) + + def test_create_waveform_generator_eob_succeeds(self): + self.kwargs["waveform_arguments"] = dict( + minimum_frequency=20.0, + reference_frequency=20.0, + waveform_approximant="SEOBNRv3", + ) + wfg = bilby.gw.waveform_generator.LALCBCWaveformGenerator(**self.kwargs) + self.assertDictEqual( + wfg.waveform_arguments, + dict( + minimum_frequency=20.0, + reference_frequency=20.0, + waveform_approximant="SEOBNRv3", + ), + ) + + def test_create_waveform_generator_eob_fails(self): + self.kwargs["waveform_arguments"] = dict( + minimum_frequency=20.0, + reference_frequency=50.0, + waveform_approximant="SEOBNRv3", + ) + with self.assertRaises(ValueError): + _ = bilby.gw.waveform_generator.LALCBCWaveformGenerator(**self.kwargs) + + class TestSetters(unittest.TestCase): def setUp(self): self.waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( diff --git a/test/integration/sampler_run_test.py b/test/integration/sampler_run_test.py index 2bf1d355e03cf48a91a3f9ff29b97ec47f10264e..17307e7d7b1897cd5d7580ea74a8029ac755c758 100644 --- a/test/integration/sampler_run_test.py +++ b/test/integration/sampler_run_test.py @@ -1,34 +1,100 @@ +import multiprocessing +import os +import sys +import threading +import time +from signal import SIGINT + +multiprocessing.set_start_method("fork") # noqa + import unittest import pytest +from parameterized import parameterized import shutil import bilby import numpy as np +_sampler_kwargs = dict( + bilby_mcmc=dict(nsamples=200, printdt=1), + cpnest=dict(nlive=100), + dnest4=dict( + max_num_levels=2, + num_steps=10, + new_level_interval=10, + num_per_step=10, + thread_steps=1, + num_particles=50, + max_pool=1, + ), + dynesty=dict(nlive=100), + dynamic_dynesty=dict( + nlive_init=100, + nlive_batch=100, + dlogz_init=1.0, + maxbatch=0, + maxcall=100, + bound="single", + ), + emcee=dict(iterations=1000, nwalkers=10), + kombine=dict(iterations=200, nwalkers=10, autoburnin=False), + nessai=dict( + nlive=100, + poolsize=1000, + max_iteration=1000, + max_threads=3, + ), + nestle=dict(nlive=100), + ptemcee=dict( + nsamples=100, + nwalkers=50, + burn_in_act=1, + ntemps=1, + frac_threshold=0.5, + ), + PTMCMCSampler=dict(Niter=101, burn=2, isave=100), + pymc=dict(draws=50, tune=50, n_init=250), + pymultinest=dict(nlive=100), + pypolychord=dict(nlive=100), + ultranest=dict(nlive=100, temporary_directory=False), +) + +sampler_imports = dict( + bilby_mcmc="bilby", + dynamic_dynesty="dynesty" +) + +no_pool_test = ["dnest4", "pymultinest", "nestle", "ptmcmcsampler", "pypolychord", "ultranest", "pymc"] + + +def slow_func(x, m, c): + time.sleep(0.01) + return m * x + c + + +def model(x, m, c): + return m * x + c + + class TestRunningSamplers(unittest.TestCase): def setUp(self): np.random.seed(42) bilby.core.utils.command_line_args.bilby_test_mode = False self.x = np.linspace(0, 1, 11) - self.model = lambda x, m, c: m * x + c self.injection_parameters = dict(m=0.5, c=0.2) self.sigma = 0.1 - self.y = self.model(self.x, **self.injection_parameters) + np.random.normal( + self.y = model(self.x, **self.injection_parameters) + np.random.normal( 0, self.sigma, len(self.x) ) self.likelihood = bilby.likelihood.GaussianLikelihood( - self.x, self.y, self.model, self.sigma + self.x, self.y, model, self.sigma ) self.priors = bilby.core.prior.PriorDict() self.priors["m"] = bilby.core.prior.Uniform(0, 5, boundary="periodic") self.priors["c"] = bilby.core.prior.Uniform(-2, 2, boundary="reflective") - self.kwargs = dict( - save=False, - conversion_function=self.conversion_function, - verbose=True, - ) + self._remove_tree() bilby.core.utils.check_directory_exists_and_if_not_mkdir("outdir") @staticmethod @@ -42,226 +108,83 @@ class TestRunningSamplers(unittest.TestCase): del self.likelihood del self.priors bilby.core.utils.command_line_args.bilby_test_mode = False - shutil.rmtree("outdir") - - def test_run_cpnest(self): - pytest.importorskip("cpnest") - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="cpnest", - nlive=100, - resume=False, - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - def test_run_dnest4(self): - pytest.importorskip("dnest4") - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="dnest4", - max_num_levels=2, - num_steps=10, - new_level_interval=10, - num_per_step=10, - thread_steps=1, - num_particles=50, - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - def test_run_dynesty(self): - pytest.importorskip("dynesty") - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="dynesty", - nlive=100, - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - def test_run_dynamic_dynesty(self): - pytest.importorskip("dynesty") - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="dynamic_dynesty", - nlive_init=100, - nlive_batch=100, - dlogz_init=1.0, - maxbatch=0, - maxcall=100, - bound="single", - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - def test_run_emcee(self): - pytest.importorskip("emcee") - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="emcee", - iterations=1000, - nwalkers=10, - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - def test_run_kombine(self): - pytest.importorskip("kombine") - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="kombine", - iterations=2000, - nwalkers=20, - autoburnin=False, - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - def test_run_nestle(self): - pytest.importorskip("nestle") - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="nestle", - nlive=100, - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - def test_run_nessai(self): - pytest.importorskip("nessai") - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="nessai", - nlive=100, - poolsize=1000, - max_iteration=1000, - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - def test_run_pypolychord(self): - pytest.importorskip("pypolychord") - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="pypolychord", - nlive=100, - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - def test_run_ptemcee(self): - pytest.importorskip("ptemcee") - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="ptemcee", - nsamples=100, - nwalkers=50, - burn_in_act=1, - ntemps=1, - frac_threshold=0.5, - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - @pytest.mark.xfail( - raises=AttributeError, - reason="Dependency issue with pymc3 causes attribute error on import", - ) - def test_run_pymc3(self): - pytest.importorskip("pymc3") - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="pymc3", - draws=50, - tune=50, - n_init=250, - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - def test_run_pymultinest(self): - pytest.importorskip("pymultinest") - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="pymultinest", - nlive=100, - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - def test_run_PTMCMCSampler(self): - pytest.importorskip("PTMCMCSampler") - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="PTMCMCsampler", - Niter=101, - burn=2, - isave=100, - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - def test_run_ultranest(self): - pytest.importorskip("ultranest") - # run using NestedSampler (with nlive specified) - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="ultranest", - nlive=100, - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - # run using ReactiveNestedSampler (with no nlive given) - res = bilby.run_sampler( - likelihood=self.likelihood, - priors=self.priors, - sampler="ultranest", - **self.kwargs, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None - - def test_run_bilby_mcmc(self): + self._remove_tree() + + def _remove_tree(self): + try: + shutil.rmtree("outdir") + except OSError: + pass + + @parameterized.expand(_sampler_kwargs.keys()) + def test_run_sampler_single(self, sampler): + self._run_sampler(sampler, pool_size=1) + + @parameterized.expand(_sampler_kwargs.keys()) + def test_run_sampler_pool(self, sampler): + self._run_sampler(sampler, pool_size=2) + + def _run_sampler(self, sampler, pool_size, **extra_kwargs): + pytest.importorskip(sampler_imports.get(sampler, sampler)) + if pool_size > 1 and sampler.lower() in no_pool_test: + pytest.skip(f"{sampler} cannot be parallelized") + bilby.core.utils.check_directory_exists_and_if_not_mkdir("outdir") + kwargs = _sampler_kwargs[sampler] res = bilby.run_sampler( likelihood=self.likelihood, priors=self.priors, - sampler="bilby_mcmc", - nsamples=200, - **self.kwargs, - printdt=1, - ) - assert "derived" in res.posterior - assert res.log_likelihood_evaluations is not None + sampler=sampler, + save=False, + npool=pool_size, + conversion_function=self.conversion_function, + **kwargs, + **extra_kwargs, + ) + assert "derived" in res.posterior + assert res.log_likelihood_evaluations is not None + + @parameterized.expand(_sampler_kwargs.keys()) + def test_interrupt_sampler_single(self, sampler): + self._run_with_signal_handling(sampler, pool_size=1) + + @parameterized.expand(_sampler_kwargs.keys()) + def test_interrupt_sampler_pool(self, sampler): + self._run_with_signal_handling(sampler, pool_size=2) + + def _run_with_signal_handling(self, sampler, pool_size=1): + pytest.importorskip(sampler_imports.get(sampler, sampler)) + if bilby.core.sampler.IMPLEMENTED_SAMPLERS[sampler.lower()].hard_exit: + pytest.skip(f"{sampler} hard exits, can't test signal handling.") + if pool_size > 1 and sampler.lower() in no_pool_test: + pytest.skip(f"{sampler} cannot be parallelized") + if sys.version_info.minor == 8 and sampler.lower == "cpnest": + pytest.skip("Pool interrupting broken for cpnest with py3.8") + if sampler.lower() == "nessai" and pool_size > 1: + pytest.skip( + "Interrupting with a pool is failing in pytest. " + "Likely due to interactions with the signal handling in nessai." + ) + pid = os.getpid() + print(sampler) + + def trigger_signal(): + # You could do something more robust, e.g. wait until port is listening + time.sleep(4) + os.kill(pid, SIGINT) + + thread = threading.Thread(target=trigger_signal) + thread.daemon = True + thread.start() + + self.likelihood._func = slow_func + + with self.assertRaises((SystemExit, KeyboardInterrupt)): + try: + while True: + self._run_sampler(sampler=sampler, pool_size=pool_size, exit_code=5) + except SystemExit as error: + self.assertEqual(error.code, 5) + raise if __name__ == "__main__":