diff --git a/examples/other_examples/sine_gaussian_example.py b/examples/other_examples/sine_gaussian_example.py new file mode 100644 index 0000000000000000000000000000000000000000..f7273415a2f2c0947252077fac336c2b9ae953af --- /dev/null +++ b/examples/other_examples/sine_gaussian_example.py @@ -0,0 +1,74 @@ +#!/bin/python +""" +Tutorial to demonstrate running parameter estimation on a sine gaussian injected signal. + +""" +from __future__ import division, print_function +import tupak +import numpy as np + +# Set the duration and sampling frequency of the data segment that we're going to inject the signal into +time_duration = 4. +sampling_frequency = 2048. + +# Specify the output directory and the name of the simulation. +outdir = 'outdir' +label = 'sine_gaussian' +tupak.utils.setup_logger(outdir=outdir, label=label) + +# Set up a random seed for result reproducibility. This is optional! +np.random.seed(170801) + +# We are going to inject a sine gaussian waveform. We first establish a dictionary of parameters that +# includes all of the different waveform parameters +injection_parameters = dict(hrss = 1e-22, Q = 5.0, frequency = 200.0, ra = 1.375, dec = -1.2108, + geocent_time = 1126259642.413, psi= 2.659) + +# Create the waveform_generator using a sine Gaussian source function +waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=time_duration, + sampling_frequency=sampling_frequency, + frequency_domain_source_model=tupak.source.sinegaussian, + parameters=injection_parameters) +hf_signal = waveform_generator.frequency_domain_strain() + +# Set up interferometers. In this case we'll use three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1), +# and Virgo (V1)). These default to their design sensitivity +IFOs = [tupak.detector.get_interferometer_with_fake_noise_and_injection( + name, injection_polarizations=hf_signal, injection_parameters=injection_parameters, time_duration=time_duration, + sampling_frequency=sampling_frequency, outdir=outdir) for name in ['H1', 'L1', 'V1']] + +# Set up prior, which is a dictionary +priors = dict() +# By default we will sample all terms in the signal models. However, this will take a long time for the calculation, +# so for this example we will set almost all of the priors to be equall to their injected values. This implies the +# prior is a delta function at the true, injected value. In reality, the sampler implementation is smart enough to +# not sample any parameter that has a delta-function prior. +for key in ['hrss', 'psi', 'ra', 'dec', 'geocent_time']: + priors[key] = injection_parameters[key] + +# The above list does *not* include frequency and Q, which means those are the parameters +# that will be included in the sampler. If we do nothing, then the default priors get used. +priors['Q'] = tupak.prior.create_default_prior(name='Q') +priors['frequency'] = tupak.prior.create_default_prior(name='frequency') + +# Initialise the likelihood by passing in the interferometer data (IFOs) and the waveoform generator +likelihood = tupak.likelihood.GravitationalWaveTransient(interferometers=IFOs, waveform_generator=waveform_generator) + +# Run sampler. In this case we're going to use the `dynesty` sampler +result = tupak.sampler.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000, + injection_parameters=injection_parameters, outdir=outdir, label=label) + +# make some plots of the outputs +result.plot_corner() +print(result) + + + + + + + + + + +