diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index be2b07e476fac16a241e2ddd0615658db1605826..f1aee7ee0c7a8ce7b5d31543feaedf33fdb60cf4 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -59,9 +59,9 @@ containers:
           ${script} --help;
       done
 
-basic-3.8:
-  <<: *test-python
-  image: python:3.8
+# basic-3.8:
+#   <<: *test-python
+#   image: python:3.8
 
 basic-3.9:
   <<: *test-python
@@ -78,9 +78,9 @@ basic-3.10:
     - python -m pip list installed
     - python test/test_samplers_import.py
 
-import-samplers-3.8:
-  <<: *test-samplers-import
-  image: containers.ligo.org/lscsoft/bilby/v2-bilby-python38
+# import-samplers-3.8:
+#   <<: *test-samplers-import
+#   image: containers.ligo.org/lscsoft/bilby/v2-bilby-python38
 
 import-samplers-3.9:
   <<: *test-samplers-import
@@ -102,12 +102,12 @@ import-samplers-3.10:
     # Run precommits (flake8, spellcheck, isort, no merge conflicts, etc)
     - pre-commit run --all-files --verbose --show-diff-on-failure
 
-precommits-py3.8:
-  <<: *precommits
-  image: containers.ligo.org/lscsoft/bilby/v2-bilby-python38
-  variables:
-    CACHE_DIR: ".pip38"
-    PYVERSION: "python38"
+# precommits-py3.8:
+#   <<: *precommits
+#   image: containers.ligo.org/lscsoft/bilby/v2-bilby-python38
+#   variables:
+#     CACHE_DIR: ".pip38"
+#     PYVERSION: "python38"
 
 precommits-py3.9:
   <<: *precommits
@@ -142,10 +142,10 @@ install:
 
     - pytest --cov=bilby --durations 10
 
-python-3.8:
-  <<: *unit-test
-  needs: ["basic-3.8", "precommits-py3.8"]
-  image: containers.ligo.org/lscsoft/bilby/v2-bilby-python38
+# python-3.8:
+#   <<: *unit-test
+#   needs: ["basic-3.8", "precommits-py3.8"]
+#   image: containers.ligo.org/lscsoft/bilby/v2-bilby-python38
 
 python-3.9:
   <<: *unit-test
@@ -176,10 +176,10 @@ python-3.10:
     - python -m pip list installed
     - pytest test/integration/sampler_run_test.py --durations 10 -v
 
-python-3.8-samplers:
-  <<: *test-sampler
-  needs: ["basic-3.8", "precommits-py3.8"]
-  image: containers.ligo.org/lscsoft/bilby/v2-bilby-python38
+# python-3.8-samplers:
+#   <<: *test-sampler
+#   needs: ["basic-3.8", "precommits-py3.8"]
+#   image: containers.ligo.org/lscsoft/bilby/v2-bilby-python38
 
 python-3.9-samplers:
   <<: *test-sampler
@@ -213,10 +213,10 @@ integration-tests-python-3.9:
     - pytest test/gw/plot_test.py
 
 
-plotting-python-3.8:
-  <<: *plotting
-  image: containers.ligo.org/lscsoft/bilby/v2-bilby-python38
-  needs: ["basic-3.8", "precommits-py3.8"]
+# plotting-python-3.8:
+#   <<: *plotting
+#   image: containers.ligo.org/lscsoft/bilby/v2-bilby-python38
+#   needs: ["basic-3.8", "precommits-py3.8"]
 
 plotting-python-3.9:
   <<: *plotting
@@ -285,10 +285,10 @@ pages:
     - docker image tag v3-bilby-$PYVERSION containers.ligo.org/lscsoft/bilby/v2-bilby-$PYVERSION:latest
     - docker image push containers.ligo.org/lscsoft/bilby/v2-bilby-$PYVERSION:latest
 
-build-python38-container:
-  <<: *build-container
-  variables:
-    PYVERSION: "python38"
+# build-python38-container:
+#   <<: *build-container
+#   variables:
+#     PYVERSION: "python38"
 
 build-python39-container:
   <<: *build-container
diff --git a/bilby/bilby_mcmc/chain.py b/bilby/bilby_mcmc/chain.py
index 9aec43421e1ab4c14c315505fb432d369ca4b3e6..9a6e36717708ec1d7ff235a23f5875a9d23689d2 100644
--- a/bilby/bilby_mcmc/chain.py
+++ b/bilby/bilby_mcmc/chain.py
@@ -136,12 +136,14 @@ class Chain(object):
 
     @property
     def _random_idx(self):
+        from ..core.utils.random import rng
+
         mindex = self._last_minimum_index[1]
         # Check if mindex exceeds current position by 10 ACT: if so use a random sample
         # otherwise we draw only from the chain past the minimum_index
         if np.isinf(self.tau_last) or self.position - mindex < 10 * self.tau_last:
             mindex = 0
-        return np.random.randint(mindex, self.position + 1)
+        return rng.integers(mindex, self.position + 1)
 
     @property
     def random_sample(self):
diff --git a/bilby/bilby_mcmc/proposals.py b/bilby/bilby_mcmc/proposals.py
index edba8fda2eee3a22f55857e46104217af714c56d..17892e050b33b89d8b391203b72140056ea29254 100644
--- a/bilby/bilby_mcmc/proposals.py
+++ b/bilby/bilby_mcmc/proposals.py
@@ -9,7 +9,7 @@ from scipy.stats import gaussian_kde
 from ..core.fisher import FisherMatrixPosteriorEstimator
 from ..core.prior import PriorDict
 from ..core.sampler.base_sampler import SamplerError
-from ..core.utils import logger, reflect
+from ..core.utils import logger, random, reflect
 from ..gw.source import PARAMETER_SETS
 
 
@@ -19,7 +19,7 @@ class ProposalCycle(object):
         self.weights = [prop.weight for prop in self.proposal_list]
         self.normalized_weights = [w / sum(self.weights) for w in self.weights]
         self.weighted_proposal_list = [
-            np.random.choice(self.proposal_list, p=self.normalized_weights)
+            random.rng.choice(self.proposal_list, p=self.normalized_weights)
             for _ in range(10 * int(1 / min(self.normalized_weights)))
         ]
         self.nproposals = len(self.weighted_proposal_list)
@@ -219,7 +219,7 @@ class FixedGaussianProposal(BaseProposal):
         sample = chain.current_sample
         for key in self.parameters:
             sigma = self.prior_width_dict[key] * self.sigmas[key]
-            sample[key] += sigma * np.random.randn()
+            sample[key] += sigma * random.rng.normal(0, 1)
         log_factor = 0
         return sample, log_factor
 
@@ -256,15 +256,15 @@ class AdaptiveGaussianProposal(BaseProposal):
     def propose(self, chain):
         sample = chain.current_sample
         self.update_scale(chain)
-        if np.random.random() < 1e-3:
+        if random.rng.uniform(0, 1) < 1e-3:
             factor = 1e1
-        elif np.random.random() < 1e-4:
+        elif random.rng.uniform(0, 1) < 1e-4:
             factor = 1e2
         else:
             factor = 1
         for key in self.parameters:
             sigma = factor * self.scale * self.prior_width_dict[key] * self.sigmas[key]
-            sample[key] += sigma * np.random.randn()
+            sample[key] += sigma * random.rng.normal(0, 1)
         log_factor = 0
         return sample, log_factor
 
@@ -306,13 +306,13 @@ class DifferentialEvolutionProposal(BaseProposal):
         theta = chain.current_sample
         theta1 = chain.random_sample
         theta2 = chain.random_sample
-        if np.random.rand() > self.mode_hopping_frac:
+        if random.rng.uniform(0, 1) > self.mode_hopping_frac:
             gamma = 1
         else:
             # Base jump size
-            gamma = np.random.normal(0, 2.38 / np.sqrt(2 * self.ndim))
+            gamma = random.rng.normal(0, 2.38 / np.sqrt(2 * self.ndim))
             # Scale uniformly in log between 0.1 and 10 times
-            gamma *= np.exp(np.log(0.1) + np.log(100.0) * np.random.rand())
+            gamma *= np.exp(np.log(0.1) + np.log(100.0) * random.rng.uniform(0, 1))
 
         for key in self.parameters:
             theta[key] += gamma * (theta2[key] - theta1[key])
@@ -347,7 +347,7 @@ class UniformProposal(BaseProposal):
         for key in self.parameters:
             width = self.prior_width_dict[key]
             if np.isinf(width) is False:
-                sample[key] = np.random.uniform(
+                sample[key] = random.rng.uniform(
                     self.prior_minimum_dict[key], self.prior_maximum_dict[key]
                 )
             else:
@@ -778,14 +778,14 @@ class FixedJumpProposal(BaseProposal):
     def propose(self, chain):
         sample = chain.current_sample
         for key, jump in self.jumps.items():
-            sign = np.random.randint(2) * 2 - 1
+            sign = random.rng.integers(2) * 2 - 1
             sample[key] += sign * jump + self.epsilon * self.prior_width_dict[key]
         log_factor = 0
         return sample, log_factor
 
     @property
     def epsilon(self):
-        return self.scale * np.random.normal()
+        return self.scale * random.rng.normal()
 
 
 class FisherMatrixProposal(AdaptiveGaussianProposal):
@@ -834,7 +834,7 @@ class FisherMatrixProposal(AdaptiveGaussianProposal):
                     return sample, 0
             self.steps_since_update = 0
 
-        jump = self.scale * np.random.multivariate_normal(
+        jump = self.scale * random.rng.multivariate_normal(
             self.mean, self.iFIM, check_valid="ignore"
         )
 
@@ -897,11 +897,11 @@ class CorrelatedPolarisationPhaseJump(BaseGravitationalWaveTransientProposal):
         alpha = sample["psi"] + phase
         beta = sample["psi"] - phase
 
-        draw = np.random.random()
+        draw = random.rng.random()
         if draw < 0.5:
-            alpha = 3.0 * np.pi * np.random.random()
+            alpha = 3.0 * np.pi * random.rng.random()
         else:
-            beta = 3.0 * np.pi * np.random.random() - 2 * np.pi
+            beta = 3.0 * np.pi * random.rng.random() - 2 * np.pi
 
         # Update
         sample["psi"] = (alpha + beta) * 0.5
@@ -936,7 +936,7 @@ class PhaseReversalProposal(BaseGravitationalWaveTransientProposal):
     @property
     def epsilon(self):
         if self.fuzz:
-            return np.random.normal(0, self.fuzz_sigma)
+            return random.rng.normal(0, self.fuzz_sigma)
         else:
             return 0
 
@@ -1001,7 +1001,7 @@ class StretchProposal(BaseProposal):
 
 def _stretch_move(sample, complement, scale, ndim, parameters):
     # Draw z
-    u = np.random.rand()
+    u = random.rng.uniform(0, 1)
     z = (u * (scale - 1) + 1) ** 2 / scale
 
     log_factor = (ndim - 1) * np.log(z)
@@ -1045,7 +1045,7 @@ class EnsembleStretch(EnsembleProposal):
     def propose(self, chain, chain_complement):
         sample = chain.current_sample
         completement = chain_complement[
-            np.random.randint(len(chain_complement))
+            random.rng.integers(len(chain_complement))
         ].current_sample
         return _stretch_move(
             sample, completement, self.scale, self.ndim, self.parameters
diff --git a/bilby/bilby_mcmc/sampler.py b/bilby/bilby_mcmc/sampler.py
index efa2fcb85039cc494a1c1be381b2f9bcf0fadc9a..1b528ec78cad6bd929feda0658b4b7f1d5c222d7 100644
--- a/bilby/bilby_mcmc/sampler.py
+++ b/bilby/bilby_mcmc/sampler.py
@@ -16,7 +16,12 @@ from ..core.sampler.base_sampler import (
     _sampling_convenience_dump,
     signal_wrapper,
 )
-from ..core.utils import check_directory_exists_and_if_not_mkdir, logger, safe_file_dump
+from ..core.utils import (
+    check_directory_exists_and_if_not_mkdir,
+    logger,
+    random,
+    safe_file_dump,
+)
 from . import proposals
 from .chain import Chain, Sample
 from .utils import LOGLKEY, LOGPKEY, ConvergenceInputs, ParallelTemperingInputs
@@ -818,7 +823,7 @@ class BilbyPTMCMCSampler(object):
                 with np.errstate(over="ignore"):
                     alpha_swap = np.exp(dbeta * (logli - loglj))
 
-                if np.random.uniform(0, 1) <= alpha_swap:
+                if random.rng.uniform(0, 1) <= alpha_swap:
                     sampleri.chain[-1] = vj
                     samplerj.chain[-1] = vi
                     self.sampler_dictionary[Tindex][Eindex] = sampleri
@@ -852,7 +857,7 @@ class BilbyPTMCMCSampler(object):
                         - curr[LOGPKEY]
                     )
 
-                    if np.random.uniform(0, 1) <= alpha:
+                    if random.rng.uniform(0, 1) <= alpha:
                         sampler.accept_proposal(prop, proposal)
                     else:
                         sampler.reject_proposal(curr, proposal)
@@ -1021,7 +1026,7 @@ class BilbyPTMCMCSampler(object):
         ln_z_realisations = []
         try:
             for _ in range(repeats):
-                idxs = [np.random.randint(i, i + ll) for i in range(steps - ll)]
+                idxs = [random.rng.integers(i, i + ll) for i in range(steps - ll)]
                 ln_z_realisations.append(
                     self._calculate_stepping_stone(betas, ln_likes[idxs, :])[0]
                 )
@@ -1256,7 +1261,7 @@ class BilbyMCMCSampler(object):
                     - curr[LOGPKEY]
                 )
 
-            if np.random.uniform(0, 1) <= alpha:
+            if random.rng.uniform(0, 1) <= alpha:
                 internal_accepted += 1
                 proposal.accepted += 1
                 curr = prop
diff --git a/bilby/core/fisher.py b/bilby/core/fisher.py
index fd452f887f36741a140ed82d53dbcadd5bc69cd5..11b9af386461d95ee7824d7c276c538d76907911 100644
--- a/bilby/core/fisher.py
+++ b/bilby/core/fisher.py
@@ -1,7 +1,6 @@
 import numpy as np
-import scipy.linalg
-
 import pandas as pd
+import scipy.linalg
 from scipy.optimize import minimize
 
 
@@ -61,12 +60,14 @@ class FisherMatrixPosteriorEstimator(object):
         return iFIM
 
     def sample_array(self, sample, n=1):
+        from .utils.random import rng
+
         if sample == "maxL":
             sample = self.get_maximum_likelihood_sample()
 
         self.mean = np.array(list(sample.values()))
         self.iFIM = self.calculate_iFIM(sample)
-        return np.random.multivariate_normal(self.mean, self.iFIM, n)
+        return rng.multivariate_normal(self.mean, self.iFIM, n)
 
     def sample_dataframe(self, sample, n=1):
         samples = self.sample_array(sample, n)
diff --git a/bilby/core/prior/base.py b/bilby/core/prior/base.py
index eef710a603321cab16f8dba196754e53b0658a9e..4ac924f74639837a2c323e5769e53c3e0a6a2871 100644
--- a/bilby/core/prior/base.py
+++ b/bilby/core/prior/base.py
@@ -7,8 +7,13 @@ import numpy as np
 import scipy.stats
 from scipy.interpolate import interp1d
 
-from bilby.core.utils import infer_args_from_method, BilbyJsonEncoder, decode_bilby_json, logger, \
-    get_dict_with_properties
+from ..utils import (
+    infer_args_from_method,
+    BilbyJsonEncoder,
+    decode_bilby_json,
+    logger,
+    get_dict_with_properties,
+)
 
 
 class Prior(object):
@@ -124,7 +129,9 @@ class Prior(object):
         float: A random number between 0 and 1, rescaled to match the distribution of this Prior
 
         """
-        self.least_recently_sampled = self.rescale(np.random.uniform(0, 1, size))
+        from ..utils.random import rng
+
+        self.least_recently_sampled = self.rescale(rng.uniform(0, 1, size))
         return self.least_recently_sampled
 
     def rescale(self, val):
diff --git a/bilby/core/prior/conditional.py b/bilby/core/prior/conditional.py
index c4dcc36827fd844853095dcbbcafd69f2585c40a..cbc99f269f6dcb7acbaa75ef9ea377dc2510cbcf 100644
--- a/bilby/core/prior/conditional.py
+++ b/bilby/core/prior/conditional.py
@@ -1,5 +1,3 @@
-import numpy as np
-
 from .base import Prior, PriorException
 from .interpolated import Interped
 from .analytical import DeltaFunction, PowerLaw, Uniform, LogUniform, \
@@ -76,7 +74,9 @@ def conditional_prior_factory(prior_class):
             float: See superclass
 
             """
-            self.least_recently_sampled = self.rescale(np.random.uniform(0, 1, size), **required_variables)
+            from ..utils.random import rng
+
+            self.least_recently_sampled = self.rescale(rng.uniform(0, 1, size), **required_variables)
             return self.least_recently_sampled
 
         def rescale(self, val, **required_variables):
diff --git a/bilby/core/prior/joint.py b/bilby/core/prior/joint.py
index 7f35b8716526e8811571409c2aba6d476a9958cc..cec6fefa288d48d0b71cd73ed36692e239cd44df 100644
--- a/bilby/core/prior/joint.py
+++ b/bilby/core/prior/joint.py
@@ -6,6 +6,7 @@ from scipy.special import erfinv
 
 from .base import Prior, PriorException
 from ..utils import logger, infer_args_from_method, get_dict_with_properties
+from ..utils import random
 
 
 class BaseJointPriorDist(object):
@@ -583,7 +584,7 @@ class MultivariateGaussianDist(BaseJointPriorDist):
             if self.nmodes == 1:
                 mode = 0
             else:
-                mode = np.argwhere(self.cumweights - np.random.rand() > 0)[0][0]
+                mode = np.argwhere(self.cumweights - random.rng.uniform(0, 1) > 0)[0][0]
 
         samp = erfinv(2.0 * samp - 1) * 2.0 ** 0.5
 
@@ -604,12 +605,12 @@ class MultivariateGaussianDist(BaseJointPriorDist):
                 mode = 0
             else:
                 if size == 1:
-                    mode = np.argwhere(self.cumweights - np.random.rand() > 0)[0][0]
+                    mode = np.argwhere(self.cumweights - random.rng.uniform(0, 1) > 0)[0][0]
                 else:
                     # pick modes
                     mode = [
                         np.argwhere(self.cumweights - r > 0)[0][0]
-                        for r in np.random.rand(size)
+                        for r in random.rng.uniform(0, 1, size)
                     ]
 
         samps = np.zeros((size, len(self)))
@@ -617,7 +618,7 @@ class MultivariateGaussianDist(BaseJointPriorDist):
             inbound = False
             while not inbound:
                 # sample the multivariate Gaussian keys
-                vals = np.random.uniform(0, 1, len(self))
+                vals = random.rng.uniform(0, 1, len(self))
 
                 if isinstance(mode, list):
                     samp = np.atleast_1d(self.rescale(vals, mode=mode[i]))
diff --git a/bilby/core/result.py b/bilby/core/result.py
index 563ef85815fc7fbd924a2469e2b6e8dc9e1bb51d..a5e45be5cea81f5038afc8bc53451b36bcd4c763 100644
--- a/bilby/core/result.py
+++ b/bilby/core/result.py
@@ -24,6 +24,7 @@ from .utils import (
     recursively_load_dict_contents_from_group,
     recursively_decode_bilby_json,
     safe_file_dump,
+    random,
 )
 from .prior import Prior, PriorDict, DeltaFunction, ConditionalDeltaFunction
 
@@ -264,7 +265,7 @@ def rejection_sample(posterior, weights):
         The posterior resampled using rejection sampling
 
     """
-    keep = weights > np.random.uniform(0, max(weights), weights.shape)
+    keep = weights > random.rng.uniform(0, max(weights), weights.shape)
     return posterior[keep]
 
 
@@ -1875,7 +1876,7 @@ class ResultList(list):
         result_weights = np.exp(log_evidences - np.max(log_evidences))
         posteriors = list()
         for res, frac in zip(self, result_weights):
-            selected_samples = (np.random.uniform(size=len(res.posterior)) < frac)
+            selected_samples = (random.rng.uniform(size=len(res.posterior)) < frac)
             posteriors.append(res.posterior[selected_samples])
 
         # remove original nested_samples
diff --git a/bilby/core/sampler/base_sampler.py b/bilby/core/sampler/base_sampler.py
index 32bde7c783a8478c578c075c2522d392e595c7b4..f4a717787219fafdf3d72edf29fb9d46fa1a5263 100644
--- a/bilby/core/sampler/base_sampler.py
+++ b/bilby/core/sampler/base_sampler.py
@@ -18,6 +18,7 @@ from ..utils import (
     command_line_args,
     logger,
 )
+from ..utils.random import seed as set_seed
 
 
 @attr.s
@@ -305,6 +306,7 @@ class Sampler(object):
             for equiv in self.sampling_seed_equiv_kwargs:
                 if equiv in kwargs:
                     kwargs[self.sampling_seed_key] = kwargs.pop(equiv)
+                    set_seed(kwargs[self.sampling_seed_key])
         return kwargs
 
     @property
@@ -568,12 +570,14 @@ class Sampler(object):
             likelihood evaluations.
 
         """
+        from ..utils.random import rng
+
         logger.info("Generating initial points from the prior")
         unit_cube = []
         parameters = []
         likelihood = []
         while len(unit_cube) < npoints:
-            unit = np.random.rand(self.ndim)
+            unit = rng.uniform(0, 1, self.ndim)
             theta = self.prior_transform(unit)
             if self.check_draw(theta, warning=False):
                 unit_cube.append(unit)
diff --git a/bilby/core/sampler/dnest4.py b/bilby/core/sampler/dnest4.py
index 5c3d7566e729fb92e5427e9c8b5968c3df6c6abe..dda360ca80211cfe6f87bd08bf8c93d885ee3e36 100644
--- a/bilby/core/sampler/dnest4.py
+++ b/bilby/core/sampler/dnest4.py
@@ -42,9 +42,11 @@ class _DNest4Model(object):
 
     def perturb(self, coords):
         """The perturb function to perform Monte Carlo trial moves."""
-        idx = np.random.randint(self._n_dim)
+        from ..utils.random import rng
 
-        coords[idx] += self._widths[idx] * (np.random.uniform(size=1) - 0.5)
+        idx = rng.integers(self._n_dim)
+
+        coords[idx] += self._widths[idx] * (rng.uniform(size=1) - 0.5)
         cw = self._widths[idx]
         cc = self._centers[idx]
 
diff --git a/bilby/core/sampler/dynesty.py b/bilby/core/sampler/dynesty.py
index d2e3a85b1f8cf0cd3a9b8091f980c38ce10a6ec9..2a4d73d738effde9265e0e8a450b8e5a17d4f69a 100644
--- a/bilby/core/sampler/dynesty.py
+++ b/bilby/core/sampler/dynesty.py
@@ -568,6 +568,8 @@ class Dynesty(NestedSampler):
         import dynesty
         from scipy.special import logsumexp
 
+        from ..utils.random import rng
+
         logwts = out["logwt"]
         weights = np.exp(logwts - out["logz"][-1])
         nested_samples = DataFrame(out.samples, columns=self.search_parameter_keys)
@@ -575,7 +577,7 @@ class Dynesty(NestedSampler):
         nested_samples["log_likelihood"] = out.logl
         self.result.nested_samples = nested_samples
         if self.rejection_sample_posterior:
-            keep = weights > np.random.uniform(0, max(weights), len(weights))
+            keep = weights > rng.uniform(0, max(weights), len(weights))
             self.result.samples = out.samples[keep]
             self.result.log_likelihood_evaluations = out.logl[keep]
             logger.info(
diff --git a/bilby/core/sampler/proposal.py b/bilby/core/sampler/proposal.py
index 023caac5744de968d338cea30125574248b91f95..d23d19b4c27c5793f4cb6a074d70c805e6d5dce5 100644
--- a/bilby/core/sampler/proposal.py
+++ b/bilby/core/sampler/proposal.py
@@ -1,9 +1,9 @@
-import random
 from inspect import isclass
 
 import numpy as np
 
 from ..prior import Uniform
+from ..utils import random
 
 
 class Sample(dict):
@@ -135,7 +135,7 @@ class JumpProposalCycle(object):
         return len(self.proposal_functions)
 
     def update_cycle(self):
-        self._cycle = np.random.choice(
+        self._cycle = random.rng.choice(
             self.proposal_functions,
             size=self.cycle_length,
             p=self.weights,
@@ -195,14 +195,14 @@ class NormJump(JumpProposal):
 
     def __call__(self, sample, **kwargs):
         for key in sample.keys():
-            sample[key] = np.random.normal(sample[key], self.step_size)
+            sample[key] = random.rng.normal(sample[key], self.step_size)
         return super(NormJump, self).__call__(sample)
 
 
 class EnsembleWalk(JumpProposal):
     def __init__(
         self,
-        random_number_generator=random.random,
+        random_number_generator=random.rng.uniform,
         n_points=3,
         priors=None,
         **random_number_generator_args
@@ -227,7 +227,7 @@ class EnsembleWalk(JumpProposal):
         self.random_number_generator_args = random_number_generator_args
 
     def __call__(self, sample, **kwargs):
-        subset = random.sample(kwargs["coordinates"], self.n_points)
+        subset = random.rng.choice(kwargs["coordinates"], self.n_points, replace=False)
         for i in range(len(subset)):
             subset[i] = Sample.from_external_type(
                 subset[i], kwargs.get("sampler_name", None)
@@ -258,11 +258,11 @@ class EnsembleStretch(JumpProposal):
         self.scale = scale
 
     def __call__(self, sample, **kwargs):
-        second_sample = random.choice(kwargs["coordinates"])
+        second_sample = random.rng.choice(kwargs["coordinates"])
         second_sample = Sample.from_external_type(
             second_sample, kwargs.get("sampler_name", None)
         )
-        step = random.uniform(-1, 1) * np.log(self.scale)
+        step = random.rng.uniform(-1, 1) * np.log(self.scale)
         sample = second_sample + (sample - second_sample) * np.exp(step)
         self.log_j = len(sample) * step
         return super(EnsembleStretch, self).__call__(sample)
@@ -286,8 +286,8 @@ class DifferentialEvolution(JumpProposal):
         self.mu = mu
 
     def __call__(self, sample, **kwargs):
-        a, b = random.sample(kwargs["coordinates"], 2)
-        sample = sample + (b - a) * random.gauss(self.mu, self.sigma)
+        a, b = random.rng.choice(kwargs["coordinates"], 2, replace=False)
+        sample = sample + (b - a) * random.rng.normal(self.mu, self.sigma)
         return super(DifferentialEvolution, self).__call__(sample)
 
 
@@ -334,8 +334,8 @@ class EnsembleEigenVector(JumpProposal):
 
     def __call__(self, sample, **kwargs):
         self.update_eigenvectors(kwargs["coordinates"])
-        i = random.randrange(len(sample))
-        jump_size = np.sqrt(np.fabs(self.eigen_values[i])) * random.gauss(0, 1)
+        i = random.rng.integers(len(sample))
+        jump_size = np.sqrt(np.fabs(self.eigen_values[i])) * random.rng.normal(0, 1)
         for j, key in enumerate(sample.keys()):
             sample[key] += jump_size * self.eigen_vectors[j, i]
         return super(EnsembleEigenVector, self).__call__(sample)
diff --git a/bilby/core/sampler/ptemcee.py b/bilby/core/sampler/ptemcee.py
index 8fce83996c37868c95708a8d227e69a2e0d1a4bc..531fb102a0614015f4053e7326b87c5ec923dbfe 100644
--- a/bilby/core/sampler/ptemcee.py
+++ b/bilby/core/sampler/ptemcee.py
@@ -323,6 +323,8 @@ class Ptemcee(MCMCSampler):
 
         from scipy.optimize import minimize
 
+        from ..utils.random import rng
+
         # Set up the minimize list: keys not in this list will have initial
         # positions drawn from the prior
         if minimize_list is None:
@@ -375,7 +377,7 @@ class Ptemcee(MCMCSampler):
             pos0_max = np.max(success[:, i])
             logger.info(f"Initialize {key} walkers from {pos0_min}->{pos0_max}")
             j = self.search_parameter_keys.index(key)
-            pos0[:, :, j] = np.random.uniform(
+            pos0[:, :, j] = rng.uniform(
                 pos0_min,
                 pos0_max,
                 size=(self.kwargs["ntemps"], self.kwargs["nwalkers"]),
diff --git a/bilby/core/sampler/ultranest.py b/bilby/core/sampler/ultranest.py
index 4cc14a9fa7ff9ba1ce4f19979571f8dde2c71e7b..542f862468c290d007f556ca6033bb30e78f2729 100644
--- a/bilby/core/sampler/ultranest.py
+++ b/bilby/core/sampler/ultranest.py
@@ -262,11 +262,13 @@ class Ultranest(_TemporaryFileSamplerMixin, NestedSampler):
 
     def _generate_result(self, out):
         # extract results
+        from ..utils.random import rng
+
         data = np.array(out["weighted_samples"]["points"])
         weights = np.array(out["weighted_samples"]["weights"])
 
         scaledweights = weights / weights.max()
-        mask = np.random.rand(len(scaledweights)) < scaledweights
+        mask = rng.uniform(0, 1, len(scaledweights)) < scaledweights
 
         nested_samples = DataFrame(data, columns=self.search_parameter_keys)
         nested_samples["weights"] = weights
diff --git a/bilby/core/utils/__init__.py b/bilby/core/utils/__init__.py
index 10509641a3e71b10620e51ba3ec98ca788b6e9d7..25d1eda934151fdcb85806dd336406a9f5ea7a90 100644
--- a/bilby/core/utils/__init__.py
+++ b/bilby/core/utils/__init__.py
@@ -1,3 +1,4 @@
+from . import random
 from .calculus import *
 from .cmd import *
 from .colors import *
diff --git a/bilby/core/utils/random.py b/bilby/core/utils/random.py
new file mode 100644
index 0000000000000000000000000000000000000000..dbee5b091181555e991d5d0229b147b8f31a03ac
--- /dev/null
+++ b/bilby/core/utils/random.py
@@ -0,0 +1,18 @@
+from numpy.random import default_rng, SeedSequence
+
+
+def __getattr__(name):
+    if name == "rng":
+        return Generator.rng
+
+
+class Generator:
+    rng = default_rng()
+
+
+def seed(seed):
+    Generator.rng = default_rng(seed)
+
+
+def generate_seeds(nseeds):
+    return SeedSequence(Generator.rng.integers(0, 2**63 - 1, size=4)).spawn(nseeds)
diff --git a/bilby/core/utils/series.py b/bilby/core/utils/series.py
index 7593d0ff8d45fde273bd56f8b53d6a553d8ea516..ccd59372245b56087d77a9b45ca0da645363f3b7 100644
--- a/bilby/core/utils/series.py
+++ b/bilby/core/utils/series.py
@@ -1,6 +1,5 @@
 import numpy as np
 
-
 _TOL = 14
 
 
@@ -165,29 +164,23 @@ def create_white_noise(sampling_frequency, duration):
     array_like: white noise
     array_like: frequency array
     """
+    from .random import rng
 
     number_of_samples = duration * sampling_frequency
     number_of_samples = int(np.round(number_of_samples))
 
-    delta_freq = 1. / duration
-
     frequencies = create_frequency_series(sampling_frequency, duration)
 
-    norm1 = 0.5 * (1. / delta_freq)**0.5
-    re1 = np.random.normal(0, norm1, len(frequencies))
-    im1 = np.random.normal(0, norm1, len(frequencies))
-    htilde1 = re1 + 1j * im1
+    norm1 = 0.5 * duration**0.5
+    re1, im1 = rng.normal(0, norm1, (2, len(frequencies)))
+    white_noise = re1 + 1j * im1
 
-    # convolve data with instrument transfer function
-    otilde1 = htilde1 * 1.
     # set DC and Nyquist = 0
-    otilde1[0] = 0
+    white_noise[0] = 0
     # no Nyquist frequency when N=odd
     if np.mod(number_of_samples, 2) == 0:
-        otilde1[-1] = 0
+        white_noise[-1] = 0
 
-    # normalise for positive frequencies and units of strain/rHz
-    white_noise = otilde1
     # python: transpose for use with infft
     white_noise = np.transpose(white_noise)
     frequencies = np.transpose(frequencies)
diff --git a/bilby/gw/conversion.py b/bilby/gw/conversion.py
index 091727c5d1f6fcda39449788ce31c86265371f7a..00d957f98fea3b0eeba1459bf25f16cc47c39ab7 100644
--- a/bilby/gw/conversion.py
+++ b/bilby/gw/conversion.py
@@ -1619,8 +1619,9 @@ def binary_love_lambda_symmetric_to_lambda_1_lambda_2_automatic_marginalisation(
     lambda_2: float
         Tidal parameter of less massive neutron star.
     """
+    from ..core.utils.random import rng
 
-    binary_love_uniform = np.random.uniform(0, 1, len(lambda_symmetric))
+    binary_love_uniform = rng.uniform(0, 1, len(lambda_symmetric))
 
     lambda_1, lambda_2 = binary_love_lambda_symmetric_to_lambda_1_lambda_2_manual_marginalisation(
         binary_love_uniform, lambda_symmetric, mass_ratio)
@@ -2422,6 +2423,8 @@ def generate_posterior_samples_from_marginalized_likelihood(
     sample: DataFrame
         Returns the posterior with new samples.
     """
+    from ..core.utils.random import generate_seeds
+
     marginalized_parameters = getattr(likelihood, "_marginalized_parameters", list())
     if len(marginalized_parameters) == 0:
         return samples
@@ -2485,7 +2488,8 @@ def generate_posterior_samples_from_marginalized_likelihood(
         _sampling_convenience_dump.likelihood = likelihood
         pool = None
 
-    fill_args = [(ii, row) for ii, row in samples.iterrows()]
+    seeds = generate_seeds(len(samples))
+    fill_args = [(ii, row, seed) for (ii, row), seed in zip(samples.iterrows(), seeds)]
     ii = 0
     pbar = tqdm(total=len(samples), file=sys.stdout)
     while ii < len(samples):
@@ -2544,8 +2548,11 @@ def generate_sky_frame_parameters(samples, likelihood):
 
 def fill_sample(args):
     from ..core.sampler.base_sampler import _sampling_convenience_dump
+    from ..core.utils.random import seed
+
+    ii, sample, rseed = args
+    seed(rseed)
     likelihood = _sampling_convenience_dump.likelihood
-    ii, sample = args
     marginalized_parameters = getattr(likelihood, "_marginalized_parameters", list())
     sample = dict(sample).copy()
     likelihood.parameters.update(dict(sample).copy())
diff --git a/bilby/gw/likelihood/base.py b/bilby/gw/likelihood/base.py
index ab8eadc1d96e4ee7c7c30f47faf34a3cb5302705..256237bfb9f8395a67a7152adb66fbd18892b9d1 100644
--- a/bilby/gw/likelihood/base.py
+++ b/bilby/gw/likelihood/base.py
@@ -521,6 +521,8 @@ class GravitationalWaveTransient(Likelihood):
         new_calibration: dict
             Sample set from the calibration posterior
         """
+        from ...core.utils.random import rng
+
         if 'recalib_index' in self.parameters:
             self.parameters.pop('recalib_index')
         self.parameters.update(self.get_sky_frame_parameters())
@@ -533,7 +535,7 @@ class GravitationalWaveTransient(Likelihood):
         calibration_post = np.exp(log_like - max(log_like))
         calibration_post /= np.sum(calibration_post)
 
-        new_calibration = np.random.choice(self.number_of_response_curves, p=calibration_post)
+        new_calibration = rng.choice(self.number_of_response_curves, p=calibration_post)
 
         return new_calibration
 
diff --git a/bilby/gw/likelihood/roq.py b/bilby/gw/likelihood/roq.py
index b3f93a8472200e76f460ba3623f2436ab2323183..12d5212f2230202df4410d2374c185665194c72b 100644
--- a/bilby/gw/likelihood/roq.py
+++ b/bilby/gw/likelihood/roq.py
@@ -1151,6 +1151,8 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient):
                 signal[kind][mode] *= self._ref_dist / new_distance
 
     def generate_time_sample_from_marginalized_likelihood(self, signal_polarizations=None):
+        from ...core.utils.random import rng
+
         self.parameters.update(self.get_sky_frame_parameters())
         if signal_polarizations is None:
             signal_polarizations = \
@@ -1180,7 +1182,7 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient):
         time_prior_array = self.priors['geocent_time'].prob(times)
         time_post = np.exp(time_log_like - max(time_log_like)) * time_prior_array
         time_post /= np.sum(time_post)
-        return np.random.choice(times, p=time_post)
+        return rng.choice(times, p=time_post)
 
 
 class BilbyROQParamsRangeError(Exception):
diff --git a/bilby/gw/prior.py b/bilby/gw/prior.py
index f8b919c45f23204f04e048d486bd9d81c3128b0a..63b51790eaa5f05be5fe11f3c7b2c592f1abc32f 100644
--- a/bilby/gw/prior.py
+++ b/bilby/gw/prior.py
@@ -12,7 +12,7 @@ from ..core.prior import (
     ConditionalPriorDict, ConditionalBasePrior, BaseJointPriorDist, JointPrior,
     JointPriorDistError,
 )
-from ..core.utils import infer_args_from_method, logger
+from ..core.utils import infer_args_from_method, logger, random
 from .conversion import (
     convert_to_lal_binary_black_hole_parameters,
     convert_to_lal_binary_neutron_star_parameters, generate_mass_parameters,
@@ -1503,7 +1503,7 @@ class HealPixMapPriorDist(BaseJointPriorDist):
         """
         pixel_choices = np.arange(self.npix)
         pixel_probs = self._check_norm(self.prob)
-        sample_pix = np.random.choice(pixel_choices, size=size, p=pixel_probs, replace=True)
+        sample_pix = random.rng.choice(pixel_choices, size=size, p=pixel_probs, replace=True)
         sample = np.empty((size, self.num_vars))
         for samp in range(size):
             theta, ra = self.hp.pix2ang(self.nside, sample_pix[samp])
@@ -1535,7 +1535,7 @@ class HealPixMapPriorDist(BaseJointPriorDist):
         """
         if self.distmu[pix] == np.inf or self.distmu[pix] <= 0:
             return 0
-        dist = self.distance_icdf(np.random.uniform(0, 1))
+        dist = self.distance_icdf(random.rng.uniform(0, 1))
         name = self.names[-1]
         if (dist > self.bounds[name][1]) | (dist < self.bounds[name][0]):
             self.draw_distance(pix)
@@ -1564,8 +1564,8 @@ class HealPixMapPriorDist(BaseJointPriorDist):
             self.draw_from_pixel(ra, dec, pix)
         return np.array(
             [
-                np.random.uniform(ra - self.pixel_length, ra + self.pixel_length),
-                np.random.uniform(dec - self.pixel_length, dec + self.pixel_length),
+                random.rng.uniform(ra - self.pixel_length, ra + self.pixel_length),
+                random.rng.uniform(dec - self.pixel_length, dec + self.pixel_length),
             ]
         )
 
diff --git a/examples/gw_examples/injection_examples/fast_tutorial.py b/examples/gw_examples/injection_examples/fast_tutorial.py
index f462008a70994982d47c9cbd69179161c96aae3c..9503fb04d9250f7a1f1d2f42af2ecc10846fab3d 100644
--- a/examples/gw_examples/injection_examples/fast_tutorial.py
+++ b/examples/gw_examples/injection_examples/fast_tutorial.py
@@ -9,7 +9,6 @@ between luminosity distances of 100Mpc and 5Gpc, the cosmology is Planck15.
 """
 
 import bilby
-import numpy as np
 
 # Set the duration and sampling frequency of the data segment that we're
 # going to inject the signal into
@@ -23,7 +22,7 @@ label = "fast_tutorial"
 bilby.core.utils.setup_logger(outdir=outdir, label=label)
 
 # Set up a random seed for result reproducibility.  This is optional!
-np.random.seed(88170235)
+bilby.core.utils.random.seed(88170235)
 
 # We are going to inject a binary black hole waveform.  We first establish a
 # dictionary of parameters that includes all of the different waveform
diff --git a/test/core/grid_test.py b/test/core/grid_test.py
index 45cd0e1afb6a9e5172995b7cb673e2e87cbbd235..82e44c5cc656bf9e96e3cbc2ea71d0ce441e49ad 100644
--- a/test/core/grid_test.py
+++ b/test/core/grid_test.py
@@ -27,7 +27,7 @@ class MultiGaussian(bilby.Likelihood):
 
 class TestGrid(unittest.TestCase):
     def setUp(self):
-        np.random.seed(7)
+        bilby.core.utils.random.seed(7)
 
         # set 2D multivariate Gaussian (zero mean, unit variance)
         self.mus = [0.0, 0.0]
diff --git a/test/core/prior/conditional_test.py b/test/core/prior/conditional_test.py
index 94a869936fc6cd71cc3647e51a5a372e08ed4544..5ee4efd60618f89547ec4731407ca97aebf062a7 100644
--- a/test/core/prior/conditional_test.py
+++ b/test/core/prior/conditional_test.py
@@ -275,20 +275,22 @@ class TestConditionalPriorDict(unittest.TestCase):
             self.conditional_priors.ln_prob(sample=self.test_sample)
 
     def test_sample_subset_all_keys(self):
-        with mock.patch("numpy.random.uniform") as m:
-            m.return_value = 0.5
-            self.assertDictEqual(
-                dict(var_0=0.5, var_1=0.5 ** 2, var_2=0.5 ** 3, var_3=0.5 ** 4),
-                self.conditional_priors.sample_subset(
-                    keys=["var_0", "var_1", "var_2", "var_3"]
-                ),
-            )
+        bilby.core.utils.random.seed(5)
+        self.assertDictEqual(
+            dict(
+                var_0=0.8050029237453802,
+                var_1=0.6503946979510289,
+                var_2=0.33516501262044845,
+                var_3=0.09579062316418356,
+            ),
+            self.conditional_priors.sample_subset(
+                keys=["var_0", "var_1", "var_2", "var_3"]
+            ),
+        )
 
     def test_sample_illegal_subset(self):
-        with mock.patch("numpy.random.uniform") as m:
-            m.return_value = 0.5
-            with self.assertRaises(bilby.core.prior.IllegalConditionsException):
-                self.conditional_priors.sample_subset(keys=["var_1"])
+        with self.assertRaises(bilby.core.prior.IllegalConditionsException):
+            self.conditional_priors.sample_subset(keys=["var_1"])
 
     def test_sample_multiple(self):
         def condition_func(reference_params, a):
diff --git a/test/core/prior/dict_test.py b/test/core/prior/dict_test.py
index f2045ed227eddbc63d2038bc806a4ea442b63c08..7945b5fba5682a52d1ba1b54769fd60714e38e14 100644
--- a/test/core/prior/dict_test.py
+++ b/test/core/prior/dict_test.py
@@ -258,11 +258,11 @@ class TestPriorDict(unittest.TestCase):
 
     def test_sample(self):
         size = 7
-        np.random.seed(42)
+        bilby.core.utils.random.seed(42)
         samples1 = self.prior_set_from_dict.sample_subset(
             keys=self.prior_set_from_dict.keys(), size=size
         )
-        np.random.seed(42)
+        bilby.core.utils.random.seed(42)
         samples2 = self.prior_set_from_dict.sample(size=size)
         self.assertEqual(set(samples1.keys()), set(samples2.keys()))
         for key in samples1:
@@ -305,12 +305,12 @@ class TestPriorDict(unittest.TestCase):
         Note that the format of inputs/outputs is different between the two methods.
         """
         sample = self.prior_set_from_dict.sample()
-        self.assertEqual(
-            self.prior_set_from_dict.rescale(
-                sample.keys(),
-                self.prior_set_from_dict.cdf(sample=sample).values()
-            ), list(sample.values())
-        )
+        original = np.array(list(sample.values()))
+        new = np.array(self.prior_set_from_dict.rescale(
+            sample.keys(),
+            self.prior_set_from_dict.cdf(sample=sample).values()
+        ))
+        self.assertLess(max(abs(original - new)), 1e-10)
 
     def test_redundancy(self):
         for key in self.prior_set_from_dict.keys():
diff --git a/test/core/sampler/proposal_test.py b/test/core/sampler/proposal_test.py
index ce678d3fe1d1fdaa5a2750c664a3e6d7a284377f..1b2331af0febf8cebe2e730b1e22eb3a66062201 100644
--- a/test/core/sampler/proposal_test.py
+++ b/test/core/sampler/proposal_test.py
@@ -1,9 +1,9 @@
 import unittest
 from unittest import mock
-import random
 
 import numpy as np
 
+import bilby
 from bilby.core import prior
 from bilby.core.sampler import proposal
 
@@ -132,6 +132,7 @@ class TestNormJump(unittest.TestCase):
             )
         )
         self.jump_proposal = proposal.NormJump(step_size=3.0, priors=self.priors)
+        bilby.core.utils.random.seed(5)
 
     def tearDown(self):
         del self.priors
@@ -145,12 +146,14 @@ class TestNormJump(unittest.TestCase):
         self.assertEqual(1.0, self.jump_proposal.step_size)
 
     def test_jump_proposal_call(self):
-        with mock.patch("numpy.random.normal") as m:
-            m.return_value = 0.5
-            sample = proposal.Sample(dict(reflective=0.0, periodic=0.0, default=0.0))
-            new_sample = self.jump_proposal(sample)
-            expected = proposal.Sample(dict(reflective=0.5, periodic=0.5, default=0.5))
-            self.assertDictEqual(expected, new_sample)
+        sample = proposal.Sample(dict(reflective=0.0, periodic=0.0, default=0.0))
+        new_sample = self.jump_proposal(sample)
+        expected = proposal.Sample(dict(
+            reflective=0.5942057242396577,
+            periodic=-0.02692301311556511,
+            default=-0.7450848662857457,
+        ))
+        self.assertDictEqual(expected, new_sample)
 
 
 class TestEnsembleWalk(unittest.TestCase):
@@ -164,9 +167,11 @@ class TestEnsembleWalk(unittest.TestCase):
                 default=prior.Uniform(minimum=-0.5, maximum=1),
             )
         )
+        bilby.core.utils.random.seed(5)
         self.jump_proposal = proposal.EnsembleWalk(
-            random_number_generator=random.random, n_points=4, priors=self.priors
+            random_number_generator=bilby.core.utils.random.rng.uniform, n_points=4, priors=self.priors
         )
+        self.coordinates = [proposal.Sample(self.priors.sample()) for _ in range(10)]
 
     def tearDown(self):
         del self.priors
@@ -180,7 +185,7 @@ class TestEnsembleWalk(unittest.TestCase):
         self.assertEqual(3, self.jump_proposal.n_points)
 
     def test_random_number_generator_init(self):
-        self.assertEqual(random.random, self.jump_proposal.random_number_generator)
+        self.assertEqual(bilby.core.utils.random.rng.uniform, self.jump_proposal.random_number_generator)
 
     def test_get_center_of_mass(self):
         samples = [
@@ -193,17 +198,15 @@ class TestEnsembleWalk(unittest.TestCase):
             self.assertAlmostEqual(expected[key], actual[key])
 
     def test_jump_proposal_call(self):
-        with mock.patch("random.sample") as m:
-            self.jump_proposal.random_number_generator = lambda: 2
-            m.return_value = [
-                proposal.Sample(dict(periodic=0.3, reflective=0.3, default=0.3)),
-                proposal.Sample(dict(periodic=0.1, reflective=0.1, default=0.1)),
-            ]
-            sample = proposal.Sample(dict(periodic=0.1, reflective=0.1, default=0.1))
-            new_sample = self.jump_proposal(sample, coordinates=None)
-            expected = proposal.Sample(dict(periodic=0.1, reflective=0.1, default=0.1))
-            for key, value in new_sample.items():
-                self.assertAlmostEqual(expected[key], value)
+        sample = proposal.Sample(dict(periodic=0.1, reflective=0.1, default=0.1))
+        new_sample = self.jump_proposal(sample, coordinates=self.coordinates)
+        expected = proposal.Sample(dict(
+            periodic=0.437075089594473,
+            reflective=-0.18027731528487945,
+            default=-0.17570046901727415,
+        ))
+        for key, value in new_sample.items():
+            self.assertAlmostEqual(expected[key], value)
 
 
 class TestEnsembleEnsembleStretch(unittest.TestCase):
@@ -217,7 +220,9 @@ class TestEnsembleEnsembleStretch(unittest.TestCase):
                 default=prior.Uniform(minimum=-0.5, maximum=1),
             )
         )
+        bilby.core.utils.random.seed(5)
         self.jump_proposal = proposal.EnsembleStretch(scale=3.0, priors=self.priors)
+        self.coordinates = [proposal.Sample(self.priors.sample()) for _ in range(10)]
 
     def tearDown(self):
         del self.priors
@@ -231,47 +236,24 @@ class TestEnsembleEnsembleStretch(unittest.TestCase):
         self.assertEqual(5.0, self.jump_proposal.scale)
 
     def test_jump_proposal_call(self):
-        with mock.patch("random.choice") as m:
-            with mock.patch("random.uniform") as n:
-                second_sample = proposal.Sample(
-                    dict(periodic=0.3, reflective=0.3, default=0.3)
-                )
-                random_number = 0.5
-                m.return_value = second_sample
-                n.return_value = random_number
-                sample = proposal.Sample(
-                    dict(periodic=0.1, reflective=0.1, default=0.1)
-                )
-                new_sample = self.jump_proposal(sample, coordinates=None)
-                coords = 0.3 - 0.2 * np.exp(
-                    random_number * np.log(self.jump_proposal.scale)
-                )
-                expected = proposal.Sample(
-                    dict(periodic=coords, reflective=coords, default=coords)
-                )
-                for key, value in new_sample.items():
-                    self.assertAlmostEqual(expected[key], value)
+        sample = proposal.Sample(
+            dict(periodic=0.1, reflective=0.1, default=0.1)
+        )
+        new_sample = self.jump_proposal(sample, coordinates=self.coordinates)
+        expected = proposal.Sample(dict(
+            periodic=0.5790181653312239,
+            reflective=-0.028378746842481914,
+            default=-0.23534241783479043,
+        ))
+        for key, value in new_sample.items():
+            self.assertAlmostEqual(expected[key], value)
 
     def test_log_j_after_call(self):
-        with mock.patch("random.uniform") as m1:
-            with mock.patch("numpy.log") as m2:
-                with mock.patch("numpy.exp") as m3:
-                    m1.return_value = 1
-                    m2.return_value = 1
-                    m3.return_value = 1
-                    coordinates = [
-                        proposal.Sample(
-                            dict(periodic=0.3, reflective=0.3, default=0.3)
-                        ),
-                        proposal.Sample(
-                            dict(periodic=0.3, reflective=0.3, default=0.3)
-                        ),
-                    ]
-                    sample = proposal.Sample(
-                        dict(periodic=0.2, reflective=0.2, default=0.2)
-                    )
-                    self.jump_proposal(sample=sample, coordinates=coordinates)
-                    self.assertEqual(3, self.jump_proposal.log_j)
+        sample = proposal.Sample(
+            dict(periodic=0.2, reflective=0.2, default=0.2)
+        )
+        self.jump_proposal(sample=sample, coordinates=self.coordinates)
+        self.assertAlmostEqual(-3.2879289432183088, self.jump_proposal.log_j, 10)
 
 
 class TestDifferentialEvolution(unittest.TestCase):
@@ -285,9 +267,11 @@ class TestDifferentialEvolution(unittest.TestCase):
                 default=prior.Uniform(minimum=-0.5, maximum=1),
             )
         )
+        bilby.core.utils.random.seed(5)
         self.jump_proposal = proposal.DifferentialEvolution(
             sigma=1e-3, mu=0.5, priors=self.priors
         )
+        self.coordinates = [proposal.Sample(self.priors.sample()) for _ in range(10)]
 
     def tearDown(self):
         del self.priors
@@ -305,22 +289,17 @@ class TestDifferentialEvolution(unittest.TestCase):
         self.assertEqual(2, self.jump_proposal.sigma)
 
     def test_jump_proposal_call(self):
-        with mock.patch("random.sample") as m:
-            with mock.patch("random.gauss") as n:
-                m.return_value = (
-                    proposal.Sample(dict(periodic=0.2, reflective=0.2, default=0.2)),
-                    proposal.Sample(dict(periodic=0.3, reflective=0.3, default=0.3)),
-                )
-                n.return_value = 1
-                sample = proposal.Sample(
-                    dict(periodic=0.1, reflective=0.1, default=0.1)
-                )
-                expected = proposal.Sample(
-                    dict(periodic=0.2, reflective=0.2, default=0.2)
-                )
-                new_sample = self.jump_proposal(sample, coordinates=None)
-                for key, value in new_sample.items():
-                    self.assertAlmostEqual(expected[key], value)
+        sample = proposal.Sample(
+            dict(periodic=0.1, reflective=0.1, default=0.1)
+        )
+        expected = proposal.Sample(dict(
+            periodic=0.09440864471444077,
+            reflective=0.567962015300636,
+            default=0.0657296821780595,
+        ))
+        new_sample = self.jump_proposal(sample, coordinates=self.coordinates)
+        for key, value in new_sample.items():
+            self.assertAlmostEqual(expected[key], value)
 
 
 class TestEnsembleEigenVector(unittest.TestCase):
@@ -334,7 +313,9 @@ class TestEnsembleEigenVector(unittest.TestCase):
                 default=prior.Uniform(minimum=-0.5, maximum=1),
             )
         )
+        bilby.core.utils.random.seed(5)
         self.jump_proposal = proposal.EnsembleEigenVector(priors=self.priors)
+        self.coordinates = [proposal.Sample(self.priors.sample()) for _ in range(10)]
 
     def tearDown(self):
         del self.priors
@@ -386,26 +367,17 @@ class TestEnsembleEigenVector(unittest.TestCase):
                 self.assertEqual(2, self.jump_proposal.eigen_vectors)
 
     def test_jump_proposal_call(self):
-        self.jump_proposal.update_eigenvectors = lambda x: None
-        self.jump_proposal.eigen_values = np.array([1, np.nan, np.nan])
-        self.jump_proposal.eigen_vectors = np.array(
-            [[0.1, np.nan, np.nan], [0.4, np.nan, np.nan], [0.7, np.nan, np.nan]]
-        )
-        with mock.patch("random.randrange") as m:
-            with mock.patch("random.gauss") as n:
-                m.return_value = 0
-                n.return_value = 1
-                expected = proposal.Sample()
-                expected["periodic"] = 0.2
-                expected["reflective"] = 0.5
-                expected["default"] = 0.8
-                sample = proposal.Sample()
-                sample["periodic"] = 0.1
-                sample["reflective"] = 0.1
-                sample["default"] = 0.1
-                new_sample = self.jump_proposal(sample, coordinates=None)
-                for key, value in new_sample.items():
-                    self.assertAlmostEqual(expected[key], value)
+        expected = proposal.Sample()
+        expected["periodic"] = 0.10318172002873117
+        expected["reflective"] = 0.11177972036165257
+        expected["default"] = 0.10053457100669783
+        sample = proposal.Sample()
+        sample["periodic"] = 0.1
+        sample["reflective"] = 0.1
+        sample["default"] = 0.1
+        new_sample = self.jump_proposal(sample, coordinates=self.coordinates)
+        for key, value in new_sample.items():
+            self.assertAlmostEqual(expected[key], value)
 
 
 if __name__ == "__main__":
diff --git a/test/gw/likelihood/marginalization_test.py b/test/gw/likelihood/marginalization_test.py
index 42fa0332fce6c3b1d0f79baa089d5013a16a2729..d7b4f8a59785e695b5b6d58cb5f036c60b4e5101 100644
--- a/test/gw/likelihood/marginalization_test.py
+++ b/test/gw/likelihood/marginalization_test.py
@@ -14,7 +14,7 @@ from scipy.special import logsumexp
 
 class TestMarginalizedLikelihood(unittest.TestCase):
     def setUp(self):
-        np.random.seed(500)
+        bilby.core.utils.random.seed(500)
         self.duration = 4
         self.sampling_frequency = 2048
         self.parameters = dict(
@@ -177,7 +177,7 @@ class TestMarginalizations(unittest.TestCase):
     path_to_roq_weights = "weights.npz"
 
     def setUp(self):
-        np.random.seed(500)
+        bilby.core.utils.random.seed(200)
         self.duration = 4
         self.sampling_frequency = 2048
         self.parameters = dict(
@@ -215,7 +215,7 @@ class TestMarginalizations(unittest.TestCase):
             waveform_arguments=dict(
                 reference_frequency=20.0,
                 minimum_frequency=20.0,
-                approximant="IMRPhenomPv2",
+                waveform_approximant="IMRPhenomPv2",
             )
         )
         self.interferometers.inject_signal(
@@ -249,7 +249,7 @@ class TestMarginalizations(unittest.TestCase):
             waveform_arguments=dict(
                 reference_frequency=20.0,
                 minimum_frequency=20.0,
-                approximant="IMRPhenomPv2",
+                waveform_approximant="IMRPhenomPv2",
                 frequency_nodes_linear=np.load(f"{roq_dir}/fnodes_linear.npy"),
                 frequency_nodes_quadratic=np.load(f"{roq_dir}/fnodes_quadratic.npy"),
             )
@@ -265,7 +265,7 @@ class TestMarginalizations(unittest.TestCase):
             waveform_arguments=dict(
                 reference_frequency=20.0,
                 minimum_frequency=20.0,
-                approximant="IMRPhenomPv2",
+                waveform_approximant="IMRPhenomPv2",
             )
         )
 
@@ -333,7 +333,7 @@ class TestMarginalizations(unittest.TestCase):
             cls_ = bilby.gw.likelihood.ROQGravitationalWaveTransient
         elif kind == "relbin":
             cls_ = bilby.gw.likelihood.RelativeBinningGravitationalWaveTransient
-            kwargs["epsilon"] = 0.3
+            kwargs["epsilon"] = 0.1
             self.parameters["fiducial"] = 0
         else:
             raise ValueError(f"kind {kind} not understood")
@@ -366,7 +366,15 @@ class TestMarginalizations(unittest.TestCase):
             marg_like, marginalized.log_likelihood_ratio(), delta=0.5
         )
 
-    @parameterized.expand(_parameters)
+    @parameterized.expand(
+        _parameters,
+        name_func=lambda func, num, param: (
+            f"{func.__name__}_{num}__{param.args[0]}_{param.args[1]}_" + "_".join([
+                ["D", "T", "P"][ii] for ii, val
+                in enumerate(param.args[-3:]) if val
+            ])
+        )
+    )
     def test_marginalisation(self, kind, key, distance, time, phase):
         if all([distance, time, phase]):
             pytest.skip()
diff --git a/test/gw/likelihood_test.py b/test/gw/likelihood_test.py
index 16b9efab9d035611a2d4d3caacd4038d4662f0e5..87a007072f7dff2f0ee00976356eef43a3d5d15b 100644
--- a/test/gw/likelihood_test.py
+++ b/test/gw/likelihood_test.py
@@ -12,7 +12,7 @@ from bilby.gw.likelihood import BilbyROQParamsRangeError
 
 class TestBasicGWTransient(unittest.TestCase):
     def setUp(self):
-        np.random.seed(500)
+        bilby.core.utils.random.seed(500)
         self.parameters = dict(
             mass_1=31.0,
             mass_2=29.0,
@@ -56,13 +56,13 @@ class TestBasicGWTransient(unittest.TestCase):
         """Test noise log likelihood matches precomputed value"""
         self.likelihood.noise_log_likelihood()
         self.assertAlmostEqual(
-            -4037.0994372143414, self.likelihood.noise_log_likelihood(), 3
+            -4014.1787704539474, self.likelihood.noise_log_likelihood(), 3
         )
 
     def test_log_likelihood(self):
         """Test log likelihood matches precomputed value"""
         self.likelihood.log_likelihood()
-        self.assertAlmostEqual(self.likelihood.log_likelihood(), -4054.047229508672, 3)
+        self.assertAlmostEqual(self.likelihood.log_likelihood(), -4032.4397343470005, 3)
 
     def test_log_likelihood_ratio(self):
         """Test log likelihood ratio returns the correct value"""
@@ -87,7 +87,7 @@ class TestBasicGWTransient(unittest.TestCase):
 
 class TestGWTransient(unittest.TestCase):
     def setUp(self):
-        np.random.seed(500)
+        bilby.core.utils.random.seed(500)
         self.duration = 4
         self.sampling_frequency = 2048
         self.parameters = dict(
@@ -141,14 +141,14 @@ class TestGWTransient(unittest.TestCase):
         """Test noise log likelihood matches precomputed value"""
         self.likelihood.noise_log_likelihood()
         self.assertAlmostEqual(
-            -4037.0994372143414, self.likelihood.noise_log_likelihood(), 3
+            -4014.1787704539474, self.likelihood.noise_log_likelihood(), 3
         )
 
     def test_log_likelihood(self):
         """Test log likelihood matches precomputed value"""
         self.likelihood.log_likelihood()
         self.assertAlmostEqual(self.likelihood.log_likelihood(),
-                               -4054.047229508673, 3)
+                               -4032.4397343470005, 3)
 
     def test_log_likelihood_ratio(self):
         """Test log likelihood ratio returns the correct value"""
@@ -760,7 +760,8 @@ class TestROQLikelihoodHDF5(unittest.TestCase):
 
         if add_cal_errors:
             spline_calibration_nodes = 10
-            np.random.seed(170817)
+            bilby.core.utils.random.seed(170817)
+            rng = bilby.core.utils.random.rng
             for ifo in interferometers:
                 prefix = f"recalib_{ifo.name}_"
                 ifo.calibration_model = bilby.gw.calibration.CubicSpline(
@@ -772,9 +773,9 @@ class TestROQLikelihoodHDF5(unittest.TestCase):
                 for i in range(spline_calibration_nodes):
                     # 5% in amplitude, 5deg in phase
                     self.injection_parameters[f"{prefix}amplitude_{i}"] = \
-                        np.random.normal(loc=0, scale=0.05)
+                        rng.normal(loc=0, scale=0.05)
                     self.injection_parameters[f"{prefix}phase_{i}"] = \
-                        np.random.normal(loc=0, scale=5 * np.pi / 180)
+                        rng.normal(loc=0, scale=5 * np.pi / 180)
 
         waveform_generator = bilby.gw.WaveformGenerator(
             duration=self.duration,
@@ -1171,7 +1172,8 @@ class TestMBLikelihood(unittest.TestCase):
         )  # Network SNR is ~50
 
         self.ifos = bilby.gw.detector.InterferometerList(["H1", "L1", "V1"])
-        np.random.seed(170817)
+        bilby.core.utils.random.seed(70817)
+        rng = bilby.core.utils.random.rng
         self.ifos.set_strain_data_from_power_spectral_densities(
             sampling_frequency=self.sampling_frequency, duration=self.duration,
             start_time=self.test_parameters['geocent_time'] - self.duration + 2.
@@ -1193,9 +1195,9 @@ class TestMBLikelihood(unittest.TestCase):
                 self.test_parameters[f"recalib_{ifo.name}_phase_{i}"] = 0
                 # Calibration errors of 5% in amplitude and 5 degrees in phase
                 self.calibration_parameters[f"recalib_{ifo.name}_amplitude_{i}"] = \
-                    np.random.normal(loc=0, scale=0.05)
+                    rng.normal(loc=0, scale=0.05)
                 self.calibration_parameters[f"recalib_{ifo.name}_phase_{i}"] = \
-                    np.random.normal(loc=0, scale=5 * np.pi / 180)
+                    rng.normal(loc=0, scale=5 * np.pi / 180)
 
         self.priors = bilby.gw.prior.BBHPriorDict()
         self.priors.pop("mass_1")
@@ -1230,7 +1232,7 @@ class TestMBLikelihood(unittest.TestCase):
             duration=self.duration, sampling_frequency=self.sampling_frequency,
             frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole,
             waveform_arguments=dict(
-                reference_frequency=self.fmin, approximant=approximant
+                reference_frequency=self.fmin, waveform_approximant=approximant
             )
         )
         self.ifos.inject_signal(parameters=self.test_parameters, waveform_generator=wfg)
@@ -1239,7 +1241,7 @@ class TestMBLikelihood(unittest.TestCase):
             duration=self.duration, sampling_frequency=self.sampling_frequency,
             frequency_domain_source_model=bilby.gw.source.binary_black_hole_frequency_sequence,
             waveform_arguments=dict(
-                reference_frequency=self.fmin, approximant=approximant
+                reference_frequency=self.fmin, waveform_approximant=approximant
             )
         )
         likelihood = bilby.gw.likelihood.GravitationalWaveTransient(
@@ -1270,7 +1272,7 @@ class TestMBLikelihood(unittest.TestCase):
             duration=self.duration, sampling_frequency=self.sampling_frequency,
             frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole,
             waveform_arguments=dict(
-                reference_frequency=self.fmin, approximant=approximant
+                reference_frequency=self.fmin, waveform_approximant=approximant
             )
         )
         self.ifos.inject_signal(parameters=self.test_parameters, waveform_generator=wfg)
@@ -1279,7 +1281,7 @@ class TestMBLikelihood(unittest.TestCase):
             duration=self.duration, sampling_frequency=self.sampling_frequency,
             frequency_domain_source_model=bilby.gw.source.binary_black_hole_frequency_sequence,
             waveform_arguments=dict(
-                reference_frequency=self.fmin, approximant=approximant
+                reference_frequency=self.fmin, waveform_approximant=approximant
             )
         )
         likelihood = bilby.gw.likelihood.GravitationalWaveTransient(
diff --git a/test/integration/make_standard_data.py b/test/integration/make_standard_data.py
index 85266173496d44e875ea576013afc109db70db84..4f5d4073d44f6ce049477d56beda59524bca739d 100644
--- a/test/integration/make_standard_data.py
+++ b/test/integration/make_standard_data.py
@@ -5,7 +5,7 @@ import numpy as np
 import bilby
 from bilby.gw.waveform_generator import WaveformGenerator
 
-np.random.seed(10)
+bilby.core.utils.random.seed(10)
 
 time_duration = 4.0
 sampling_frequency = 4096.0
diff --git a/test/integration/sample_from_the_prior_test.py b/test/integration/sample_from_the_prior_test.py
index 64bb0bed105f4b983632eef689903830ccec6411..7fce8b1621109253b12165885f7bbb7d4952264a 100644
--- a/test/integration/sample_from_the_prior_test.py
+++ b/test/integration/sample_from_the_prior_test.py
@@ -4,7 +4,6 @@ import logging
 from packaging import version
 
 import unittest
-import numpy as np
 import bilby
 import scipy
 from scipy.stats import ks_2samp, kstest
@@ -40,7 +39,7 @@ class Test(unittest.TestCase):
         duration = 4.0
         sampling_frequency = 2048.0
         label = "full_15_parameters"
-        np.random.seed(8817021)
+        bilby.core.utils.random.seed(8817021)
 
         waveform_arguments = dict(
             waveform_approximant="IMRPhenomPv2",
diff --git a/test/integration/sampler_run_test.py b/test/integration/sampler_run_test.py
index adfd9f3e1149097ef684acd7f66e2a3054aef035..fa682565453c112784bf78a2edb044de17a978a7 100644
--- a/test/integration/sampler_run_test.py
+++ b/test/integration/sampler_run_test.py
@@ -79,12 +79,13 @@ def model(x, m, c):
 
 class TestRunningSamplers(unittest.TestCase):
     def setUp(self):
-        np.random.seed(42)
+        bilby.core.utils.random.seed(42)
         bilby.core.utils.command_line_args.bilby_test_mode = False
+        rng = bilby.core.utils.random.rng
         self.x = np.linspace(0, 1, 11)
         self.injection_parameters = dict(m=0.5, c=0.2)
         self.sigma = 0.1
-        self.y = model(self.x, **self.injection_parameters) + np.random.normal(
+        self.y = model(self.x, **self.injection_parameters) + rng.normal(
             0, self.sigma, len(self.x)
         )
         self.likelihood = bilby.likelihood.GaussianLikelihood(