diff --git a/bilby/gw/detector/calibration.py b/bilby/gw/detector/calibration.py index 4f9aaf68dc32b112521adfd4274747cff550628e..51f776c86e61f118427a40205a567d6913551059 100644 --- a/bilby/gw/detector/calibration.py +++ b/bilby/gw/detector/calibration.py @@ -181,25 +181,39 @@ class CubicSpline(Recalibrate): self.maximum_frequency = maximum_frequency self._log_spline_points = np.linspace( np.log10(minimum_frequency), np.log10(maximum_frequency), n_points) - self._delta_log_spline_points = self._log_spline_points[1] - self._log_spline_points[0] - # Precompute matrix converting values at nodes to spline coefficients. - # The algorithm for interpolation is described in - # https://dcc.ligo.org/LIGO-T2300140, and the matrix calculated here is - # to solve Eq. (9) in the note. - tmp1 = np.zeros(shape=(n_points, n_points)) + @property + def delta_log_spline_points(self): + if not hasattr(self, "_delta_log_spline_points"): + self._delta_log_spline_points = self._log_spline_points[1] - self._log_spline_points[0] + return self._delta_log_spline_points + + @property + def nodes_to_spline_coefficients(self): + if not hasattr(self, "_nodes_to_spline_coefficients"): + self._setup_spline_coefficients() + return self._nodes_to_spline_coefficients + + def _setup_spline_coefficients(self): + """ + Precompute matrix converting values at nodes to spline coefficients. + The algorithm for interpolation is described in + https://dcc.ligo.org/LIGO-T2300140, and the matrix calculated here is + to solve Eq. (9) in the note. + """ + tmp1 = np.zeros(shape=(self.n_points, self.n_points)) tmp1[0, 0] = -1 tmp1[0, 1] = 2 tmp1[0, 2] = -1 tmp1[-1, -3] = -1 tmp1[-1, -2] = 2 tmp1[-1, -1] = -1 - for i in range(1, n_points - 1): + for i in range(1, self.n_points - 1): tmp1[i, i - 1] = 1 / 6 tmp1[i, i] = 2 / 3 tmp1[i, i + 1] = 1 / 6 - tmp2 = np.zeros(shape=(n_points, n_points)) - for i in range(1, n_points - 1): + tmp2 = np.zeros(shape=(self.n_points, self.n_points)) + for i in range(1, self.n_points - 1): tmp2[i, i - 1] = 1 tmp2[i, i] = -2 tmp2[i, i + 1] = 1 @@ -213,6 +227,18 @@ class CubicSpline(Recalibrate): return self.__class__.__name__ + '(prefix=\'{}\', minimum_frequency={}, maximum_frequency={}, n_points={})'\ .format(self.prefix, self.minimum_frequency, self.maximum_frequency, self.n_points) + def _evaluate_spline(self, kind, a, b, c, d, previous_nodes): + """Evaluate Eq. (1) in https://dcc.ligo.org/LIGO-T2300140""" + parameters = np.array([self.params[f"{kind}_{ii}"] for ii in range(self.n_points)]) + next_nodes = previous_nodes + 1 + spline_coefficients = self.nodes_to_spline_coefficients.dot(parameters) + return ( + a * parameters[previous_nodes] + + b * parameters[next_nodes] + + c * spline_coefficients[previous_nodes] + + d * spline_coefficients[next_nodes] + ) + def get_calibration_factor(self, frequency_array, **params): """Apply calibration model @@ -233,25 +259,17 @@ class CubicSpline(Recalibrate): """ log10f_per_deltalog10f = ( np.log10(frequency_array) - self.log_spline_points[0] - ) / self._delta_log_spline_points + ) / self.delta_log_spline_points previous_nodes = np.clip(np.floor(log10f_per_deltalog10f).astype(int), a_min=0, a_max=self.n_points - 2) - next_nodes = previous_nodes + 1 b = log10f_per_deltalog10f - previous_nodes a = 1 - b c = (a**3 - a) / 6 d = (b**3 - b) / 6 self.set_calibration_parameters(**params) - amplitude_parameters = np.array([self.params['amplitude_{}'.format(ii)] for ii in range(self.n_points)]) - _spline_coefficients = self._nodes_to_spline_coefficients.dot(amplitude_parameters) - delta_amplitude = a * amplitude_parameters[previous_nodes] + b * amplitude_parameters[next_nodes] + \ - c * _spline_coefficients[previous_nodes] + d * _spline_coefficients[next_nodes] - - phase_parameters = np.array([self.params['phase_{}'.format(ii)] for ii in range(self.n_points)]) - _spline_coefficients = self._nodes_to_spline_coefficients.dot(phase_parameters) - delta_phase = a * phase_parameters[previous_nodes] + b * phase_parameters[next_nodes] + \ - c * _spline_coefficients[previous_nodes] + d * _spline_coefficients[next_nodes] + delta_amplitude = self._evaluate_spline("amplitude", a, b, c, d, previous_nodes) + delta_phase = self._evaluate_spline("phase", a, b, c, d, previous_nodes) calibration_factor = (1 + delta_amplitude) * (2 + 1j * delta_phase) / (2 - 1j * delta_phase) return calibration_factor