diff --git a/test/gw/likelihood/relative_binning_test.py b/test/gw/likelihood/relative_binning_test.py index 6eeca464366bba63dfc9292719b8483e7bea5a83..3f4af1e21a94a7435edb5918ed0a4a852e68470f 100644 --- a/test/gw/likelihood/relative_binning_test.py +++ b/test/gw/likelihood/relative_binning_test.py @@ -78,13 +78,13 @@ class TestRelativeBinningLikelihood(unittest.TestCase): duration=duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, waveform_arguments=dict( - reference_frequency=fmin, minimum_frequency=fmin, approximant=approximant) + reference_frequency=fmin, minimum_frequency=fmin, waveform_approximant=approximant) ) bin_wfg = bilby.gw.waveform_generator.WaveformGenerator( duration=duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole_relative_binning, waveform_arguments=dict( - reference_frequency=fmin, approximant=approximant, minimum_frequency=fmin) + reference_frequency=fmin, waveform_approximant=approximant, minimum_frequency=fmin) ) ifos.inject_signal( parameters=self.test_parameters, diff --git a/test/gw/likelihood_test.py b/test/gw/likelihood_test.py index 08ba958afdd821ba56da52d864134085715a4635..718e186968303dfb5f549d90ef50e2905bc63d30 100644 --- a/test/gw/likelihood_test.py +++ b/test/gw/likelihood_test.py @@ -341,7 +341,7 @@ class TestROQLikelihood(unittest.TestCase): waveform_arguments=dict( reference_frequency=20.0, minimum_frequency=20.0, - approximant="IMRPhenomPv2", + waveform_approximant="IMRPhenomPv2", ), ) @@ -360,7 +360,7 @@ class TestROQLikelihood(unittest.TestCase): frequency_nodes_quadratic=fnodes_quadratic, reference_frequency=20.0, minimum_frequency=20.0, - approximant="IMRPhenomPv2", + waveform_approximant="IMRPhenomPv2", ), ) @@ -597,7 +597,7 @@ class TestRescaledROQLikelihood(unittest.TestCase): frequency_nodes_quadratic=fnodes_quadratic, reference_frequency=20.0, minimum_frequency=20.0, - approximant="IMRPhenomPv2", + waveform_approximant="IMRPhenomPv2", ), ) @@ -1240,7 +1240,7 @@ class TestMBLikelihood(unittest.TestCase): ("IMRPhenomHM", False, 4, True, 1e-3) ]) def test_matches_original_likelihood( - self, approximant, linear_interpolation, highest_mode, add_cal_errors, tolerance + self, waveform_approximant, linear_interpolation, highest_mode, add_cal_errors, tolerance ): """ Check if multi-band likelihood values match original likelihood values @@ -1249,7 +1249,7 @@ class TestMBLikelihood(unittest.TestCase): duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, waveform_arguments=dict( - reference_frequency=self.fmin, waveform_approximant=approximant + reference_frequency=self.fmin, waveform_approximant=waveform_approximant ) ) self.ifos.inject_signal(parameters=self.test_parameters, waveform_generator=wfg) @@ -1258,7 +1258,7 @@ class TestMBLikelihood(unittest.TestCase): duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.binary_black_hole_frequency_sequence, waveform_arguments=dict( - reference_frequency=self.fmin, waveform_approximant=approximant + reference_frequency=self.fmin, waveform_approximant=waveform_approximant ) ) likelihood = bilby.gw.likelihood.GravitationalWaveTransient( @@ -1284,12 +1284,12 @@ class TestMBLikelihood(unittest.TestCase): """ Check if larger accuracy factor increases the accuracy. """ - approximant = "IMRPhenomD" + waveform_approximant = "IMRPhenomD" wfg = bilby.gw.WaveformGenerator( duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, waveform_arguments=dict( - reference_frequency=self.fmin, waveform_approximant=approximant + reference_frequency=self.fmin, waveform_approximant=waveform_approximant ) ) self.ifos.inject_signal(parameters=self.test_parameters, waveform_generator=wfg) @@ -1298,7 +1298,7 @@ class TestMBLikelihood(unittest.TestCase): duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.binary_black_hole_frequency_sequence, waveform_arguments=dict( - reference_frequency=self.fmin, waveform_approximant=approximant + reference_frequency=self.fmin, waveform_approximant=waveform_approximant ) ) likelihood = bilby.gw.likelihood.GravitationalWaveTransient( @@ -1330,7 +1330,7 @@ class TestMBLikelihood(unittest.TestCase): duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.binary_black_hole_frequency_sequence, waveform_arguments=dict( - reference_frequency=self.fmin, approximant="IMRPhenomD" + reference_frequency=self.fmin, waveform_approximant="IMRPhenomD" ) ) likelihood1 = bilby.gw.likelihood.MBGravitationalWaveTransient( @@ -1352,7 +1352,7 @@ class TestMBLikelihood(unittest.TestCase): duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.binary_black_hole_frequency_sequence, waveform_arguments=dict( - reference_frequency=self.fmin, approximant="IMRPhenomD" + reference_frequency=self.fmin, waveform_approximant="IMRPhenomD" ) ) with self.assertRaises(TypeError): @@ -1368,7 +1368,7 @@ class TestMBLikelihood(unittest.TestCase): duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.binary_black_hole_frequency_sequence, waveform_arguments=dict( - reference_frequency=self.fmin, approximant="IMRPhenomD" + reference_frequency=self.fmin, waveform_approximant="IMRPhenomD" ) ) for key in ["chirp_mass", "mass_1", "mass_2"]: @@ -1385,12 +1385,12 @@ class TestMBLikelihood(unittest.TestCase): Check if multiband weights can be saved as a file, and a likelihood object constructed from the weights file produces the same likelihood value. """ - approximant = "IMRPhenomD" + waveform_approximant = "IMRPhenomD" wfg = bilby.gw.WaveformGenerator( duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, waveform_arguments=dict( - reference_frequency=self.fmin, approximant=approximant + reference_frequency=self.fmin, waveform_approximant=waveform_approximant ) ) self.ifos.inject_signal( @@ -1401,7 +1401,7 @@ class TestMBLikelihood(unittest.TestCase): duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.binary_black_hole_frequency_sequence, waveform_arguments=dict( - reference_frequency=self.fmin, approximant=approximant + reference_frequency=self.fmin, waveform_approximant=waveform_approximant ) ) likelihood_mb = bilby.gw.likelihood.MBGravitationalWaveTransient( @@ -1424,7 +1424,7 @@ class TestMBLikelihood(unittest.TestCase): duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.binary_black_hole_frequency_sequence, waveform_arguments=dict( - reference_frequency=self.fmin, approximant=approximant + reference_frequency=self.fmin, waveform_approximant=waveform_approximant ) ) likelihood_mb_from_weights = bilby.gw.likelihood.MBGravitationalWaveTransient( @@ -1441,12 +1441,12 @@ class TestMBLikelihood(unittest.TestCase): """ Check if a likelihood object constructed from dictionary-like weights produce the same likelihood value """ - approximant = "IMRPhenomD" + waveform_approximant = "IMRPhenomD" wfg = bilby.gw.WaveformGenerator( duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, waveform_arguments=dict( - reference_frequency=self.fmin, approximant=approximant + reference_frequency=self.fmin, waveform_approximant=waveform_approximant ) ) self.ifos.inject_signal( @@ -1457,7 +1457,7 @@ class TestMBLikelihood(unittest.TestCase): duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.binary_black_hole_frequency_sequence, waveform_arguments=dict( - reference_frequency=self.fmin, approximant=approximant + reference_frequency=self.fmin, waveform_approximant=waveform_approximant ) ) likelihood_mb = bilby.gw.likelihood.MBGravitationalWaveTransient( @@ -1474,7 +1474,7 @@ class TestMBLikelihood(unittest.TestCase): duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.binary_black_hole_frequency_sequence, waveform_arguments=dict( - reference_frequency=self.fmin, approximant=approximant + reference_frequency=self.fmin, waveform_approximant=waveform_approximant ) ) weights = likelihood_mb.weights @@ -1492,7 +1492,7 @@ class TestMBLikelihood(unittest.TestCase): ("IMRPhenomHM", False, 4, False, 5e-3), ]) def test_matches_original_likelihood_low_maximum_frequency( - self, approximant, linear_interpolation, highest_mode, add_cal_errors, tolerance + self, waveform_approximant, linear_interpolation, highest_mode, add_cal_errors, tolerance ): """ Test for maximum frequency < sampling frequency / 2 @@ -1504,7 +1504,7 @@ class TestMBLikelihood(unittest.TestCase): duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, waveform_arguments=dict( - reference_frequency=self.fmin, approximant=approximant + reference_frequency=self.fmin, waveform_approximant=waveform_approximant ) ) self.ifos.inject_signal(parameters=self.test_parameters, waveform_generator=wfg) @@ -1513,7 +1513,7 @@ class TestMBLikelihood(unittest.TestCase): duration=self.duration, sampling_frequency=self.sampling_frequency, frequency_domain_source_model=bilby.gw.source.binary_black_hole_frequency_sequence, waveform_arguments=dict( - reference_frequency=self.fmin, approximant=approximant + reference_frequency=self.fmin, waveform_approximant=waveform_approximant ) ) likelihood = bilby.gw.likelihood.GravitationalWaveTransient( diff --git a/test/gw/source_test.py b/test/gw/source_test.py index 979699b34ead35eeb742e6c9a35282230894fcbd..5f5199fd10698993036f21fdfe5517cbf7dcbff7 100644 --- a/test/gw/source_test.py +++ b/test/gw/source_test.py @@ -306,7 +306,7 @@ class TestROQBBH(unittest.TestCase): frequency_nodes_quadratic=fnodes_quadratic, reference_frequency=50.0, minimum_frequency=20.0, - approximant="IMRPhenomPv2", + waveform_approximant="IMRPhenomPv2", ) self.frequency_array = bilby.core.utils.create_frequency_series(2048, 4)