diff --git a/tupak/result.py b/tupak/result.py index c209aab96b51fca04b2a96dee621b32f396a46b7..347593a34dbe210e182055f75b2536fcff73a547 100644 --- a/tupak/result.py +++ b/tupak/result.py @@ -4,6 +4,7 @@ import numpy as np import deepdish from chainconsumer import ChainConsumer import pandas as pd +import tupak class Result(dict): @@ -159,13 +160,21 @@ class Result(dict): for key in self.prior: prior_file.write(self.prior[key]) - def samples_to_data_frame(self): + def samples_to_data_frame(self, waveform_generator=None, interferometers=None, priors=None): """ Convert array of samples to data frame. - :return: + Parameters + ---------- + waveform_generator: tupak.waveform_generator.WaveformGenerator, optional + If the waveform generator and interferometers are provided, the SNRs will be recorded. + interferometers: tupak.detector.Interferometer + If the waveform generator and interferometers are provided, the SNRs will be recorded. + priors: dict + Dictionary of prior object, used to fill in delta function priors. """ data_frame = pd.DataFrame(self.samples, columns=self.search_parameter_keys) + tupak.conversion.generate_all_bbh_parameters(data_frame, waveform_generator, interferometers, priors) self.posterior = data_frame for key in self.fixed_parameter_keys: self.posterior[key] = self.prior[key].sample(len(self.posterior))