From 47980fefbf466798842e9ac4943e80669928e219 Mon Sep 17 00:00:00 2001 From: Colm Talbot <colm.talbot@ligo.org> Date: Sat, 12 May 2018 12:46:21 +1000 Subject: [PATCH] update to use new parameter conversion to make a monolithic posterior --- tupak/result.py | 13 +++++++++++-- 1 file changed, 11 insertions(+), 2 deletions(-) diff --git a/tupak/result.py b/tupak/result.py index c209aab96..347593a34 100644 --- a/tupak/result.py +++ b/tupak/result.py @@ -4,6 +4,7 @@ import numpy as np import deepdish from chainconsumer import ChainConsumer import pandas as pd +import tupak class Result(dict): @@ -159,13 +160,21 @@ class Result(dict): for key in self.prior: prior_file.write(self.prior[key]) - def samples_to_data_frame(self): + def samples_to_data_frame(self, waveform_generator=None, interferometers=None, priors=None): """ Convert array of samples to data frame. - :return: + Parameters + ---------- + waveform_generator: tupak.waveform_generator.WaveformGenerator, optional + If the waveform generator and interferometers are provided, the SNRs will be recorded. + interferometers: tupak.detector.Interferometer + If the waveform generator and interferometers are provided, the SNRs will be recorded. + priors: dict + Dictionary of prior object, used to fill in delta function priors. """ data_frame = pd.DataFrame(self.samples, columns=self.search_parameter_keys) + tupak.conversion.generate_all_bbh_parameters(data_frame, waveform_generator, interferometers, priors) self.posterior = data_frame for key in self.fixed_parameter_keys: self.posterior[key] = self.prior[key].sample(len(self.posterior)) -- GitLab