diff --git a/docs/likelihood.txt b/docs/likelihood.txt index 412238720388d7d6cd5f4fe0775bfec34149ac53..2158aa92375b9f705c0816fba6e17b5a4f6deb44 100644 --- a/docs/likelihood.txt +++ b/docs/likelihood.txt @@ -167,11 +167,55 @@ In the last example, we considered only cases with known noise (e.g., a prespecified standard deviation. We now present a general function which can handle unknown noise (in which case you need to specify a prior for :math:`\sigma`, or known noise (in which case you pass the known noise in when -instatiating the likelihood - -.. literalinclude:: ../examples/other_examples/linear_regression_unknown_noise.py - :lines: 52-94 - +instatiating the likelihood:: + + class GaussianLikelihood(tupak.Likelihood): + def __init__(self, x, y, function, sigma=None): + """ + A general Gaussian likelihood for known or unknown noise - the model + parameters are inferred from the arguments of function + + Parameters + ---------- + x, y: array_like + The data to analyse + function: + The python function to fit to the data. Note, this must take the + dependent variable as its first argument. The other arguments are + will require a prior and will be sampled over (unless a fixed + value is given). + sigma: None, float, array_like + If None, the standard deviation of the noise is unknown and will be + estimated (note: this requires a prior to be given for sigma). If + not None, this defined the standard-deviation of the data points. + This can either be a single float, or an array with length equal + to that for `x` and `y`. + """ + self.x = x + self.y = y + self.N = len(x) + self.sigma = sigma + self.function = function + + # These lines of code infer the parameters from the provided function + parameters = inspect.getargspec(function).args + parameters.pop(0) + self.parameters = dict.fromkeys(parameters) + self.function_keys = self.parameters.keys() + if self.sigma is None: + self.parameters['sigma'] = None + + def log_likelihood(self): + sigma = self.parameters.get('sigma', self.sigma) + model_parameters = {k: self.parameters[k] for k in self.function_keys} + res = self.y - self.function(self.x, **model_parameters) + return -0.5 * (np.sum((res / sigma)**2) + + self.N*np.log(2*np.pi*sigma**2)) + +We provide this general-purpose class as part of tupak: + +.. autoclass:: tupak.core.likelihood.GaussianLikelihood + :members: An example using this likelihood can be found `on this page <https://git.ligo.org/Monash/tupak/blob/master/examples/other_examples/linear_regression_unknown_noise.py>`_. diff --git a/examples/other_examples/hyper_parameter_example.py b/examples/other_examples/hyper_parameter_example.py index ec0758c59b1ec7f2612533b2e269a2792d49023e..17dc87d7150bb9e2dd2103f568012626b1774e9b 100644 --- a/examples/other_examples/hyper_parameter_example.py +++ b/examples/other_examples/hyper_parameter_example.py @@ -108,7 +108,7 @@ fig2.savefig('outdir/hyper_parameter_combined_posteriors.png') run_prior = tupak.core.prior.Uniform(minimum=-10, maximum=10, name='mu_c0') hyper_prior = tupak.core.prior.Gaussian(mu=0, sigma=1, name='hyper') -hp_likelihood = tupak.gw.likelihood.HyperparameterLikelihood( +hp_likelihood = tupak.core.likelihood.HyperparameterLikelihood( samples, hyper_prior, run_prior) hp_priors = dict( diff --git a/examples/other_examples/linear_regression_unknown_noise.py b/examples/other_examples/linear_regression_unknown_noise.py index 1f21be4cee7eb3bbe401e2a1f2914a0914b4e175..719bed045e062ae04e94e3683140392e4e501133 100644 --- a/examples/other_examples/linear_regression_unknown_noise.py +++ b/examples/other_examples/linear_regression_unknown_noise.py @@ -9,7 +9,6 @@ from __future__ import division import tupak import numpy as np import matplotlib.pyplot as plt -import inspect # A few simple setup steps tupak.core.utils.setup_logger() @@ -45,60 +44,11 @@ ax.set_ylabel('y') ax.legend() fig.savefig('{}/{}_data.png'.format(outdir, label)) +# Now lets instantiate the built-in GaussianLikelihood, giving it +# the time, data and signal model. Note that, because we do not give it the +# parameter, sigma is unknown and marginalised over during the sampling +likelihood = tupak.core.likelihood.GaussianLikelihood(time, data, model) -# Parameter estimation: we now define a Gaussian Likelihood class relevant for -# our model. - -class GaussianLikelihood(tupak.Likelihood): - def __init__(self, x, y, function, sigma=None): - """ - A general Gaussian likelihood for known or unknown noise - the model - parameters are inferred from the arguments of function - - Parameters - ---------- - x, y: array_like - The data to analyse - function: - The python function to fit to the data. Note, this must take the - dependent variable as its first argument. The other arguments are - will require a prior and will be sampled over (unless a fixed - value is given). - sigma: None, float, array_like - If None, the standard deviation of the noise is unknown and will be - estimated (note: this requires a prior to be given for sigma). If - not None, this defined the standard-deviation of the data points. - This can either be a single float, or an array with length equal - to that for `x` and `y`. - """ - self.x = x - self.y = y - self.N = len(x) - self.sigma = sigma - self.function = function - - # These lines of code infer the parameters from the provided function - parameters = inspect.getargspec(function).args - parameters.pop(0) - self.parameters = dict.fromkeys(parameters) - self.function_keys = self.parameters.keys() - if self.sigma is None: - self.parameters['sigma'] = None - - def log_likelihood(self): - sigma = self.parameters.get('sigma', self.sigma) - model_parameters = {k: self.parameters[k] for k in self.function_keys} - res = self.y - self.function(self.x, **model_parameters) - return -0.5 * (np.sum((res / sigma)**2) - + self.N*np.log(2*np.pi*sigma**2)) - - -# Now lets instantiate a version of our GaussianLikelihood, giving it -# the time, data and signal model -likelihood = GaussianLikelihood(time, data, model) - -# From hereon, the syntax is exactly equivalent to other tupak examples -# We make a prior priors = {} priors['m'] = tupak.core.prior.Uniform(0, 5, 'm') priors['c'] = tupak.core.prior.Uniform(-2, 2, 'c') diff --git a/tupak/core/likelihood.py b/tupak/core/likelihood.py index 02e442240d3a135757abd2b693cc9376ca5de538..ad817a65e0565a98260deb013aa7159d96068cae 100644 --- a/tupak/core/likelihood.py +++ b/tupak/core/likelihood.py @@ -1,5 +1,7 @@ from __future__ import division, print_function +import inspect +import logging import numpy as np try: @@ -24,3 +26,96 @@ class Likelihood(object): return self.log_likelihood() - self.noise_log_likelihood() +class GaussianLikelihood(Likelihood): + def __init__(self, x, y, function, sigma=None): + """ + A general Gaussian likelihood for known or unknown noise - the model + parameters are inferred from the arguments of function + + Parameters + ---------- + x, y: array_like + The data to analyse + function: + The python function to fit to the data. Note, this must take the + dependent variable as its first argument. The other arguments are + will require a prior and will be sampled over (unless a fixed + value is given). + sigma: None, float, array_like + If None, the standard deviation of the noise is unknown and will be + estimated (note: this requires a prior to be given for sigma). If + not None, this defined the standard-deviation of the data points. + This can either be a single float, or an array with length equal + to that for `x` and `y`. + """ + self.x = x + self.y = y + self.N = len(x) + self.sigma = sigma + self.function = function + + # These lines of code infer the parameters from the provided function + parameters = inspect.getargspec(function).args + parameters.pop(0) + self.parameters = dict.fromkeys(parameters) + self.function_keys = self.parameters.keys() + if self.sigma is None: + self.parameters['sigma'] = None + + def log_likelihood(self): + sigma = self.parameters.get('sigma', self.sigma) + model_parameters = {k: self.parameters[k] for k in self.function_keys} + res = self.y - self.function(self.x, **model_parameters) + return -0.5 * (np.sum((res / sigma)**2) + + self.N*np.log(2*np.pi*sigma**2)) + + +class HyperparameterLikelihood(Likelihood): + """ A likelihood for infering hyperparameter posterior distributions + + See Eq. (1) of https://arxiv.org/abs/1801.02699 for a definition. + + Parameters + ---------- + samples: list + An N-dimensional list of individual sets of samples. Each set may have + a different size. + hyper_prior: `tupak.prior.Prior` + A prior distribution with a `parameters` argument pointing to the + hyperparameters to infer from the samples. These may need to be + initialized to any arbitrary value, but this will not effect the + result. + run_prior: `tupak.prior.Prior` + The prior distribution used in the inidivudal inferences which resulted + in the set of samples. + + """ + + def __init__(self, samples, hyper_prior, run_prior): + Likelihood.__init__(self, parameters=hyper_prior.__dict__) + self.samples = samples + self.hyper_prior = hyper_prior + self.run_prior = run_prior + if hasattr(hyper_prior, 'lnprob') and hasattr(run_prior, 'lnprob'): + logging.info("Using log-probabilities in likelihood") + self.log_likelihood = self.log_likelihood_using_lnprob + else: + logging.info("Using probabilities in likelihood") + self.log_likelihood = self.log_likelihood_using_prob + + def log_likelihood_using_lnprob(self): + L = [] + self.hyper_prior.__dict__.update(self.parameters) + for samp in self.samples: + f = self.hyper_prior.lnprob(samp) - self.run_prior.lnprob(samp) + L.append(logsumexp(f)) + return np.sum(L) + + def log_likelihood_using_prob(self): + L = [] + self.hyper_prior.__dict__.update(self.parameters) + for samp in self.samples: + L.append( + np.sum(self.hyper_prior.prob(samp) / + self.run_prior.prob(samp))) + return np.sum(np.log(L)) diff --git a/tupak/gw/likelihood.py b/tupak/gw/likelihood.py index 08b70bfaab10b1abc35428ae39c2eaeafba89a2c..15c3259c1b60b646713efdfd84d4e12c73c67466 100644 --- a/tupak/gw/likelihood.py +++ b/tupak/gw/likelihood.py @@ -322,53 +322,3 @@ def get_binary_black_hole_likelihood(interferometers): likelihood = tupak.gw.likelihood.GravitationalWaveTransient(interferometers, waveform_generator) return likelihood - -class HyperparameterLikelihood(likelihood.Likelihood): - """ A likelihood for infering hyperparameter posterior distributions - - See Eq. (1) of https://arxiv.org/abs/1801.02699 for a definition. - - Parameters - ---------- - samples: list - An N-dimensional list of individual sets of samples. Each set may have - a different size. - hyper_prior: `tupak.prior.Prior` - A prior distribution with a `parameters` argument pointing to the - hyperparameters to infer from the samples. These may need to be - initialized to any arbitrary value, but this will not effect the - result. - run_prior: `tupak.prior.Prior` - The prior distribution used in the inidivudal inferences which resulted - in the set of samples. - - """ - - def __init__(self, samples, hyper_prior, run_prior): - likelihood.Likelihood.__init__(self, parameters=hyper_prior.__dict__) - self.samples = samples - self.hyper_prior = hyper_prior - self.run_prior = run_prior - if hasattr(hyper_prior, 'lnprob') and hasattr(run_prior, 'lnprob'): - logging.info("Using log-probabilities in likelihood") - self.log_likelihood = self.log_likelihood_using_lnprob - else: - logging.info("Using probabilities in likelihood") - self.log_likelihood = self.log_likelihood_using_prob - - def log_likelihood_using_lnprob(self): - L = [] - self.hyper_prior.__dict__.update(self.parameters) - for samp in self.samples: - f = self.hyper_prior.lnprob(samp) - self.run_prior.lnprob(samp) - L.append(logsumexp(f)) - return np.sum(L) - - def log_likelihood_using_prob(self): - L = [] - self.hyper_prior.__dict__.update(self.parameters) - for samp in self.samples: - L.append( - np.sum(self.hyper_prior.prob(samp) / - self.run_prior.prob(samp))) - return np.sum(np.log(L))