diff --git a/examples/injection_examples/australian_detector.py b/examples/injection_examples/australian_detector.py index 29ad908bddebab0c38a185cf36aabd4fc360334e..9fa165e03e765c65f41e52ffa705bb3e13a7af48 100644 --- a/examples/injection_examples/australian_detector.py +++ b/examples/injection_examples/australian_detector.py @@ -9,9 +9,11 @@ from __future__ import division, print_function import numpy as np -import bilby, gwinc +import bilby +import gwinc -# Set the duration and sampling frequency of the data segment that we're going to inject the signal into +# Set the duration and sampling frequency of the data segment that we're going +# to inject the signal into duration = 4. sampling_frequency = 2048. @@ -35,7 +37,7 @@ Aplus_psd = gwinc_noises['Total'] # The location of this detector is not defined in Bilby, so we need to add it AusIFO = bilby.gw.detector.Interferometer( power_spectral_density=bilby.gw.detector.PowerSpectralDensity( - frequency_array=frequencies, psd_array=Aplus_psd), + frequency_array=frequencies, psd_array=Aplus_psd), name='AusIFO', length=4, minimum_frequency=min(frequencies), maximum_frequency=max(frequencies), latitude=-31.34, longitude=115.91, @@ -44,8 +46,9 @@ AusIFO = bilby.gw.detector.Interferometer( # Set up two other detectors at Hanford and Livingston interferometers = bilby.gw.detector.InterferometerList(['H1', 'L1']) for interferometer in interferometers: - interferometer.power_spectral_density = bilby.gw.detector.PowerSpectralDensity( - frequency_array=frequencies, psd_array=Aplus_psd) + interferometer.power_spectral_density =\ + bilby.gw.detector.PowerSpectralDensity( + frequency_array=frequencies, psd_array=Aplus_psd) # append the Australian detector to the list of other detectors interferometers.append(AusIFO) @@ -54,9 +57,10 @@ interferometers.append(AusIFO) # Inject a gravitational-wave signal into the network # as we're using a three-detector network of A+, we inject a GW150914-like # signal at 4 Gpc -injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, phi_12=1.7, phi_jl=0.3, - luminosity_distance=4000., iota=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, - ra=1.375, dec=0.2108) +injection_parameters = dict( + mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, + phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, psi=2.659, + phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=0.2108) # Fixed arguments passed into the source model @@ -79,17 +83,19 @@ for interferometer in interferometers: interferometer.inject_signal( parameters=injection_parameters, waveform_generator=waveform_generator) - ## plot the data for sanity + # plot the data for sanity signal = interferometer.get_detector_response( waveform_generator.frequency_domain_strain(), injection_parameters) interferometer.plot_data(signal=signal, outdir=outdir, label=label) # set up priors priors = bilby.gw.prior.BBHPriorSet() -for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'psi', 'geocent_time', 'phase']: +for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'psi', + 'geocent_time', 'phase']: priors[key] = injection_parameters[key] -# Initialise the likelihood by passing in the interferometer data (IFOs) and the waveoform generator +# Initialise the likelihood by passing in the interferometer data (IFOs) +# and the waveoform generator likelihood = bilby.gw.GravitationalWaveTransient( interferometers=interferometers, waveform_generator=waveform_generator, time_marginalization=False, phase_marginalization=False, diff --git a/examples/injection_examples/binary_neutron_star_example.py b/examples/injection_examples/binary_neutron_star_example.py index 76cf0c1ec9d27f79099f2798df6847a963070ee1..f46eb0e6e0defe874917a0756fa0c2b95478e8b8 100644 --- a/examples/injection_examples/binary_neutron_star_example.py +++ b/examples/injection_examples/binary_neutron_star_example.py @@ -35,7 +35,7 @@ injection_parameters = dict( # to inject the signal into. For the # TaylorF2 waveform, we cut the signal close to the isco frequency duration = 8 -sampling_frequency = 2*1570. +sampling_frequency = 2 * 1570. start_time = injection_parameters['geocent_time'] + 2 - duration # Fixed arguments passed into the source model. The analysis starts at 40 Hz. @@ -94,4 +94,3 @@ result = bilby.run_sampler( conversion_function=bilby.gw.conversion.generate_all_bns_parameters) result.plot_corner() - diff --git a/examples/injection_examples/calibration_example.py b/examples/injection_examples/calibration_example.py index 9f2052ffb55d019aa1509ae251aa6f57d4bc9c14..ec3f3491e9ad61fda38512557d91a5345cf68f2d 100644 --- a/examples/injection_examples/calibration_example.py +++ b/examples/injection_examples/calibration_example.py @@ -39,7 +39,7 @@ waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', waveform_generator = bilby.gw.WaveformGenerator( duration=duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, - parameters=injection_parameters,waveform_arguments=waveform_arguments) + parameters=injection_parameters, waveform_arguments=waveform_arguments) # Set up interferometers. In this case we'll use three interferometers # (LIGO-Hanford (H1), LIGO-Livingston (L1), and Virgo (V1)). @@ -83,4 +83,3 @@ result = bilby.run_sampler( # make some plots of the outputs result.plot_corner() - diff --git a/examples/injection_examples/change_sampled_parameters.py b/examples/injection_examples/change_sampled_parameters.py index f629b2c91e9350dfc4a36434415935a45a501701..06dfa174033d12e53b02bb0f033eceeb64609da7 100644 --- a/examples/injection_examples/change_sampled_parameters.py +++ b/examples/injection_examples/change_sampled_parameters.py @@ -29,22 +29,25 @@ waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', reference_frequency=50.) # Create the waveform_generator using a LAL BinaryBlackHole source function +# We specify a function which transforms a dictionary of parameters into the +# appropriate parameters for the source model. waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( sampling_frequency=sampling_frequency, duration=duration, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, - parameter_conversion= - bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters, + parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_black_hole_parameters, waveform_arguments=waveform_arguments) # Set up interferometers. ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1', 'K1']) ifos.set_strain_data_from_power_spectral_densities( sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time']-3) + start_time=injection_parameters['geocent_time'] - 3) ifos.inject_signal(waveform_generator=waveform_generator, parameters=injection_parameters) # Set up prior +# Note it is possible to sample in different parameters to those that were +# injected. priors = bilby.gw.prior.BBHPriorSet() priors.pop('mass_1') priors.pop('mass_2') @@ -69,9 +72,10 @@ likelihood = bilby.gw.likelihood.GravitationalWaveTransient( interferometers=ifos, waveform_generator=waveform_generator) # Run sampler +# Note we've added a post-processing conversion function, this will generate +# many useful additional parameters, e.g., source-frame masses. result = bilby.core.sampler.run_sampler( likelihood=likelihood, priors=priors, sampler='dynesty', outdir=outdir, injection_parameters=injection_parameters, label='DifferentParameters', conversion_function=bilby.gw.conversion.generate_all_bbh_parameters) result.plot_corner() - diff --git a/examples/injection_examples/create_your_own_source_model.py b/examples/injection_examples/create_your_own_source_model.py index 254fdfc52f4dd76aed5df74fbb9b31c79b134787..ded59e157ee098bd7c765dae01e0b5b55790d408 100644 --- a/examples/injection_examples/create_your_own_source_model.py +++ b/examples/injection_examples/create_your_own_source_model.py @@ -16,19 +16,20 @@ duration = 1 # Here we define out source model - this is the sine-Gaussian model in the # frequency domain. def sine_gaussian(f, A, f0, tau, phi0, geocent_time, ra, dec, psi): - arg = -(np.pi * tau * (f-f0))**2 + 1j * phi0 + arg = -(np.pi * tau * (f - f0))**2 + 1j * phi0 plus = np.sqrt(np.pi) * A * tau * np.exp(arg) / 2. - cross = plus * np.exp(1j*np.pi/2) + cross = plus * np.exp(1j * np.pi / 2) return {'plus': plus, 'cross': cross} -# We now define some parameters that we will inject and then a waveform generator +# We now define some parameters that we will inject injection_parameters = dict(A=1e-23, f0=100, tau=1, phi0=0, geocent_time=0, ra=0, dec=0, psi=0) -waveform_generator = bilby.gw.waveform_generator.WaveformGenerator(duration=duration, - sampling_frequency=sampling_frequency, - frequency_domain_source_model=sine_gaussian, - parameters=injection_parameters) + +# Now we pass our source function to the WaveformGenerator +waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( + duration=duration, sampling_frequency=sampling_frequency, + frequency_domain_source_model=sine_gaussian) # Set up interferometers. ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) @@ -41,13 +42,13 @@ ifos.inject_signal(waveform_generator=waveform_generator, # Here we define the priors for the search. We use the injection parameters # except for the amplitude, f0, and geocent_time prior = injection_parameters.copy() -prior['A'] = bilby.core.prior.PowerLaw(alpha=-1, minimum=1e-25, maximum=1e-21, name='A') +prior['A'] = bilby.core.prior.LogUniform(minimum=1e-25, maximum=1e-21, name='A') prior['f0'] = bilby.core.prior.Uniform(90, 110, 'f') -likelihood = bilby.gw.likelihood.GravitationalWaveTransient(ifos, waveform_generator) +likelihood = bilby.gw.likelihood.GravitationalWaveTransient( + interferometers=ifos, waveform_generator=waveform_generator) result = bilby.core.sampler.run_sampler( likelihood, prior, sampler='dynesty', outdir=outdir, label=label, resume=False, sample='unif', injection_parameters=injection_parameters) result.plot_corner() - diff --git a/examples/injection_examples/create_your_own_time_domain_source_model.py b/examples/injection_examples/create_your_own_time_domain_source_model.py index 5ea57fb58897f5e0cace5f9a9ad22c40c0ba3afb..82ca24d187775fb8213910498fa2dddd940b24e7 100644 --- a/examples/injection_examples/create_your_own_time_domain_source_model.py +++ b/examples/injection_examples/create_your_own_time_domain_source_model.py @@ -1,41 +1,41 @@ #!/usr/bin/env python """ A script to show how to create your own time domain source model. -A simple damped Gaussian signal is defined in the time domain, injected into noise in -two interferometers (LIGO Livingston and Hanford at design sensitivity), -and then recovered. +A simple damped Gaussian signal is defined in the time domain, injected into +noise in two interferometers (LIGO Livingston and Hanford at design +sensitivity), and then recovered. """ -import bilby import numpy as np - +import bilby # define the time-domain model -def time_domain_damped_sinusoid(time, amplitude, damping_time, frequency, phase, ra, dec, psi, geocent_time): +def time_domain_damped_sinusoid( + time, amplitude, damping_time, frequency, phase): """ - This example only creates a linearly polarised signal with only plus polarisation. + This example only creates a linearly polarised signal with only plus + polarisation. """ - - plus = amplitude * np.exp(-time / damping_time) * np.sin(2.*np.pi*frequency*time + phase) + plus = amplitude * np.exp(-time / damping_time) *\ + np.sin(2 * np.pi * frequency * time + phase) cross = np.zeros(len(time)) - return {'plus': plus, 'cross': cross} + # define parameters to inject. injection_parameters = dict(amplitude=5e-22, damping_time=0.1, frequency=50, - phase=0, - ra=0, dec=0, psi=0, geocent_time=0.) + phase=0, ra=0, dec=0, psi=0, geocent_time=0.) duration = 0.5 sampling_frequency = 2048 -outdir='outdir' -label='time_domain_source_model' +outdir = 'outdir' +label = 'time_domain_source_model' # call the waveform_generator to create our waveform model. -waveform = bilby.gw.waveform_generator.WaveformGenerator(duration=duration, sampling_frequency=sampling_frequency, - time_domain_source_model=time_domain_damped_sinusoid, - parameters=injection_parameters) +waveform = bilby.gw.waveform_generator.WaveformGenerator( + duration=duration, sampling_frequency=sampling_frequency, + time_domain_source_model=time_domain_damped_sinusoid) # inject the signal into three interferometers ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) @@ -47,7 +47,7 @@ ifos.inject_signal(waveform_generator=waveform, # create the priors prior = injection_parameters.copy() -prior['amplitude'] = bilby.core.prior.Uniform(1e-23, 1e-21, r'$h_0$') +prior['amplitude'] = bilby.core.prior.LogUniform(1e-23, 1e-21, r'$h_0$') prior['damping_time'] = bilby.core.prior.Uniform( 0, 1, r'damping time', unit='$s$') prior['frequency'] = bilby.core.prior.Uniform(0, 200, r'frequency', unit='Hz') @@ -57,9 +57,8 @@ prior['phase'] = bilby.core.prior.Uniform(-np.pi / 2, np.pi / 2, r'$\phi$') likelihood = bilby.gw.likelihood.GravitationalWaveTransient(ifos, waveform) # launch sampler -result = bilby.core.sampler.run_sampler(likelihood, prior, sampler='dynesty', npoints=1000, - injection_parameters=injection_parameters, - outdir=outdir, label=label) +result = bilby.core.sampler.run_sampler( + likelihood, prior, sampler='dynesty', npoints=1000, + injection_parameters=injection_parameters, outdir=outdir, label=label) result.plot_corner() - diff --git a/examples/injection_examples/eccentric_inspiral.py b/examples/injection_examples/eccentric_inspiral.py index 75ff93b572e85f9e2abfae62b341057d9c51b2f3..2709220fc7b07e91af9597bff6872178447c7a43 100644 --- a/examples/injection_examples/eccentric_inspiral.py +++ b/examples/injection_examples/eccentric_inspiral.py @@ -1,8 +1,8 @@ #!/usr/bin/env python """ -Tutorial to demonstrate running parameter estimation on a reduced parameter space -for an injected eccentric binary black hole signal with masses & distnace similar -to GW150914. +Tutorial to demonstrate running parameter estimation on a reduced parameter +space for an injected eccentric binary black hole signal with masses & distnace +similar to GW150914. This uses the same binary parameters that were used to make Figures 1, 2 & 5 in Lower et al. (2018) -> arXiv:1806.05350. @@ -10,14 +10,11 @@ Lower et al. (2018) -> arXiv:1806.05350. For a more comprehensive look at what goes on in each step, refer to the "basic_tutorial.py" example. """ -from __future__ import division, print_function +from __future__ import division import numpy as np - import bilby -import matplotlib.pyplot as plt - duration = 64. sampling_frequency = 256. @@ -28,13 +25,15 @@ bilby.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. np.random.seed(150914) -injection_parameters = dict(mass_1=35., mass_2=30., eccentricity=0.1, - luminosity_distance=440., iota=0.4, psi=0.1, phase=1.2, - geocent_time=1180002601.0, ra=45, dec=5.73) +injection_parameters = dict( + mass_1=35., mass_2=30., eccentricity=0.1, luminosity_distance=440., + iota=0.4, psi=0.1, phase=1.2, geocent_time=1180002601.0, ra=45, dec=5.73) -waveform_arguments = dict(waveform_approximant='EccentricFD', reference_frequency=10., minimum_frequency=10.) +waveform_arguments = dict(waveform_approximant='EccentricFD', + reference_frequency=10., minimum_frequency=10.) -# Create the waveform_generator using the LAL eccentric black hole no spins source function +# Create the waveform_generator using the LAL eccentric black hole no spins +# source function waveform_generator = bilby.gw.WaveformGenerator( duration=duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_eccentric_binary_black_hole_no_spins, @@ -43,8 +42,8 @@ waveform_generator = bilby.gw.WaveformGenerator( # Setting up three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1), and # Virgo (V1)) at their design sensitivities. The maximum frequency is set just -# prior to the point at which the waveform model terminates. This is to avoid any -# biases introduced from using a sharply terminating waveform model. +# prior to the point at which the waveform model terminates. This is to avoid +# any biases introduced from using a sharply terminating waveform model. minimum_frequency = 10. maximum_frequency = 128. @@ -59,13 +58,13 @@ ifos.inject_signal(waveform_generator=waveform_generator, parameters=injection_parameters) # Now we set up the priors on each of the binary parameters. -priors = dict() +priors = bilby.core.prior.PriorSet() priors["mass_1"] = bilby.core.prior.Uniform( name='mass_1', minimum=5, maximum=60, unit='$M_{\\odot}$') priors["mass_2"] = bilby.core.prior.Uniform( name='mass_2', minimum=5, maximum=60, unit='$M_{\\odot}$') -priors["eccentricity"] = bilby.core.prior.PowerLaw( - name='eccentricity', latex_label='$e$', alpha=-1, minimum=1e-4, maximum=0.4) +priors["eccentricity"] = bilby.core.prior.LogUniform( + name='eccentricity', latex_label='$e$', minimum=1e-4, maximum=0.4) priors["luminosity_distance"] = bilby.gw.prior.UniformComovingVolume( name='luminosity_distance', minimum=1e2, maximum=2e3) priors["dec"] = bilby.core.prior.Cosine(name='dec') @@ -79,16 +78,13 @@ priors["geocent_time"] = bilby.core.prior.Uniform( 1180002600.9, 1180002601.1, name='geocent_time', unit='s') # Initialising the likelihood function. -likelihood = bilby.gw.likelihood.GravitationalWaveTransient(interferometers=ifos, - waveform_generator=waveform_generator, time_marginalization=False, - phase_marginalization=False, distance_marginalization=False, - prior=priors) +likelihood = bilby.gw.likelihood.GravitationalWaveTransient( + interferometers=ifos, waveform_generator=waveform_generator) # Now we run sampler (PyMultiNest in our case). -result = bilby.run_sampler(likelihood=likelihood, priors=priors, sampler='pymultinest', - npoints=1000, injection_parameters=injection_parameters, - outdir=outdir, label=label) +result = bilby.run_sampler( + likelihood=likelihood, priors=priors, sampler='pymultinest', npoints=1000, + injection_parameters=injection_parameters, outdir=outdir, label=label) # And finally we make some plots of the output posteriors. result.plot_corner() - diff --git a/examples/injection_examples/how_to_specify_the_prior.py b/examples/injection_examples/how_to_specify_the_prior.py index b92288d90237f57fceb84b48704ed296e67bf9bf..6a5eb033729cb1d3cb7f442c594084e8decd27f9 100644 --- a/examples/injection_examples/how_to_specify_the_prior.py +++ b/examples/injection_examples/how_to_specify_the_prior.py @@ -1,12 +1,12 @@ #!/usr/bin/env python """ -Tutorial to demonstrate how to specify the prior distributions used for parameter estimation. +Tutorial to demonstrate how to specify the prior distributions used for +parameter estimation. """ from __future__ import division, print_function -import bilby -import numpy as np -import bilby.gw.prior +import numpy as np +import bilby duration = 4. @@ -15,18 +15,19 @@ outdir = 'outdir' np.random.seed(151012) -injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, phi_12=1.7, phi_jl=0.3, - luminosity_distance=4000., iota=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, - ra=1.375, dec=-1.2108) +injection_parameters = dict( + mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, + phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, psi=2.659, + phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', - reference_frequency=50.) + reference_frequency=50., minimum_frequency=20.) # Create the waveform_generator using a LAL BinaryBlackHole source function waveform_generator = bilby.gw.WaveformGenerator( duration=duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, - parameters=injection_parameters, waveform_arguments=waveform_arguments) + waveform_arguments=waveform_arguments) # Set up interferometers. ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) @@ -58,14 +59,16 @@ priors['a_2'] = bilby.core.prior.Interped( name='a_2', xx=a_2, yy=p_a_2, minimum=0, maximum=0.5) # Additionally, we have Gaussian, TruncatedGaussian, Sine and Cosine. # It's also possible to load an interpolate a prior from a file. -# Finally, if you don't specify any necessary parameters it will be filled in from the default when the sampler starts. +# Finally, if you don't specify any necessary parameters it will be filled in +# from the default when the sampler starts. # Enjoy. # Initialise GravitationalWaveTransient -likelihood = bilby.gw.GravitationalWaveTransient(interferometers=ifos, waveform_generator=waveform_generator) +likelihood = bilby.gw.GravitationalWaveTransient( + interferometers=ifos, waveform_generator=waveform_generator) # Run sampler -result = bilby.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', - injection_parameters=injection_parameters, outdir=outdir, label='specify_prior') +result = bilby.run_sampler( + likelihood=likelihood, priors=priors, sampler='dynesty', outdir=outdir, + injection_parameters=injection_parameters, label='specify_prior') result.plot_corner() - diff --git a/examples/injection_examples/marginalized_likelihood.py b/examples/injection_examples/marginalized_likelihood.py index 83259d627e80909796d646be386ced0fbd2e2e99..05c1def463d2ddad61bbff15997e49c50f0233ec 100644 --- a/examples/injection_examples/marginalized_likelihood.py +++ b/examples/injection_examples/marginalized_likelihood.py @@ -1,7 +1,7 @@ #!/usr/bin/env python """ -Tutorial to demonstrate how to improve the speed and efficiency of parameter estimation on an injected signal using -phase and distance marginalisation. +Tutorial to demonstrate how to improve the speed and efficiency of parameter +estimation on an injected signal using time, phase and distance marginalisation. """ from __future__ import division, print_function import bilby @@ -11,12 +11,14 @@ import numpy as np duration = 4. sampling_frequency = 2048. outdir = 'outdir' +label = 'marginalized_likelihood' np.random.seed(170608) -injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, phi_12=1.7, phi_jl=0.3, - luminosity_distance=4000., iota=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, - ra=1.375, dec=-1.2108) +injection_parameters = dict( + mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, + phi_12=1.7, phi_jl=0.3, luminosity_distance=4000., iota=0.4, psi=2.659, + phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108) waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', reference_frequency=50.) @@ -24,7 +26,7 @@ waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', # Create the waveform_generator using a LAL BinaryBlackHole source function waveform_generator = bilby.gw.WaveformGenerator( duration=duration, sampling_frequency=sampling_frequency, - frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, parameters=injection_parameters, + frequency_domain_source_model=bilby.gw.source.lal_binary_black_hole, waveform_arguments=waveform_arguments) # Set up interferometers. @@ -38,19 +40,21 @@ ifos.inject_signal(waveform_generator=waveform_generator, # Set up prior priors = bilby.gw.prior.BBHPriorSet() # These parameters will not be sampled -for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'iota', 'ra', 'dec', 'geocent_time']: +for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'iota', 'ra', + 'dec']: priors[key] = injection_parameters[key] # Initialise GravitationalWaveTransient -# Note that we now need to pass the: priors and flags for each thing that's being marginalised. -# This is still under development so care should be taken with the marginalised likelihood. +# Note that we now need to pass the: priors and flags for each thing that's +# being marginalised. A lookup table is used fro distance marginalisation which +# takes a few minutes to build. likelihood = bilby.gw.GravitationalWaveTransient( interferometers=ifos, waveform_generator=waveform_generator, prior=priors, - distance_marginalization=False, phase_marginalization=True, - time_marginalization=False) + distance_marginalization=True, phase_marginalization=True, + time_marginalization=True) # Run sampler -result = bilby.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', - injection_parameters=injection_parameters, outdir=outdir, label='MarginalisedLikelihood') +result = bilby.run_sampler( + likelihood=likelihood, priors=priors, sampler='dynesty', + injection_parameters=injection_parameters, outdir=outdir, label=label) result.plot_corner() - diff --git a/examples/injection_examples/non_tensor.py b/examples/injection_examples/non_tensor.py new file mode 100644 index 0000000000000000000000000000000000000000..c75fcf0dbcaad9eb589e700f8baccdb393818a89 --- /dev/null +++ b/examples/injection_examples/non_tensor.py @@ -0,0 +1,97 @@ +#!/usr/bin/env python +""" +A demonstration of a simple model with more than just the two polarization modes +allowed in general relativity. + +We adapt the sine-Gaussian burst model to include vector polarizations with an +unknown contribution from the vector modes. +""" +from __future__ import division, print_function +import bilby +import numpy as np + + +def vector_tensor_sine_gaussian(frequency_array, hrss, Q, frequency, epsilon): + """ + Vector-Tensor sine-Gaussian burst model + + This is just like the bilby.gw.source.sinegaussian function but adds a + vector-polarized component. + + Parameters + ---------- + frequency_array: array-like + Frequency array on which to calculate the waveform. + hrss: float + Q: float + frequency: float + epsilon: float + Relative size of the vector modes compared to the tensor modes. + """ + waveform_polarizations = bilby.gw.source.sinegaussian( + frequency_array, hrss, Q, frequency, 0, 0, 0, 0) + + waveform_polarizations['x'] = epsilon * waveform_polarizations['plus'] + waveform_polarizations['y'] = epsilon * waveform_polarizations['cross'] + return waveform_polarizations + + +duration = 4. +sampling_frequency = 2048. + +outdir = 'outdir' +label = 'vector_tensor' +bilby.core.utils.setup_logger(outdir=outdir, label=label) + +np.random.seed(170801) + +injection_parameters = dict( + hrss=1e-22, Q=5.0, frequency=200.0, ra=1.375, dec=-1.2108, + geocent_time=1126259642.413, psi=2.659, epsilon=0.2) + +waveform_generator =\ + bilby.gw.waveform_generator.WaveformGenerator( + duration=duration, sampling_frequency=sampling_frequency, + frequency_domain_source_model=vector_tensor_sine_gaussian) + +ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) +ifos.set_strain_data_from_power_spectral_densities( + sampling_frequency=sampling_frequency, duration=duration, + start_time=injection_parameters['geocent_time'] - 3) +ifos.inject_signal(waveform_generator=waveform_generator, + parameters=injection_parameters) + +priors = dict() +for key in ['psi', 'geocent_time', 'hrss', 'Q', 'frequency']: + priors[key] = injection_parameters[key] +priors['ra'] = bilby.core.prior.Uniform(0, 2 * np.pi, latex_label='$\\alpha$') +priors['dec'] = bilby.core.prior.Cosine(latex_label='$\\delta$') +priors['epsilon'] = bilby.core.prior.Uniform(0, 1, latex_label='$\\epsilon$') + +vector_tensor_likelihood = bilby.gw.likelihood.GravitationalWaveTransient( + interferometers=ifos, waveform_generator=waveform_generator) + +# Run sampler. In this case we're going to use the `dynesty` sampler +vector_tensor_result = bilby.core.sampler.run_sampler( + likelihood=vector_tensor_likelihood, priors=priors, sampler='nestle', + npoints=1000, injection_parameters=injection_parameters, + outdir=outdir, label='vector_tensor') + +vector_tensor_result.plot_corner() + +tensor_likelihood = bilby.gw.likelihood.GravitationalWaveTransient( + interferometers=ifos, waveform_generator=waveform_generator) + +priors['epsilon'] = 0 + +# Run sampler. In this case we're going to use the `dynesty` sampler +tensor_result = bilby.core.sampler.run_sampler( + likelihood=tensor_likelihood, priors=priors, sampler='nestle', npoints=1000, + injection_parameters=injection_parameters, outdir=outdir, label='tensor') + +# make some plots of the outputs +tensor_result.plot_corner() + +bilby.result.plot_multiple( + [tensor_result, vector_tensor_result], labels=['Tensor', 'Vector + Tensor'], + parameters=dict(ra=1.375, dec=-1.2108), evidences=True) diff --git a/examples/injection_examples/sine_gaussian_example.py b/examples/injection_examples/sine_gaussian_example.py index 4bbf7c6b0181c28212c26731acbff17539c29f28..07ac1ff0b2a12f1fe446e3f08e1fc85f70783c1f 100644 --- a/examples/injection_examples/sine_gaussian_example.py +++ b/examples/injection_examples/sine_gaussian_example.py @@ -1,13 +1,14 @@ #!/usr/bin/env python """ -Tutorial to demonstrate running parameter estimation on a sine gaussian injected signal. - +Tutorial to demonstrate running parameter estimation on a sine gaussian +injected signal. """ from __future__ import division, print_function import bilby import numpy as np -# Set the duration and sampling frequency of the data segment that we're going to inject the signal into +# Set the duration and sampling frequency of the data segment that we're going +# to inject the signal into duration = 4. sampling_frequency = 2048. @@ -19,61 +20,46 @@ bilby.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. This is optional! np.random.seed(170801) -# We are going to inject a sine gaussian waveform. We first establish a dictionary of parameters that -# includes all of the different waveform parameters -injection_parameters = dict(hrss = 1e-22, Q = 5.0, frequency = 200.0, ra = 1.375, dec = -1.2108, - geocent_time = 1126259642.413, psi= 2.659) +# We are going to inject a sine gaussian waveform. We first establish a +# dictionary of parameters that includes all of the different waveform +# parameters +injection_parameters = dict( + hrss=1e-22, Q=5.0, frequency=200.0, ra=1.375, dec=-1.2108, + geocent_time=1126259642.413, psi=2.659) # Create the waveform_generator using a sine Gaussian source function -waveform_generator = bilby.gw.waveform_generator.WaveformGenerator(duration=duration, - sampling_frequency=sampling_frequency, - frequency_domain_source_model=bilby.gw.source.sinegaussian, - parameters=injection_parameters) +waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( + duration=duration, sampling_frequency=sampling_frequency, + frequency_domain_source_model=bilby.gw.source.sinegaussian) -# Set up interferometers. In this case we'll use three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1), -# and Virgo (V1)). These default to their design sensitivity +# Set up interferometers. In this case we'll use three interferometers +# (LIGO-Hanford (H1), LIGO-Livingston (L1), and Virgo (V1)). These default to +# their design sensitivity ifos = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) ifos.set_strain_data_from_power_spectral_densities( sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time']-3) + start_time=injection_parameters['geocent_time'] - 3) ifos.inject_signal(waveform_generator=waveform_generator, parameters=injection_parameters) # Set up prior, which is a dictionary priors = dict() -# By default we will sample all terms in the signal models. However, this will take a long time for the calculation, -# so for this example we will set almost all of the priors to be equall to their injected values. This implies the -# prior is a delta function at the true, injected value. In reality, the sampler implementation is smart enough to -# not sample any parameter that has a delta-function prior. for key in ['psi', 'ra', 'dec', 'geocent_time']: priors[key] = injection_parameters[key] -# The above list does *not* include frequency and Q, which means those are the parameters -# that will be included in the sampler. If we do nothing, then the default priors get used. -#priors['Q'] = bilby.prior.create_default_prior(name='Q') -#priors['frequency'] = bilby.prior.create_default_prior(name='frequency') priors['Q'] = bilby.core.prior.Uniform(2, 50, 'Q') priors['frequency'] = bilby.core.prior.Uniform(30, 1000, 'frequency', unit='Hz') priors['hrss'] = bilby.core.prior.Uniform(1e-23, 1e-21, 'hrss') -# Initialise the likelihood by passing in the interferometer data (IFOs) and the waveoform generator -likelihood = bilby.gw.likelihood.GravitationalWaveTransient(interferometers=ifos, waveform_generator=waveform_generator) +# Initialise the likelihood by passing in the interferometer data (IFOs) and +# the waveoform generator +likelihood = bilby.gw.likelihood.GravitationalWaveTransient( + interferometers=ifos, waveform_generator=waveform_generator) # Run sampler. In this case we're going to use the `dynesty` sampler -result = bilby.core.sampler.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000, - injection_parameters=injection_parameters, outdir=outdir, label=label) +result = bilby.core.sampler.run_sampler( + likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000, + injection_parameters=injection_parameters, outdir=outdir, label=label) # make some plots of the outputs result.plot_corner() - - - - - - - - - - - - diff --git a/examples/injection_examples/using_gwin.py b/examples/injection_examples/using_gwin.py index a213c490c6a30bd51dda582baa1675b6c300f3c3..1539195e60cf0e68f1b3d565f35161e91fbce84b 100644 --- a/examples/injection_examples/using_gwin.py +++ b/examples/injection_examples/using_gwin.py @@ -48,7 +48,8 @@ fixed_parameters = injection_parameters.copy() for key in priors: fixed_parameters.pop(key) -# These lines generate the `model` object - see https://gwin.readthedocs.io/en/latest/api/gwin.models.gaussian_noise.html +# These lines generate the `model` object - see +# https://gwin.readthedocs.io/en/latest/api/gwin.models.gaussian_noise.html generator = FDomainDetFrameGenerator( FDomainCBCGenerator, 0., variable_args=variable_parameters, detectors=['H1', 'L1'], @@ -64,6 +65,7 @@ model.update(**injection_parameters) # This create a dummy class to convert the model into a bilby.likelihood object class GWINLikelihood(bilby.core.likelihood.Likelihood): + def __init__(self, model): """ A likelihood to wrap around GWIN model objects @@ -89,4 +91,3 @@ result = bilby.run_sampler( likelihood=likelihood, priors=priors, sampler='dynesty', npoints=500, label=label) result.plot_corner() - diff --git a/examples/logo/sample_logo.py b/examples/logo/sample_logo.py index b82733ebe78f7cfd582a3af0901f69144f728d4b..59153aeeffeecc1fb4780d0ffccf5535c69d02e6 100644 --- a/examples/logo/sample_logo.py +++ b/examples/logo/sample_logo.py @@ -11,11 +11,11 @@ class Likelihood(bilby.Likelihood): self.parameters = dict(x=None, y=None) def log_likelihood(self): - return -1/(self.interp(self.parameters['x'], self.parameters['y'])[0]) + return -1 / (self.interp(self.parameters['x'], self.parameters['y'])[0]) for letter in ['t', 'u', 'p', 'a', 'k']: - img = 1-io.imread('{}.jpg'.format(letter), as_grey=True)[::-1, :] + img = 1 - io.imread('{}.jpg'.format(letter), as_grey=True)[::-1, :] x = np.arange(img.shape[0]) y = np.arange(img.shape[1]) interp = si.interpolate.interp2d(x, y, img.T) diff --git a/examples/open_data_examples/GW150914.py b/examples/open_data_examples/GW150914.py index aa5ca44af19f6575feb8ed7e8b4e373b001bec0a..f44c9dd1cb4c82867f8880e612bf2cf0b1c711d2 100644 --- a/examples/open_data_examples/GW150914.py +++ b/examples/open_data_examples/GW150914.py @@ -51,4 +51,3 @@ likelihood = bilby.gw.likelihood.GravitationalWaveTransient( result = bilby.run_sampler(likelihood, prior, sampler='dynesty', outdir=outdir, label=label) result.plot_corner() - diff --git a/examples/other_examples/add_multiple_results.py b/examples/other_examples/add_multiple_results.py index f4c565555ad6250390622cd71fd1f433a7599c64..83f57b1a62ca15b16735bd6677e11e96a3bb260c 100644 --- a/examples/other_examples/add_multiple_results.py +++ b/examples/other_examples/add_multiple_results.py @@ -17,14 +17,14 @@ injection_parameters = dict(m=0.5, c=0.2) sigma = 1 sampling_frequency = 10 time_duration = 10 -time = np.arange(0, time_duration, 1/sampling_frequency) +time = np.arange(0, time_duration, 1 / sampling_frequency) N = len(time) data = model(time, **injection_parameters) + np.random.normal(0, sigma, N) likelihood = bilby.core.likelihood.GaussianLikelihood( time, data, model, sigma=sigma) -priors = {} +priors = dict() priors['m'] = bilby.core.prior.Uniform(0, 1, 'm') priors['c'] = bilby.core.prior.Uniform(-2, 2, 'c') @@ -40,5 +40,3 @@ resultA.plot_walkers() result = resultA + resultB result.plot_corner() print(result) - - diff --git a/examples/other_examples/gaussian_example.py b/examples/other_examples/gaussian_example.py index bf7730286f12ddc70ac9bfe647e6e637fd4004ac..2d9e51938dbcc1c871f4d44ef46f3df12366cc5c 100644 --- a/examples/other_examples/gaussian_example.py +++ b/examples/other_examples/gaussian_example.py @@ -39,8 +39,8 @@ class SimpleGaussianLikelihood(bilby.Likelihood): mu = self.parameters['mu'] sigma = self.parameters['sigma'] res = self.data - mu - return -0.5 * (np.sum((res / sigma)**2) - + self.N*np.log(2*np.pi*sigma**2)) + return -0.5 * (np.sum((res / sigma)**2) + + self.N * np.log(2 * np.pi * sigma**2)) likelihood = SimpleGaussianLikelihood(data) diff --git a/examples/other_examples/get_LOSC_event_data.py b/examples/other_examples/get_LOSC_event_data.py index 6197426eb6e02869fb73e18b349d8dde92ca1fc5..9c7b314797480aa4f4f6df5b767144490a84ca19 100644 --- a/examples/other_examples/get_LOSC_event_data.py +++ b/examples/other_examples/get_LOSC_event_data.py @@ -1,7 +1,7 @@ #!/usr/bin/env python """ Helper script to faciliate downloading data from LOSC -Usage: To download the GW150914 data from https://losc.ligo.org/events/ +Usage: To download the GW150914 data from https://losc.ligo.org/events/ $ python get_LOSC_event_data -e GW150914 @@ -52,7 +52,7 @@ for det, in ['H', 'L']: event, detector, sampling_frequency, starttime, duration)) os.remove(filename) -time = np.arange(0, int(duration), 1/int(sampling_frequency)) + int(starttime) +time = np.arange(0, int(duration), 1 / int(sampling_frequency)) + int(starttime) arr = [time] + data outfile = '{}/{}_strain_data.npy'.format(args.outdir, args.event) diff --git a/examples/other_examples/hyper_parameter_example.py b/examples/other_examples/hyper_parameter_example.py index 21ad6c24dcba6937ab79d3732dfbe7f198644290..796b8e057171b84bf6ad9853ae5df9a144074535 100644 --- a/examples/other_examples/hyper_parameter_example.py +++ b/examples/other_examples/hyper_parameter_example.py @@ -15,7 +15,7 @@ outdir = 'outdir' # Define a model to fit to each data set def model(x, c0, c1): - return c0 + c1*x + return c0 + c1 * x N = 10 @@ -64,8 +64,8 @@ fig2.savefig('outdir/hyper_parameter_combined_posteriors.png') def hyper_prior(data, mu, sigma): - return np.exp(- (data['c0'] - mu)**2 / (2 * sigma**2))\ - / (2 * np.pi * sigma**2)**0.5 + return np.exp(- (data['c0'] - mu)**2 / (2 * sigma**2)) /\ + (2 * np.pi * sigma**2)**0.5 def run_prior(data): diff --git a/examples/other_examples/linear_regression_pymc3.py b/examples/other_examples/linear_regression_pymc3.py index c10d5d3c93480254bc6ca2fa4d05ea128f0e2718..eb98be1edd7a7092dec74fd4b2eaa4dc32997bbe 100644 --- a/examples/other_examples/linear_regression_pymc3.py +++ b/examples/other_examples/linear_regression_pymc3.py @@ -9,7 +9,6 @@ from __future__ import division import bilby import numpy as np import matplotlib.pyplot as plt -import inspect from bilby.core.likelihood import GaussianLikelihood @@ -18,10 +17,12 @@ label = 'linear_regression_pymc3' outdir = 'outdir' bilby.utils.check_directory_exists_and_if_not_mkdir(outdir) + # First, we define our "signal model", in this case a simple linear function def model(time, m, c): return time * m + c + # Now we define the injection parameters which we make simulated data with injection_parameters = dict(m=0.5, c=0.2) @@ -32,7 +33,7 @@ sigma = 1 # contents of the injection_paramsters when calling the model function. sampling_frequency = 10 time_duration = 10 -time = np.arange(0, time_duration, 1/sampling_frequency) +time = np.arange(0, time_duration, 1 / sampling_frequency) N = len(time) data = model(time, **injection_parameters) + np.random.normal(0, sigma, N) @@ -51,7 +52,7 @@ likelihood = GaussianLikelihood(time, data, model, sigma=sigma) # From hereon, the syntax is exactly equivalent to other bilby examples # We make a prior -priors = {} +priors = dict() priors['m'] = bilby.core.prior.Uniform(0, 5, 'm') priors['c'] = bilby.core.prior.Uniform(-2, 2, 'c') diff --git a/examples/other_examples/linear_regression_pymc3_custom_likelihood.py b/examples/other_examples/linear_regression_pymc3_custom_likelihood.py index 9321ea4c82621250201b3af8b97484845cd2e9a7..4270e696891056c9638a6fd2084b0c99fc3daf58 100644 --- a/examples/other_examples/linear_regression_pymc3_custom_likelihood.py +++ b/examples/other_examples/linear_regression_pymc3_custom_likelihood.py @@ -20,10 +20,12 @@ label = 'linear_regression_pymc3_custom_likelihood' outdir = 'outdir' bilby.utils.check_directory_exists_and_if_not_mkdir(outdir) + # First, we define our "signal model", in this case a simple linear function def model(time, m, c): return time * m + c + # Now we define the injection parameters which we make simulated data with injection_parameters = dict(m=0.5, c=0.2) @@ -34,7 +36,7 @@ sigma = 1 # contents of the injection_paramsters when calling the model function. sampling_frequency = 10 time_duration = 10 -time = np.arange(0, time_duration, 1/sampling_frequency) +time = np.arange(0, time_duration, 1 / sampling_frequency) N = len(time) data = model(time, **injection_parameters) + np.random.normal(0, sigma, N) @@ -51,6 +53,7 @@ fig.savefig('{}/{}_data.png'.format(outdir, label)) # Parameter estimation: we now define a Gaussian Likelihood class relevant for # our model. class GaussianLikelihoodPyMC3(bilby.Likelihood): + def __init__(self, x, y, sigma, function): """ A general Gaussian likelihood - the parameters are inferred from the @@ -105,6 +108,7 @@ class GaussianLikelihoodPyMC3(bilby.Likelihood): # set the likelihood distribution pm.Normal('likelihood', mu=mu, sd=self.sigma, observed=self.y) + # Now lets instantiate a version of our GaussianLikelihood, giving it # the time, data and signal model likelihood = GaussianLikelihoodPyMC3(time, data, sigma, model) @@ -135,15 +139,16 @@ class PriorPyMC3(bilby.core.prior.Prior): return pm.Uniform(self.name, lower=self.minimum, upper=self.maximum) + # From hereon, the syntax is exactly equivalent to other bilby examples # We make a prior -priors = {} +priors = dict() priors['m'] = bilby.core.prior.Uniform(0, 5, 'm') priors['c'] = PriorPyMC3(-2, 2, 'c') # And run sampler result = bilby.run_sampler( likelihood=likelihood, priors=priors, sampler='pymc3', draws=1000, - tune=1000, discard_tuned_samples=True, injection_parameters=injection_parameters, - outdir=outdir, label=label) + tune=1000, discard_tuned_samples=True, + injection_parameters=injection_parameters, outdir=outdir, label=label) result.plot_corner() diff --git a/examples/other_examples/linear_regression_unknown_noise.py b/examples/other_examples/linear_regression_unknown_noise.py index be44d994f0ffea88fa91666d850cfbd31a03879b..e4427c9e0b062a880327527dbfbdf7541a962261 100644 --- a/examples/other_examples/linear_regression_unknown_noise.py +++ b/examples/other_examples/linear_regression_unknown_noise.py @@ -31,7 +31,7 @@ sigma = 1 # contents of the injection_parameters when calling the model function. sampling_frequency = 10 time_duration = 10 -time = np.arange(0, time_duration, 1/sampling_frequency) +time = np.arange(0, time_duration, 1 / sampling_frequency) N = len(time) data = model(time, **injection_parameters) + np.random.normal(0, sigma, N) diff --git a/examples/other_examples/occam_factor_example.py b/examples/other_examples/occam_factor_example.py index b977eaeadf53086326ca4047a8a9aa64bb607b0c..7785a540f956db8886311dc67b308e0ab390b98d 100644 --- a/examples/other_examples/occam_factor_example.py +++ b/examples/other_examples/occam_factor_example.py @@ -84,8 +84,8 @@ class Polynomial(bilby.Likelihood): def log_likelihood(self): res = self.y - self.polynomial(self.x, self.parameters) - return -0.5 * (np.sum((res / self.sigma)**2) - + self.N*np.log(2*np.pi*self.sigma**2)) + return -0.5 * (np.sum((res / self.sigma)**2) + + self.N * np.log(2 * np.pi * self.sigma**2)) def fit(n): diff --git a/examples/other_examples/radioactive_decay.py b/examples/other_examples/radioactive_decay.py index b59fad8a96e318ec85a4a661b9703d8a5989cfcd..aceabd156ff1a68bdbb4bf500d0718e6167241ee 100644 --- a/examples/other_examples/radioactive_decay.py +++ b/examples/other_examples/radioactive_decay.py @@ -45,8 +45,8 @@ def decay_rate(delta_t, halflife, n_init): n_atoms = n_init * atto * n_avogadro - rates = (np.exp(-np.log(2) * (times[:-1] / halflife)) - - np.exp(- np.log(2) * (times[1:] / halflife))) * n_atoms / delta_t + rates = (np.exp(-np.log(2) * (times[:-1] / halflife)) - + np.exp(- np.log(2) * (times[1:] / halflife))) * n_atoms / delta_t return rates diff --git a/examples/supernova_example/supernova_example.py b/examples/supernova_example/supernova_example.py index b6eeb99a15cef7af635f75f155824a7c64e85c28..507c4e4ed1c4c4907b7b9f153649d0634897c953 100644 --- a/examples/supernova_example/supernova_example.py +++ b/examples/supernova_example/supernova_example.py @@ -1,4 +1,4 @@ -#!/bin/python +#!/usr/bin/env python """ Tutorial to demonstrate running parameter estimation/model selection on an NR @@ -9,10 +9,10 @@ factor. (See https://arxiv.org/pdf/1202.3256.pdf) """ from __future__ import division, print_function import numpy as np +import bilby -# Set the duration and sampling frequency of the data segment that we're going to inject the signal into -import bilby.gw.likelihood - +# Set the duration and sampling frequency of the data segment that we're going +# to inject the signal into duration = 3. sampling_frequency = 4096. @@ -45,7 +45,7 @@ waveform_generator = bilby.gw.waveform_generator.WaveformGenerator( ifos = bilby.gw.detector.InterferometerList(['H1', 'L1']) ifos.set_strain_data_from_power_spectral_densities( sampling_frequency=sampling_frequency, duration=duration, - start_time=injection_parameters['geocent_time']-3) + start_time=injection_parameters['geocent_time'] - 3) ifos.inject_signal(waveform_generator=waveform_generator, parameters=injection_parameters) diff --git a/setup.cfg b/setup.cfg index b1e3bbe886b74ad4ac8fba910a11027596dab54b..b3838851e991b3f1fe06cc09925e7fc6991dca8b 100644 --- a/setup.cfg +++ b/setup.cfg @@ -1,5 +1,5 @@ [flake8] -exclude = .git,docs,build,dist,test,examples,*__init__.py +exclude = .git,docs,build,dist,test,*__init__.py max-line-length = 160 ignore = E129