From 4fd1d371bbbea9fa20e57fcf910966186c29f224 Mon Sep 17 00:00:00 2001 From: plasky <paul.lasky@monash.edu> Date: Fri, 18 May 2018 11:40:37 +1000 Subject: [PATCH] removed two examples --- examples/injection_examples/injection.py | 63 ------------------- .../time_domain_source_model.py | 48 -------------- 2 files changed, 111 deletions(-) delete mode 100644 examples/injection_examples/injection.py delete mode 100644 examples/injection_examples/time_domain_source_model.py diff --git a/examples/injection_examples/injection.py b/examples/injection_examples/injection.py deleted file mode 100644 index 6dad16b4f..000000000 --- a/examples/injection_examples/injection.py +++ /dev/null @@ -1,63 +0,0 @@ -""" -Tutorial to show signal injection using new features of detector.py -""" -from __future__ import division, print_function -import numpy as np -import tupak -import logging - - -def main(): - - tupak.utils.setup_logger() - - outdir = 'outdir' - label = 'injection' - - # Create the waveform generator - waveform_generator = tupak.waveform_generator.WaveformGenerator(time_duration=4, sampling_frequency=2048, - frequency_domain_source_model=tupak.source.lal_binary_black_hole, - parameters={'reference_frequency': 50.0, - 'waveform_approximant': 'IMRPhenomPv2'}) - - # Define the prior - # Merger time is some time in 2018, shame LIGO will never see it... - time_of_event = np.random.uniform(1198800018, 1230336018) - prior = dict() - prior['luminosity_distance'] = tupak.prior.PowerLaw(alpha=2, minimum=100, maximum=5000, name='luminosity_distance') - prior['geocent_time'] = tupak.prior.Uniform(time_of_event - 0.01, time_of_event + 0.01, name='geocent_time') - prior['mass_1'] = tupak.prior.Gaussian(mu=40, sigma=5, name='mass_1') - prior['mass_2'] = tupak.prior.Gaussian(mu=40, sigma=5, name='mass_2') - tupak.prior.fill_priors(prior, waveform_generator) - - # Create signal injection - injection_parameters = {name: prior[name].sample() for name in prior} - if injection_parameters['mass_1'] < injection_parameters['mass_2']: - injection_parameters['mass_1'], injection_parameters['mass_2'] =\ - injection_parameters['mass_2'], injection_parameters['mass_1'] - logging.info("Injection parameters:\n{}".format("\n".join(["{}: {}".format(key, injection_parameters[key]) - for key in injection_parameters]))) - for parameter in injection_parameters: - waveform_generator.parameters[parameter] = injection_parameters[parameter] - injection_polarizations = waveform_generator.frequency_domain_strain() - - # Create interferometers and inject signal - interferometers = [tupak.detector.get_interferometer_with_fake_noise_and_injection( - name, injection_polarizations=injection_polarizations, injection_parameters=injection_parameters, - sampling_frequency=2048, time_duration=4, outdir=outdir) for name in ['H1', 'L1', 'V1']] - - # Define a likelihood - likelihood = tupak.likelihood.MarginalizedLikelihood(interferometers, waveform_generator, prior=prior, - distance_marginalization=True, phase_marginalization=True) - - # Run the sampler - result = tupak.sampler.run_sampler( - likelihood, prior, label=label, sampler='dynesty', npoints=500, resume=False, outdir=outdir, use_ratio=True, - injection_parameters=injection_parameters) - truth = [injection_parameters[parameter] for parameter in result.search_parameter_keys] - result.plot_corner(truth=truth) - print(result) - - -if __name__ == "__main__": - main() diff --git a/examples/injection_examples/time_domain_source_model.py b/examples/injection_examples/time_domain_source_model.py deleted file mode 100644 index b9446703e..000000000 --- a/examples/injection_examples/time_domain_source_model.py +++ /dev/null @@ -1,48 +0,0 @@ -import tupak - -import matplotlib.pyplot as plt -import numpy as np - - -def frequency_domain_sine_gaussian(f, A, f0, tau, phi0, geocent_time, ra, dec, psi): - arg = -(np.pi * tau * (f-f0))**2 + 1j * phi0 - plus = np.sqrt(np.pi) * A * tau * np.exp(arg) / 2. - cross = plus * np.exp(1j*np.pi/2) - return {'plus': plus, 'cross': cross} - - -def time_domain_sine_gaussian(t, A, t0, f0, tau, phi0, geocent_time, ra, dec, psi): - arg = -(-(t-t0)/tau)**2 - plus = A * np.exp(arg) *np.cos(2*np.pi*f0*t + phi0) - cross = plus * np.exp(1j*np.pi/2) - return {'plus': plus, 'cross': cross} - - - -parameters = dict() -parameters['A'] = 10000 -parameters['f0'] = 5 -parameters['t0'] = 10 -parameters['tau'] = 3 -parameters['geocent_time'] = 0 -parameters['phi0'] = 0 -parameters['ra'] = 0 -parameters['dec'] = 0 -parameters['psi'] = 0 - -wg = tupak.waveform_generator.WaveformGenerator(time_duration=2000, sampling_frequency=1000, - time_domain_source_model=time_domain_sine_gaussian, - parameters=parameters) -wg.parameters = parameters -plt.plot(wg.frequency_array, wg.frequency_domain_strain()['plus']) -plt.xlim(4, 6) -plt.show() -plt.plot(wg.frequency_array, wg.frequency_domain_strain()['cross']) -plt.xlim(4, 6) -plt.show() -plt.plot(wg.time_array, wg.time_domain_strain()['plus']) -plt.xlim(0, 20) -plt.show() -plt.plot(wg.time_array, wg.time_domain_strain()['cross']) -plt.xlim(0, 20) -plt.show() -- GitLab