diff --git a/tupak/core/likelihood.py b/tupak/core/likelihood.py index 9a6ed01bda6de822144cb4547789a71a108ccc94..95ff85a2a8e01c4c105fe6fd076c9833d319905c 100644 --- a/tupak/core/likelihood.py +++ b/tupak/core/likelihood.py @@ -112,7 +112,7 @@ class GaussianLikelihood(Likelihood): class PoissonLikelihood(Likelihood): - def __init__(self, x, function): + def __init__(self, x, func): """ A general Poisson likelihood for a rate - the model parameters are inferred from the arguments of function, which provides a rate. @@ -125,13 +125,13 @@ class PoissonLikelihood(Likelihood): x: array_like The data to analyse - this must be a set of non-negative integers, each being the number of events within some interval. - function: + func: The python function providing the rate of events per interval to fit to the data. The arguments will require priors and will be sampled over (unless a fixed value is given). """ - parameters = self._infer_parameters_from_function(function) + parameters = self._infer_parameters_from_function(func) Likelihood.__init__(self, dict.fromkeys(parameters)) self.x = x @@ -150,7 +150,7 @@ class PoissonLikelihood(Likelihood): # save sum of log factorial of counts self.sumlogfactorial = np.sum(gammaln(self.x + 1)) - self.function = function + self.function = func # Check if sigma was provided, if not it is a parameter self.function_keys = list(self.parameters.keys())