diff --git a/examples/tutorials/fitting_with_x_and_y_errors.ipynb b/examples/tutorials/fitting_with_x_and_y_errors.ipynb index 6cda25778ac0c0ec54c1b0dd43677e1d94cd72de..56d2969053d44698519b5737f86d1c039ccf19ad 100644 --- a/examples/tutorials/fitting_with_x_and_y_errors.ipynb +++ b/examples/tutorials/fitting_with_x_and_y_errors.ipynb @@ -6,20 +6,7 @@ "source": [ "# Fitting a model to data with both x and y errors with `Bilby`\n", "\n", - "Usually when we fit a model to data with a Gaussian Likelihood we assume that we know x values exactly. This is almost never the case. Here we show how to fit a model with errors in both x and y.\n", - "\n", - "Since we are using a very simple model we will use the `nestle` sampler.\n", - "This can be installed using\n", - "\n", - "```console\n", - "$ conda install -c conda-forge nestle\n", - "```\n", - "\n", - "or\n", - "\n", - "```console\n", - "$ pip install nestle\n", - "```" + "Usually when we fit a model to data with a Gaussian Likelihood we assume that we know x values exactly. This is almost never the case. Here we show how to fit a model with errors in both x and y." ] }, { @@ -62,10 +49,10 @@ " xtrue = np.linspace(0, 100, points)\n", " ytrue = model(x=xtrue, m=m, c=c)\n", "\n", - " xerr = xerr * np.random.randn(points)\n", - " yerr = yerr * np.random.randn(points)\n", - " xobs = xtrue + xerr\n", - " yobs = ytrue + yerr\n", + " xerr_vals = xerr * np.random.randn(points)\n", + " yerr_vals = yerr * np.random.randn(points)\n", + " xobs = xtrue + xerr_vals\n", + " yobs = ytrue + yerr_vals\n", "\n", " plt.errorbar(xobs, yobs, xerr=xerr, yerr=yerr, fmt=\"x\")\n", " plt.errorbar(xtrue, ytrue, yerr=yerr, color=\"black\", alpha=0.5)\n", @@ -108,7 +95,7 @@ " m=bilby.core.prior.Uniform(0, 30, \"m\"), c=bilby.core.prior.Uniform(0, 30, \"c\")\n", ")\n", "\n", - "sampler_kwargs = dict(priors=priors, sampler=\"nestle\", nlive=1000, outdir=\"outdir\", verbose=False)" + "sampler_kwargs = dict(priors=priors, sampler=\"bilby_mcmc\", nsamples=1000, printdt=5, outdir=\"outdir\", verbose=False, clean=True)" ] }, {