diff --git a/docs/compact-binary-coalescence-parameter-estimation.txt b/docs/compact-binary-coalescence-parameter-estimation.txt
new file mode 100644
index 0000000000000000000000000000000000000000..54f6215f2ee2b8a34ab7bd14a3f7b66dc3fe1184
--- /dev/null
+++ b/docs/compact-binary-coalescence-parameter-estimation.txt
@@ -0,0 +1,27 @@
+===============================================
+Compact binary coalescence parameter estimation
+===============================================
+
+In this example, we demonstrate how to generate simulated data for a binary
+black hold coalescence observed by the two LGIO interferometers at Hanford,
+Livingston and the Virgo detector.
+
+.. literalinclude:: /../examples/injection_examples/basic_tutorial.py
+   :language: python
+   :linenos:
+
+Running this script will generate data then perform parameter estimation for
+the luminosity distance, masses and inclination angle :math:`\iota`. In doing
+all of this, it prints information about the matched-filter SNRs in each
+detector (saved to the log-file). Moreover, it generates a plot for each
+detector showing the data, amplitude spectral density (ASD) and the signal;
+here is an example for the Hanford detector:
+
+.. image:: images/H1_frequency_domain_data.png
+
+Finally, after running the parameter estimation. It generates a corner plot:
+
+.. image:: images/basic_tutorial_corner.png
+
+The solid lines indicate the injection parameters.
+
diff --git a/docs/prior.txt b/docs/prior.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8325d228b4367b6357cd41a86136f4fb6d351209
--- /dev/null
+++ b/docs/prior.txt
@@ -0,0 +1,34 @@
+.. _priors:
+
+======
+Priors
+======
+
+The priors object passed to :ref:`run_sampler <run-sampler>` is just a regular
+`python dictionary <https://docs.python.org/2/tutorial/datastructures.html#dictionaries>`_.
+
+The keys of the priors objects should reference the model parameters (in
+particular, the :code:`parameters` attribute of the :ref:`likelihood`. Each key
+can be either
+
+- fixed number, in which case the value is held fixed at this value. In effect,
+  this is a Delta-function prior,
+- or a :code:`tupak.prior.Prior` instance.
+
+If the later, it will be sampled during the parameter estimation. Here is a
+simple example that sets a uniform prior for :code:`a`, and a fixed value for
+:code:`b`::
+
+   priors = {}
+   priors['a'] = tupak.prior.Uniform(minimum=0, maximum=10, name='a', latex_label='a')
+   priors['b'] = 5
+
+Notice, that the :code:`latex_label` is optional, but if given will be used
+when generating plots.
+
+We have provided a number of standard priors. Here is a complete list
+
+.. automodule:: tupak.prior
+   :members:
+
+