diff --git a/docs/compact-binary-coalescence-parameter-estimation.txt b/docs/compact-binary-coalescence-parameter-estimation.txt new file mode 100644 index 0000000000000000000000000000000000000000..54f6215f2ee2b8a34ab7bd14a3f7b66dc3fe1184 --- /dev/null +++ b/docs/compact-binary-coalescence-parameter-estimation.txt @@ -0,0 +1,27 @@ +=============================================== +Compact binary coalescence parameter estimation +=============================================== + +In this example, we demonstrate how to generate simulated data for a binary +black hold coalescence observed by the two LGIO interferometers at Hanford, +Livingston and the Virgo detector. + +.. literalinclude:: /../examples/injection_examples/basic_tutorial.py + :language: python + :linenos: + +Running this script will generate data then perform parameter estimation for +the luminosity distance, masses and inclination angle :math:`\iota`. In doing +all of this, it prints information about the matched-filter SNRs in each +detector (saved to the log-file). Moreover, it generates a plot for each +detector showing the data, amplitude spectral density (ASD) and the signal; +here is an example for the Hanford detector: + +.. image:: images/H1_frequency_domain_data.png + +Finally, after running the parameter estimation. It generates a corner plot: + +.. image:: images/basic_tutorial_corner.png + +The solid lines indicate the injection parameters. + diff --git a/docs/prior.txt b/docs/prior.txt new file mode 100644 index 0000000000000000000000000000000000000000..8325d228b4367b6357cd41a86136f4fb6d351209 --- /dev/null +++ b/docs/prior.txt @@ -0,0 +1,34 @@ +.. _priors: + +====== +Priors +====== + +The priors object passed to :ref:`run_sampler <run-sampler>` is just a regular +`python dictionary <https://docs.python.org/2/tutorial/datastructures.html#dictionaries>`_. + +The keys of the priors objects should reference the model parameters (in +particular, the :code:`parameters` attribute of the :ref:`likelihood`. Each key +can be either + +- fixed number, in which case the value is held fixed at this value. In effect, + this is a Delta-function prior, +- or a :code:`tupak.prior.Prior` instance. + +If the later, it will be sampled during the parameter estimation. Here is a +simple example that sets a uniform prior for :code:`a`, and a fixed value for +:code:`b`:: + + priors = {} + priors['a'] = tupak.prior.Uniform(minimum=0, maximum=10, name='a', latex_label='a') + priors['b'] = 5 + +Notice, that the :code:`latex_label` is optional, but if given will be used +when generating plots. + +We have provided a number of standard priors. Here is a complete list + +.. automodule:: tupak.prior + :members: + +