From 7809b0c75bf58f0e8e7fa19442d30f4f2370079d Mon Sep 17 00:00:00 2001 From: Colm Talbot <colm.talbot@ligo.org> Date: Thu, 19 Jul 2018 14:15:46 -0400 Subject: [PATCH] add example of using calibration --- .../injection_examples/calibration_example.py | 92 +++++++++++++++++++ 1 file changed, 92 insertions(+) create mode 100644 examples/injection_examples/calibration_example.py diff --git a/examples/injection_examples/calibration_example.py b/examples/injection_examples/calibration_example.py new file mode 100644 index 000000000..3285bc16c --- /dev/null +++ b/examples/injection_examples/calibration_example.py @@ -0,0 +1,92 @@ +#!/bin/python +""" +Tutorial to demonstrate running parameter estimation on a reduced parameter space for an injected signal. + +This example estimates the masses using a uniform prior in both component masses and distance using a uniform in +comoving volume prior on luminosity distance between luminosity distances of 100Mpc and 5Gpc, the cosmology is WMAP7. +""" +from __future__ import division, print_function + +import numpy as np + +import tupak + +# Set the duration and sampling frequency of the data segment that we're going to inject the signal into + +duration = 4. +sampling_frequency = 2048. + +# Specify the output directory and the name of the simulation. +outdir = 'outdir' +label = 'calibration' +tupak.core.utils.setup_logger(outdir=outdir, label=label) + +# Set up a random seed for result reproducibility. This is optional! +np.random.seed(88170235) + +# We are going to inject a binary black hole waveform. We first establish a dictionary of parameters that +# includes all of the different waveform parameters, including masses of the two black holes (mass_1, mass_2), +# spins of both black holes (a, tilt, phi), etc. +injection_parameters = dict(mass_1=36., mass_2=29., a_1=0.4, a_2=0.3, tilt_1=0.5, tilt_2=1.0, phi_12=1.7, phi_jl=0.3, + luminosity_distance=2000., iota=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, + ra=1.375, dec=-1.2108) + +# Fixed arguments passed into the source model +waveform_arguments = dict(waveform_approximant='IMRPhenomPv2', + reference_frequency=50.) + +# Create the waveform_generator using a LAL BinaryBlackHole source function +waveform_generator = tupak.WaveformGenerator(duration=duration, + sampling_frequency=sampling_frequency, + frequency_domain_source_model=tupak.gw.source.lal_binary_black_hole, + parameters=injection_parameters, + waveform_arguments=waveform_arguments) +hf_signal = waveform_generator.frequency_domain_strain() + +# Set up interferometers. In this case we'll use three interferometers (LIGO-Hanford (H1), LIGO-Livingston (L1), +# and Virgo (V1)). These default to their design sensitivity +ifos = tupak.gw.detector.InterferometerSet(['H1', 'L1', 'V1']) +for ifo in ifos: + injection_parameters.update({'recalib_{}_amplitude_{}'.format(ifo.name, ii): 0.1 for ii in range(5)}) + injection_parameters.update({'recalib_{}_phase_{}'.format(ifo.name, ii): 0.01 for ii in range(5)}) + ifo.calibration_model = tupak.gw.calibration.CubicSpline( + prefix='recalib_{}_'.format(ifo.name), minimum_frequency=ifo.minimum_frequency, + maximum_frequency=ifo.maximum_frequency, n_points=5) +ifos.set_strain_data_from_power_spectral_densities(sampling_frequency=sampling_frequency, duration=duration) +ifos.inject_signal(parameters=injection_parameters, waveform_generator=waveform_generator) +# IFOs = [tupak.gw.detector.get_interferometer_with_fake_noise_and_injection( +# name, injection_polarizations=hf_signal, injection_parameters=injection_parameters, duration=duration, +# sampling_frequency=sampling_frequency, outdir=outdir) for name in ['H1', 'L1']] + +# Set up prior, which is a dictionary +# By default we will sample all terms in the signal models. However, this will take a long time for the calculation, +# so for this example we will set almost all of the priors to be equall to their injected values. This implies the +# prior is a delta function at the true, injected value. In reality, the sampler implementation is smart enough to +# not sample any parameter that has a delta-function prior. +# The above list does *not* include mass_1, mass_2, iota and luminosity_distance, which means those are the parameters +# that will be included in the sampler. If we do nothing, then the default priors get used. +priors = tupak.gw.prior.BBHPriorSet() +priors['geocent_time'] = tupak.core.prior.Uniform( + minimum=injection_parameters['geocent_time'] - 1, maximum=injection_parameters['geocent_time'] + 1, + name='geocent_time', latex_label='$t_c$') +for key in ['a_1', 'a_2', 'tilt_1', 'tilt_2', 'phi_12', 'phi_jl', 'psi', 'ra', 'dec', 'geocent_time', 'phase', + 'iota', 'luminosity_distance', 'mass_1', 'mass_2']: + priors[key] = injection_parameters[key] +for key in injection_parameters: + if 'recalib' in key: + priors[key] = injection_parameters[key] +for name in ['recalib_H1_amplitude_0', 'recalib_H1_amplitude_1', 'recalib_H1_amplitude_2']: + priors[name] = tupak.prior.Gaussian(mu=0, sigma=0.2, name=name, latex_label='H1 $A_{}$'.format(name[-1])) + +# Initialise the likelihood by passing in the interferometer data (IFOs) and the waveoform generator +likelihood = tupak.GravitationalWaveTransient(interferometers=ifos, waveform_generator=waveform_generator, + time_marginalization=False, phase_marginalization=False, + distance_marginalization=False, prior=priors) + +# Run sampler. In this case we're going to use the `dynesty` sampler +result = tupak.run_sampler(likelihood=likelihood, priors=priors, sampler='dynesty', npoints=1000, + injection_parameters=injection_parameters, outdir=outdir, label=label) + +# make some plots of the outputs +result.plot_corner() + -- GitLab