diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml
index d1572e049c48385afb8d9a75148da796cffb07a8..9b39700a97b97cf990846094ad00b33d9c483e05 100644
--- a/.gitlab-ci.yml
+++ b/.gitlab-ci.yml
@@ -10,11 +10,12 @@
 # before the next stage begins
 
 stages:
+  - initial
   - test
   - deploy
 
 .test-python: &test-python
-  stage: test
+  stage: initial
   image: python
   before_script:
     # this is required because pytables doesn't use a wheel on py37
@@ -55,15 +56,30 @@ python-3.7:
     - coverage html
     - coverage-badge -o coverage_badge.svg -f
 
+  artifacts:
+    paths:
+      - coverage_badge.svg
+      - htmlcov/
+
+docs:
+  stage: initial
+  image: quay.io/bilbydev/v2-dockerfile-test-suite-python37
+  script:
     # Make the documentation
+    - apt-get -yqq install pandoc
+    - python -m pip install .
     - cd docs
+    - pip install ipykernel ipython jupyter
+    - cp ../examples/tutorials/*.ipynb ./
+    - rm basic_ptmcmc_tutorial.ipynb
+    - rm compare_samplers.ipynb
+    - rm visualising_the_results.ipynb
+    - jupyter nbconvert --to notebook --execute *.ipynb --inplace
     - make clean
     - make html
 
   artifacts:
     paths:
-      - htmlcov/
-      - coverage_badge.svg
       - docs/_build/html/
 
 # test example on python 3.8
@@ -105,7 +121,7 @@ python-3.6-samplers:
 
 # Test containers are up to date
 containers:
-  stage: test
+  stage: initial
   image: quay.io/bilbydev/v2-dockerfile-test-suite-python37
   script:
     - cd containers
@@ -139,7 +155,7 @@ plotting:
     - pytest test/gw/plot_test.py
 
 authors:
-  stage: test
+  stage: initial
   image: quay.io/bilbydev/v2-dockerfile-test-suite-python37
   script:
     - python test/check_author_list.py
@@ -147,6 +163,7 @@ authors:
 pages:
   stage: deploy
   dependencies:
+    - docs
     - python-3.7
   script:
     - mkdir public/
@@ -176,7 +193,7 @@ deploy_release:
 
 
 precommits-py3.7:
-  stage: test
+  stage: initial
   image: quay.io/bilbydev/v2-dockerfile-test-suite-python37
   script:
     - source activate python37
diff --git a/bilby/core/grid.py b/bilby/core/grid.py
index c469464bd7df9084ebf53cc3eca7b19fda86a789..ccc1e9d7dc24acace50f8b994973f760857a173e 100644
--- a/bilby/core/grid.py
+++ b/bilby/core/grid.py
@@ -14,7 +14,7 @@ def grid_file_name(outdir, label, gzip=False):
     """ Returns the standard filename used for a grid file
 
     Parameters
-    ----------
+    ==========
     outdir: str
         Name of the output directory
     label: str
@@ -23,7 +23,7 @@ def grid_file_name(outdir, label, gzip=False):
         Set to True to append `.gz` to the extension for saving in gzipped format
 
     Returns
-    -------
+    =======
     str: File name of the output file
     """
     if gzip:
@@ -39,7 +39,7 @@ class Grid(object):
         """
 
         Parameters
-        ----------
+        ==========
         likelihood: bilby.likelihood.Likelihood
         priors: bilby.prior.PriorDict
         grid_size: int, list, dict
@@ -112,7 +112,7 @@ class Grid(object):
         Marginalize over a list of parameters.
 
         Parameters
-        ----------
+        ==========
         log_array: array_like
             A :class:`numpy.ndarray` of log likelihood/posterior values.
         parameters: list, str
@@ -123,7 +123,7 @@ class Grid(object):
             the set of parameter to *not* marginalize over.
 
         Returns
-        -------
+        =======
         out_array: array_like
             An array containing the marginalized log likelihood/posterior.
         """
@@ -162,7 +162,7 @@ class Grid(object):
         Marginalize the log likelihood/posterior over a single given parameter.
 
         Parameters
-        ----------
+        ==========
         log_array: array_like
             A :class:`numpy.ndarray` of log likelihood/posterior values.
         name: str
@@ -171,7 +171,7 @@ class Grid(object):
             A list of parameter names that have not been marginalized over.
 
         Returns
-        -------
+        =======
         out: array_like
             An array containing the marginalized log likelihood/posterior.
         """
@@ -218,14 +218,14 @@ class Grid(object):
         ln likelihood will be fully marginalized over.
 
         Parameters
-        ----------
+        ==========
         parameters: str, list, optional
             Name of, or list of names of, the parameter(s) to marginalize over.
         not_parameters: str, optional
             Name of, or list of names of, the parameter(s) to not marginalize over.
 
         Returns
-        -------
+        =======
         array-like:
             The marginalized ln likelihood.
         """
@@ -239,14 +239,14 @@ class Grid(object):
         ln posterior will be fully marginalized over.
 
         Parameters
-        ----------
+        ==========
         parameters: str, list, optional
             Name of, or list of names of, the parameter(s) to marginalize over.
         not_parameters: str, optional
             Name of, or list of names of, the parameter(s) to not marginalize over.
 
         Returns
-        -------
+        =======
         array-like:
             The marginalized ln posterior.
         """
@@ -260,14 +260,14 @@ class Grid(object):
         likelihood will be fully marginalized over.
 
         Parameters
-        ----------
+        ==========
         parameters: str, list, optional
             Name of, or list of names of, the parameter(s) to marginalize over.
         not_parameters: str, optional
             Name of, or list of names of, the parameter(s) to not marginalize over.
 
         Returns
-        -------
+        =======
         array-like:
             The marginalized likelihood.
         """
@@ -283,14 +283,14 @@ class Grid(object):
         posterior will be fully marginalized over.
 
         Parameters
-        ----------
+        ==========
         parameters: str, list, optional
             Name of, or list of names of, the parameter(s) to marginalize over.
         not_parameters: str, optional
             Name of, or list of names of, the parameter(s) to not marginalize over.
 
         Returns
-        -------
+        =======
         array-like:
             The marginalized posterior.
         """
@@ -375,7 +375,7 @@ class Grid(object):
         Writes the Grid to a file.
 
         Parameters
-        ----------
+        ==========
         filename: str, optional
             Filename to write to (overwrites the default)
         overwrite: bool, optional
@@ -418,7 +418,7 @@ class Grid(object):
         """ Read in a saved .json grid file
 
         Parameters
-        ----------
+        ==========
         filename: str
             If given, try to load from this filename
         outdir, label: str
@@ -429,11 +429,11 @@ class Grid(object):
             extension)
 
         Returns
-        -------
+        =======
         grid: bilby.core.grid.Grid
 
         Raises
-        -------
+        =======
         ValueError: If no filename is given and either outdir or label is None
                     If no bilby.core.grid.Grid is found in the path
 
diff --git a/bilby/core/likelihood.py b/bilby/core/likelihood.py
index 06438a21e364b9d07ef6952434e21a3678fff4e0..8e8d0ebc5df732bcb40d6688702dba523b1c3937 100644
--- a/bilby/core/likelihood.py
+++ b/bilby/core/likelihood.py
@@ -13,7 +13,7 @@ class Likelihood(object):
         """Empty likelihood class to be subclassed by other likelihoods
 
         Parameters
-        ----------
+        ==========
         parameters: dict
             A dictionary of the parameter names and associated values
         """
@@ -28,7 +28,7 @@ class Likelihood(object):
         """
 
         Returns
-        -------
+        =======
         float
         """
         return np.nan
@@ -37,7 +37,7 @@ class Likelihood(object):
         """
 
         Returns
-        -------
+        =======
         float
         """
         return np.nan
@@ -46,7 +46,7 @@ class Likelihood(object):
         """Difference between log likelihood and noise log likelihood
 
         Returns
-        -------
+        =======
         float
         """
         return self.log_likelihood() - self.noise_log_likelihood()
@@ -71,7 +71,7 @@ class ZeroLikelihood(Likelihood):
     """ A special test-only class which already returns zero likelihood
 
     Parameters
-    ----------
+    ==========
     likelihood: bilby.core.likelihood.Likelihood
         A likelihood object to mimic
 
@@ -98,7 +98,7 @@ class Analytical1DLikelihood(Likelihood):
     parameters are inferred from the arguments of function
 
     Parameters
-    ----------
+    ==========
     x, y: array_like
         The data to analyse
     func:
@@ -174,7 +174,7 @@ class GaussianLikelihood(Analytical1DLikelihood):
         parameters are inferred from the arguments of function
 
         Parameters
-        ----------
+        ==========
         x, y: array_like
             The data to analyse
         func:
@@ -235,7 +235,7 @@ class PoissonLikelihood(Analytical1DLikelihood):
         inferred from the arguments of function, which provides a rate.
 
         Parameters
-        ----------
+        ==========
 
         x: array_like
             A dependent variable at which the Poisson rates will be calculated
@@ -291,7 +291,7 @@ class ExponentialLikelihood(Analytical1DLikelihood):
         An exponential likelihood function.
 
         Parameters
-        ----------
+        ==========
 
         x, y: array_like
             The data to analyse
@@ -338,7 +338,7 @@ class StudentTLikelihood(Analytical1DLikelihood):
         https://en.wikipedia.org/wiki/Student%27s_t-distribution#Generalized_Student's_t-distribution
 
         Parameters
-        ----------
+        ==========
         x, y: array_like
             The data to analyse
         func:
@@ -410,7 +410,7 @@ class Multinomial(Likelihood):
         """
 
         Parameters
-        ----------
+        ==========
         data: array-like
             The number of objects in each class
         n_dimensions: int
@@ -454,7 +454,7 @@ class AnalyticalMultidimensionalCovariantGaussian(Likelihood):
         with known analytic solution.
 
         Parameters
-        ----------
+        ==========
         mean: array_like
             Array with the mean values of distribution
         cov: array_like
@@ -484,7 +484,7 @@ class AnalyticalMultidimensionalBimodalCovariantGaussian(Likelihood):
         with known analytic solution.
 
         Parameters
-        ----------
+        ==========
         mean_1: array_like
             Array with the mean value of the first mode
         mean_2: array_like
@@ -523,7 +523,7 @@ class JointLikelihood(Likelihood):
         set consistently
 
         Parameters
-        ----------
+        ==========
         *likelihoods: bilby.core.likelihood.Likelihood
             likelihoods to be combined parsed as arguments
         """
diff --git a/bilby/core/prior/analytical.py b/bilby/core/prior/analytical.py
index a2aa4cac57a9ea2c44f0768fc697bdbca5ef520a..08e56a98d35d7a465e7f7c676c615904bffff19a 100644
--- a/bilby/core/prior/analytical.py
+++ b/bilby/core/prior/analytical.py
@@ -13,7 +13,7 @@ class DeltaFunction(Prior):
         """Dirac delta function prior, this always returns peak.
 
         Parameters
-        ----------
+        ==========
         peak: float
             Peak value of the delta function
         name: str
@@ -33,11 +33,11 @@ class DeltaFunction(Prior):
         """Rescale everything to the peak with the correct shape.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         float: Rescaled probability, equivalent to peak
         """
         self.test_valid_for_rescaling(val)
@@ -47,11 +47,11 @@ class DeltaFunction(Prior):
         """Return the prior probability of val
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
          Union[float, array_like]: np.inf if val = peak, 0 otherwise
 
         """
@@ -69,7 +69,7 @@ class PowerLaw(Prior):
         """Power law with bounds and alpha, spectral index
 
         Parameters
-        ----------
+        ==========
         alpha: float
             Power law exponent parameter
         minimum: float
@@ -97,12 +97,12 @@ class PowerLaw(Prior):
         This maps to the inverse CDF. This has been analytically solved for this case.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
             Uniform probability
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Rescaled probability
         """
         self.test_valid_for_rescaling(val)
@@ -116,11 +116,11 @@ class PowerLaw(Prior):
         """Return the prior probability of val
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         float: Prior probability of val
         """
         if self.alpha == -1:
@@ -134,11 +134,11 @@ class PowerLaw(Prior):
         """Return the logarithmic prior probability of val
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         float:
 
         """
@@ -170,7 +170,7 @@ class Uniform(Prior):
         """Uniform prior with bounds
 
         Parameters
-        ----------
+        ==========
         minimum: float
             See superclass
         maximum: float
@@ -195,12 +195,12 @@ class Uniform(Prior):
         This maps to the inverse CDF. This has been analytically solved for this case.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
             Uniform probability
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Rescaled probability
         """
         self.test_valid_for_rescaling(val)
@@ -210,11 +210,11 @@ class Uniform(Prior):
         """Return the prior probability of val
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         float: Prior probability of val
         """
         return ((val >= self.minimum) & (val <= self.maximum)) / (self.maximum - self.minimum)
@@ -223,11 +223,11 @@ class Uniform(Prior):
         """Return the log prior probability of val
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         float: log probability of val
         """
         return xlogy(1, (val >= self.minimum) & (val <= self.maximum)) - xlogy(1, self.maximum - self.minimum)
@@ -246,7 +246,7 @@ class LogUniform(PowerLaw):
         """Log-Uniform prior with bounds
 
         Parameters
-        ----------
+        ==========
         minimum: float
             See superclass
         maximum: float
@@ -278,7 +278,7 @@ class SymmetricLogUniform(Prior):
         maximum].
 
         Parameters
-        ----------
+        ==========
         minimum: float
             See superclass
         maximum: float
@@ -303,12 +303,12 @@ class SymmetricLogUniform(Prior):
         This maps to the inverse CDF. This has been analytically solved for this case.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
             Uniform probability
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Rescaled probability
         """
         self.test_valid_for_rescaling(val)
@@ -330,11 +330,11 @@ class SymmetricLogUniform(Prior):
         """Return the prior probability of val
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         float: Prior probability of val
         """
         val = np.abs(val)
@@ -345,11 +345,11 @@ class SymmetricLogUniform(Prior):
         """Return the logarithmic prior probability of val
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         float:
 
         """
@@ -375,7 +375,7 @@ class Cosine(Prior):
         """Cosine prior with bounds
 
         Parameters
-        ----------
+        ==========
         minimum: float
             See superclass
         maximum: float
@@ -406,11 +406,11 @@ class Cosine(Prior):
         """Return the prior probability of val. Defined over [-pi/2, pi/2].
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         float: Prior probability of val
         """
         return np.cos(val) / 2 * self.is_in_prior_range(val)
@@ -430,7 +430,7 @@ class Sine(Prior):
         """Sine prior with bounds
 
         Parameters
-        ----------
+        ==========
         minimum: float
             See superclass
         maximum: float
@@ -461,11 +461,11 @@ class Sine(Prior):
         """Return the prior probability of val. Defined over [0, pi].
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         return np.sin(val) / 2 * self.is_in_prior_range(val)
@@ -484,7 +484,7 @@ class Gaussian(Prior):
         """Gaussian prior with mean mu and width sigma
 
         Parameters
-        ----------
+        ==========
         mu: float
             Mean of the Gaussian prior
         sigma:
@@ -507,7 +507,7 @@ class Gaussian(Prior):
         'Rescale' a sample from the unit line element to the appropriate Gaussian prior.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         This maps to the inverse CDF. This has been analytically solved for this case.
@@ -519,11 +519,11 @@ class Gaussian(Prior):
         """Return the prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         return np.exp(-(self.mu - val) ** 2 / (2 * self.sigma ** 2)) / (2 * np.pi) ** 0.5 / self.sigma
@@ -532,11 +532,11 @@ class Gaussian(Prior):
         """Return the Log prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
 
@@ -559,7 +559,7 @@ class TruncatedGaussian(Prior):
         https://en.wikipedia.org/wiki/Truncated_normal_distribution
 
         Parameters
-        ----------
+        ==========
         mu: float
             Mean of the Gaussian prior
         sigma:
@@ -587,7 +587,7 @@ class TruncatedGaussian(Prior):
         """ Calculates the proper normalisation of the truncated Gaussian
 
         Returns
-        -------
+        =======
         float: Proper normalisation of the truncated Gaussian
         """
         return (erf((self.maximum - self.mu) / 2 ** 0.5 / self.sigma) - erf(
@@ -607,11 +607,11 @@ class TruncatedGaussian(Prior):
         """Return the prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         float: Prior probability of val
         """
         return np.exp(-(self.mu - val) ** 2 / (2 * self.sigma ** 2)) / (2 * np.pi) ** 0.5 \
@@ -635,7 +635,7 @@ class HalfGaussian(TruncatedGaussian):
         """A Gaussian with its mode at zero, and truncated to only be positive.
 
         Parameters
-        ----------
+        ==========
         sigma: float
             See superclass
         name: str
@@ -663,7 +663,7 @@ class LogNormal(Prior):
         https://en.wikipedia.org/wiki/Log-normal_distribution
 
         Parameters
-        ----------
+        ==========
         mu: float
             Mean of the Gaussian prior
         sigma:
@@ -699,11 +699,11 @@ class LogNormal(Prior):
         """Returns the prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         if isinstance(val, (float, int)):
@@ -723,11 +723,11 @@ class LogNormal(Prior):
         """Returns the log prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         if isinstance(val, (float, int)):
@@ -765,7 +765,7 @@ class Exponential(Prior):
         """Exponential prior with mean mu
 
         Parameters
-        ----------
+        ==========
         mu: float
             Mean of the Exponential prior
         name: str
@@ -794,11 +794,11 @@ class Exponential(Prior):
         """Return the prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         if isinstance(val, (float, int)):
@@ -815,11 +815,11 @@ class Exponential(Prior):
         """Returns the log prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         if isinstance(val, (float, int)):
@@ -853,7 +853,7 @@ class StudentT(Prior):
         https://en.wikipedia.org/wiki/Student%27s_t-distribution#Generalized_Student's_t-distribution
 
         Parameters
-        ----------
+        ==========
         df: float
             Number of degrees of freedom for distribution
         mu: float
@@ -902,11 +902,11 @@ class StudentT(Prior):
         """Return the prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         return np.exp(self.ln_prob(val))
@@ -915,11 +915,11 @@ class StudentT(Prior):
         """Returns the log prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         return gammaln(0.5 * (self.df + 1)) - gammaln(0.5 * self.df)\
@@ -941,7 +941,7 @@ class Beta(Prior):
         https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.beta.html
 
         Parameters
-        ----------
+        ==========
         alpha: float
             first shape parameter
         beta: float
@@ -981,11 +981,11 @@ class Beta(Prior):
         """Return the prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         return np.exp(self.ln_prob(val))
@@ -994,11 +994,11 @@ class Beta(Prior):
         """Returns the log prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         _ln_prob = xlogy(self.alpha - 1, val - self.minimum) + xlogy(self.beta - 1, self.maximum - val)\
@@ -1039,7 +1039,7 @@ class Logistic(Prior):
         https://en.wikipedia.org/wiki/Logistic_distribution
 
         Parameters
-        ----------
+        ==========
         mu: float
             Mean of the distribution
         scale: float
@@ -1086,11 +1086,11 @@ class Logistic(Prior):
         """Return the prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         return np.exp(self.ln_prob(val))
@@ -1099,11 +1099,11 @@ class Logistic(Prior):
         """Returns the log prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         return -(val - self.mu) / self.scale -\
@@ -1120,7 +1120,7 @@ class Cauchy(Prior):
         https://en.wikipedia.org/wiki/Cauchy_distribution
 
         Parameters
-        ----------
+        ==========
         alpha: float
             Location parameter
         beta: float
@@ -1164,11 +1164,11 @@ class Cauchy(Prior):
         """Return the prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         return 1. / self.beta / np.pi / (1. + ((val - self.alpha) / self.beta) ** 2)
@@ -1177,11 +1177,11 @@ class Cauchy(Prior):
         """Return the log prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Log prior probability of val
         """
         return - np.log(self.beta * np.pi) - np.log(1. + ((val - self.alpha) / self.beta) ** 2)
@@ -1201,7 +1201,7 @@ class Gamma(Prior):
         https://en.wikipedia.org/wiki/Gamma_distribution
 
         Parameters
-        ----------
+        ==========
         k: float
             The shape parameter
         theta: float
@@ -1237,11 +1237,11 @@ class Gamma(Prior):
         """Return the prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val:  Union[float, int, array_like]
 
         Returns
-        -------
+        =======
          Union[float, array_like]: Prior probability of val
         """
         return np.exp(self.ln_prob(val))
@@ -1250,11 +1250,11 @@ class Gamma(Prior):
         """Returns the log prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Prior probability of val
         """
         if isinstance(val, (float, int)):
@@ -1288,7 +1288,7 @@ class ChiSquared(Gamma):
         https://en.wikipedia.org/wiki/Chi-squared_distribution
 
         Parameters
-        ----------
+        ==========
         nu: int
             Number of degrees of freedom
         name: str
@@ -1324,7 +1324,7 @@ class FermiDirac(Prior):
         is defined by Equation 22 of [1]_.
 
         Parameters
-        ----------
+        ==========
         sigma: float (required)
             The range over which the attenuation of the distribution happens
         mu: float
@@ -1341,7 +1341,7 @@ class FermiDirac(Prior):
             See superclass
 
         References
-        ----------
+        ==========
 
         .. [1] M. Pitkin, M. Isi, J. Veitch & G. Woan, `arXiv:1705.08978v1
            <https:arxiv.org/abs/1705.08978v1>`_, 2017.
@@ -1370,14 +1370,14 @@ class FermiDirac(Prior):
         'Rescale' a sample from the unit line element to the appropriate Fermi-Dirac prior.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         This maps to the inverse CDF. This has been analytically solved for this case,
         see Equation 24 of [1]_.
 
         References
-        ----------
+        ==========
 
         .. [1] M. Pitkin, M. Isi, J. Veitch & G. Woan, `arXiv:1705.08978v1
            <https:arxiv.org/abs/1705.08978v1>`_, 2017.
@@ -1404,11 +1404,11 @@ class FermiDirac(Prior):
         """Return the prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         float: Prior probability of val
         """
         return np.exp(self.ln_prob(val))
@@ -1417,11 +1417,11 @@ class FermiDirac(Prior):
         """Return the log prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         Union[float, array_like]: Log prior probability of val
         """
 
diff --git a/bilby/core/prior/base.py b/bilby/core/prior/base.py
index 180693adb423046a5b8fd1f879128abb1f68ca9c..dc717ba36128bec960698ee1dedb27a4c21d8f4b 100644
--- a/bilby/core/prior/base.py
+++ b/bilby/core/prior/base.py
@@ -20,7 +20,7 @@ class Prior(object):
         """ Implements a Prior object
 
         Parameters
-        ----------
+        ==========
         name: str, optional
             Name associated with prior.
         latex_label: str, optional
@@ -57,7 +57,7 @@ class Prior(object):
         """Overrides the __call__ special method. Calls the sample method.
 
         Returns
-        -------
+        =======
         float: The return value of the sample method.
         """
         return self.sample()
@@ -85,12 +85,12 @@ class Prior(object):
         """Draw a sample from the prior
 
         Parameters
-        ----------
+        ==========
         size: int or tuple of ints, optional
             See numpy.random.uniform docs
 
         Returns
-        -------
+        =======
         float: A random number between 0 and 1, rescaled to match the distribution of this Prior
 
         """
@@ -104,12 +104,12 @@ class Prior(object):
         This should be overwritten by each subclass.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
             A random number between 0 and 1
 
         Returns
-        -------
+        =======
         None
 
         """
@@ -119,11 +119,11 @@ class Prior(object):
         """Return the prior probability of val, this should be overwritten
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         np.nan
 
         """
@@ -146,11 +146,11 @@ class Prior(object):
         """Return the prior ln probability of val, this should be overwritten
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         np.nan
 
         """
@@ -160,11 +160,11 @@ class Prior(object):
         """Returns True if val is in the prior boundaries, zero otherwise
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         np.nan
 
         """
@@ -175,11 +175,11 @@ class Prior(object):
         """Test if 0 < val < 1
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Raises
-        -------
+        =======
         ValueError: If val is not between 0 and 1
         """
         valarray = np.atleast_1d(val)
@@ -194,7 +194,7 @@ class Prior(object):
         Works correctly for all child classes
 
         Returns
-        -------
+        =======
         str: A string representation of this instance
 
         """
@@ -224,7 +224,7 @@ class Prior(object):
 
 
         Returns
-        -------
+        =======
         bool: Whether it's fixed or not!
 
         """
@@ -237,7 +237,7 @@ class Prior(object):
         Draws from a set of default labels if no label is given
 
         Returns
-        -------
+        =======
         str: A latex representation for this prior
 
         """
@@ -392,17 +392,17 @@ class Prior(object):
 
 
         Parameters
-        ----------
+        ==========
         val: str
             The string version of the agument
 
         Returns
-        -------
+        =======
         val: object
             The parsed version of the argument.
 
         Raises
-        ------
+        ======
         TypeError:
             If val cannot be parsed as described above.
         """
diff --git a/bilby/core/prior/conditional.py b/bilby/core/prior/conditional.py
index 80cdbb91acfb3a49342aad479ef8881c27cca71d..fbe48469dfdc71b5a38bfa5d50fa242f3478867e 100644
--- a/bilby/core/prior/conditional.py
+++ b/bilby/core/prior/conditional.py
@@ -15,7 +15,7 @@ def conditional_prior_factory(prior_class):
             """
 
             Parameters
-            ----------
+            ==========
             condition_func: func
                 Functional form of the condition for this prior. The first function argument
                 has to be a dictionary for the `reference_params` (see below). The following
@@ -27,10 +27,14 @@ def conditional_prior_factory(prior_class):
                 `p(x|y)` with the boundaries linearly depending on y, then this
                 could have the following form:
 
-                ```
-                def condition_func(reference_params, y):
-                    return dict(minimum=reference_params['minimum'] + y, maximum=reference_params['maximum'] + y)
-                ```
+                .. code-block:: python
+
+                    def condition_func(reference_params, y):
+                        return dict(
+                            minimum=reference_params['minimum'] + y,
+                            maximum=reference_params['maximum'] + y
+                        )
+
             name: str, optional
                See superclass
             latex_label: str, optional
@@ -61,14 +65,14 @@ def conditional_prior_factory(prior_class):
             """Draw a sample from the prior
 
             Parameters
-            ----------
+            ==========
             size: int or tuple of ints, optional
                 See superclass
             required_variables:
                 Any required variables that this prior depends on
 
             Returns
-            -------
+            =======
             float: See superclass
 
             """
@@ -80,7 +84,7 @@ def conditional_prior_factory(prior_class):
             'Rescale' a sample from the unit line element to the prior.
 
             Parameters
-            ----------
+            ==========
             val: Union[float, int, array_like]
                 See superclass
             required_variables:
@@ -95,7 +99,7 @@ def conditional_prior_factory(prior_class):
             """Return the prior probability of val.
 
             Parameters
-            ----------
+            ==========
             val: Union[float, int, array_like]
                 See superclass
             required_variables:
@@ -103,7 +107,7 @@ def conditional_prior_factory(prior_class):
 
 
             Returns
-            -------
+            =======
             float: Prior probability of val
             """
             self.update_conditions(**required_variables)
@@ -113,7 +117,7 @@ def conditional_prior_factory(prior_class):
             """Return the natural log prior probability of val.
 
             Parameters
-            ----------
+            ==========
             val: Union[float, int, array_like]
                 See superclass
             required_variables:
@@ -121,7 +125,7 @@ def conditional_prior_factory(prior_class):
 
 
             Returns
-            -------
+            =======
             float: Natural log prior probability of val
             """
             self.update_conditions(**required_variables)
@@ -131,7 +135,7 @@ def conditional_prior_factory(prior_class):
             """Return the cdf of val.
 
             Parameters
-            ----------
+            ==========
             val: Union[float, int, array_like]
                 See superclass
             required_variables:
@@ -139,7 +143,7 @@ def conditional_prior_factory(prior_class):
 
 
             Returns
-            -------
+            =======
             float: CDF of val
             """
             self.update_conditions(**required_variables)
@@ -154,7 +158,7 @@ def conditional_prior_factory(prior_class):
             If no variables are given, the most recently used conditional parameters are kept
 
             Parameters
-            ----------
+            ==========
             required_variables:
                 Any required variables that this prior depends on. If none are given,
                 self.reference_params will be used.
@@ -217,7 +221,7 @@ def conditional_prior_factory(prior_class):
             Works correctly for all child classes
 
             Returns
-            -------
+            =======
             str: A string representation of this instance
 
             """
@@ -234,49 +238,116 @@ def conditional_prior_factory(prior_class):
     return ConditionalPrior
 
 
-ConditionalBasePrior = conditional_prior_factory(Prior)  # Only for testing purposes
-ConditionalUniform = conditional_prior_factory(Uniform)
-ConditionalDeltaFunction = conditional_prior_factory(DeltaFunction)
-ConditionalPowerLaw = conditional_prior_factory(PowerLaw)
-ConditionalGaussian = conditional_prior_factory(Gaussian)
-ConditionalLogUniform = conditional_prior_factory(LogUniform)
-ConditionalSymmetricLogUniform = conditional_prior_factory(SymmetricLogUniform)
-ConditionalCosine = conditional_prior_factory(Cosine)
-ConditionalSine = conditional_prior_factory(Sine)
-ConditionalTruncatedGaussian = conditional_prior_factory(TruncatedGaussian)
-ConditionalHalfGaussian = conditional_prior_factory(HalfGaussian)
-ConditionalLogNormal = conditional_prior_factory(LogNormal)
-ConditionalExponential = conditional_prior_factory(Exponential)
-ConditionalStudentT = conditional_prior_factory(StudentT)
-ConditionalBeta = conditional_prior_factory(Beta)
-ConditionalLogistic = conditional_prior_factory(Logistic)
-ConditionalCauchy = conditional_prior_factory(Cauchy)
-ConditionalGamma = conditional_prior_factory(Gamma)
-ConditionalChiSquared = conditional_prior_factory(ChiSquared)
-ConditionalFermiDirac = conditional_prior_factory(FermiDirac)
-ConditionalInterped = conditional_prior_factory(Interped)
+class ConditionalBasePrior(conditional_prior_factory(Prior)):
+    pass
+
+
+class ConditionalUniform(conditional_prior_factory(Uniform)):
+    pass
+
+
+class ConditionalDeltaFunction(conditional_prior_factory(DeltaFunction)):
+    pass
+
+
+class ConditionalPowerLaw(conditional_prior_factory(PowerLaw)):
+    pass
+
+
+class ConditionalGaussian(conditional_prior_factory(Gaussian)):
+    pass
+
+
+class ConditionalLogUniform(conditional_prior_factory(LogUniform)):
+    pass
+
+
+class ConditionalSymmetricLogUniform(conditional_prior_factory(SymmetricLogUniform)):
+    pass
+
+
+class ConditionalCosine(conditional_prior_factory(Cosine)):
+    pass
+
+
+class ConditionalSine(conditional_prior_factory(Sine)):
+    pass
+
+
+class ConditionalTruncatedGaussian(conditional_prior_factory(TruncatedGaussian)):
+    pass
+
+
+class ConditionalHalfGaussian(conditional_prior_factory(HalfGaussian)):
+    pass
+
+
+class ConditionalLogNormal(conditional_prior_factory(LogNormal)):
+    pass
+
+
+class ConditionalExponential(conditional_prior_factory(Exponential)):
+    pass
+
+
+class ConditionalStudentT(conditional_prior_factory(StudentT)):
+    pass
+
+
+class ConditionalBeta(conditional_prior_factory(Beta)):
+    pass
+
+
+class ConditionalLogistic(conditional_prior_factory(Logistic)):
+    pass
+
+
+class ConditionalCauchy(conditional_prior_factory(Cauchy)):
+    pass
+
+
+class ConditionalGamma(conditional_prior_factory(Gamma)):
+    pass
+
+
+class ConditionalChiSquared(conditional_prior_factory(ChiSquared)):
+    pass
+
+
+class ConditionalFermiDirac(conditional_prior_factory(FermiDirac)):
+    pass
+
+
+class ConditionalInterped(conditional_prior_factory(Interped)):
+    pass
 
 
 class DirichletElement(ConditionalBeta):
-    """
+    r"""
     Single element in a dirichlet distribution
 
     The probability scales as
 
-    $p(x_order) \propto (x_max - x_order)^(n_dimensions - order - 2)$
+    .. math::
+        p(x_n) \propto (x_\max - x_n)^{(N - n - 2)}
 
-    for x_order < x_max, where x_max is the sum of x_i for i < order
+    for :math:`x_n < x_\max`, where :math:`x_\max` is the sum of :math:`x_i`
+    for :math:`i < n`
 
     Examples
-    --------
+    ========
     n_dimensions = 1:
-    p(x_0) \propto 1 ; 0 < x_0 < 1
+
+        .. math::
+            p(x_0) \propto 1 ; 0 < x_0 < 1
+
     n_dimensions = 2:
-    p(x_0) \propto (1 - x_0) ; 0 < x_0 < 1
-    p(x_1) \propto 1 ; 0 < x_1 < 1
+        .. math::
+            p(x_0) &\propto (1 - x_0) ; 0 < x_0 < 1
+            p(x_1) &\propto 1 ; 0 < x_1 < 1
 
     Parameters
-    ----------
+    ==========
     order: int
         Order of this element of the dirichlet distribution.
     n_dimensions: int
@@ -284,9 +355,11 @@ class DirichletElement(ConditionalBeta):
     label: str
         Label for the dirichlet distribution.
         This should be the same for all elements.
+
     """
 
     def __init__(self, order, n_dimensions, label):
+        """ """
         super(DirichletElement, self).__init__(
             minimum=0, maximum=1, alpha=1, beta=n_dimensions - order - 1,
             name=label + str(order),
diff --git a/bilby/core/prior/dict.py b/bilby/core/prior/dict.py
index 2aac6dfa97cd2fa1e4f7e9b9cfbf3d47e36cfc74..f05f7d3d398328b90d97d5c7c87e4be53cafbca6 100644
--- a/bilby/core/prior/dict.py
+++ b/bilby/core/prior/dict.py
@@ -18,7 +18,7 @@ class PriorDict(dict):
         """ A dictionary of priors
 
         Parameters
-        ----------
+        ==========
         dictionary: Union[dict, str, None]
             If given, a dictionary to generate the prior set.
         filename: Union[str, None]
@@ -60,12 +60,12 @@ class PriorDict(dict):
         Placeholder parameter conversion function.
 
         Parameters
-        ----------
+        ==========
         sample: dict
             Dictionary to convert
 
         Returns
-        -------
+        =======
         sample: dict
             Same as input
         """
@@ -75,7 +75,7 @@ class PriorDict(dict):
         """ Write the prior distribution to file.
 
         Parameters
-        ----------
+        ==========
         outdir: str
             output directory name
         label: str
@@ -123,18 +123,20 @@ class PriorDict(dict):
         """ Reads in a prior from a file specification
 
         Parameters
-        ----------
+        ==========
         filename: str
             Name of the file to be read in
 
         Notes
-        -----
+        =====
         Lines beginning with '#' or empty lines will be ignored.
         Priors can be loaded from:
-            bilby.core.prior as, e.g.,    foo = Uniform(minimum=0, maximum=1)
-            floats, e.g.,                 foo = 1
-            bilby.gw.prior as, e.g.,      foo = bilby.gw.prior.AlignedSpin()
-            other external modules, e.g., foo = my.module.CustomPrior(...)
+
+        - bilby.core.prior as, e.g.,    :code:`foo = Uniform(minimum=0, maximum=1)`
+        - floats, e.g.,                 :code:`foo = 1`
+        - bilby.gw.prior as, e.g.,      :code:`foo = bilby.gw.prior.AlignedSpin()`
+        - other external modules, e.g., :code:`foo = my.module.CustomPrior(...)`
+
         """
 
         comments = ['#', '\n']
@@ -174,7 +176,7 @@ class PriorDict(dict):
         """ Reads in a prior from a json file
 
         Parameters
-        ----------
+        ==========
         filename: str
             Name of the file to be read in
         """
@@ -264,7 +266,7 @@ class PriorDict(dict):
         this will set-up default priors for those as well.
 
         Parameters
-        ----------
+        ==========
         likelihood: bilby.likelihood.GravitationalWaveTransient instance
             Used to infer the set of parameters to fill the prior with
         default_priors_file: str, optional
@@ -272,7 +274,7 @@ class PriorDict(dict):
 
 
         Returns
-        -------
+        =======
         prior: dict
             The filled prior dictionary
 
@@ -301,12 +303,12 @@ class PriorDict(dict):
         """Draw samples from the prior set
 
         Parameters
-        ----------
+        ==========
         size: int or tuple of ints, optional
             See numpy.random.uniform docs
 
         Returns
-        -------
+        =======
         dict: Dictionary of the samples
         """
         return self.sample_subset_constrained(keys=list(self.keys()), size=size)
@@ -315,14 +317,14 @@ class PriorDict(dict):
         """ Return an array of samples
 
         Parameters
-        ----------
+        ==========
         keys: list
             A list of keys to sample in
         size: int
             The number of samples to draw
 
         Returns
-        -------
+        =======
         array: array_like
             An array of shape (len(key), size) of the samples (ordered by keys)
         """
@@ -335,14 +337,14 @@ class PriorDict(dict):
         """Draw samples from the prior set for parameters which are not a DeltaFunction
 
         Parameters
-        ----------
+        ==========
         keys: list
             List of prior keys to draw samples from
         size: int or tuple of ints, optional
             See numpy.random.uniform docs
 
         Returns
-        -------
+        =======
         dict: Dictionary of the drawn samples
         """
         self.convert_floats_to_delta_functions()
@@ -407,14 +409,14 @@ class PriorDict(dict):
         """
 
         Parameters
-        ----------
+        ==========
         sample: dict
             Dictionary of the samples of which we want to have the probability of
         kwargs:
             The keyword arguments are passed directly to `np.product`
 
         Returns
-        -------
+        =======
         float: Joint probability of all individual sample probabilities
 
         """
@@ -440,14 +442,14 @@ class PriorDict(dict):
         """
 
         Parameters
-        ----------
+        ==========
         sample: dict
             Dictionary of the samples of which to calculate the log probability
         axis: None or int
             Axis along which the summation is performed
 
         Returns
-        -------
+        =======
         float or ndarray:
             Joint log probability of all the individual sample probabilities
 
@@ -474,14 +476,14 @@ class PriorDict(dict):
         """Rescale samples from unit cube to prior
 
         Parameters
-        ----------
+        ==========
         keys: list
             List of prior keys to be rescaled
         theta: list
             List of randomly drawn values on a unit cube associated with the prior keys
 
         Returns
-        -------
+        =======
         list: List of floats containing the rescaled sample
         """
         return list(flatten([self[key].rescale(sample) for key, sample in zip(keys, theta)]))
@@ -494,8 +496,8 @@ class PriorDict(dict):
         """
         Test whether there are redundant keys in self.
 
-        Return
-        ------
+        Returns
+        =======
         bool: Whether there are redundancies or not
         """
         redundant = False
@@ -536,7 +538,7 @@ class ConditionalPriorDict(PriorDict):
         """
 
         Parameters
-        ----------
+        ==========
         dictionary: dict
             See parent class
         filename: str
@@ -615,12 +617,12 @@ class ConditionalPriorDict(PriorDict):
         """ Returns the required variables to sample a given conditional key.
 
         Parameters
-        ----------
+        ==========
         key : str
             Name of the key that we want to know the required variables for
 
         Returns
-        ----------
+        ==========
         dict: key/value pairs of the required variables
         """
         return {k: self[k].least_recently_sampled for k in getattr(self[key], 'required_variables', [])}
@@ -629,14 +631,14 @@ class ConditionalPriorDict(PriorDict):
         """
 
         Parameters
-        ----------
+        ==========
         sample: dict
             Dictionary of the samples of which we want to have the probability of
         kwargs:
             The keyword arguments are passed directly to `np.product`
 
         Returns
-        -------
+        =======
         float: Joint probability of all individual sample probabilities
 
         """
@@ -650,14 +652,14 @@ class ConditionalPriorDict(PriorDict):
         """
 
         Parameters
-        ----------
+        ==========
         sample: dict
             Dictionary of the samples of which we want to have the log probability of
         axis: Union[None, int]
             Axis along which the summation is performed
 
         Returns
-        -------
+        =======
         float: Joint log probability of all the individual sample probabilities
 
         """
@@ -671,14 +673,14 @@ class ConditionalPriorDict(PriorDict):
         """Rescale samples from unit cube to prior
 
         Parameters
-        ----------
+        ==========
         keys: list
             List of prior keys to be rescaled
         theta: list
             List of randomly drawn values on a unit cube associated with the prior keys
 
         Returns
-        -------
+        =======
         list: List of floats containing the rescaled sample
         """
         self._check_resolved()
@@ -774,14 +776,14 @@ def create_default_prior(name, default_priors_file=None):
     """Make a default prior for a parameter with a known name.
 
     Parameters
-    ----------
+    ==========
     name: str
         Parameter name
     default_priors_file: str, optional
         If given, a file containing the default priors.
 
-    Return
-    ------
+    Returns
+    ======
     prior: Prior
         Default prior distribution for that parameter, if unknown None is
         returned.
diff --git a/bilby/core/prior/interpolated.py b/bilby/core/prior/interpolated.py
index 7e5eb8f3e7b51097b0ab3d78229806daa44d6b17..992a75b50ab8c2a0647f9b42c896786ed4aec08c 100644
--- a/bilby/core/prior/interpolated.py
+++ b/bilby/core/prior/interpolated.py
@@ -13,7 +13,7 @@ class Interped(Prior):
         """Creates an interpolated prior function from arrays of xx and yy=p(xx)
 
         Parameters
-        ----------
+        ==========
         xx: array_like
             x values for the to be interpolated prior function
         yy: array_like
@@ -32,7 +32,7 @@ class Interped(Prior):
             See superclass
 
         Attributes
-        ----------
+        ==========
         probability_density: scipy.interpolate.interp1d
             Interpolated prior probability distribution
         cumulative_distribution: scipy.interpolate.interp1d
@@ -69,11 +69,11 @@ class Interped(Prior):
         """Return the prior probability of val.
 
         Parameters
-        ----------
+        ==========
         val:  Union[float, int, array_like]
 
         Returns
-        -------
+        =======
          Union[float, array_like]: Prior probability of val
         """
         return self.probability_density(val)
@@ -102,7 +102,7 @@ class Interped(Prior):
         Yields an error if value is set below instantiated x-array minimum.
 
         Returns
-        -------
+        =======
         float: Minimum of the prior distribution
 
         """
@@ -125,7 +125,7 @@ class Interped(Prior):
         Yields an error if value is set above instantiated x-array maximum.
 
         Returns
-        -------
+        =======
         float: Maximum of the prior distribution
 
         """
@@ -146,7 +146,7 @@ class Interped(Prior):
         Updates the prior distribution if it is changed
 
         Returns
-        -------
+        =======
         array_like: p(xx) values
 
         """
@@ -182,7 +182,7 @@ class FromFile(Interped):
         """Creates an interpolated prior function from arrays of xx and yy=p(xx) extracted from a file
 
         Parameters
-        ----------
+        ==========
         file_name: str
             Name of the file containing the xx and yy arrays
         minimum: float
diff --git a/bilby/core/prior/joint.py b/bilby/core/prior/joint.py
index d2058d074414b14a90ebd2837c80e4287aa3cf35..b3ee2f0b88a38d1da374f87173a68ad402ce9c82 100644
--- a/bilby/core/prior/joint.py
+++ b/bilby/core/prior/joint.py
@@ -15,7 +15,7 @@ class BaseJointPriorDist(object):
 
 
         Parameters
-        ----------
+        ==========
         names: list (required)
             A list of the parameter names in the JointPriorDist. The
             listed parameters must have the same order that they appear in
@@ -125,7 +125,7 @@ class BaseJointPriorDist(object):
         Works correctly for all child classes
 
         Returns
-        -------
+        =======
         str: A string representation of this instance
 
         """
@@ -149,14 +149,14 @@ class BaseJointPriorDist(object):
         probability will not be properly normalised.
 
         Parameters
-        ----------
+        ==========
         value: array_like
             A 1d vector of the sample, or 2d array of sample values with shape
             NxM, where N is the number of samples and M is the number of
             parameters.
 
         Returns
-        -------
+        =======
         samp: array_like
             returns the input value as a sample array
         outbounds: array_like
@@ -185,7 +185,7 @@ class BaseJointPriorDist(object):
         probability will not be properly normalised.
 
         Parameters
-        ----------
+        ==========
         value: array_like
             A 1d vector of the sample, or 2d array of sample values with shape
             NxM, where N is the number of samples and M is the number of
@@ -206,7 +206,7 @@ class BaseJointPriorDist(object):
         probability will not be properly normalised. **this method needs overwritten by child class**
 
         Parameters
-        ----------
+        ==========
         samp: vector
             sample to evaluate the ln_prob at
         lnprob: vector
@@ -215,7 +215,7 @@ class BaseJointPriorDist(object):
             boolean array showing which samples in lnprob vector are out of the given bounds
 
         Returns
-        -------
+        =======
         lnprob: vector
             array of lnprob values for each sample given
         """
@@ -229,7 +229,7 @@ class BaseJointPriorDist(object):
         Draw, and set, a sample from the Dist, accompanying method _sample needs to overwritten
 
         Parameters
-        ----------
+        ==========
         size: int
             number of samples to generate, defualts to 1
         """
@@ -248,7 +248,7 @@ class BaseJointPriorDist(object):
         Draw, and set, a sample from the joint dist (**needs to be ovewritten by child class**)
 
         Parameters
-        ----------
+        ==========
         size: int
             number of samples to generate, defualts to 1
         """
@@ -265,7 +265,7 @@ class BaseJointPriorDist(object):
         overwrite accompanying method _rescale().
 
         Parameters
-        ----------
+        ==========
         value: array
             A 1d vector sample (one for each parameter) drawn from a uniform
             distribution between 0 and 1, or a 2d NxM array of samples where
@@ -275,7 +275,7 @@ class BaseJointPriorDist(object):
             args are called in the JointPrior rescale methods for each parameter
 
         Returns
-        -------
+        =======
         array:
             An vector sample drawn from the multivariate Gaussian
             distribution.
@@ -297,7 +297,7 @@ class BaseJointPriorDist(object):
         rescale a sample from a unit hypercybe to the joint dist (**needs to be ovewritten by child class**)
 
         Parameters
-        ----------
+        ==========
         samp: numpy array
             this is a vector sample drawn from a uniform distribtuion to be rescaled to the distribution
         """
@@ -322,7 +322,7 @@ class MultivariateGaussianDist(BaseJointPriorDist):
         MultiNest.
 
         Parameters
-        ----------
+        ==========
         names: list
             A list of the parameter names in the multivariate Gaussian. The
             listed parameters must have the same order that they appear in
@@ -656,7 +656,7 @@ class JointPrior(Prior):
         """This defines the single parameter Prior object for parameters that belong to a JointPriorDist
 
         Parameters
-        ----------
+        ==========
         dist: ChildClass of BaseJointPriorDist
             The shared JointPriorDistribution that this parameter belongs to
         name: str
@@ -699,13 +699,13 @@ class JointPrior(Prior):
         Scale a unit hypercube sample to the prior.
 
         Parameters
-        ----------
+        ==========
         val: array_like
             value drawn from unit hypercube to be rescaled onto the prior
         kwargs: dict
             all kwargs passed to the dist.rescale method
         Returns
-        -------
+        =======
         float:
             A sample from the prior paramter.
         """
@@ -726,13 +726,13 @@ class JointPrior(Prior):
         Draw a sample from the prior.
 
         Parameters
-        ----------
+        ==========
         size: int, float (defaults to 1)
             number of samples to draw
         kwargs: dict
             kwargs passed to the dist.sample method
         Returns
-        -------
+        =======
         float:
             A sample from the prior paramter.
         """
@@ -764,11 +764,11 @@ class JointPrior(Prior):
         distribution.
 
         Parameters
-        ----------
+        ==========
         val: array_like
             value to evaluate the prior log-prob at
         Returns
-        -------
+        =======
         float:
             the logp value for the prior at given sample
         """
@@ -816,12 +816,12 @@ class JointPrior(Prior):
         """Return the prior probability of val
 
         Parameters
-        ----------
+        ==========
         val: array_like
             value to evaluate the prior prob at
 
         Returns
-        -------
+        =======
         float:
             the p value for the prior at given sample
         """
diff --git a/bilby/core/prior/slabspike.py b/bilby/core/prior/slabspike.py
index de7dc48ad5ae0004a38ec538a4acb82673b57753..54872b8b1c1bcdea91ad567bb85a707207c36b52 100644
--- a/bilby/core/prior/slabspike.py
+++ b/bilby/core/prior/slabspike.py
@@ -16,7 +16,7 @@ class SlabSpikePrior(Prior):
         `SymmetricLogUniform` and `FermiDirac` are currently not supported.
 
         Parameters
-        ----------
+        ==========
         slab: Prior
             Any instance of a bilby prior class. All general prior attributes
             from the slab are copied into the SlabSpikePrior.
@@ -76,12 +76,12 @@ class SlabSpikePrior(Prior):
         'Rescale' a sample from the unit line element to the prior.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
             A random number between 0 and 1
 
         Returns
-        -------
+        =======
         array_like: Associated prior value with input value.
         """
         val = np.atleast_1d(val)
@@ -104,12 +104,12 @@ class SlabSpikePrior(Prior):
         on the pure slab part of the prior.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
             A random number between 0 and self.slab_fraction
 
         Returns
-        -------
+        =======
         array_like: Associated prior value with input value.
         """
         return self.slab.rescale(val / self.slab_fraction)
@@ -119,11 +119,11 @@ class SlabSpikePrior(Prior):
         Returns np.inf for the spike location
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         array_like: Prior probability of val
         """
         res = self.slab.prob(val) * self.slab_fraction
@@ -136,11 +136,11 @@ class SlabSpikePrior(Prior):
         Returns np.inf for the spike location
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         array_like: Prior probability of val
         """
         res = self.slab.ln_prob(val) + np.log(self.slab_fraction)
@@ -154,11 +154,11 @@ class SlabSpikePrior(Prior):
         at the spike location.
 
         Parameters
-        ----------
+        ==========
         val: Union[float, int, array_like]
 
         Returns
-        -------
+        =======
         array_like: CDF value of val
 
         """
diff --git a/bilby/core/result.py b/bilby/core/result.py
index e2855797a79e81be860a06376367dad7765d8766..d4f544d5ed892a5a47ba233b5b668769dac4211c 100644
--- a/bilby/core/result.py
+++ b/bilby/core/result.py
@@ -31,7 +31,7 @@ def result_file_name(outdir, label, extension='json', gzip=False):
     """ Returns the standard filename used for a result file
 
     Parameters
-    ----------
+    ==========
     outdir: str
         Name of the output directory
     label: str
@@ -42,7 +42,7 @@ def result_file_name(outdir, label, extension='json', gzip=False):
         Set to True to append `.gz` to the extension for saving in gzipped format
 
     Returns
-    -------
+    =======
     str: File name of the output file
     """
     if extension in ['json', 'hdf5']:
@@ -69,7 +69,7 @@ def read_in_result(filename=None, outdir=None, label=None, extension='json', gzi
     """ Reads in a stored bilby result object
 
     Parameters
-    ----------
+    ==========
     filename: str
         Path to the file to be read (alternative to giving the outdir and label)
     outdir, label, extension: str
@@ -103,7 +103,7 @@ def get_weights_for_reweighting(
     See bilby.core.result.reweight() for help with the inputs
 
     Returns
-    -------
+    =======
     ln_weights: array
         An array of the natural-log weights
     new_log_likelihood_array: array
@@ -156,14 +156,14 @@ def rejection_sample(posterior, weights):
     """ Perform rejection sampling on a posterior using weights
 
     Parameters
-    ----------
+    ==========
     posterior: pd.DataFrame or np.ndarray of shape (nsamples, nparameters)
         The dataframe or array containing posterior samples
     weights: np.ndarray
         An array of weights
 
     Returns
-    -------
+    =======
     reweighted_posterior: pd.DataFrame
         The posterior resampled using rejection sampling
 
@@ -177,7 +177,7 @@ def reweight(result, label=None, new_likelihood=None, new_prior=None,
     """ Reweight a result to a new likelihood/prior using rejection sampling
 
     Parameters
-    ----------
+    ==========
     label: str, optional
         An updated label to apply to the result object
     new_likelihood: bilby.core.likelood.Likelihood, (optional)
@@ -194,7 +194,7 @@ def reweight(result, label=None, new_likelihood=None, new_prior=None,
         the values stored in the posterior are used.
 
     Returns
-    -------
+    =======
     result: bilby.core.result.Result
         A copy of the result object with a reweighted posterior
 
@@ -247,7 +247,7 @@ class Result(object):
         """ A class to store the results of the sampling run
 
         Parameters
-        ----------
+        ==========
         label, outdir, sampler: str
             The label, output directory, and sampler used
         search_parameter_keys, fixed_parameter_keys, constraint_parameter_keys: list
@@ -295,8 +295,8 @@ class Result(object):
             Version information for software used to generate the result. Note,
             this information is generated when the result object is initialized
 
-        Note
-        ---------
+        Notes
+        =========
         All sampling output parameters, e.g. the samples themselves are
         typically not given at initialisation, but set at a later stage.
 
@@ -340,18 +340,18 @@ class Result(object):
         """ Read in a saved .h5 data file
 
         Parameters
-        ----------
+        ==========
         filename: str
             If given, try to load from this filename
         outdir, label: str
             If given, use the default naming convention for saved results file
 
         Returns
-        -------
+        =======
         result: bilby.core.result.Result
 
         Raises
-        -------
+        =======
         ValueError: If no filename is given and either outdir or label is None
                     If no bilby.core.result.Result is found in the path
 
@@ -396,18 +396,18 @@ class Result(object):
         """ Read in a saved .json data file
 
         Parameters
-        ----------
+        ==========
         filename: str
             If given, try to load from this filename
         outdir, label: str
             If given, use the default naming convention for saved results file
 
         Returns
-        -------
+        =======
         result: bilby.core.result.Result
 
         Raises
-        -------
+        =======
         ValueError: If no filename is given and either outdir or label is None
                     If no bilby.core.result.Result is found in the path
 
@@ -595,7 +595,7 @@ class Result(object):
         Writes the Result to a json or deepdish h5 file
 
         Parameters
-        ----------
+        ==========
         filename: optional,
             Filename to write to (overwrites the default)
         overwrite: bool, optional
@@ -663,7 +663,7 @@ class Result(object):
         abs appended to the column name
 
         Parameters
-        ----------
+        ==========
         filename: str
             Alternative filename to use. Defaults to
             outdir/label_posterior_samples.dat
@@ -697,12 +697,12 @@ class Result(object):
         """ Returns a list of latex_labels corresponding to the given keys
 
         Parameters
-        ----------
+        ==========
         keys: list
             List of strings corresponding to the desired latex_labels
 
         Returns
-        -------
+        =======
         list: The desired latex_labels
 
         """
@@ -760,7 +760,7 @@ class Result(object):
         See <https://arxiv.org/abs/1903.06682>
 
         Returns
-        -------
+        =======
         float: The model dimensionality
         """
         return 2 * (np.mean(self.posterior['log_likelihood']**2) -
@@ -771,7 +771,7 @@ class Result(object):
         """ Calculate the median and error bar for a given key
 
         Parameters
-        ----------
+        ==========
         key: str
             The parameter key for which to calculate the median and error bar
         fmt: str, ('.2f')
@@ -781,7 +781,7 @@ class Result(object):
             the errors bars for.
 
         Returns
-        -------
+        =======
         summary: namedtuple
             An object with attributes, median, lower, upper and string
 
@@ -811,7 +811,7 @@ class Result(object):
         """ Plot a 1D marginal density, either probability or cumulative.
 
         Parameters
-        ----------
+        ==========
         key: str
             Name of the parameter to plot
         prior: {bool (True), bilby.core.prior.Prior}
@@ -844,7 +844,7 @@ class Result(object):
             Dots per inch resolution of the plot
 
         Returns
-        -------
+        =======
         figure: matplotlib.pyplot.figure
             A matplotlib figure object
         """
@@ -895,7 +895,7 @@ class Result(object):
         """ Plot 1D marginal distributions
 
         Parameters
-        ----------
+        ==========
         parameters: (list, dict), optional
             If given, either a list of the parameter names to include, or a
             dictionary of parameter names and their "true" values to plot.
@@ -924,7 +924,7 @@ class Result(object):
             Path to the outdir. Default is the one store in the result object.
 
         Returns
-        -------
+        =======
         """
         if isinstance(parameters, dict):
             plot_parameter_keys = list(parameters.keys())
@@ -974,7 +974,7 @@ class Result(object):
         """ Plot a corner-plot
 
         Parameters
-        ----------
+        ==========
         parameters: (list, dict), optional
             If given, either a list of the parameter names to include, or a
             dictionary of parameter names and their "true" values to plot.
@@ -1012,7 +1012,7 @@ class Result(object):
             adding truths=False.
 
         Returns
-        -------
+        =======
         fig:
             A matplotlib figure instance
 
@@ -1183,7 +1183,7 @@ class Result(object):
         """ Generate a figure showing the data and fits to the data
 
         Parameters
-        ----------
+        ==========
         model: function
             A python function which when called as `model(x, **kwargs)` returns
             the model prediction (here `kwargs` is a dictionary of key-value
@@ -1269,7 +1269,7 @@ class Result(object):
         Also applies the conversion function to any stored posterior
 
         Parameters
-        ----------
+        ==========
         likelihood: bilby.likelihood.GravitationalWaveTransient, optional
             GravitationalWaveTransient likelihood used for sampling.
         priors: bilby.prior.PriorDict, optional
@@ -1304,7 +1304,7 @@ class Result(object):
         Evaluate prior probability for each parameter for each sample.
 
         Parameters
-        ----------
+        ==========
         priors: dict, PriorDict
             Prior distributions
         """
@@ -1322,13 +1322,13 @@ class Result(object):
         Get credible levels for all parameters
 
         Parameters
-        ----------
+        ==========
         keys: list, optional
             A list of keys for which return the credible levels, if None,
             defaults to search_parameter_keys
 
         Returns
-        -------
+        =======
         credible_levels: dict
             The credible levels at which the injected parameters are found.
         """
@@ -1349,11 +1349,11 @@ class Result(object):
         Calculated as CDF(injection value)
 
         Parameters
-        ----------
+        ==========
         parameter: str
             Parameter to get credible level for
         Returns
-        -------
+        =======
         float: credible level
         """
         if self.injection_parameters is None:
@@ -1372,14 +1372,14 @@ class Result(object):
         """ Check attribute name exists in other_object and is the same
 
         Parameters
-        ----------
+        ==========
         name: str
             Name of the attribute in this instance
         other_object: object
             Other object with attributes to compare with
 
         Returns
-        -------
+        =======
         bool: True if attribute name matches with an attribute of other_object, False otherwise
 
         """
@@ -1419,14 +1419,14 @@ class Result(object):
         the posterior probability density for the new sample.
 
         Parameters
-        ----------
+        ==========
         sample: dict, or list of dictionaries
             A dictionary containing all the keys from
             self.search_parameter_keys and corresponding values at which to
             calculate the posterior probability
 
         Returns
-        -------
+        =======
         p: array-like,
             The posterior probability of the sample
 
@@ -1453,7 +1453,7 @@ class Result(object):
         """ Calculate a list of sample weights based on the ratio of new to old priors
 
             Parameters
-            ----------
+            ==========
             old_prior: PriorDict,
                 The prior used in the generation of the original samples.
 
@@ -1464,7 +1464,7 @@ class Result(object):
                 A list of the priors to include in the ratio during reweighting.
 
             Returns
-            -------
+            =======
             weights: array-like,
                 A list of sample weights.
 
@@ -1495,14 +1495,14 @@ class Result(object):
         """ Convert the Result object to an ArviZ InferenceData object.
 
             Parameters
-            ----------
+            ==========
             prior: int
                 If a positive integer is given then that number of prior
                 samples will be drawn and stored in the ArviZ InferenceData
                 object.
 
             Returns
-            -------
+            =======
             azdata: InferenceData
                 The ArviZ InferenceData object.
         """
@@ -1569,7 +1569,7 @@ class ResultList(list):
         outputing combined results.
 
         Parameters
-        ----------
+        ==========
         results: list
             A list of `:class:`bilby.core.result.Result`.
         """
@@ -1583,7 +1583,7 @@ class ResultList(list):
         list.
 
         Parameters
-        ----------
+        ==========
         result: :class:`bilby.core.result.Result` or filename
             pointing to a result object, to append to the list.
         """
@@ -1633,12 +1633,12 @@ class ResultList(list):
         the evidence for each individual run
 
         Parameters
-        ----------
+        ==========
         result: bilby.core.result.Result
             The result object to put the new samples in.
 
         Returns
-        -------
+        =======
         posteriors: list
             A list of pandas DataFrames containing the reduced sample set from
             each run.
@@ -1704,7 +1704,7 @@ def plot_multiple(results, filename=None, labels=None, colours=None,
     """ Generate a corner plot overlaying two sets of results
 
     Parameters
-    ----------
+    ==========
     results: list
         A list of `bilby.core.result.Result` objects containing the samples to
         plot.
@@ -1732,7 +1732,7 @@ def plot_multiple(results, filename=None, labels=None, colours=None,
         List of strings to be passed to the input `labels` to `result.plot_corner`.
 
     Returns
-    -------
+    =======
     fig:
         A matplotlib figure instance
 
@@ -1799,7 +1799,7 @@ def make_pp_plot(results, filename=None, save=True, confidence_interval=[0.68, 0
     Make a P-P plot for a set of runs with injected signals.
 
     Parameters
-    ----------
+    ==========
     results: list
         A list of Result objects, each of these should have injected_parameters
     filename: str, optional
@@ -1821,7 +1821,7 @@ def make_pp_plot(results, filename=None, save=True, confidence_interval=[0.68, 0
         Additional kwargs to pass to matplotlib.pyplot.plot
 
     Returns
-    -------
+    =======
     fig, pvals:
         matplotlib figure and a NamedTuple with attributes `combined_pvalue`,
         `pvalues`, and `names`.
diff --git a/bilby/core/sampler/__init__.py b/bilby/core/sampler/__init__.py
index 27da24334e8839da74ac1ae0fcb2d577ff99bc08..4972555cd3a36e381431e16ee766a1594da9063a 100644
--- a/bilby/core/sampler/__init__.py
+++ b/bilby/core/sampler/__init__.py
@@ -57,7 +57,7 @@ def run_sampler(likelihood, priors=None, label='label', outdir='outdir',
     The primary interface to easy parameter estimation
 
     Parameters
-    ----------
+    ==========
     likelihood: `bilby.Likelihood`
         A `Likelihood` instance
     priors: `bilby.PriorDict`
@@ -108,7 +108,7 @@ def run_sampler(likelihood, priors=None, label='label', outdir='outdir',
         All kwargs are passed directly to the samplers `run` function
 
     Returns
-    -------
+    =======
     result: bilby.core.result.Result
         An object containing the results
     """
diff --git a/bilby/core/sampler/base_sampler.py b/bilby/core/sampler/base_sampler.py
index 7d8d4b4dbc038df18b1393af01ae58e1b9db9041..af29c5997d89947d2c9394c17cedb44ea4e0aa47 100644
--- a/bilby/core/sampler/base_sampler.py
+++ b/bilby/core/sampler/base_sampler.py
@@ -15,7 +15,7 @@ class Sampler(object):
     """ A sampler object to aid in setting up an inference run
 
     Parameters
-    ----------
+    ==========
     likelihood: likelihood.Likelihood
         A  object with a log_l method
     priors: bilby.core.prior.PriorDict, dict
@@ -50,7 +50,7 @@ class Sampler(object):
         Additional keyword arguments
 
     Attributes
-    ----------
+    ==========
     likelihood: likelihood.Likelihood
         A  object with a log_l method
     priors: bilby.core.prior.PriorDict
@@ -78,7 +78,7 @@ class Sampler(object):
         Dictionary of keyword arguments that can be used in the external sampler
 
     Raises
-    ------
+    ======
     TypeError:
         If external_sampler is neither a string nor an instance of this class
         If not all likelihood.parameters have been defined
@@ -226,7 +226,7 @@ class Sampler(object):
     def _initialise_result(self, result_class):
         """
         Returns
-        -------
+        =======
         bilby.core.result.Result: An initial template for the result
 
         """
@@ -254,7 +254,7 @@ class Sampler(object):
         """Check if all priors can be sampled properly.
 
         Raises
-        ------
+        ======
         AttributeError
             prior can't be sampled.
         """
@@ -272,7 +272,7 @@ class Sampler(object):
         Tests if the likelihood evaluation passes
 
         Raises
-        ------
+        ======
         TypeError
             Likelihood can't be evaluated.
 
@@ -296,7 +296,7 @@ class Sampler(object):
         """ Times the likelihood evaluation and print an info message
 
         Parameters
-        ----------
+        ==========
         n_evaluations: int
             The number of evaluations to estimate the evaluation time from
 
@@ -342,12 +342,12 @@ class Sampler(object):
         """ Prior transform method that is passed into the external sampler.
 
         Parameters
-        ----------
+        ==========
         theta: list
             List of sampled values on a unit interval
 
         Returns
-        -------
+        =======
         list: Properly rescaled sampled values
         """
         return self.priors.rescale(self._search_parameter_keys, theta)
@@ -356,12 +356,12 @@ class Sampler(object):
         """
 
         Parameters
-        ----------
+        ==========
         theta: list
             List of sampled values on a unit interval
 
         Returns
-        -------
+        =======
         float: Joint ln prior probability of theta
 
         """
@@ -373,12 +373,12 @@ class Sampler(object):
         """
 
         Parameters
-        ----------
+        ==========
         theta: list
             List of values for the likelihood parameters
 
         Returns
-        -------
+        =======
         float: Log-likelihood or log-likelihood-ratio given the current
             likelihood.parameter values
 
@@ -400,7 +400,7 @@ class Sampler(object):
         """ Get a random draw from the prior distribution
 
         Returns
-        -------
+        =======
         draw: array_like
             An ndim-length array of values drawn from the prior. Parameters
             with delta-function (or fixed) priors are not returned
@@ -419,12 +419,12 @@ class Sampler(object):
         finite prior and likelihood (relevant for constrained priors).
 
         Parameters
-        ----------
+        ==========
         npoints: int
             The number of values to return
 
         Returns
-        -------
+        =======
         unit_cube, parameters, likelihood: tuple of array_like
             unit_cube (nlive, ndim) is an array of the prior samples from the
             unit cube, parameters (nlive, ndim) is the unit_cube array
@@ -453,12 +453,12 @@ class Sampler(object):
         Also catches the output of `numpy.nan_to_num`.
 
         Parameters
-        ----------
+        ==========
         theta: array_like
             Parameter values at which to evaluate likelihood
 
         Returns
-        -------
+        =======
         bool, cube (nlive,
             True if the likelihood and prior are finite, false otherwise
 
@@ -482,7 +482,7 @@ class Sampler(object):
         """
         TODO: Implement this method
         Raises
-        -------
+        =======
         ValueError: in any case
         """
         raise ValueError("Method not yet implemented")
@@ -556,7 +556,7 @@ class NestedSampler(Sampler):
         loglikelihoods
 
         Parameters
-        ----------
+        ==========
         sorted_samples, unsorted_samples: array-like
             Sorted and unsorted values of the samples. These should be of the
             same shape and contain the same sample values, but in different
@@ -565,7 +565,7 @@ class NestedSampler(Sampler):
             The loglikelihoods corresponding to the unsorted_samples
 
         Returns
-        -------
+        =======
         sorted_loglikelihoods: array-like
             The loglikelihoods reordered to match that of the sorted_samples
 
@@ -589,12 +589,12 @@ class NestedSampler(Sampler):
         the prior constraint here.
 
         Parameters
-        ----------
+        ==========
         theta: array_like
             Parameter values at which to evaluate likelihood
 
         Returns
-        -------
+        =======
         float: log_likelihood
         """
         if self.priors.evaluate_constraints({
@@ -645,7 +645,7 @@ class MCMCSampler(Sampler):
         """ Uses the `emcee.autocorr` module to estimate the autocorrelation
 
         Parameters
-        ----------
+        ==========
         samples: array_like
             A chain of samples.
         c: float
diff --git a/bilby/core/sampler/cpnest.py b/bilby/core/sampler/cpnest.py
index a1c1ab08768a326d741551e5d4896130a53fc63c..7a089a4ca559bf9a52b890c873e6a052e5fc72b7 100644
--- a/bilby/core/sampler/cpnest.py
+++ b/bilby/core/sampler/cpnest.py
@@ -18,8 +18,8 @@ class Cpnest(NestedSampler):
     for that class for further help. Under Other Parameters, we list commonly
     used kwargs and the bilby defaults.
 
-    Other Parameters
-    ----------------
+    Parameters
+    ==========
     nlive: int
         The number of live points, note this can also equivalently be given as
         one of [npoints, nlives, n_live_points]
diff --git a/bilby/core/sampler/dnest4.py b/bilby/core/sampler/dnest4.py
index a35f54f6704c2101cd13d964ea9b6b689519e271..ef80c13e933e4dfd6fcaa5e4c3ea8f113b15928e 100644
--- a/bilby/core/sampler/dnest4.py
+++ b/bilby/core/sampler/dnest4.py
@@ -69,11 +69,11 @@ class DNest4(NestedSampler):
     Bilby wrapper of DNest4
 
     Parameters
-    ----------
+    ==========
     TBD
 
     Other Parameters
-    ----------------
+    ------==========
     num_particles: int
         The number of points to use in the Nested Sampling active population.
     max_num_levels: int
diff --git a/bilby/core/sampler/dynamic_dynesty.py b/bilby/core/sampler/dynamic_dynesty.py
index c2b143e106de2b4ec3db38abbcae23e480e70b6a..88b16763b77cc3d5a6c81494980f2d059bda3554 100644
--- a/bilby/core/sampler/dynamic_dynesty.py
+++ b/bilby/core/sampler/dynamic_dynesty.py
@@ -21,7 +21,7 @@ class DynamicDynesty(Dynesty):
     we list commonly all kwargs and the bilby defaults.
 
     Parameters
-    ----------
+    ==========
     likelihood: likelihood.Likelihood
         A  object with a log_l method
     priors: bilby.core.prior.PriorDict, dict
@@ -41,7 +41,7 @@ class DynamicDynesty(Dynesty):
         only advisable for testing environments
 
     Other Parameters
-    ----------------
+    ------==========
     bound: {'none', 'single', 'multi', 'balls', 'cubes'}, ('multi')
         Method used to select new points
     sample: {'unif', 'rwalk', 'slice', 'rslice', 'hslice'}, ('rwalk')
diff --git a/bilby/core/sampler/dynesty.py b/bilby/core/sampler/dynesty.py
index 5dc4cca32fcdc72b797160b5a6c91a52283d75a4..d453ffd7d9e1c233cc7625dbe75026552c45f1a8 100644
--- a/bilby/core/sampler/dynesty.py
+++ b/bilby/core/sampler/dynesty.py
@@ -79,7 +79,7 @@ class Dynesty(NestedSampler):
     we list commonly all kwargs and the bilby defaults.
 
     Parameters
-    ----------
+    ==========
     likelihood: likelihood.Likelihood
         A  object with a log_l method
     priors: bilby.core.prior.PriorDict, dict
@@ -99,7 +99,7 @@ class Dynesty(NestedSampler):
         only advisable for testing environments
 
     Other Parameters
-    ----------------
+    ------==========
     npoints: int, (1000)
         The number of live points, note this can also equivalently be given as
         one of [nlive, nlives, n_live_points]
@@ -410,7 +410,7 @@ class Dynesty(NestedSampler):
         dynesty accepting different arguments.
 
         Parameters
-        ----------
+        ==========
         kwargs: dict
             The dictionary of kwargs to pass to run_nested
 
@@ -475,7 +475,7 @@ class Dynesty(NestedSampler):
         The previous run time is set to self.
 
         Parameters
-        ----------
+        ==========
         continuing: bool
             Whether the run is continuing or terminating, if True, the loaded
             state is mostly written back to disk.
@@ -680,12 +680,12 @@ class Dynesty(NestedSampler):
         cube we map this back to [0, 1].
 
         Parameters
-        ----------
+        ==========
         theta: list
             List of sampled values on a unit interval
 
         Returns
-        -------
+        =======
         list: Properly rescaled sampled values
 
         """
@@ -820,13 +820,13 @@ def sample_rwalk_bilby(args):
 def estimate_nmcmc(accept_ratio, old_act, maxmcmc, safety=5, tau=None):
     """ Estimate autocorrelation length of chain using acceptance fraction
 
-    Using ACL = (2/acc) - 1 multiplied by a safety margin. Code adapated from
-    CPNest:
-        - https://github.com/johnveitch/cpnest/blob/master/cpnest/sampler.py
-        - http://github.com/farr/Ensemble.jl
+    Using ACL = (2/acc) - 1 multiplied by a safety margin. Code adapated from CPNest:
+
+    - https://github.com/johnveitch/cpnest/blob/master/cpnest/sampler.py
+    - http://github.com/farr/Ensemble.jl
 
     Parameters
-    ----------
+    ==========
     accept_ratio: float [0, 1]
         Ratio of the number of accepted points to the total number of points
     old_act: int
diff --git a/bilby/core/sampler/emcee.py b/bilby/core/sampler/emcee.py
index 5e83178bd98a8c9586f2eaebd8a3582753c404fe..81e4eedd0ac072bdc2fccb4e7ad5359727ebd9f2 100644
--- a/bilby/core/sampler/emcee.py
+++ b/bilby/core/sampler/emcee.py
@@ -22,8 +22,8 @@ class Emcee(MCMCSampler):
     documentation for that class for further help. Under Other Parameters, we
     list commonly used kwargs and the bilby defaults.
 
-    Other Parameters
-    ----------------
+    Parameters
+    ==========
     nwalkers: int, (100)
         The number of walkers
     nsteps: int, (100)
@@ -41,7 +41,6 @@ class Emcee(MCMCSampler):
     a: float (2)
         The proposal scale factor
 
-
     """
 
     default_kwargs = dict(
@@ -221,7 +220,7 @@ class Emcee(MCMCSampler):
         """ Defines various things related to checkpointing and storing data
 
         Returns
-        -------
+        =======
         checkpoint_info: named_tuple
             An object with attributes `sampler_file`, `chain_file`, and
             `chain_template`. The first two give paths to where the sampler and
diff --git a/bilby/core/sampler/fake_sampler.py b/bilby/core/sampler/fake_sampler.py
index 55015eef625e2189b70df3b48e8768c486799344..1992d74b1628f1d937100bd1645d1d0105fb128e 100644
--- a/bilby/core/sampler/fake_sampler.py
+++ b/bilby/core/sampler/fake_sampler.py
@@ -12,7 +12,7 @@ class FakeSampler(Sampler):
     See base class for parameters. Added parameters are described below.
 
     Parameters
-    ----------
+    ==========
     sample_file: str
         A string pointing to the posterior data file to be loaded.
     """
diff --git a/bilby/core/sampler/kombine.py b/bilby/core/sampler/kombine.py
index e82129d9f58c81a39fbefc9b6716473d450809ad..d077499cdb27a75b8dbbd1545ef5b54327be2b6d 100644
--- a/bilby/core/sampler/kombine.py
+++ b/bilby/core/sampler/kombine.py
@@ -12,8 +12,8 @@ class Kombine(Emcee):
     documentation for that class for further help. Under Other Parameters, we
     list commonly used kwargs and the bilby defaults.
 
-    Other Parameters
-    ----------------
+    Parameters
+    ==========
     nwalkers: int, (500)
         The number of walkers
     iterations: int, (100)
@@ -31,7 +31,6 @@ class Kombine(Emcee):
     burn_in_act: float (3.)
         The number of autocorrelation times to discard as burn-in
 
-
     """
 
     default_kwargs = dict(nwalkers=500, args=[], pool=None, transd=False,
diff --git a/bilby/core/sampler/nestle.py b/bilby/core/sampler/nestle.py
index b366805598eccc212892acc9d946f4fd69bec0c3..f598d8b1751b217ae9515019c5963001eb0da840 100644
--- a/bilby/core/sampler/nestle.py
+++ b/bilby/core/sampler/nestle.py
@@ -13,8 +13,8 @@ class Nestle(NestedSampler):
     that function for further help. Under Other Parameters, we list commonly
     used kwargs and the bilby defaults
 
-    Other Parameters
-    ----------------
+    Parameters
+    ==========
     npoints: int
         The number of live points, note this can also equivalently be given as
         one of [nlive, nlives, n_live_points]
@@ -51,7 +51,7 @@ class Nestle(NestedSampler):
         """ Runs Nestle sampler with given kwargs and returns the result
 
         Returns
-        -------
+        =======
         bilby.core.result.Result: Packaged information about the result
 
         """
@@ -83,7 +83,7 @@ class Nestle(NestedSampler):
         kwargs without actually running to the end
 
         Returns
-        -------
+        =======
         bilby.core.result.Result: Dummy container for sampling results.
 
         """
diff --git a/bilby/core/sampler/polychord.py b/bilby/core/sampler/polychord.py
index 22bcc7e3a92830ee90184ac0c9b19c310dbb3b4b..943a5c413abe7e45ff54eb4dde2c9aa8d35b7d91 100644
--- a/bilby/core/sampler/polychord.py
+++ b/bilby/core/sampler/polychord.py
@@ -83,7 +83,7 @@ class PyPolyChord(NestedSampler):
         The second column are the log likelihoods, the remaining columns are the physical parameters
 
         Returns
-        -------
+        =======
         array_like, array_like: The log_likelihoods and the associated parameters
 
         """
diff --git a/bilby/core/sampler/proposal.py b/bilby/core/sampler/proposal.py
index f889f94530881b13bafe0d311ccefa21797bc9f7..df2c021ca5f4521307ceef8144cbd90b438c7530 100644
--- a/bilby/core/sampler/proposal.py
+++ b/bilby/core/sampler/proposal.py
@@ -43,12 +43,12 @@ class JumpProposal(object):
         """ A generic class for jump proposals
 
         Parameters
-        ----------
+        ==========
         priors: bilby.core.prior.PriorDict
             Dictionary of priors used in this sampling run
 
         Attributes
-        ----------
+        ==========
         log_j: float
             Log Jacobian of the proposal. Characterises whether or not detailed balance
             is preserved. If not, log_j needs to be adjusted accordingly.
@@ -60,12 +60,12 @@ class JumpProposal(object):
         """ A generic wrapper for the jump proposal function
 
         Parameters
-        ----------
+        ==========
         args: Arguments that are going to be passed into the proposal function
         kwargs: Keyword arguments that are going to be passed into the proposal function
 
         Returns
-        -------
+        =======
         dict: A dictionary with the new samples. Boundary conditions are applied.
 
         """
@@ -106,7 +106,7 @@ class JumpProposalCycle(object):
         """ A generic wrapper class for proposal cycles
 
         Parameters
-        ----------
+        ==========
         proposal_functions: list
             A list of callable proposal functions/objects
         weights: list
@@ -153,7 +153,7 @@ class JumpProposalCycle(object):
         """
 
         Returns
-        -------
+        =======
         Normalised proposal weights
 
         """
@@ -175,7 +175,7 @@ class NormJump(JumpProposal):
         A normal distributed step centered around the old sample
 
         Parameters
-        ----------
+        ==========
         step_size: float
             The scalable step size
         priors:
@@ -196,8 +196,9 @@ class EnsembleWalk(JumpProposal):
                  **random_number_generator_args):
         """
         An ensemble walk
+
         Parameters
-        ----------
+        ==========
         random_number_generator: func, optional
             A random number generator. Default is random.random
         n_points: int, optional
@@ -233,7 +234,7 @@ class EnsembleStretch(JumpProposal):
         Stretch move. Calculates the log Jacobian which can be used in cpnest to bias future moves.
 
         Parameters
-        ----------
+        ==========
         scale: float, optional
             Stretching scale. Default is 2.0.
         """
@@ -257,7 +258,7 @@ class DifferentialEvolution(JumpProposal):
         old sample based on them using some Gaussian randomisation in the step.
 
         Parameters
-        ----------
+        ==========
         sigma: float, optional
             Random spread in the evolution step. Default is 1e-4
         mu: float, optional
@@ -280,7 +281,7 @@ class EnsembleEigenVector(JumpProposal):
         Ensemble step based on the ensemble eigenvectors.
 
         Parameters
-        ----------
+        ==========
         priors:
             See superclass
         """
diff --git a/bilby/core/sampler/ptemcee.py b/bilby/core/sampler/ptemcee.py
index 84c95f2502dbb2efcd0790361bf56c352143cc30..2be681f37664ba0e52d4b60a5182658cc9b3ca2e 100644
--- a/bilby/core/sampler/ptemcee.py
+++ b/bilby/core/sampler/ptemcee.py
@@ -49,7 +49,7 @@ class Ptemcee(MCMCSampler):
     list commonly used kwargs and the bilby defaults.
 
     Parameters
-    ----------
+    ==========
     nsamples: int, (5000)
         The requested number of samples. Note, in cases where the
         autocorrelation parameter is difficult to measure, it is possible to
@@ -112,7 +112,7 @@ class Ptemcee(MCMCSampler):
 
 
     Other Parameters
-    ----------------
+    ------==========
     nwalkers: int, (200)
         The number of walkers
     nsteps: int, (100)
@@ -278,7 +278,7 @@ class Ptemcee(MCMCSampler):
         """ Draw the initial positions from the prior
 
         Returns
-        -------
+        =======
         pos0: list
             The initial postitions of the walkers, with shape (ntemps, nwalkers, ndim)
 
@@ -298,7 +298,7 @@ class Ptemcee(MCMCSampler):
         See pos0 in the class initialization for details.
 
         Returns
-        -------
+        =======
         pos0: list
             The initial postitions of the walkers, with shape (ntemps, nwalkers, ndim)
 
@@ -697,7 +697,7 @@ def check_iteration(
     """ Per-iteration logic to calculate the convergence check
 
     Parameters
-    ----------
+    ==========
     convergence_inputs: bilby.core.sampler.ptemcee.ConvergenceInputs
         A named tuple of the convergence checking inputs
     search_parameter_keys: list
@@ -706,7 +706,7 @@ def check_iteration(
         Lists used for tracking the run
 
     Returns
-    -------
+    =======
     stop: bool
         A boolean flag, True if the stoping criteria has been met
     burn: int
diff --git a/bilby/core/sampler/ptmcmc.py b/bilby/core/sampler/ptmcmc.py
index d27698aa7278a947bf5fd46639d93527339ff271..49b86d7392ff4d21af698fe7b7034b25eaa7ac22 100644
--- a/bilby/core/sampler/ptmcmc.py
+++ b/bilby/core/sampler/ptmcmc.py
@@ -16,8 +16,8 @@ class PTMCMCSampler(MCMCSampler):
     documentation for that class for further help. Under Other Parameters, we
     list commonly used kwargs and the bilby defaults.
 
-    Other Parameters
-    ----------------
+    Parameters
+    ==========
     Niter: int (2*10**4 + 1)
         The number of mcmc steps
     burn: int (5 * 10**3)
@@ -32,10 +32,13 @@ class PTMCMCSampler(MCMCSampler):
         (https://github.com/rgreen1995/PTMCMCSampler/blob/master/examples/simple.ipynb)
         and
         (http://jellis18.github.io/PTMCMCSampler/PTMCMCSampler.html#ptmcmcsampler-ptmcmcsampler-module)
-        for examples and more info.  logl_grad: func (None) Gradient of
-        likelihood  if known (default = None) logp_grad: func (None) Gradient
-        of prior if known (default = None) verbose: bool (True) Update current
-        run-status to the screen
+        for examples and more info.
+    logl_grad: func (None)
+        Gradient of likelihood  if known (default = None)
+    logp_grad: func (None)
+        Gradient of prior if known (default = None)
+    verbose: bool (True)
+        Update current run-status to the screen
 
     """
 
diff --git a/bilby/core/sampler/pymc3.py b/bilby/core/sampler/pymc3.py
index 9c44b3a621a7e88baf1266dcf7898bc9b21037ed..c5c0a0d18fdd9fc8acc914034af2ee01d3f31ecf 100644
--- a/bilby/core/sampler/pymc3.py
+++ b/bilby/core/sampler/pymc3.py
@@ -20,8 +20,8 @@ class Pymc3(MCMCSampler):
     class for further help. Under Other Parameters, we list commonly used
     kwargs and the bilby, or where appropriate, PyMC3 defaults.
 
-    Other Parameters
-    ----------------
+    Parameters
+    ==========
     draws: int, (1000)
         The number of sample draws from the posterior per chain.
     chains: int, (2)
diff --git a/bilby/core/sampler/pymultinest.py b/bilby/core/sampler/pymultinest.py
index e977dc153f0a2572297b5a8bb382b462372b1243..960f2f4a3a231fc43f6f51538c9381d133341f5b 100644
--- a/bilby/core/sampler/pymultinest.py
+++ b/bilby/core/sampler/pymultinest.py
@@ -24,8 +24,8 @@ class Pymultinest(NestedSampler):
     for that class for further help. Under Other Parameters, we list commonly
     used kwargs and the bilby defaults.
 
-    Other Parameters
-    ----------------
+    Parameters
+    ==========
     npoints: int
         The number of live points, note this can also equivalently be given as
         one of [nlive, nlives, n_live_points]
diff --git a/bilby/core/sampler/ultranest.py b/bilby/core/sampler/ultranest.py
index ffeb2e267d92a9ce069a29d080359840be6d91f0..2348319e4b6048eb2669e798e94c6a06af9b6e0e 100644
--- a/bilby/core/sampler/ultranest.py
+++ b/bilby/core/sampler/ultranest.py
@@ -27,8 +27,8 @@ class Ultranest(NestedSampler):
     `ultranest.NestedSampler` will be used, otherwise the
     `ultranest.ReactiveNestedSampler` will be used.
 
-    Other Parameters
-    ----------------
+    Parameters
+    ==========
     num_live_points: int
         The number of live points, note this can also equivalently be given as
         one of [nlive, nlives, n_live_points, num_live_points]. If not given
diff --git a/bilby/core/series.py b/bilby/core/series.py
index 0c9b2efaa2e830c8096315aae89a0bc42229c1f0..ba1d0ffcb840ac6b31af682b4ee713b97add5775 100644
--- a/bilby/core/series.py
+++ b/bilby/core/series.py
@@ -7,7 +7,7 @@ class CoupledTimeAndFrequencySeries(object):
         """ A waveform generator
 
     Parameters
-    ----------
+    ==========
     sampling_frequency: float, optional
         The sampling frequency
     duration: float, optional
@@ -32,7 +32,7 @@ class CoupledTimeAndFrequencySeries(object):
         """ Frequency array for the waveforms. Automatically updates if sampling_frequency or duration are updated.
 
         Returns
-        -------
+        =======
         array_like: The frequency array
         """
         if not self._frequency_array_updated:
@@ -60,7 +60,7 @@ class CoupledTimeAndFrequencySeries(object):
         """ Time array for the waveforms. Automatically updates if sampling_frequency or duration are updated.
 
         Returns
-        -------
+        =======
         array_like: The time array
         """
 
@@ -91,7 +91,7 @@ class CoupledTimeAndFrequencySeries(object):
         """ Allows one to set the time duration and automatically updates the frequency and time array.
 
         Returns
-        -------
+        =======
         float: The time duration.
 
         """
@@ -108,7 +108,7 @@ class CoupledTimeAndFrequencySeries(object):
         """ Allows one to set the sampling frequency and automatically updates the frequency and time array.
 
         Returns
-        -------
+        =======
         float: The sampling frequency.
 
         """
diff --git a/bilby/core/utils.py b/bilby/core/utils.py
index 3b590215545dbcbe1adade632a05712b8d1f6091..4b922547074d8e4d16bfb92350748ada7f9d5b53 100644
--- a/bilby/core/utils.py
+++ b/bilby/core/utils.py
@@ -37,29 +37,29 @@ def infer_parameters_from_function(func):
     """ Infers the arguments of a function
     (except the first arg which is assumed to be the dep. variable).
 
-    Throws out *args and **kwargs type arguments
+    Throws out `*args` and `**kwargs` type arguments
 
     Can deal with type hinting!
 
     Parameters
-    ----------
+    ==========
     func: function or method
        The function or method for which the parameters should be inferred.
 
     Returns
-    -------
+    =======
     list: A list of strings with the parameters
 
     Raises
-    ------
+    ======
     ValueError
        If the object passed to the function is neither a function nor a method.
 
     Notes
-    -----
-    In order to handle methods the ``type`` of the function is checked, and
+    =====
+    In order to handle methods the `type` of the function is checked, and
     if a method has been passed the first *two* arguments are removed rather than just the first one.
-    This allows the reference to the instance (conventionally named ``self``)
+    This allows the reference to the instance (conventionally named `self`)
     to be removed.
     """
     if isinstance(func, types.MethodType):
@@ -71,14 +71,14 @@ def infer_parameters_from_function(func):
 
 
 def infer_args_from_method(method):
-    """ Infers all arguments of a method except for 'self'
+    """ Infers all arguments of a method except for `self`
 
-    Throws out *args and **kwargs type arguments.
+    Throws out `*args` and `**kwargs` type arguments.
 
     Can deal with type hinting!
 
     Returns
-    ---------
+    =======
     list: A list of strings with the parameters
     """
     return infer_args_from_function_except_n_args(func=method, n=1)
@@ -90,36 +90,40 @@ def infer_args_from_function_except_n_args(func, n=1):
     signature.
 
     Parameters
-    ----------
+    ==========
     func : function or method
        The function from which the arguments should be inferred.
     n : int
        The number of arguments which should be ignored, staring at the beginning.
 
     Returns
-    -------
+    =======
     parameters: list
-       A list of parameters of the function, omitting the first ``n``.
+       A list of parameters of the function, omitting the first `n`.
 
     Extended Summary
-    ----------------
+    ================
     This function is intended to allow the handling of named arguments
     in both functions and methods; this is important, since the first
     argument of an instance method will be the instance.
 
     See Also
-    --------
+    ========
     infer_args_from_method: Provides the arguments for a method
     infer_args_from_function: Provides the arguments for a function
     infer_args_from_function_except_first_arg: Provides all but first argument of a function or method.
 
     Examples
-    --------
-    >>> def hello(a, b, c, d):
-    >>>     pass
-    >>>
-    >>> infer_args_from_function_except_n_args(hello, 2)
-    ['c', 'd']
+    ========
+
+    .. code-block:: python
+
+        >>> def hello(a, b, c, d):
+        >>>     pass
+        >>>
+        >>> infer_args_from_function_except_n_args(hello, 2)
+        ['c', 'd']
+
     """
     try:
         parameters = inspect.getfullargspec(func).args
@@ -146,17 +150,17 @@ def get_sampling_frequency(time_array):
     """
     Calculate sampling frequency from a time series
 
-    Attributes:
-    -------
+    Attributes
+    ==========
     time_array: array_like
         Time array to get sampling_frequency from
 
     Returns
-    -------
+    =======
     Sampling frequency of the time series: float
 
     Raises
-    -------
+    ======
     ValueError: If the time series is not evenly sampled.
 
     """
@@ -171,17 +175,17 @@ def get_sampling_frequency_and_duration_from_time_array(time_array):
     """
     Calculate sampling frequency and duration from a time array
 
-    Attributes:
-    -------
+    Attributes
+    ==========
     time_array: array_like
         Time array to get sampling_frequency/duration from: array_like
 
     Returns
-    -------
+    =======
     sampling_frequency, duration: float, float
 
     Raises
-    -------
+    ======
     ValueError: If the time_array is not evenly sampled.
 
     """
@@ -195,17 +199,17 @@ def get_sampling_frequency_and_duration_from_frequency_array(frequency_array):
     """
     Calculate sampling frequency and duration from a frequency array
 
-    Attributes:
-    -------
+    Attributes
+    ==========
     frequency_array: array_like
         Frequency array to get sampling_frequency/duration from: array_like
 
     Returns
-    -------
+    =======
     sampling_frequency, duration: float, float
 
     Raises
-    -------
+    ======
     ValueError: If the frequency_array is not evenly sampled.
 
     """
@@ -226,13 +230,13 @@ def create_time_series(sampling_frequency, duration, starting_time=0.):
     """
 
     Parameters
-    ----------
+    ==========
     sampling_frequency: float
     duration: float
     starting_time: float, optional
 
     Returns
-    -------
+    =======
     float: An equidistant time series given the parameters
 
     """
@@ -247,12 +251,12 @@ def create_frequency_series(sampling_frequency, duration):
     """ Create a frequency series with the correct length and spacing.
 
     Parameters
-    -------
+    ==========
     sampling_frequency: float
     duration: float
 
     Returns
-    -------
+    =======
     array_like: frequency series
 
     """
@@ -272,7 +276,7 @@ def _check_legal_sampling_frequency_and_duration(sampling_frequency, duration):
     to an integer.
 
     Parameters
-    -------
+    ==========
     sampling_frequency: float
     duration: float
 
@@ -293,7 +297,7 @@ def ra_dec_to_theta_phi(ra, dec, gmst):
     """ Convert from RA and DEC to polar coordinates on celestial sphere
 
     Parameters
-    -------
+    ==========
     ra: float
         right ascension in radians
     dec: float
@@ -302,7 +306,7 @@ def ra_dec_to_theta_phi(ra, dec, gmst):
         Greenwich mean sidereal time of arrival of the signal in radians
 
     Returns
-    -------
+    =======
     float: zenith angle in radians
     float: azimuthal angle in radians
 
@@ -327,12 +331,12 @@ def gps_time_to_gmst(gps_time):
     Error accumulates at a rate of ~0.0001 radians/decade.
 
     Parameters
-    -------
+    ==========
     gps_time: float
         gps time
 
     Returns
-    -------
+    =======
     float: Greenwich mean sidereal time in radians
 
     """
@@ -353,13 +357,13 @@ def create_white_noise(sampling_frequency, duration):
     """ Create white_noise which is then coloured by a given PSD
 
     Parameters
-    -------
+    ==========
     sampling_frequency: float
     duration: float
         duration of the data
 
     Returns
-    -------
+    =======
     array_like: white noise
     array_like: frequency array
     """
@@ -398,14 +402,14 @@ def nfft(time_domain_strain, sampling_frequency):
         time series is real (positive frequencies only).
 
     Parameters
-    ----------
+    ==========
     time_domain_strain: array_like
         Time series of strain data.
     sampling_frequency: float
         Sampling frequency of the data.
 
     Returns
-    -------
+    =======
     frequency_domain_strain, frequency_array: (array_like, array_like)
         Single-sided FFT of time domain strain normalised to units of
         strain / Hz, and the associated frequency_array.
@@ -424,7 +428,7 @@ def infft(frequency_domain_strain, sampling_frequency):
     """ Inverse FFT for use in conjunction with nfft.
 
     Parameters
-    ----------
+    ==========
     frequency_domain_strain: array_like
         Single-sided, normalised FFT of the time-domain strain data (in units
         of strain / Hz).
@@ -432,7 +436,7 @@ def infft(frequency_domain_strain, sampling_frequency):
         Sampling frequency of the data.
 
     Returns
-    -------
+    =======
     time_domain_strain: array_like
         An array of the time domain strain
     """
@@ -445,7 +449,7 @@ def setup_logger(outdir=None, label=None, log_level='INFO', print_version=False)
     """ Setup logging output: call at the start of the script to use
 
     Parameters
-    ----------
+    ==========
     outdir, label: str
         If supplied, write the logging output to outdir/label.log
     log_level: str, optional
@@ -511,7 +515,7 @@ def spherical_to_cartesian(radius, theta, phi):
     """ Convert from spherical coordinates to cartesian.
 
     Parameters
-    -------
+    ==========
     radius: float
         radial coordinate
     theta: float
@@ -520,7 +524,7 @@ def spherical_to_cartesian(radius, theta, phi):
         azimuthal coordinate
 
     Returns
-    -------
+    =======
     list: cartesian vector
     """
     cartesian = [radius * np.sin(theta) * np.cos(phi), radius * np.sin(theta) * np.sin(phi), radius * np.cos(theta)]
@@ -531,7 +535,7 @@ def check_directory_exists_and_if_not_mkdir(directory):
     """ Checks if the given directory exists and creates it if it does not exist
 
     Parameters
-    ----------
+    ==========
     directory: str
         Name of the directory
 
@@ -549,25 +553,27 @@ def set_up_command_line_arguments():
     """ Sets up command line arguments that can be used to modify how scripts are run.
 
     Returns
-    -------
+    =======
     command_line_args, command_line_parser: tuple
         The command_line_args is a Namespace of the command line arguments while
         the command_line_parser can be given to a new `argparse.ArgumentParser`
         as a parent object from which to inherit.
 
     Notes
-    -----
+    =====
         The command line arguments are passed initially at runtime, but this parser
         does not have a `--help` option (i.e., the command line options are
         available for any script which includes `import bilby`, but no help command
         is available. This is done to avoid conflicts with child argparse routines
         (see the example below).
 
-    Example
-    -------
+    Examples
+    ========
     In the following example we demonstrate how to setup a custom command line for a
     project which uses bilby.
 
+    .. code-block:: python
+
         # Here we import bilby, which initialses and parses the default command-line args
         >>> import bilby
         # The command line arguments can then be accessed via
@@ -630,7 +636,7 @@ def derivatives(vals, func, releps=1e-3, abseps=None, mineps=1e-9, reltol=1e-3,
     method to check that the values converge as step size decreases.
 
     Parameters
-    ----------
+    ==========
     vals: array_like
         A set of values, that are passed to a function, at which to calculate
         the gradient of that function
@@ -653,7 +659,7 @@ def derivatives(vals, func, releps=1e-3, abseps=None, mineps=1e-9, reltol=1e-3,
         are calculated.
 
     Returns
-    -------
+    =======
     grads: array_like
         An array of gradients for each non-fixed value.
     """
@@ -762,7 +768,7 @@ def logtrapzexp(lnf, dx):
     Perform trapezium rule integration for the logarithm of a function on a regular grid.
 
     Parameters
-    ----------
+    ==========
     lnf: array_like
         A :class:`numpy.ndarray` of values that are the natural logarithm of a function
     dx: Union[array_like, float]
@@ -770,7 +776,7 @@ def logtrapzexp(lnf, dx):
         single step size value.
 
     Returns
-    -------
+    =======
     The natural logarithm of the area under the function.
     """
     return np.log(dx / 2.) + logsumexp([logsumexp(lnf[:-1]), logsumexp(lnf[1:])])
@@ -780,7 +786,7 @@ class SamplesSummary(object):
     """ Object to store a set of samples and calculate summary statistics
 
     Parameters
-    ----------
+    ==========
     samples: array_like
         Array of samples
     average: str {'median', 'mean'}
@@ -872,7 +878,7 @@ def run_commandline(cl, log_level=20, raise_error=True, return_output=True):
     """Run a string cmd as a subprocess, check for errors and return output.
 
     Parameters
-    ----------
+    ==========
     cl: str
         Command to run
     log_level: int
@@ -904,8 +910,9 @@ class Counter(object):
     """
     General class to count number of times a function is Called, returns total
     number of function calls
+
     Parameters
-    ----------
+    ==========
     initalval : int, 0
     number to start counting from
     """
@@ -928,7 +935,7 @@ class UnsortedInterp2d(interp2d):
         """  Wrapper to scipy.interpolate.interp2d which preserves the input ordering.
 
         Parameters
-        ----------
+        ==========
         x: See superclass
         y: See superclass
         dx: See superclass
@@ -938,7 +945,7 @@ class UnsortedInterp2d(interp2d):
             Overwriting this will not do anything
 
         Returns
-        ----------
+        =======
         array_like: See superclass
 
         """
@@ -1012,7 +1019,7 @@ def move_old_file(filename, overwrite=False):
     """ Moves or removes an old file.
 
     Parameters
-    ----------
+    ==========
     filename: str
         Name of the file to be move
     overwrite: bool, optional
@@ -1109,12 +1116,12 @@ def reflect(u):
     E.g., -0.9, 1.1, and 2.9 should all map to 0.9.
 
     Parameters
-    ----------
+    ==========
     u: array-like
         The array of points to map to the unit cube
 
     Returns
-    -------
+    =======
     u: array-like
        The input array, modified in place.
     """
@@ -1128,7 +1135,7 @@ def safe_file_dump(data, filename, module):
     """ Safely dump data to a .pickle file
 
     Parameters
-    ----------
+    ==========
     data:
         data to dump
     filename: str
@@ -1228,12 +1235,12 @@ def kish_log_effective_sample_size(ln_weights):
     See https://en.wikipedia.org/wiki/Effective_sample_size for details
 
     Parameters
-    ----------
+    ==========
     ln_weights: array
         An array of the ln-weights
 
     Returns
-    -------
+    =======
     ln_n_eff:
         The natural-log of the effective sample size
 
diff --git a/bilby/gw/conversion.py b/bilby/gw/conversion.py
index 00a6c9a4e24b669e330b60566ddea934ee49a0a8..093e2eda8db4324985b10aed7d62460ec2ee85a5 100644
--- a/bilby/gw/conversion.py
+++ b/bilby/gw/conversion.py
@@ -83,7 +83,7 @@ def transform_precessing_spins(theta_jn, phi_jl, tilt_1, tilt_2, phi_12, a_1,
     All parameters are defined at the reference frequency
 
     Parameters
-    ----------
+    ==========
     theta_jn: float
         Inclination angle
     phi_jl: float
@@ -107,7 +107,7 @@ def transform_precessing_spins(theta_jn, phi_jl, tilt_1, tilt_2, phi_12, a_1,
         Orbital phase
 
     Returns
-    -------
+    =======
     iota: float
         Transformed inclination
     spin_1x, spin_1y, spin_1z, spin_2x, spin_2y, spin_2z: float
@@ -137,12 +137,12 @@ def convert_to_lal_binary_black_hole_parameters(parameters):
     The keys in added_keys should be popped after evaluating the waveform.
 
     Parameters
-    ----------
+    ==========
     parameters: dict
         dictionary of parameter values to convert into the required parameters
 
-    Return
-    ------
+    Returns
+    =======
     converted_parameters: dict
         dict of the required parameters
     added_keys: list
@@ -276,12 +276,12 @@ def convert_to_lal_binary_neutron_star_parameters(parameters):
     The keys in added_keys should be popped after evaluating the waveform.
 
     Parameters
-    ----------
+    ==========
     parameters: dict
         dictionary of parameter values to convert into the required parameters
 
-    Return
-    ------
+    Returns
+    =======
     converted_parameters: dict
         dict of the required parameters
     added_keys: list
@@ -395,14 +395,14 @@ def total_mass_and_mass_ratio_to_component_masses(mass_ratio, total_mass):
     Convert total mass and mass ratio of a binary to its component masses.
 
     Parameters
-    ----------
+    ==========
     mass_ratio: float
         Mass ratio (mass_2/mass_1) of the binary
     total_mass: float
         Total mass of the binary
 
-    Return
-    ------
+    Returns
+    =======
     mass_1: float
         Mass of the heavier object
     mass_2: float
@@ -419,12 +419,12 @@ def symmetric_mass_ratio_to_mass_ratio(symmetric_mass_ratio):
     Convert the symmetric mass ratio to the normal mass ratio.
 
     Parameters
-    ----------
+    ==========
     symmetric_mass_ratio: float
         Symmetric mass ratio of the binary
 
-    Return
-    ------
+    Returns
+    =======
     mass_ratio: float
         Mass ratio of the binary
     """
@@ -438,14 +438,14 @@ def chirp_mass_and_total_mass_to_symmetric_mass_ratio(chirp_mass, total_mass):
     Convert chirp mass and total mass of a binary to its symmetric mass ratio.
 
     Parameters
-    ----------
+    ==========
     chirp_mass: float
         Chirp mass of the binary
     total_mass: float
         Total mass of the binary
 
-    Return
-    ------
+    Returns
+    =======
     symmetric_mass_ratio: float
         Symmetric mass ratio of the binary
     """
@@ -465,14 +465,14 @@ def chirp_mass_and_primary_mass_to_mass_ratio(chirp_mass, mass_1):
     Solving for q, we find the releation expressed in python below for q.
 
     Parameters
-    ----------
+    ==========
     chirp_mass: float
         Chirp mass of the binary
     mass_1: float
         The primary mass
 
-    Return
-    ------
+    Returns
+    =======
     mass_ratio: float
         Mass ratio (mass_2/mass_1) of the binary
     """
@@ -488,14 +488,14 @@ def chirp_mass_and_mass_ratio_to_total_mass(chirp_mass, mass_ratio):
     Convert chirp mass and mass ratio of a binary to its total mass.
 
     Parameters
-    ----------
+    ==========
     chirp_mass: float
         Chirp mass of the binary
     mass_ratio: float
         Mass ratio (mass_2/mass_1) of the binary
 
-    Return
-    ------
+    Returns
+    =======
     mass_1: float
         Mass of the heavier object
     mass_2: float
@@ -510,14 +510,14 @@ def component_masses_to_chirp_mass(mass_1, mass_2):
     Convert the component masses of a binary to its chirp mass.
 
     Parameters
-    ----------
+    ==========
     mass_1: float
         Mass of the heavier object
     mass_2: float
         Mass of the lighter object
 
-    Return
-    ------
+    Returns
+    =======
     chirp_mass: float
         Chirp mass of the binary
     """
@@ -530,14 +530,14 @@ def component_masses_to_total_mass(mass_1, mass_2):
     Convert the component masses of a binary to its total mass.
 
     Parameters
-    ----------
+    ==========
     mass_1: float
         Mass of the heavier object
     mass_2: float
         Mass of the lighter object
 
-    Return
-    ------
+    Returns
+    =======
     total_mass: float
         Total mass of the binary
     """
@@ -550,14 +550,14 @@ def component_masses_to_symmetric_mass_ratio(mass_1, mass_2):
     Convert the component masses of a binary to its symmetric mass ratio.
 
     Parameters
-    ----------
+    ==========
     mass_1: float
         Mass of the heavier object
     mass_2: float
         Mass of the lighter object
 
-    Return
-    ------
+    Returns
+    =======
     symmetric_mass_ratio: float
         Symmetric mass ratio of the binary
     """
@@ -570,14 +570,14 @@ def component_masses_to_mass_ratio(mass_1, mass_2):
     Convert the component masses of a binary to its chirp mass.
 
     Parameters
-    ----------
+    ==========
     mass_1: float
         Mass of the heavier object
     mass_2: float
         Mass of the lighter object
 
-    Return
-    ------
+    Returns
+    =======
     mass_ratio: float
         Mass ratio of the binary
     """
@@ -592,14 +592,14 @@ def mass_1_and_chirp_mass_to_mass_ratio(mass_1, chirp_mass):
     This involves solving mc = m1 * q**(3/5) / (1 + q)**(1/5).
 
     Parameters
-    ----------
+    ==========
     mass_1: float
         Mass of the heavier object
     chirp_mass: float
         Mass of the lighter object
 
-    Return
-    ------
+    Returns
+    =======
     mass_ratio: float
         Mass ratio of the binary
     """
@@ -618,7 +618,7 @@ def lambda_1_lambda_2_to_lambda_tilde(lambda_1, lambda_2, mass_1, mass_2):
     See, e.g., Wade et al., https://arxiv.org/pdf/1402.5156.pdf.
 
     Parameters
-    ----------
+    ==========
     lambda_1: float
         Tidal parameter of more massive neutron star.
     lambda_2: float
@@ -628,8 +628,8 @@ def lambda_1_lambda_2_to_lambda_tilde(lambda_1, lambda_2, mass_1, mass_2):
     mass_2: float
         Mass of less massive neutron star.
 
-    Return
-    ------
+    Returns
+    ======
     lambda_tilde: float
         Dominant tidal term.
     """
@@ -650,7 +650,7 @@ def lambda_1_lambda_2_to_delta_lambda_tilde(lambda_1, lambda_2, mass_1, mass_2):
     See, e.g., Wade et al., https://arxiv.org/pdf/1402.5156.pdf.
 
     Parameters
-    ----------
+    ==========
     lambda_1: float
         Tidal parameter of more massive neutron star.
     lambda_2: float
@@ -660,8 +660,8 @@ def lambda_1_lambda_2_to_delta_lambda_tilde(lambda_1, lambda_2, mass_1, mass_2):
     mass_2: float
         Mass of less massive neutron star.
 
-    Return
-    ------
+    Returns
+    =======
     delta_lambda_tilde: float
         Second dominant tidal term.
     """
@@ -684,7 +684,7 @@ def lambda_tilde_delta_lambda_tilde_to_lambda_1_lambda_2(
     See, e.g., Wade et al., https://arxiv.org/pdf/1402.5156.pdf.
 
     Parameters
-    ----------
+    ==========
     lambda_tilde: float
         Dominant tidal term.
     delta_lambda_tilde: float
@@ -694,8 +694,8 @@ def lambda_tilde_delta_lambda_tilde_to_lambda_1_lambda_2(
     mass_2: float
         Mass of less massive neutron star.
 
-    Return
-    ------
+    Returns
+    =======
     lambda_1: float
         Tidal parameter of more massive neutron star.
     lambda_2: float
@@ -730,7 +730,7 @@ def lambda_tilde_to_lambda_1_lambda_2(
     See, e.g., Wade et al., https://arxiv.org/pdf/1402.5156.pdf.
 
     Parameters
-    ----------
+    ==========
     lambda_tilde: float
         Dominant tidal term.
     mass_1: float
@@ -738,8 +738,8 @@ def lambda_tilde_to_lambda_1_lambda_2(
     mass_2: float
         Mass of less massive neutron star.
 
-    Return
-    ------
+    Returns
+    =======
     lambda_1: float
         Tidal parameter of more massive neutron star.
     lambda_2: float
@@ -825,7 +825,7 @@ def generate_all_bbh_parameters(sample, likelihood=None, priors=None, npool=1):
     BBH parameters, in place.
 
     Parameters
-    ----------
+    ==========
     sample: dict or pandas.DataFrame
         Samples to fill in with extra parameters, this may be either an
         injection or posterior samples.
@@ -854,7 +854,7 @@ def generate_all_bns_parameters(sample, likelihood=None, priors=None, npool=1):
     calculated.
 
     Parameters
-    ----------
+    ==========
     sample: dict or pandas.DataFrame
         Samples to fill in with extra parameters, this may be either an
         injection or posterior samples.
@@ -897,14 +897,14 @@ def fill_from_fixed_priors(sample, priors):
     """Add parameters with delta function prior to the data frame/dictionary.
 
     Parameters
-    ----------
+    ==========
     sample: dict
         A dictionary or data frame
     priors: dict
         A dictionary of priors
 
     Returns
-    -------
+    =======
     dict:
     """
     output_sample = sample.copy()
@@ -923,12 +923,12 @@ def generate_mass_parameters(sample):
         chirp mass, total mass, symmetric mass ratio, mass ratio
 
     Parameters
-    ----------
+    ==========
     sample : dict
         The input dictionary with component masses 'mass_1' and 'mass_2'
 
     Returns
-    -------
+    =======
     dict: The updated dictionary
 
     """
@@ -954,12 +954,12 @@ def generate_spin_parameters(sample):
         cartesian spin components, chi_eff, chi_p cos tilt 1, cos tilt 2
 
     Parameters
-    ----------
+    ==========
     sample : dict, pandas.DataFrame
         The input dictionary with some spin parameters
 
     Returns
-    -------
+    =======
     dict: The updated dictionary
 
     """
@@ -1001,13 +1001,13 @@ def generate_component_spins(sample):
     This function uses a lalsimulation function to transform the spins.
 
     Parameters
-    ----------
+    ==========
     sample: A dictionary with the necessary spin conversion parameters:
     'theta_jn', 'phi_jl', 'tilt_1', 'tilt_2', 'phi_12', 'a_1', 'a_2', 'mass_1',
     'mass_2', 'reference_frequency', 'phase'
 
     Returns
-    -------
+    =======
     dict: The updated dictionary
 
     """
@@ -1057,12 +1057,12 @@ def generate_tidal_parameters(sample):
     lambda_tilde, delta_lambda_tilde
 
     Parameters
-    ----------
+    ==========
     sample: dict, pandas.DataFrame
         Should contain lambda_1, lambda_2
 
     Returns
-    -------
+    =======
     output_sample: dict, pandas.DataFrame
         Updated sample
     """
@@ -1085,11 +1085,11 @@ def generate_source_frame_parameters(sample):
     Generate source frame masses along with redshifts and comoving distance.
 
     Parameters
-    ----------
+    ==========
     sample: dict, pandas.DataFrame
 
     Returns
-    -------
+    =======
     output_sample: dict, pandas.DataFrame
     """
     output_sample = sample.copy()
@@ -1113,7 +1113,7 @@ def compute_snrs(sample, likelihood):
     and print it out.
 
     Parameters
-    ----------
+    ==========
     sample: dict or array_like
 
     likelihood: bilby.gw.likelihood.GravitationalWaveTransient
@@ -1172,7 +1172,7 @@ def generate_posterior_samples_from_marginalized_likelihood(
     See Eq. (C29-C32) of https://arxiv.org/abs/1809.02293
 
     Parameters
-    ----------
+    ==========
     samples: DataFrame
         Posterior from run with a marginalised likelihood.
     likelihood: bilby.gw.likelihood.GravitationalWaveTransient
@@ -1180,8 +1180,8 @@ def generate_posterior_samples_from_marginalized_likelihood(
     npool: int, (default=1)
         If given, perform generation (where possible) using a multiprocessing pool
 
-    Return
-    ------
+    Returns
+    =======
     sample: DataFrame
         Returns the posterior with new samples.
     """
diff --git a/bilby/gw/cosmology.py b/bilby/gw/cosmology.py
index df82acf7177fbfca7b5137c633997a078435339d..861fdf23f99ef2e8a3190ad47ec0eeaddb44f7d4 100644
--- a/bilby/gw/cosmology.py
+++ b/bilby/gw/cosmology.py
@@ -27,7 +27,7 @@ def set_cosmology(cosmology=None):
     as the last used cosmology.
 
     Parameters
-    ----------
+    ==========
     cosmology: astropy.cosmology.FLRW, str, dict
         Description of cosmology, one of:
             None - Use DEFAULT_COSMOLOGY
@@ -37,7 +37,7 @@ def set_cosmology(cosmology=None):
             class.
 
     Returns
-    -------
+    =======
     cosmo: astropy.cosmology.FLRW
         Cosmology instance
     """
diff --git a/bilby/gw/detector/__init__.py b/bilby/gw/detector/__init__.py
index 7d5dec8f1e33bbb67d2558c56e7a9ce332db7272..37d6027634365d2fd7f349a694d0836e19434278 100644
--- a/bilby/gw/detector/__init__.py
+++ b/bilby/gw/detector/__init__.py
@@ -17,14 +17,14 @@ def get_safe_signal_duration(mass_1, mass_2, a_1, a_2, tilt_1, tilt_2, flow=10):
     """ Calculate the safe signal duration, given the parameters
 
     Parameters
-    ----------
+    ==========
     mass_1, mass_2, a_1, a_2, tilt_1, tilt_2: float
         The signal parameters
     flow: float
         The lower frequency cutoff from which to calculate the signal duration
 
      Returns
-     -------
+     =======
      safe_signal_duration: float
         The shortest safe signal duration (i.e., the signal duration rounded up
         to the nearest power of 2)
@@ -41,7 +41,7 @@ def inject_signal_into_gwpy_timeseries(
     """ Inject a signal into a gwpy timeseries
 
     Parameters
-    ----------
+    ==========
     data: gwpy.timeseries.TimeSeries
         The time-series data into which we want to inject the signal
     waveform_generator: bilby.gw.waveform_generator.WaveformGenerator
@@ -54,7 +54,7 @@ def inject_signal_into_gwpy_timeseries(
         If given, the outdir and label used to generate a plot
 
     Returns
-    -------
+    =======
     data_and_signal: gwpy.timeseries.TimeSeries
         The data with the time-domain signal added
     meta_data: dict
@@ -128,7 +128,7 @@ def get_interferometer_with_fake_noise_and_injection(
     density based on advanced LIGO.
 
     Parameters
-    ----------
+    ==========
     name: str
         Detector name, e.g., 'H1'.
     injection_parameters: dict
@@ -160,7 +160,7 @@ def get_interferometer_with_fake_noise_and_injection(
         If true, set noise to zero.
 
     Returns
-    -------
+    =======
     bilby.gw.detector.Interferometer: An Interferometer instance with a PSD and frequency-domain strain data.
 
     """
@@ -205,7 +205,7 @@ def load_data_from_cache_file(
     """ Helper routine to generate an interferometer from a cache file
 
     Parameters
-    ----------
+    ==========
     cache_file: str
         Path to the location of the cache file
     start_time, psd_start_time: float
@@ -225,7 +225,7 @@ def load_data_from_cache_file(
         The output directory in which the data is saved
 
     Returns
-    -------
+    =======
     ifo: bilby.gw.detector.Interferometer
         An initialised interferometer object with strain data set to the
         appropriate data in the cache file and a PSD.
@@ -299,7 +299,7 @@ def load_data_by_channel_name(
     the specified channel using gwpy.TimeSeries.get()
 
     Parameters
-    ----------
+    ==========
     channel_name: str
         Channel name with the format `IFO:Channel`
     start_time, psd_start_time: float
@@ -317,7 +317,7 @@ def load_data_by_channel_name(
         The output directory in which the data is saved
 
     Returns
-    -------
+    =======
     ifo: bilby.gw.detector.Interferometer
         An initialised interferometer object with strain data set to the
         appropriate data fetched from the specified channel and a PSD.
diff --git a/bilby/gw/detector/calibration.py b/bilby/gw/detector/calibration.py
index 74b25127f0bad233301df272537e0da1f4dd85f3..efb6336e46c2198415ca646d100b6d2092581d29 100644
--- a/bilby/gw/detector/calibration.py
+++ b/bilby/gw/detector/calibration.py
@@ -14,7 +14,7 @@ class Recalibrate(object):
         Base calibration object. This applies no transformation
 
         Parameters
-        ----------
+        ==========
         prefix: str
             Prefix on parameters relating to the calibration.
         """
@@ -30,7 +30,7 @@ class Recalibrate(object):
         This method should be overwritten by subclasses
 
         Parameters
-        ----------
+        ==========
         frequency_array: array-like
             The frequency values to calculate the calibration factor for.
         params : dict
@@ -38,7 +38,7 @@ class Recalibrate(object):
             calibration parameters.
 
         Returns
-        -------
+        =======
         calibration_factor : array-like
             The factor to multiply the strain by.
         """
@@ -67,7 +67,7 @@ class CubicSpline(Recalibrate):
         np.logspace(np.log(minimum_frequency), np.log(maximum_frequency), n_points)
 
         Parameters
-        ----------
+        ==========
         prefix: str
             Prefix on parameters relating to the calibration.
         minimum_frequency: float
@@ -98,7 +98,7 @@ class CubicSpline(Recalibrate):
         """Apply calibration model
 
         Parameters
-        ----------
+        ==========
         frequency_array: array-like
             The frequency values to calculate the calibration factor for.
         prefix: str
@@ -108,7 +108,7 @@ class CubicSpline(Recalibrate):
             calibration parameters.
 
         Returns
-        -------
+        =======
         calibration_factor : array-like
             The factor to multiply the strain by.
         """
diff --git a/bilby/gw/detector/geometry.py b/bilby/gw/detector/geometry.py
index 0725e4f3176b6b1ae12c2b95a9a5a21183a0aa51..5ed8ec2e789c86396e32f4a12ae1f1f19412e41c 100644
--- a/bilby/gw/detector/geometry.py
+++ b/bilby/gw/detector/geometry.py
@@ -10,7 +10,7 @@ class InterferometerGeometry(object):
         Instantiate an Interferometer object.
 
         Parameters
-        ----------
+        ==========
 
         length: float
             Length of the interferometer in km.
@@ -68,7 +68,7 @@ class InterferometerGeometry(object):
         """ Saves latitude in rad internally. Updates related quantities if set to a different value.
 
         Returns
-        -------
+        =======
         float: The latitude position of the detector in degree
         """
         return self._latitude * 180 / np.pi
@@ -84,7 +84,7 @@ class InterferometerGeometry(object):
     def latitude_radians(self):
         """
         Returns
-        -------
+        =======
         float: The latitude position of the detector in radians
         """
 
@@ -95,7 +95,7 @@ class InterferometerGeometry(object):
         """ Saves longitude in rad internally. Updates related quantities if set to a different value.
 
         Returns
-        -------
+        =======
         float: The longitude position of the detector in degree
         """
         return self._longitude * 180 / np.pi
@@ -111,7 +111,7 @@ class InterferometerGeometry(object):
     def longitude_radians(self):
         """
         Returns
-        -------
+        =======
         float: The latitude position of the detector in radians
         """
 
@@ -122,7 +122,7 @@ class InterferometerGeometry(object):
         """ Updates related quantities if set to a different values.
 
         Returns
-        -------
+        =======
         float: The height about the surface in meters
         """
         return self._elevation
@@ -137,7 +137,7 @@ class InterferometerGeometry(object):
         """ Saves the x-arm azimuth in rad internally. Updates related quantities if set to a different values.
 
         Returns
-        -------
+        =======
         float: The x-arm azimuth in degrees.
 
         """
@@ -153,7 +153,7 @@ class InterferometerGeometry(object):
         """ Saves the y-arm azimuth in rad internally. Updates related quantities if set to a different values.
 
         Returns
-        -------
+        =======
         float: The y-arm azimuth in degrees.
 
         """
@@ -169,7 +169,7 @@ class InterferometerGeometry(object):
         """ Updates related quantities if set to a different values.
 
         Returns
-        -------
+        =======
         float: The x-arm tilt in radians.
 
         """
@@ -185,7 +185,7 @@ class InterferometerGeometry(object):
         """ Updates related quantities if set to a different values.
 
         Returns
-        -------
+        =======
         float: The y-arm tilt in radians.
 
         """
@@ -203,7 +203,7 @@ class InterferometerGeometry(object):
         Is automatically updated if related quantities are modified.
 
         Returns
-        -------
+        =======
         array_like: A 3D array representation of the vertex
         """
         if not self._vertex_updated:
@@ -219,7 +219,7 @@ class InterferometerGeometry(object):
         Is automatically updated if related quantities are modified.
 
         Returns
-        -------
+        =======
         array_like: A 3D array representation of a unit vector along the x-arm
 
         """
@@ -236,7 +236,7 @@ class InterferometerGeometry(object):
         Is automatically updated if related quantities are modified.
 
         Returns
-        -------
+        =======
         array_like: A 3D array representation of a unit vector along the y-arm
 
         """
@@ -256,7 +256,7 @@ class InterferometerGeometry(object):
         Is automatically updated if related quantities are modified.
 
         Returns
-        -------
+        =======
         array_like: A 3x3 array representation of the detector tensor
 
         """
@@ -274,16 +274,16 @@ class InterferometerGeometry(object):
         See Eqs. B14-B17 in arXiv:gr-qc/0008066
 
         Parameters
-        -------
+        ==========
         arm: str
             'x' or 'y' (arm of the detector)
 
         Returns
-        -------
+        =======
         array_like: 3D unit vector along arm in cartesian Earth-based coordinates
 
         Raises
-        -------
+        ======
         ValueError: If arm is neither 'x' nor 'y'
 
         """
diff --git a/bilby/gw/detector/interferometer.py b/bilby/gw/detector/interferometer.py
index d6e7288987bf97db65d557d3cc8dbf97af2f9e0c..9a0c5b9a80fd1f4c54d64ae7f34467434268e625 100644
--- a/bilby/gw/detector/interferometer.py
+++ b/bilby/gw/detector/interferometer.py
@@ -55,7 +55,7 @@ class Interferometer(object):
         Instantiate an Interferometer object.
 
         Parameters
-        ----------
+        ==========
         name: str
             Interferometer name, e.g., H1.
         power_spectral_density: bilby.gw.detector.PowerSpectralDensity
@@ -120,7 +120,7 @@ class Interferometer(object):
         """ Set the `Interferometer.strain_data` from a gwpy TimeSeries
 
         Parameters
-        ----------
+        ==========
         time_series: gwpy.timeseries.timeseries.TimeSeries
             The data to set.
 
@@ -133,7 +133,7 @@ class Interferometer(object):
         """ Set the `Interferometer.strain_data` from a numpy array
 
         Parameters
-        ----------
+        ==========
         frequency_domain_strain: array_like
             The data to set.
         sampling_frequency: float
@@ -161,7 +161,7 @@ class Interferometer(object):
         `bilby.gw.detector.InterferometerStrainData` for further information.
 
         Parameters
-        ----------
+        ==========
         sampling_frequency: float
             The sampling frequency (in Hz)
         duration: float
@@ -180,7 +180,7 @@ class Interferometer(object):
         """ Set the `Interferometer.strain_data` from a frame file
 
         Parameters
-        ----------
+        ==========
         frame_file: str
             File from which to load data.
         channel: str
@@ -208,7 +208,7 @@ class Interferometer(object):
         using strain_data.set_from_channel_name()
 
         Parameters
-        ----------
+        ==========
         channel: str
             Channel to look for using gwpy in the format `IFO:Channel`
         sampling_frequency: float
@@ -227,7 +227,7 @@ class Interferometer(object):
         """ Set the `Interferometer.strain_data` from a csv file
 
         Parameters
-        ----------
+        ==========
         filename: str
             The path to the file to read in
 
@@ -239,7 +239,7 @@ class Interferometer(object):
         """ Set the `Interferometer.strain_data` to zero noise
 
         Parameters
-        ----------
+        ==========
         sampling_frequency: float
             The sampling frequency (in Hz)
         duration: float
@@ -263,7 +263,7 @@ class Interferometer(object):
         Note: there is a typo in the definition of the wave-frame in Nishizawa et al.
 
         Parameters
-        -------
+        ==========
         ra: float
             right ascension in radians
         dec: float
@@ -276,7 +276,7 @@ class Interferometer(object):
             polarisation mode (e.g. 'plus', 'cross')
 
         Returns
-        -------
+        =======
         array_like: A 3x3 array representation of the antenna response for the specified mode
 
         """
@@ -287,14 +287,14 @@ class Interferometer(object):
         """ Get the detector response for a particular waveform
 
         Parameters
-        -------
+        ==========
         waveform_polarizations: dict
             polarizations of the waveform
         parameters: dict
             parameters describing position and time of arrival of the signal
 
         Returns
-        -------
+        =======
         array_like: A 3x3 array representation of the detector response (signal observed in the interferometer)
         """
         signal = {}
@@ -335,7 +335,7 @@ class Interferometer(object):
         Defaults to the injection polarizations is both are given.
 
         Parameters
-        ----------
+        ==========
         parameters: dict
             Parameters of the injection.
         injection_polarizations: dict, optional
@@ -347,14 +347,14 @@ class Interferometer(object):
             A WaveformGenerator instance using the source model to inject. If
             `injection_polarizations` is given, this will be ignored.
 
-        Note
-        -------
+        Notes
+        =====
         if your signal takes a substantial amount of time to generate, or
         you experience buggy behaviour. It is preferable to provide the
         injection_polarizations directly.
 
         Returns
-        -------
+        =======
         injection_polarizations: dict
             The injected polarizations. This is the same as the injection_polarizations parameters
             if it was passed in. Otherwise it is the return value of waveform_generator.frequency_domain_strain().
@@ -377,20 +377,20 @@ class Interferometer(object):
         Alternative to `inject_signal` and `inject_signal_from_waveform_polarizations`
 
         Parameters
-        ----------
+        ==========
         parameters: dict
             Parameters of the injection.
         waveform_generator: bilby.gw.waveform_generator.WaveformGenerator
             A WaveformGenerator instance using the source model to inject.
 
-        Note
-        -------
+        Notes
+        =====
         if your signal takes a substantial amount of time to generate, or
         you experience buggy behaviour. It is preferable to use the
         inject_signal_from_waveform_polarizations() method.
 
         Returns
-        -------
+        =======
         injection_polarizations: dict
             The internally generated injection parameters
 
@@ -406,7 +406,7 @@ class Interferometer(object):
         Alternative to `inject_signal` and `inject_signal_from_waveform_generator`.
 
         Parameters
-        ----------
+        ==========
         parameters: dict
             Parameters of the injection.
         injection_polarizations: dict
@@ -439,7 +439,7 @@ class Interferometer(object):
         """ Returns the amplitude spectral density (ASD) given we know a power spectral denstiy (PSD)
 
         Returns
-        -------
+        =======
         array_like: An array representation of the ASD
 
         """
@@ -455,7 +455,7 @@ class Interferometer(object):
         This accounts for whether the data in the interferometer has been windowed.
 
         Returns
-        -------
+        =======
         array_like: An array representation of the PSD
 
         """
@@ -476,7 +476,7 @@ class Interferometer(object):
         Use the time delay function from utils.
 
         Parameters
-        -------
+        ==========
         ra: float
             right ascension of source in radians
         dec: float
@@ -485,7 +485,7 @@ class Interferometer(object):
             GPS time
 
         Returns
-        -------
+        =======
         float: The time delay from geocenter in seconds
         """
         return gwutils.time_delay_geocentric(self.geometry.vertex, np.array([0, 0, 0]), ra, dec, time)
@@ -498,7 +498,7 @@ class Interferometer(object):
         See Section 2.1 of LIGO-T980044-10 for the correct expression
 
         Returns
-        -------
+        =======
         array_like: A 3D array representation of the vertex
         """
         return gwutils.get_vertex_position_geocentric(self.geometry.latitude_radians,
@@ -509,12 +509,12 @@ class Interferometer(object):
         """
 
         Parameters
-        ----------
+        ==========
         signal: array_like
             Array containing the signal
 
         Returns
-        -------
+        =======
         float: The optimal signal to noise ratio possible squared
         """
         return gwutils.optimal_snr_squared(
@@ -526,12 +526,12 @@ class Interferometer(object):
         """
 
         Parameters
-        ----------
+        ==========
         signal: array_like
             Array containing the signal
 
         Returns
-        -------
+        =======
         float: The optimal signal to noise ratio possible squared
         """
         return gwutils.noise_weighted_inner_product(
@@ -544,12 +544,12 @@ class Interferometer(object):
         """
 
         Parameters
-        ----------
+        ==========
         signal: array_like
             Array containing the signal
 
         Returns
-        -------
+        =======
         float: The matched filter signal to noise ratio squared
 
         """
@@ -564,7 +564,7 @@ class Interferometer(object):
         """ Calculates the whitened data by dividing data by the amplitude spectral density
 
         Returns
-        -------
+        =======
         array_like: The whitened data
         """
         return self.strain_data.frequency_domain_strain / self.amplitude_spectral_density_array
@@ -573,7 +573,7 @@ class Interferometer(object):
         """ Creates a save file for the data in plain text format
 
         Parameters
-        ----------
+        ==========
         outdir: str
             The output directory in which the data is supposed to be saved
         label: str
@@ -641,7 +641,7 @@ class Interferometer(object):
         """ Plots the strain data in the time domain
 
         Parameters
-        ----------
+        ==========
         outdir, label: str
             Used in setting the saved filename.
         bandpass: tuple, optional
@@ -711,7 +711,7 @@ class Interferometer(object):
         """ Save the object to a hdf5 file
 
         Attributes
-        ----------
+        ==========
         outdir: str, optional
             Output directory name of the file, defaults to 'outdir'.
         label: str, optional
@@ -732,7 +732,7 @@ class Interferometer(object):
         """ Loads in an Interferometer object from an hdf5 file
 
         Parameters
-        ----------
+        ==========
         filename: str
             If given, try to load from this filename
 
diff --git a/bilby/gw/detector/networks.py b/bilby/gw/detector/networks.py
index caef21368a8012dc9ea140e9a0c21a6b8a579329..93dd11b350552b6e2b3e2fc7f830556528248201 100644
--- a/bilby/gw/detector/networks.py
+++ b/bilby/gw/detector/networks.py
@@ -23,7 +23,7 @@ class InterferometerList(list):
         object has the data used in evaluating the likelihood
 
         Parameters
-        ----------
+        ==========
         interferometers: iterable
             The list of interferometers
         """
@@ -76,7 +76,7 @@ class InterferometerList(list):
         `bilby.gw.detector.InterferometerStrainData` for further information.
 
         Parameters
-        ----------
+        ==========
         sampling_frequency: float
             The sampling frequency (in Hz)
         duration: float
@@ -98,7 +98,7 @@ class InterferometerList(list):
         `bilby.gw.detector.InterferometerStrainData` for further information.
 
         Parameters
-        ----------
+        ==========
         sampling_frequency: float
             The sampling frequency (in Hz)
         duration: float
@@ -116,7 +116,7 @@ class InterferometerList(list):
         """ Inject a signal into noise in each of the three detectors.
 
         Parameters
-        ----------
+        ==========
         parameters: dict
             Parameters of the injection.
         injection_polarizations: dict
@@ -128,14 +128,14 @@ class InterferometerList(list):
             A WaveformGenerator instance using the source model to inject. If
             `injection_polarizations` is given, this will be ignored.
 
-        Note
-        ----------
+        Notes
+        ==========
         if your signal takes a substantial amount of time to generate, or
         you experience buggy behaviour. It is preferable to provide the
         injection_polarizations directly.
 
         Returns
-        -------
+        =======
         injection_polarizations: dict
 
         """
@@ -159,7 +159,7 @@ class InterferometerList(list):
         """ Creates a save file for the data in plain text format
 
         Parameters
-        ----------
+        ==========
         outdir: str
             The output directory in which the data is supposed to be saved
         label: str
@@ -224,7 +224,7 @@ class InterferometerList(list):
         """ Saves the object to a hdf5 file
 
         Parameters
-        ----------
+        ==========
         outdir: str, optional
             Output directory name of the file
         label: str, optional
@@ -244,7 +244,7 @@ class InterferometerList(list):
         """ Loads in an InterferometerList object from an hdf5 file
 
         Parameters
-        ----------
+        ==========
         filename: str
             If given, try to load from this filename
 
@@ -296,7 +296,7 @@ def get_event_data(
     Get open data for a specified event.
 
     Parameters
-    ----------
+    ==========
     event: str
         Event descriptor, this can deal with some prefixes, e.g., '150914',
         'GW150914', 'LVT151012'
@@ -324,8 +324,8 @@ def get_event_data(
         All keyword arguments are passed to
         `gwpy.timeseries.TimeSeries.fetch_open_data()`.
 
-    Return
-    ------
+    Returns
+    ======
     list: A list of bilby.gw.detector.Interferometer objects
     """
 
@@ -376,12 +376,12 @@ def get_empty_interferometer(name):
 
 
     Parameters
-    ----------
+    ==========
     name: str
         Interferometer identifier.
 
     Returns
-    -------
+    =======
     interferometer: Interferometer
         Interferometer instance
     """
@@ -427,7 +427,7 @@ def get_interferometer_with_open_data(
     PSD and data, given an center_time.
 
     Parameters
-    ----------
+    ==========
 
     name: str
         Detector name, e.g., 'H1'.
@@ -458,7 +458,7 @@ def get_interferometer_with_open_data(
         `gwpy.timeseries.TimeSeries.fetch_open_data()`.
 
     Returns
-    -------
+    =======
     bilby.gw.detector.Interferometer: An Interferometer instance with a PSD and frequency-domain strain data.
 
     """
diff --git a/bilby/gw/detector/psd.py b/bilby/gw/detector/psd.py
index 7ed681477d2c1b4d177f3f3b27766906198a1724..e0ddd12d58a394c382aa644503ef45ee37abf084 100644
--- a/bilby/gw/detector/psd.py
+++ b/bilby/gw/detector/psd.py
@@ -15,17 +15,23 @@ class PowerSpectralDensity(object):
         """
         Instantiate a new PowerSpectralDensity object.
 
-        Example
-        -------
+        Examples
+        ========
         Using the `from` method directly (here `psd_file` is a string
         containing the path to the file to load):
-        >>> power_spectral_density = PowerSpectralDensity.from_power_spectral_density_file(psd_file)
+
+        .. code-block:: python
+
+            >>> power_spectral_density = PowerSpectralDensity.from_power_spectral_density_file(psd_file)
 
         Alternatively (and equivalently) setting the psd_file directly:
-        >>> power_spectral_density = PowerSpectralDensity(psd_file=psd_file)
+
+        .. code-block:: python
+
+            >>> power_spectral_density = PowerSpectralDensity(psd_file=psd_file)
 
         Attributes
-        ----------
+        ==========
         asd_array: array_like
             Array representation of the ASD
         asd_file: str
@@ -78,7 +84,7 @@ class PowerSpectralDensity(object):
         """ Set the amplitude spectral density from a given file
 
         Parameters
-        ----------
+        ==========
         asd_file: str
             File containing amplitude spectral density, format 'f h_f'
 
@@ -90,7 +96,7 @@ class PowerSpectralDensity(object):
         """ Set the power spectral density from a given file
 
         Parameters
-        ----------
+        ==========
         psd_file: str, optional
             File containing power spectral density, format 'f h_f'
 
@@ -105,7 +111,7 @@ class PowerSpectralDensity(object):
         """ Generate power spectral density from a frame file
 
         Parameters
-        ----------
+        ==========
         frame_file: str, optional
             Frame file to read data from.
         psd_start_time: float
@@ -149,7 +155,7 @@ class PowerSpectralDensity(object):
         by loading data using `strain_data.set_from_channel_name`
 
         Parameters
-        ----------
+        ==========
         psd_start_time: float
             Beginning of segment to analyse.
         psd_duration: float, optional
@@ -293,18 +299,18 @@ class PowerSpectralDensity(object):
         Test if the file exists or is available in the default directory.
 
         Parameters
-        ----------
+        ==========
         file: str, None
             A string pointing either to a PSD file, or the name of a psd file
             in the default directory. If none, no check is performed.
 
         Returns
-        -------
+        =======
         file: str
             The path to the PSD file to use
 
         Raises
-        ------
+        ======
         ValueError:
             If the PSD file cannot be located
 
@@ -340,14 +346,14 @@ class PowerSpectralDensity(object):
         Generate frequency Gaussian noise scaled to the power spectral density.
 
         Parameters
-        -------
+        ==========
         sampling_frequency: float
             sampling frequency of noise
         duration: float
             duration of noise
 
         Returns
-        -------
+        =======
         array_like: frequency domain strain of this noise realisation
         array_like: frequencies related to the frequency domain strain
 
diff --git a/bilby/gw/detector/strain_data.py b/bilby/gw/detector/strain_data.py
index da0a397827c3892316962513cc1a1da3e9ef2d6d..71d8acf6d52ee7f1eae4b6e176607ebd44523e17 100644
--- a/bilby/gw/detector/strain_data.py
+++ b/bilby/gw/detector/strain_data.py
@@ -38,7 +38,7 @@ class InterferometerStrainData(object):
         of the `set_from..` methods.
 
         Parameters
-        ----------
+        ==========
         minimum_frequency: float
             Minimum frequency to analyse for detector. Default is 0.
         maximum_frequency: float
@@ -84,12 +84,12 @@ class InterferometerStrainData(object):
         """ Check if time is within the data span
 
         Parameters
-        ----------
+        ==========
         time: float
             The time to check
 
         Returns
-        -------
+        =======
         bool:
             A boolean stating whether the time is inside or outside the span
 
@@ -134,7 +134,7 @@ class InterferometerStrainData(object):
         """ Set the notch_list
 
         Parameters
-        ----------
+        ==========
         notch_list: list, bilby.gw.detector.strain_data.NotchList
             A list of length-2 tuples of the (max, min) frequency for the
             notches or a pre-made bilby NotchList.
@@ -155,7 +155,7 @@ class InterferometerStrainData(object):
         """ Masking array for limiting the frequency band.
 
         Returns
-        -------
+        =======
         mask: np.ndarray
             An array of boolean values
         """
@@ -186,15 +186,15 @@ class InterferometerStrainData(object):
         See https://dcc.ligo.org/DocDB/0027/T040089/000/T040089-00.pdf
 
         Parameters
-        ----------
+        ==========
         roll_off: float
             Rise time of window in seconds
         alpha: float
             Parameter to pass to tukey window, how much of segment falls
             into windowed part
 
-        Return
-        ------
+        Returns
+        ======
         window: array
             Window function over time array
         """
@@ -358,7 +358,7 @@ class InterferometerStrainData(object):
         PSD file.
 
         Parameters
-        ----------
+        ==========
         fft_length: float
             Duration of the analysis segment.
         overlap: float
@@ -374,7 +374,7 @@ class InterferometerStrainData(object):
             be removed before creating the PSD.
 
         Returns
-        -------
+        =======
         frequency_array, psd : array_like
             The frequencies and power spectral density array
 
@@ -461,7 +461,7 @@ class InterferometerStrainData(object):
         is applied.
 
         Parameters
-        ----------
+        ==========
         time_domain_strain: array_like
             An array of the time domain strain.
         sampling_frequency: float
@@ -495,7 +495,7 @@ class InterferometerStrainData(object):
         is applied.
 
         Parameters
-        ----------
+        ==========
         time_series: gwpy.timeseries.timeseries.TimeSeries
             The data to use
 
@@ -525,7 +525,7 @@ class InterferometerStrainData(object):
         is applied.
 
         Parameters
-        ----------
+        ==========
         name: str
             Detector name, e.g., 'H1'.
         start_time: float
@@ -552,7 +552,7 @@ class InterferometerStrainData(object):
         """ Set the strain data from a csv file
 
         Parameters
-        ----------
+        ==========
         filename: str
             The path to the file to read in
 
@@ -566,7 +566,7 @@ class InterferometerStrainData(object):
         """ Set the `frequency_domain_strain` from a numpy array
 
         Parameters
-        ----------
+        ==========
         frequency_domain_strain: array_like
             The data to set.
         sampling_frequency: float
@@ -599,7 +599,7 @@ class InterferometerStrainData(object):
         """ Set the `frequency_domain_strain` by generating a noise realisation
 
         Parameters
-        ----------
+        ==========
         power_spectral_density: bilby.gw.detector.PowerSpectralDensity
             A PowerSpectralDensity object used to generate the data
         sampling_frequency: float
@@ -630,7 +630,7 @@ class InterferometerStrainData(object):
         """ Set the `frequency_domain_strain` to zero noise
 
         Parameters
-        ----------
+        ==========
         sampling_frequency: float
             The sampling frequency (in Hz)
         duration: float
@@ -653,7 +653,7 @@ class InterferometerStrainData(object):
         """ Set the `frequency_domain_strain` from a frame fiile
 
         Parameters
-        ----------
+        ==========
         frame_file: str
             File from which to load data.
         channel: str
@@ -689,7 +689,7 @@ class InterferometerStrainData(object):
         also verifies that the specified channel is given in the correct format.
 
         Parameters
-        ----------
+        ==========
         channel: str
             Channel to look for using gwpy in the format `IFO:Channel`
         duration: float
@@ -721,7 +721,7 @@ class Notch(object):
         """ A notch object storing the maximum and minimum frequency of the notch
 
         Parameters
-        ----------
+        ==========
         minimum_frequency, maximum_frequency: float
             The minimum and maximum frequency of the notch
 
@@ -739,12 +739,12 @@ class Notch(object):
         """ Get a boolean mask for the frequencies in frequency_array in the notch
 
         Parameters
-        ----------
+        ==========
         frequency_array: np.ndarray
             An array of frequencies
 
         Returns
-        -------
+        =======
         idxs: np.ndarray
             An array of booleans which are True for frequencies in the notch
 
@@ -757,12 +757,12 @@ class Notch(object):
         """ Check if freq is inside the notch
 
         Parameters
-        ----------
+        ==========
         freq: float
             The frequency to check
 
         Returns
-        -------
+        =======
         True/False:
             If freq inside the notch, return True, else False
         """
@@ -778,13 +778,13 @@ class NotchList(list):
         """ A list of notches
 
         Parameters
-        ----------
+        ==========
         notch_list: list
             A list of length-2 tuples of the (max, min) frequency for the
             notches.
 
         Raises
-        ------
+        ======
         ValueError
             If the list is malformed.
         """
@@ -801,12 +801,12 @@ class NotchList(list):
         """ Check if freq is inside the notch list
 
         Parameters
-        ----------
+        ==========
         freq: float
             The frequency to check
 
         Returns
-        -------
+        =======
         True/False:
             If freq inside any of the notches, return True, else False
         """
diff --git a/bilby/gw/eos/eos.py b/bilby/gw/eos/eos.py
index 8abb04c1f88189aa55de3b212d31e248d1648b6c..b2a45dc222c08756ec033b96b864f49813e8842e 100644
--- a/bilby/gw/eos/eos.py
+++ b/bilby/gw/eos/eos.py
@@ -38,20 +38,23 @@ class TabularEOS(object):
     Given a valid eos input format, such as 2-D array, an ascii file, or a string, parse, and interpolate
 
     Parameters
-    ----------
-    eos (`numpy.ndarray`, `str`, ASCII TABLE):
+    ==========
+    eos: (numpy.ndarray, str, ASCII TABLE)
         if `numpy.ndarray` then user supplied pressure-density 2D numpy array.
         if `str` then given a valid eos name, relevant preshipped ASCII table will be loaded
-            if ASCII TABLE then given viable file extensions, which include .txt,.dat, etc (np.loadtxt used),
-            read in pressure density from file.
-
-    sampling_flag (`bool`): Do you plan on sampling the parameterized EOS? Highly recommended. Defaults to False.
-
-    warning_flag (`bool`): Keeps track of status of various physical checks on EoS.
-
-    Attributes:
-        msg (str): Human readable string describing the exception.
-        code (int): Exception error code.
+        if ASCII TABLE then given viable file extensions, which include .txt,.dat, etc (np.loadtxt used),
+        read in pressure density from file.
+    sampling_flag: bool
+        Do you plan on sampling the parameterized EOS? Highly recommended. Defaults to False.
+    warning_flag: bool
+        Keeps track of status of various physical checks on EoS.
+
+    Attributes
+    ==========
+    msg: str
+        Human readable string describing the exception.
+    code: int
+        Exception error code.
     """
 
     def __init__(self, eos, sampling_flag=False, warning_flag=False):
@@ -120,11 +123,15 @@ class TabularEOS(object):
         Find value of energy_from_pressure
         as in lalsimulation, return e = K * p**(3./5.) below min pressure
 
-        :param pressure (`float`): pressure in geometerized units.
-        :param interp_type (`str`): String specifying which interpolation type to use.
-                                    Currently implemented: 'CubicSpline', 'linear'.
-
-        :param energy_density (`float`): energy-density in geometerized units.
+        Parameters
+        ==========
+        pressure: float
+            pressure in geometerized units.
+        interp_type: str
+            String specifying which interpolation type to use.
+            Currently implemented: 'CubicSpline', 'linear'.
+        energy_density: float
+            energy-density in geometerized units.
         """
         pressure = np.atleast_1d(pressure)
         energy_returned = np.zeros(pressure.size)
@@ -373,7 +380,7 @@ class TabularEOS(object):
         Given a representation in the form 'energy_density-pressure', plot the EoS in that space.
 
         Parameters
-        ----------
+        ==========
         rep: str
             Representation to plot. For example, plotting in energy_density-pressure space,
             specify 'energy_density-pressure'
@@ -387,7 +394,7 @@ class TabularEOS(object):
             Specifies unit system to plot. Currently can plot in CGS:'cgs', SI:'si', or geometerized:'geom'
 
         Returns
-        -------
+        =======
         fig: matplotlib.figure.Figure
             EOS plot.
         """
@@ -474,7 +481,7 @@ class SpectralDecompositionEOS(TabularEOS):
     arXiv: 1009.0738v2. Inherits from TabularEOS.
 
     Parameters
-    ----------
+    ==========
     gammas: list
         List of adiabatic expansion parameters used
         to construct the equation of state in various
@@ -615,18 +622,21 @@ class SpectralDecompositionEOS(TabularEOS):
 
 
 class EOSFamily(object):
+    """
+    Create a EOS family and get mass-radius information
 
-    """Create a EOS family and get mass-radius information
-
-    Parameters:
-        eos (`object`): Supply a `TabularEOS` class (or subclass)
-        npts (`float`): Number of points to calculate for mass-radius relation.
-                        Default is 500.
-
-    Note:
-        The mass-radius and mass-k2 data should be
-        populated here via the TOV solver upon object construction.
-        """
+    Parameters
+    ==========
+    eos: object
+        Supply a `TabularEOS` class (or subclass)
+    npts: float
+        Number of points to calculate for mass-radius relation. Default is 500.
+
+    Notes
+    =====
+    The mass-radius and mass-k2 data should be
+    populated here via the TOV solver upon object construction.
+    """
     def __init__(self, eos, npts=500):
         self.eos = eos
 
@@ -754,7 +764,7 @@ class EOSFamily(object):
         Given a representation in the form 'm-r', plot the family in that space.
 
         Parameters
-        ----------
+        ==========
         rep: str
             Representation to plot. For example, plotting in mass-radius space, specify 'm-r'
         xlim: list
@@ -767,7 +777,7 @@ class EOSFamily(object):
             Specifies unit system to plot. Currently can plot in CGS:'cgs', SI:'si', or geometerized:'geom'
 
         Returns
-        -------
+        =======
         fig: matplotlib.figure.Figure
             EOS Family plot.
         """
diff --git a/bilby/gw/eos/tov_solver.py b/bilby/gw/eos/tov_solver.py
index 2d0cba62f6f0b17d21730e3cb5be124b258c2279..5b5d7e13260ebff83318ab1478299db1a43f3602 100644
--- a/bilby/gw/eos/tov_solver.py
+++ b/bilby/gw/eos/tov_solver.py
@@ -6,32 +6,9 @@ from scipy.integrate import solve_ivp
 
 class IntegrateTOV:
     """Class that given an initial pressure a mass radius value and a k2-love number
-
-    Attributes:
-        eos (:obj:): .
-        attr2 (:obj:`int`, optional): Description of `attr2`.
-
     """
 
     def __init__(self, eos, eps_0):
-        """Example of docstring on the __init__ method.
-
-        The __init__ method may be documented in either the class level
-        docstring, or as a docstring on the __init__ method itself.
-
-        Either form is acceptable, but the two should not be mixed. Choose one
-        convention to document the __init__ method and be consistent with it.
-
-        Note:
-            Do not include the `self` parameter in the ``Args`` section.
-
-        Args:
-            param1 (str): Description of `param1`.
-            param2 (:obj:`int`, optional): Description of `param2`. Multiple
-                lines are supported.
-            param3 (:obj:`list` of :obj:`str`): Description of `param3`.
-
-        """
         self.eos = eos
         # determine central values
         pseudo_enthalpy0 = self.eos.pseudo_enthalpy_from_energy_density(eps_0)
diff --git a/bilby/gw/likelihood.py b/bilby/gw/likelihood.py
index 519e4d59cec65861232fdce0c4a13f140179db22..c33a67d23ea5a9b642b8b34c77c8797d9e8a08f4 100644
--- a/bilby/gw/likelihood.py
+++ b/bilby/gw/likelihood.py
@@ -38,9 +38,8 @@ class GravitationalWaveTransient(Likelihood):
     domain assuming a colored Gaussian noise model described by a power
     spectral density. See Thrane & Talbot (2019), arxiv.org/abs/1809.02293.
 
-
     Parameters
-    ----------
+    ==========
     interferometers: list, bilby.gw.detector.InterferometerList
         A list of `bilby.detector.Interferometer` instances - contains the
         detector data and power spectral densities
@@ -82,19 +81,22 @@ class GravitationalWaveTransient(Likelihood):
         Default is False, however using this parameter is strongly encouraged.
     reference_frame: (str, bilby.gw.detector.InterferometerList, list), optional
         Definition of the reference frame for the sky location.
-        - "sky": sample in RA/dec, this is the default
-        - e.g., "H1L1", ["H1", "L1"], InterferometerList(["H1", "L1"]):
+
+        - :code:`sky`: sample in RA/dec, this is the default
+        - e.g., :code:`"H1L1", ["H1", "L1"], InterferometerList(["H1", "L1"])`:
           sample in azimuth and zenith, `azimuth` and `zenith` defined in the
           frame where the z-axis is aligned the the vector connecting H1
           and L1.
+
     time_reference: str, optional
         Name of the reference for the sampled time parameter.
-        - "geocent"/"geocenter": sample in the time at the Earth's center,
-          this is the default
-        - e.g., "H1": sample in the time of arrival at H1
+
+        - :code:`geocent`/:code:`geocenter`: sample in the time at the
+          Earth's center, this is the default
+        - e.g., :code:`H1`: sample in the time of arrival at H1
 
     Returns
-    -------
+    =======
     Likelihood: `bilby.core.likelihood.Likelihood`
         A likelihood object, able to compute the likelihood of the data given
         some model parameters
@@ -210,7 +212,7 @@ class GravitationalWaveTransient(Likelihood):
         Compute the snrs
 
         Parameters
-        ----------
+        ==========
         waveform_polarizations: dict
             A dictionary of waveform polarizations and the corresponding array
         interferometer: bilby.gw.detector.Interferometer
@@ -348,13 +350,13 @@ class GravitationalWaveTransient(Likelihood):
 
         See Eq. (C29-C32) of https://arxiv.org/abs/1809.02293
 
-        Return
-        ------
+        Returns
+        =======
         sample: dict
             Returns the parameters with new samples.
 
         Notes
-        -----
+        =====
         This involves a deepcopy of the signal to avoid issues with waveform
         caching, as the signal is overwritten in place.
         """
@@ -390,12 +392,12 @@ class GravitationalWaveTransient(Likelihood):
         See Eq. (C29-C32) of https://arxiv.org/abs/1809.02293
 
         Parameters
-        ----------
+        ==========
         signal_polarizations: dict, optional
             Polarizations modes of the template.
 
         Returns
-        -------
+        =======
         new_time: float
             Sample from the time posterior.
         """
@@ -466,14 +468,14 @@ class GravitationalWaveTransient(Likelihood):
         See Eq. (C29-C32) of https://arxiv.org/abs/1809.02293
 
         Parameters
-        ----------
+        ==========
         signal_polarizations: dict, optional
             Polarizations modes of the template.
             Note: These are rescaled in place after the distance sample is
-                  generated to allow further parameter reconstruction to occur.
+            generated to allow further parameter reconstruction to occur.
 
         Returns
-        -------
+        =======
         new_distance: float
             Sample from the distance posterior.
         """
@@ -527,17 +529,17 @@ class GravitationalWaveTransient(Likelihood):
         See Eq. (C29-C32) of https://arxiv.org/abs/1809.02293
 
         Parameters
-        ----------
+        ==========
         signal_polarizations: dict, optional
             Polarizations modes of the template.
 
         Returns
-        -------
+        =======
         new_phase: float
             Sample from the phase posterior.
 
         Notes
-        -----
+        =====
         This is only valid when assumes that mu(phi) \propto exp(-2i phi).
         """
         self.parameters.update(self.get_sky_frame_parameters())
@@ -845,7 +847,7 @@ class BasicGravitationalWaveTransient(Likelihood):
 
 
         Parameters
-        ----------
+        ==========
         interferometers: list
             A list of `bilby.gw.detector.Interferometer` instances - contains the
             detector data and power spectral densities
@@ -866,7 +868,7 @@ class BasicGravitationalWaveTransient(Likelihood):
         """ Calculates the real part of noise log-likelihood
 
         Returns
-        -------
+        =======
         float: The real part of the noise log likelihood
 
         """
@@ -881,7 +883,7 @@ class BasicGravitationalWaveTransient(Likelihood):
         """ Calculates the real part of log-likelihood value
 
         Returns
-        -------
+        =======
         float: The real part of the log likelihood
 
         """
@@ -901,14 +903,14 @@ class BasicGravitationalWaveTransient(Likelihood):
         """
 
         Parameters
-        ----------
+        ==========
         waveform_polarizations: dict
             Dictionary containing the desired waveform polarization modes and the related strain
         interferometer: bilby.gw.detector.Interferometer
             The Interferometer object we want to have the log-likelihood for
 
         Returns
-        -------
+        =======
         float: The real part of the log-likelihood for this interferometer
 
         """
@@ -930,7 +932,7 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient):
     https://git.ligo.org/lscsoft/ROQ_data.
 
     Parameters
-    ----------
+    ==========
     interferometers: list, bilby.gw.detector.InterferometerList
         A list of `bilby.detector.Interferometer` instances - contains the
         detector data and power spectral densities
@@ -1030,7 +1032,7 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient):
         Compute the snrs for ROQ
 
         Parameters
-        ----------
+        ==========
         waveform_polarizations: waveform
         interferometer: bilby.gw.detector.Interferometer
 
@@ -1098,14 +1100,14 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient):
         Get the closest five times
 
         Parameters
-        ----------
+        ==========
         time: float
             Time to check
         samples: array-like
             Available times
 
         Returns
-        -------
+        =======
         indices: list
             Indices nearest to time
         in_bounds: bool
@@ -1120,7 +1122,7 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient):
         """ Perform checking that the prior and data are valid for the ROQ
 
         Parameters
-        ----------
+        ==========
         ifo: bilby.gw.detector.Interferometer
             The interferometer
         """
@@ -1189,7 +1191,7 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient):
         """ Setup the time-dependent ROQ weights.
 
         Parameters
-        ----------
+        ==========
         linear_matrix, quadratic_matrix: array_like
             Arrays of the linear and quadratic basis
 
@@ -1309,7 +1311,7 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient):
         each detector.
 
         Returns
-        -------
+        =======
         delta_t: float
             Time resolution
         """
@@ -1318,7 +1320,7 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient):
             """
 
             Parameters
-            ----------
+            ==========
             freq: array-like
                 Frequency array
             psd: array-like
@@ -1327,7 +1329,7 @@ class ROQGravitationalWaveTransient(GravitationalWaveTransient):
                 SNR dependent scaling factor
 
             Returns
-            -------
+            =======
             f_high: float
                 The maximum frequency which must be considered
             """
@@ -1369,14 +1371,14 @@ def get_binary_black_hole_likelihood(interferometers):
     """ A wrapper to quickly set up a likelihood for BBH parameter estimation
 
     Parameters
-    ----------
+    ==========
     interferometers: {bilby.gw.detector.InterferometerList, list}
         A list of `bilby.detector.Interferometer` instances, typically the
         output of either `bilby.detector.get_interferometer_with_open_data`
         or `bilby.detector.get_interferometer_with_fake_noise_and_injection`
 
     Returns
-    -------
+    =======
     bilby.GravitationalWaveTransient: The likelihood to pass to `run_sampler`
 
     """
diff --git a/bilby/gw/prior.py b/bilby/gw/prior.py
index 3ffcfb193df6f34ed07deb9689def2adf444bb60..594f6f71126692539a6a66b6e863e3a7886d230a 100644
--- a/bilby/gw/prior.py
+++ b/bilby/gw/prior.py
@@ -40,7 +40,7 @@ def convert_to_flat_in_component_mass_prior(result, fraction=0.25):
     F(mc, q) -> G(m1, m2) is defined as J := m1^2 / mc
 
     Parameters
-    ----------
+    ==========
     result: bilby.core.result.Result
         The output result complete with priors and posteriors
     fraction: float [0, 1]
@@ -162,7 +162,7 @@ class Cosmological(Interped):
         Set either of the limits for redshift, luminosity, and comoving distances
 
         Parameters
-        ----------
+        ==========
         value: float
             Limit value in current class' parameter
         limit_dict: dict
@@ -298,7 +298,7 @@ class UniformInComponentsChirpMass(PowerLaw):
         prior is uniform in component masses.
 
         Parameters
-        ----------
+        ==========
         minimum : float
             The minimum of chirp mass
         maximum : float
@@ -339,7 +339,7 @@ class UniformInComponentsMassRatio(Prior):
         prior is uniform in component masses.
 
         Parameters
-        ----------
+        ==========
         minimum : float
             The minimum of mass ratio
         maximum : float
@@ -390,7 +390,7 @@ class AlignedSpin(Interped):
         This is an extension of e.g., (A7) of https://arxiv.org/abs/1805.10457.
 
         Parameters
-        ----------
+        ==========
         a_prior: Prior
             Prior distribution for spin magnitude
         z_prior: Prior
@@ -503,7 +503,7 @@ class BBHPriorDict(CBCPriorDict):
         """ Initialises a Prior set for Binary Black holes
 
         Parameters
-        ----------
+        ==========
         dictionary: dict, optional
             See superclass
         filename: str, optional
@@ -540,12 +540,12 @@ class BBHPriorDict(CBCPriorDict):
         - source-frame parameters
 
         Parameters
-        ----------
+        ==========
         sample: dict
             Dictionary to convert
 
         Returns
-        -------
+        =======
         sample: dict
             Same as input
         """
@@ -561,14 +561,14 @@ class BBHPriorDict(CBCPriorDict):
         Already existing keys return True.
 
         Parameters
-        ----------
+        ==========
         key: str
             The key to test.
         disable_logging: bool, optional
             Disable logging in this function call. Default is False.
 
-        Return
-        ------
+        Returns
+        ======
         redundant: bool
             Whether the key is redundant or not
         """
@@ -610,7 +610,7 @@ class BNSPriorDict(CBCPriorDict):
         """ Initialises a Prior set for Binary Neutron Stars
 
         Parameters
-        ----------
+        ==========
         dictionary: dict, optional
             See superclass
         filename: str, optional
@@ -647,12 +647,12 @@ class BNSPriorDict(CBCPriorDict):
         - source-frame parameters
 
         Parameters
-        ----------
+        ==========
         sample: dict
             Dictionary to convert
 
         Returns
-        -------
+        =======
         sample: dict
             Same as input
         """
@@ -730,7 +730,7 @@ class CalibrationPriorDict(PriorDict):
         """ Initialises a Prior set for Binary Black holes
 
         Parameters
-        ----------
+        ==========
         dictionary: dict, optional
             See superclass
         filename: str, optional
@@ -747,7 +747,7 @@ class CalibrationPriorDict(PriorDict):
         possible.
 
         Parameters
-        ----------
+        ==========
         outdir: str
             Output directory.
         label: str
@@ -765,12 +765,15 @@ class CalibrationPriorDict(PriorDict):
         """
         Load in the calibration envelope.
 
-        This is a text file with columns:
+        This is a text file with columns
+
+        ::
+
             frequency median-amplitude median-phase -1-sigma-amplitude
             -1-sigma-phase +1-sigma-amplitude +1-sigma-phase
 
         Parameters
-        ----------
+        ==========
         envelope_file: str
             Name of file to read in.
         minimum_frequency: float
@@ -780,10 +783,10 @@ class CalibrationPriorDict(PriorDict):
         n_nodes: int
             Number of nodes for the spline.
         label: str
-            Label for the names of the parameters, e.g., recalib_H1_
+            Label for the names of the parameters, e.g., `recalib_H1_`
 
         Returns
-        -------
+        =======
         prior: PriorDict
             Priors for the relevant parameters.
             This includes the frequencies of the nodes which are _not_ sampled.
@@ -840,7 +843,7 @@ class CalibrationPriorDict(PriorDict):
         This assumes Gaussian fluctuations about 0.
 
         Parameters
-        ----------
+        ==========
         amplitude_sigma: float
             Uncertainty in the amplitude.
         phase_sigma: float
@@ -852,10 +855,10 @@ class CalibrationPriorDict(PriorDict):
         n_nodes: int
             Number of nodes for the spline.
         label: str
-            Label for the names of the parameters, e.g., recalib_H1_
+            Label for the names of the parameters, e.g., `recalib_H1_`
 
         Returns
-        -------
+        =======
         prior: PriorDict
             Priors for the relevant parameters.
             This includes the frequencies of the nodes which are _not_ sampled.
@@ -909,7 +912,7 @@ class HealPixMapPriorDist(BaseJointPriorDist):
     distance distribution along a given line of sight.
 
     Parameters
-    ----------
+    ==========
 
     hp_file : file path to .fits file
         .fits file that containes the 2D or 3D Healpix Map
@@ -920,7 +923,7 @@ class HealPixMapPriorDist(BaseJointPriorDist):
         if this is for a 3D map
 
     Returns
-    -------
+    =======
 
     PriorDist : `bilby.gw.prior.HealPixMapPriorDist`
         A JointPriorDist object to store the joint prior distribution according to passed healpix map
@@ -996,14 +999,14 @@ class HealPixMapPriorDist(BaseJointPriorDist):
         two values (ra, dec) or 3 (ra, dec, dist) if distance is included
 
         Parameters
-        ----------
+        ==========
         samp : float, int
             must take in single value for pixel on unitcube to recale onto ra, dec (distance), for the map Prior
         kwargs : dict
             kwargs are all passed to _rescale() method
 
         Returns
-        -------
+        =======
         rescaled_sample : array_like
             sample to rescale onto the prior
         """
@@ -1033,12 +1036,12 @@ class HealPixMapPriorDist(BaseJointPriorDist):
         given pixel or line of sight.
 
         Parameters
-        ----------
+        ==========
         pix_idx : int
             pixel index value to create the distribtuion for
 
         Returns
-        -------
+        =======
         None : None
             just updates these functions at new pixel values
         """
@@ -1063,12 +1066,12 @@ class HealPixMapPriorDist(BaseJointPriorDist):
         static method to check if array is properlly normalized and if not to normalize it.
 
         Parameters
-        ----------
+        ==========
         array : array_like
             input array we want to renormalize if not already normalized
 
         Returns
-        -------
+        =======
         normed_array : array_like
             returns input array normalized
         """
@@ -1085,14 +1088,14 @@ class HealPixMapPriorDist(BaseJointPriorDist):
         given line of sight
 
         Parameters
-        ----------
+        ==========
         size : int
             number of samples we want to draw
         kwargs : dict
             kwargs are all passed to be used
 
         Returns
-        -------
+        =======
         sample : array_like
             sample of ra, and dec (and distance if 3D=True)
         """
@@ -1118,13 +1121,13 @@ class HealPixMapPriorDist(BaseJointPriorDist):
         the bounds
 
         Parameters
-        ----------
+        ==========
 
         pix : int
             integer for pixel to draw a distance from
 
         Returns
-        -------
+        =======
         dist : float
             sample drawn from the distance distribution at set pixel index
         """
@@ -1142,7 +1145,7 @@ class HealPixMapPriorDist(BaseJointPriorDist):
         Recursive function to uniformly draw ra, and dec values that are located in the given pixel
 
         Parameters
-        ----------
+        ==========
         ra : float, int
             value drawn for rightascension
         dec : float, int
@@ -1151,7 +1154,7 @@ class HealPixMapPriorDist(BaseJointPriorDist):
             pixel index for given pixel we want to get ra, and dec from
 
         Returns
-        -------
+        =======
         ra_dec : tuple
             this returns a tuple of ra, and dec sampled uniformly that are in the pixel given
         """
@@ -1169,7 +1172,7 @@ class HealPixMapPriorDist(BaseJointPriorDist):
         Method that checks if given rightacension and declination values are within the given pixel index and the bounds
 
         Parameters
-        ----------
+        ==========
         ra : float, int
             rightascension value to check
         dec : float, int
@@ -1178,7 +1181,7 @@ class HealPixMapPriorDist(BaseJointPriorDist):
             index for pixel we want to check in
 
         Returns
-        -------
+        =======
         bool :
             returns True if values inside pixel, False if not
         """
@@ -1194,7 +1197,7 @@ class HealPixMapPriorDist(BaseJointPriorDist):
         Overwrites the _lnprob method of BaseJoint Prior
 
         Parameters
-        ----------
+        ==========
         samp : array_like
             samples of ra, dec to evaluate the lnprob at
         lnprob : array_like
@@ -1203,7 +1206,7 @@ class HealPixMapPriorDist(BaseJointPriorDist):
             boolean array that flags samples that are out of the given bounds
 
         Returns
-        -------
+        =======
         lnprob : array_like
             lnprob values at each sample
         """
diff --git a/bilby/gw/result.py b/bilby/gw/result.py
index 80d69f654c364dca37211ac1d16530054f9676e7..7116a5bf82bdb5723f9eba80fcdbf0186d34a599 100644
--- a/bilby/gw/result.py
+++ b/bilby/gw/result.py
@@ -118,12 +118,12 @@ class CompactBinaryCoalescenceResult(CoreResult):
         properties.
 
         Parameters
-        ----------
+        ==========
         detector: str [H1, L1, V1]
             Detector name
 
         Returns
-        -------
+        =======
         injection_properties: dict
             A dictionary of the injection properties
 
@@ -143,7 +143,7 @@ class CompactBinaryCoalescenceResult(CoreResult):
         Plot is saved to {self.outdir}/{self.label}_calibration.{format}
 
         Parameters
-        ----------
+        ==========
         level: float
             Quantile for confidence levels, default=0.9, i.e., 90% interval
         format: str
@@ -230,7 +230,7 @@ class CompactBinaryCoalescenceResult(CoreResult):
         If injection parameters can be found, the injection will be plotted.
 
         Parameters
-        ----------
+        ==========
         interferometers: (list, bilby.gw.detector.InterferometerList, optional)
         level: float, optional
             symmetric confidence interval to show, default is 90%
@@ -272,7 +272,7 @@ class CompactBinaryCoalescenceResult(CoreResult):
         If injection parameters can be found, the injection will be plotted.
 
         Parameters
-        ----------
+        ==========
         interferometer: (str, bilby.gw.detector.interferometer.Interferometer)
             detector to use, if an Interferometer object is passed the data
             will be overlaid on the posterior
@@ -296,7 +296,7 @@ class CompactBinaryCoalescenceResult(CoreResult):
             posterior. Default is 0.2
 
         Returns
-        -------
+        =======
         fig: figure-handle, only is save=False
 
         Notes
@@ -703,7 +703,7 @@ class CompactBinaryCoalescenceResult(CoreResult):
         required the installation of ligo.skymap.
 
         Parameters
-        ----------
+        ==========
         maxpts: int
             Maximum number of samples to use, if None all samples are used
         trials: int
diff --git a/bilby/gw/source.py b/bilby/gw/source.py
index 83a819a77846d58e7366a4cffa3d8ef3e81f41de..96e61afc7c06cab2c57d925d9cda0e2ca20ab08f 100644
--- a/bilby/gw/source.py
+++ b/bilby/gw/source.py
@@ -24,7 +24,7 @@ def lal_binary_black_hole(
     """ A Binary Black Hole waveform model using lalsimulation
 
     Parameters
-    ----------
+    ==========
     frequency_array: array_like
         The frequencies at which we want to calculate the strain
     mass_1: float
@@ -53,34 +53,35 @@ def lal_binary_black_hole(
     kwargs: dict
         Optional keyword arguments
         Supported arguments:
-            waveform_approximant
-            reference_frequency
-            minimum_frequency
-            maximum_frequency
-            catch_waveform_errors
-            pn_spin_order
-            pn_tidal_order
-            pn_phase_order
-            pn_amplitude_order
-            mode_array:
-                Activate a specific mode array and evaluate the model using those
-                modes only.  e.g. waveform_arguments =
-                dict(waveform_approximant='IMRPhenomHM', mode_array=[[2,2],[2,-2])
-                returns the 22 and 2-2 modes only of IMRPhenomHM.  You can only
-                specify modes that are included in that particular model.  e.g.
-                waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
-                mode_array=[[2,2],[2,-2],[5,5],[5,-5]]) is not allowed because the
-                55 modes are not included in this model.  Be aware that some models
-                only take positive modes and return the positive and the negative
-                mode together, while others need to call both.  e.g.
-                waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
-                mode_array=[[2,2],[4,-4]]) returns the 22 and 2-2 of IMRPhenomHM.
-                However, waveform_arguments =
-                dict(waveform_approximant='IMRPhenomXHM', mode_array=[[2,2],[4,-4]])
-                returns the 22 and 4-4 of IMRPhenomXHM.
+
+        - waveform_approximant
+        - reference_frequency
+        - minimum_frequency
+        - maximum_frequency
+        - catch_waveform_errors
+        - pn_spin_order
+        - pn_tidal_order
+        - pn_phase_order
+        - pn_amplitude_order
+        - mode_array:
+          Activate a specific mode array and evaluate the model using those
+          modes only.  e.g. waveform_arguments =
+          dict(waveform_approximant='IMRPhenomHM', mode_array=[[2,2],[2,-2])
+          returns the 22 and 2-2 modes only of IMRPhenomHM.  You can only
+          specify modes that are included in that particular model.  e.g.
+          waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
+          mode_array=[[2,2],[2,-2],[5,5],[5,-5]]) is not allowed because the
+          55 modes are not included in this model.  Be aware that some models
+          only take positive modes and return the positive and the negative
+          mode together, while others need to call both.  e.g.
+          waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
+          mode_array=[[2,2],[4,-4]]) returns the 22 and 2-2 of IMRPhenomHM.
+          However, waveform_arguments =
+          dict(waveform_approximant='IMRPhenomXHM', mode_array=[[2,2],[4,-4]])
+          returns the 22 and 4-4 of IMRPhenomXHM.
 
     Returns
-    -------
+    =======
     dict: A dictionary with the plus and cross polarisation strain modes
     """
     waveform_kwargs = dict(
@@ -103,7 +104,7 @@ def lal_binary_neutron_star(
     """ A Binary Neutron Star waveform model using lalsimulation
 
     Parameters
-    ----------
+    ==========
     frequency_array: array_like
         The frequencies at which we want to calculate the strain
     mass_1: float
@@ -136,34 +137,35 @@ def lal_binary_neutron_star(
     kwargs: dict
         Optional keyword arguments
         Supported arguments:
-            waveform_approximant
-            reference_frequency
-            minimum_frequency
-            maximum_frequency
-            catch_waveform_errors
-            pn_spin_order
-            pn_tidal_order
-            pn_phase_order
-            pn_amplitude_order
-            mode_array:
-                Activate a specific mode array and evaluate the model using those
-                modes only.  e.g. waveform_arguments =
-                dict(waveform_approximant='IMRPhenomHM', mode_array=[[2,2],[2,-2])
-                returns the 22 and 2-2 modes only of IMRPhenomHM.  You can only
-                specify modes that are included in that particular model.  e.g.
-                waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
-                mode_array=[[2,2],[2,-2],[5,5],[5,-5]]) is not allowed because the
-                55 modes are not included in this model.  Be aware that some models
-                only take positive modes and return the positive and the negative
-                mode together, while others need to call both.  e.g.
-                waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
-                mode_array=[[2,2],[4,-4]]) returns the 22 a\nd 2-2 of IMRPhenomHM.
-                However, waveform_arguments =
-                dict(waveform_approximant='IMRPhenomXHM', mode_array=[[2,2],[4,-4]])
-                returns the 22 and 4-4 of IMRPhenomXHM.
+
+        - waveform_approximant
+        - reference_frequency
+        - minimum_frequency
+        - maximum_frequency
+        - catch_waveform_errors
+        - pn_spin_order
+        - pn_tidal_order
+        - pn_phase_order
+        - pn_amplitude_order
+        - mode_array:
+          Activate a specific mode array and evaluate the model using those
+          modes only.  e.g. waveform_arguments =
+          dict(waveform_approximant='IMRPhenomHM', mode_array=[[2,2],[2,-2])
+          returns the 22 and 2-2 modes only of IMRPhenomHM.  You can only
+          specify modes that are included in that particular model.  e.g.
+          waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
+          mode_array=[[2,2],[2,-2],[5,5],[5,-5]]) is not allowed because the
+          55 modes are not included in this model.  Be aware that some models
+          only take positive modes and return the positive and the negative
+          mode together, while others need to call both.  e.g.
+          waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
+          mode_array=[[2,2],[4,-4]]) returns the 22 a\nd 2-2 of IMRPhenomHM.
+          However, waveform_arguments =
+          dict(waveform_approximant='IMRPhenomXHM', mode_array=[[2,2],[4,-4]])
+          returns the 22 and 4-4 of IMRPhenomXHM.
 
     Returns
-    -------
+    =======
     dict: A dictionary with the plus and cross polarisation strain modes
     """
     waveform_kwargs = dict(
@@ -185,7 +187,7 @@ def lal_eccentric_binary_black_hole_no_spins(
     """ Eccentric binary black hole waveform model using lalsimulation (EccentricFD)
 
     Parameters
-    ----------
+    ==========
     frequency_array: array_like
         The frequencies at which we want to calculate the strain
     mass_1: float
@@ -203,34 +205,35 @@ def lal_eccentric_binary_black_hole_no_spins(
     kwargs: dict
         Optional keyword arguments
         Supported arguments:
-            waveform_approximant
-            reference_frequency
-            minimum_frequency
-            maximum_frequency
-            catch_waveform_errors
-            pn_spin_order
-            pn_tidal_order
-            pn_phase_order
-            pn_amplitude_order
-            mode_array:
-                Activate a specific mode array and evaluate the model using those
-                modes only.  e.g. waveform_arguments =
-                dict(waveform_approximant='IMRPhenomHM', mode_array=[[2,2],[2,-2])
-                returns the 22 and 2-2 modes only of IMRPhenomHM.  You can only
-                specify modes that are included in that particular model.  e.g.
-                waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
-                mode_array=[[2,2],[2,-2],[5,5],[5,-5]]) is not allowed because the
-                55 modes are not included in this model.  Be aware that some models
-                only take positive modes and return the positive and the negative
-                mode together, while others need to call both.  e.g.
-                waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
-                mode_array=[[2,2],[4,-4]]) returns the 22 and 2-2 of IMRPhenomHM.
-                However, waveform_arguments =
-                dict(waveform_approximant='IMRPhenomXHM', mode_array=[[2,2],[4,-4]])
-                returns the 22 and 4-4 of IMRPhenomXHM.
+
+        - waveform_approximant
+        - reference_frequency
+        - minimum_frequency
+        - maximum_frequency
+        - catch_waveform_errors
+        - pn_spin_order
+        - pn_tidal_order
+        - pn_phase_order
+        - pn_amplitude_order
+        - mode_array:
+          Activate a specific mode array and evaluate the model using those
+          modes only.  e.g. waveform_arguments =
+          dict(waveform_approximant='IMRPhenomHM', mode_array=[[2,2],[2,-2])
+          returns the 22 and 2-2 modes only of IMRPhenomHM.  You can only
+          specify modes that are included in that particular model.  e.g.
+          waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
+          mode_array=[[2,2],[2,-2],[5,5],[5,-5]]) is not allowed because the
+          55 modes are not included in this model.  Be aware that some models
+          only take positive modes and return the positive and the negative
+          mode together, while others need to call both.  e.g.
+          waveform_arguments = dict(waveform_approximant='IMRPhenomHM',
+          mode_array=[[2,2],[4,-4]]) returns the 22 and 2-2 of IMRPhenomHM.
+          However, waveform_arguments =
+          dict(waveform_approximant='IMRPhenomXHM', mode_array=[[2,2],[4,-4]])
+          returns the 22 and 4-4 of IMRPhenomXHM.
 
     Returns
-    -------
+    =======
     dict: A dictionary with the plus and cross polarisation strain modes
     """
     waveform_kwargs = dict(
@@ -252,7 +255,7 @@ def _base_lal_cbc_fd_waveform(
     """ Generate a cbc waveform model using lalsimulation
 
     Parameters
-    ----------
+    ==========
     frequency_array: array_like
         The frequencies at which we want to calculate the strain
     mass_1: float
@@ -287,7 +290,7 @@ def _base_lal_cbc_fd_waveform(
         Optional keyword arguments
 
     Returns
-    -------
+    =======
     dict: A dictionary with the plus and cross polarisation strain modes
     """
     waveform_approximant = waveform_kwargs['waveform_approximant']
@@ -462,7 +465,7 @@ def _base_roq_waveform(
     See https://git.ligo.org/lscsoft/lalsuite/blob/master/lalsimulation/src/LALSimInspiral.c#L1460
 
     Parameters
-    ----------
+    ==========
     frequency_array: np.array
         This input is ignored for the roq source model
     mass_1: float
@@ -489,7 +492,7 @@ def _base_roq_waveform(
         The phase at coalescence
 
     Waveform arguments
-    ------------------
+    ===================
     Non-sampled extra data used in the source model calculation
     frequency_nodes_linear: np.array
     frequency_nodes_quadratic: np.array
@@ -501,7 +504,7 @@ def _base_roq_waveform(
     loaded as `np.load(filename).T`.
 
     Returns
-    -------
+    =======
     waveform_polarizations: dict
         Dict containing plus and cross modes evaluated at the linear and
         quadratic frequency nodes.
diff --git a/bilby/gw/utils.py b/bilby/gw/utils.py
index abdcfae40adac05190494934833285d4cbfc8f4f..cf7c0f3e65d8cc0edcc584d6caa7830b96dff45a 100644
--- a/bilby/gw/utils.py
+++ b/bilby/gw/utils.py
@@ -30,14 +30,14 @@ def asd_from_freq_series(freq_data, df):
     Calculate the ASD from the frequency domain output of gaussian_noise()
 
     Parameters
-    -------
+    ==========
     freq_data: array_like
         Array of complex frequency domain data
     df: float
         Spacing of freq_data, 1/(segment length) used to generate the gaussian noise
 
     Returns
-    -------
+    =======
     array_like: array of real-valued normalized frequency domain ASD data
 
     """
@@ -50,14 +50,14 @@ def psd_from_freq_series(freq_data, df):
     Calls asd_from_freq_series() and squares the output
 
     Parameters
-    -------
+    ==========
     freq_data: array_like
         Array of complex frequency domain data
     df: float
         Spacing of freq_data, 1/(segment length) used to generate the gaussian noise
 
     Returns
-    -------
+    =======
     array_like: Real-valued normalized frequency domain PSD data
 
     """
@@ -67,8 +67,9 @@ def psd_from_freq_series(freq_data, df):
 def time_delay_geocentric(detector1, detector2, ra, dec, time):
     """
     Calculate time delay between two detectors in geocentric coordinates based on XLALArrivaTimeDiff in TimeDelay.c
+
     Parameters
-    -------
+    ==========
     detector1: array_like
         Cartesian coordinate vector for the first detector in the geocentric frame
         generated by the Interferometer class as self.vertex.
@@ -83,7 +84,7 @@ def time_delay_geocentric(detector1, detector2, ra, dec, time):
         GPS time in the geocentric frame
 
     Returns
-    -------
+    =======
     float: Time delay between the two detectors in the geocentric frame
 
     """
@@ -102,8 +103,9 @@ def get_polarization_tensor(ra, dec, time, psi, mode):
     [u, v, w] represent the Earth-frame
     [m, n, omega] represent the wave-frame
     Note: there is a typo in the definition of the wave-frame in Nishizawa et al.
+
     Parameters
-    -------
+    ==========
     ra: float
         right ascension in radians
     dec: float
@@ -116,7 +118,7 @@ def get_polarization_tensor(ra, dec, time, psi, mode):
         polarisation mode
 
     Returns
-    -------
+    =======
     array_like: A 3x3 representation of the polarization_tensor for the specified mode.
 
     """
@@ -154,7 +156,7 @@ def get_vertex_position_geocentric(latitude, longitude, elevation):
     See Section 2.1 of LIGO-T980044-10 for the correct expression
 
     Parameters
-    -------
+    ==========
     latitude: float
         Latitude in radians
     longitude:
@@ -163,7 +165,7 @@ def get_vertex_position_geocentric(latitude, longitude, elevation):
         Elevation in meters
 
     Returns
-    -------
+    =======
     array_like: A 3D representation of the geocentric vertex position
 
     """
@@ -182,7 +184,7 @@ def inner_product(aa, bb, frequency, PSD):
     Calculate the inner product defined in the matched filter statistic
 
     Parameters
-    -------
+    ==========
     aa, bb: array_like
         Single-sided Fourier transform, created, e.g., by the nfft function above
     frequency: array_like
@@ -190,7 +192,7 @@ def inner_product(aa, bb, frequency, PSD):
     PSD: bilby.gw.detector.PowerSpectralDensity
 
     Returns
-    -------
+    =======
     The matched filter inner product for aa and bb
 
     """
@@ -209,7 +211,7 @@ def noise_weighted_inner_product(aa, bb, power_spectral_density, duration):
     Calculate the noise weighted inner product between two arrays.
 
     Parameters
-    ----------
+    ==========
     aa: array_like
         Array to be complex conjugated
     bb: array_like
@@ -220,7 +222,7 @@ def noise_weighted_inner_product(aa, bb, power_spectral_density, duration):
         duration of the data
 
     Returns
-    ------
+    ======
     Noise-weighted inner product.
     """
 
@@ -234,7 +236,7 @@ def matched_filter_snr(signal, frequency_domain_strain, power_spectral_density,
     This is <signal|frequency_domain_strain> / optimal_snr
 
     Parameters
-    ----------
+    ==========
     signal: array_like
         Array containing the signal
     frequency_domain_strain: array_like
@@ -245,7 +247,7 @@ def matched_filter_snr(signal, frequency_domain_strain, power_spectral_density,
         Time duration of the signal
 
     Returns
-    -------
+    =======
     float: The matched filter signal to noise ratio squared
 
     """
@@ -262,7 +264,7 @@ def optimal_snr_squared(signal, power_spectral_density, duration):
     """
 
     Parameters
-    ----------
+    ==========
     signal: array_like
         Array containing the signal
     power_spectral_density: array_like
@@ -271,7 +273,7 @@ def optimal_snr_squared(signal, power_spectral_density, duration):
         Time duration of the signal
 
     Returns
-    -------
+    =======
     float: The matched filter signal to noise ratio squared
 
     """
@@ -301,12 +303,12 @@ def euler_rotation(delta_x):
     about the z-, y-, and z- axes respectively.
 
     Parameters
-    ----------
+    ==========
     delta_x: array-like (3,)
         Vector onto which (0, 0, 1) should be mapped.
 
     Returns
-    -------
+    =======
     total_rotation: array-like (3,3)
         Rotation matrix which maps vectors from the frame in which delta_x is
         aligned with the z-axis to the target frame.
@@ -343,6 +345,7 @@ def zenith_azimuth_to_theta_phi(zenith, azimuth, ifos):
     Convert from the 'detector frame' to the Earth frame.
 
     Parameters
+    ==========
     kappa: float
         The zenith angle in the detector frame
     eta: float
@@ -351,7 +354,7 @@ def zenith_azimuth_to_theta_phi(zenith, azimuth, ifos):
         List of Interferometer objects defining the detector frame
 
     Returns
-    -------
+    =======
     theta, phi: float
         The zenith and azimuthal angles in the earth frame.
     """
@@ -372,6 +375,7 @@ def zenith_azimuth_to_ra_dec(zenith, azimuth, geocent_time, ifos):
     Convert from the 'detector frame' to the Earth frame.
 
     Parameters
+    ==========
     kappa: float
         The zenith angle in the detector frame
     eta: float
@@ -382,7 +386,7 @@ def zenith_azimuth_to_ra_dec(zenith, azimuth, geocent_time, ifos):
         List of Interferometer objects defining the detector frame
 
     Returns
-    -------
+    =======
     ra, dec: float
         The zenith and azimuthal angles in the sky frame.
     """
@@ -399,26 +403,27 @@ def get_event_time(event):
 
     See https://www.gw-openscience.org/catalog/GWTC-1-confident/html/
     Last update https://arxiv.org/abs/1811.12907:
-        GW150914
-        GW151012
-        GW151226
-        GW170104
-        GW170608
-        GW170729
-        GW170809
-        GW170814
-        GW170817
-        GW170818
-        GW170823
+
+    - GW150914
+    - GW151012
+    - GW151226
+    - GW170104
+    - GW170608
+    - GW170729
+    - GW170809
+    - GW170814
+    - GW170817
+    - GW170818
+    - GW170823
 
     Parameters
-    ----------
+    ==========
     event: str
         Event descriptor, this can deal with some prefixes, e.g.,
         '151012', 'GW151012', 'LVT151012'
 
     Returns
-    ------
+    =======
     event_time: float
         Merger time
     """
@@ -452,7 +457,7 @@ def get_open_strain_data(
     later use
 
     Parameters
-    ----------
+    ==========
     name: str
         The name of the detector to get data for
     start_time, end_time: float
@@ -467,7 +472,7 @@ def get_open_strain_data(
         Passed to `gwpy.timeseries.TimeSeries.fetch_open_data`
 
     Returns
-    -------
+    =======
     strain: gwpy.timeseries.TimeSeries
         The object containing the strain data. If the connection to the open-data server
         fails, this function retruns `None`.
@@ -506,7 +511,7 @@ def read_frame_file(file_name, start_time, end_time, channel=None, buffer_time=0
     later use
 
     Parameters
-    ----------
+    ==========
     file_name: str
         The name of the frame to read
     start_time, end_time: float
@@ -520,7 +525,7 @@ def read_frame_file(file_name, start_time, end_time, channel=None, buffer_time=0
         Passed to `gwpy.timeseries.TimeSeries.fetch_open_data`
 
     Returns
-    -----------
+    =======
     strain: gwpy.timeseries.TimeSeries
 
     """
@@ -581,7 +586,7 @@ def gracedb_to_json(gracedb, cred=None, service_url='https://gracedb.ligo.org/ap
     """ Script to download a GraceDB candidate
 
     Parameters
-    ----------
+    ==========
     gracedb: str
         The UID of the GraceDB candidate
     cred:
@@ -628,7 +633,7 @@ def gw_data_find(observatory, gps_start_time, duration, calibration,
     """ Builds a gw_data_find call and process output
 
     Parameters
-    ----------
+    ==========
     observatory: str, {H1, L1, V1}
         Observatory description
     gps_start_time: float
@@ -643,7 +648,7 @@ def gw_data_find(observatory, gps_start_time, duration, calibration,
         The LDRDataFind query type
 
     Returns
-    -------
+    =======
     output_cache_file: str
         Path to the output cache file
 
@@ -692,11 +697,16 @@ def gw_data_find(observatory, gps_start_time, duration, calibration,
 def build_roq_weights(data, basis, deltaF):
 
     """
-    for a data array and reduced basis compute roq weights
-    basis: (reduced basis element)*invV (the inverse Vandermonde matrix)
-    data: data set
-    PSD: detector noise power spectral density (must be same shape as data)
-    deltaF: integration element df
+    For a data array and reduced basis compute roq weights
+
+    Parameters
+    ==========
+    data: array-like
+        data set
+    basis: array-like
+        (reduced basis element)*invV (the inverse Vandermonde matrix)
+    deltaF: float
+        integration element df
 
     """
     weights = np.dot(data, np.conjugate(basis)) * deltaF * 4.
@@ -712,7 +722,7 @@ def blockwise_dot_product(matrix_a, matrix_b, max_elements=int(2 ** 27),
     processed simultaneously.
 
     Parameters
-    ----------
+    ==========
     matrix_a, matrix_b: array-like
         Matrices to be dot producted, matrix_b is complex conjugated.
     max_elements: int
@@ -721,8 +731,8 @@ def blockwise_dot_product(matrix_a, matrix_b, max_elements=int(2 ** 27),
     out: array-like
         Output array
 
-    Return
-    ------
+    Returns
+    =======
     out: array-like
         Dot producted array
     """
@@ -808,7 +818,7 @@ def lalsim_SimInspiralFD(
     Safely call lalsimulation.SimInspiralFD
 
     Parameters
-    ----------
+    ==========
     phase: float, int
     mass_1: float, int
     mass_2: float, int
@@ -852,7 +862,7 @@ def lalsim_SimInspiralChooseFDWaveform(
     Safely call lalsimulation.SimInspiralChooseFDWaveform
 
     Parameters
-    ----------
+    ==========
     phase: float, int
     mass_1: float, int
     mass_2: float, int
@@ -904,7 +914,7 @@ def lalsim_SimInspiralChooseFDWaveformSequence(
     Safely call lalsimulation.SimInspiralChooseFDWaveformSequence
 
     Parameters
-    ----------
+    ==========
     phase: float, int
     mass_1: float, int
     mass_2: float, int
@@ -974,11 +984,11 @@ def spline_angle_xform(delta_psi):
     Based on the same function in lalinference.bayespputils
 
     Parameters
-    ----------
+    ==========
     delta_psi: calibration phase uncertainity
 
     Returns
-    -------
+    =======
     float: delta_psi in degrees
 
     """
@@ -993,14 +1003,21 @@ def plot_spline_pos(log_freqs, samples, nfreqs=100, level=0.9, color='k', label=
     Adapted from the same function in lalinference.bayespputils
 
     Parameters
-    ----------
-        log_freqs: The (log) location of spline control points.
-        samples: List of posterior draws of function at control points ``log_freqs``
-        nfreqs: Number of points to evaluate spline at for plotting.
-        level: Credible level to fill in.
-        color: Color to plot with.
-        label: Label for plot.
-        xform: Function to transform the spline into plotted values.
+    ==========
+    log_freqs: array-like
+        The (log) location of spline control points.
+    samples: array-like
+        List of posterior draws of function at control points ``log_freqs``
+    nfreqs: int
+        Number of points to evaluate spline at for plotting.
+    level: float
+        Credible level to fill in.
+    color: str
+        Color to plot with.
+    label: str
+        Label for plot.
+    xform: callable
+        Function to transform the spline into plotted values.
 
     """
     freq_points = np.exp(log_freqs)
@@ -1044,17 +1061,18 @@ class PropertyAccessor(object):
     of this class.
 
     This avoids lengthy code like
-    ```
-    @property
-    def length(self):
-        return self.geometry.length
 
-    @length_setter
-    def length(self, length)
-        self.geometry.length = length
+    .. code-block:: python
+
+        @property
+        def length(self):
+            return self.geometry.length
+
+        @length_setter
+        def length(self, length)
+            self.geometry.length = length
 
     in the Interferometer class
-    ```
     """
 
     def __init__(self, container_instance_name, property_name):
diff --git a/bilby/gw/waveform_generator.py b/bilby/gw/waveform_generator.py
index ae4f0fd4b59bc2bf32511da034f20cda463eadc5..41eabe57f82499da432553de3b6d752532150066 100644
--- a/bilby/gw/waveform_generator.py
+++ b/bilby/gw/waveform_generator.py
@@ -21,7 +21,7 @@ class WaveformGenerator(object):
         """ A waveform generator
 
     Parameters
-    ----------
+    ==========
     sampling_frequency: float, optional
         The sampling frequency
     duration: float, optional
@@ -106,18 +106,18 @@ class WaveformGenerator(object):
         Automatically refers to the time_domain_source model via NFFT if no frequency_domain_source_model is given.
 
         Parameters
-        ----------
+        ==========
         parameters: dict, optional
             Parameters to evaluate the waveform for, this overwrites
             `self.parameters`.
             If not provided will fall back to `self.parameters`.
 
         Returns
-        -------
+        =======
         array_like: The frequency domain strain for the given set of parameters
 
         Raises
-        -------
+        =======
         RuntimeError: If no source model is given
 
         """
@@ -136,18 +136,18 @@ class WaveformGenerator(object):
         given.
 
         Parameters
-        ----------
+        ==========
         parameters: dict, optional
             Parameters to evaluate the waveform for, this overwrites
             `self.parameters`.
             If not provided will fall back to `self.parameters`.
 
         Returns
-        -------
+        =======
         array_like: The time domain strain for the given set of parameters
 
         Raises
-        -------
+        =======
         RuntimeError: If no source model is given
 
         """
@@ -201,7 +201,7 @@ class WaveformGenerator(object):
         """ The dictionary of parameters for source model.
 
         Returns
-        -------
+        =======
         dict: The dictionary of parameter key-value pairs
 
         """
@@ -216,7 +216,7 @@ class WaveformGenerator(object):
         (set.symmetric_difference is the opposite of set.intersection)
 
         Parameters
-        ----------
+        ==========
         parameters: dict
             Input parameter dictionary, this is copied, passed to the conversion
             function and has self.waveform_arguments added to it.
@@ -236,7 +236,7 @@ class WaveformGenerator(object):
         Infer the named arguments of the source model.
 
         Returns
-        -------
+        =======
         set: The names of the arguments of the source model.
         """
         if self.frequency_domain_source_model is not None:
diff --git a/bilby/hyper/likelihood.py b/bilby/hyper/likelihood.py
index 25a1ad9abd5a442714c84fb51ef95771f6280918..c5ea8b0f20993f99be8fca07a43da1a74ba980e7 100644
--- a/bilby/hyper/likelihood.py
+++ b/bilby/hyper/likelihood.py
@@ -14,7 +14,7 @@ class HyperparameterLikelihood(Likelihood):
     See Eq. (34) of https://arxiv.org/abs/1809.02293 for a definition.
 
     Parameters
-    ----------
+    ==========
     posteriors: list
         An list of pandas data frames of samples sets of samples.
         Each set may have a different size.
@@ -77,12 +77,12 @@ class HyperparameterLikelihood(Likelihood):
         Convert list of pandas DataFrame object to dict of arrays.
 
         Parameters
-        ----------
+        ==========
         max_samples: int, opt
             Maximum number of samples to take from each posterior,
             default is length of shortest posterior chain.
         Returns
-        -------
+        =======
         data: dict
             Dictionary containing arrays of size (n_posteriors, max_samples)
             There is a key for each shared key in self.posteriors.
diff --git a/bilby/hyper/model.py b/bilby/hyper/model.py
index 925525e68607fd2aaeb65377ae5d84464879e4d3..e5f4cb7bf4b1da6a807be9e02a173af94f73c171 100644
--- a/bilby/hyper/model.py
+++ b/bilby/hyper/model.py
@@ -11,7 +11,7 @@ class Model(object):
     def __init__(self, model_functions=None):
         """
         Parameters
-        ----------
+        ==========
         model_functions: list
             List of functions to compute.
         """
diff --git a/docs/conf.py b/docs/conf.py
index 3f7baa1e30c05be5d907b00a6c97abcb248f3597..66d39d24b462dffcf497fed7fa9df145060ebd42 100644
--- a/docs/conf.py
+++ b/docs/conf.py
@@ -19,7 +19,7 @@
 import os
 import sys
 import bilby
-sys.path.insert(0, os.path.abspath('../bilby/'))
+sys.path.insert(0, os.path.abspath('../'))
 
 # -- General configuration ------------------------------------------------
 
@@ -30,18 +30,26 @@ sys.path.insert(0, os.path.abspath('../bilby/'))
 # Add any Sphinx extension module names here, as strings. They can be
 # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
 # ones.
-extensions = ['sphinx.ext.autodoc', 'sphinx.ext.mathjax', 'numpydoc',
-              'nbsphinx', 'sphinx.ext.autosummary',
-              'sphinx.ext.autosectionlabel', 'sphinx_tabs.tabs']
+extensions = [
+    'sphinx.ext.autodoc',
+    'sphinx.ext.mathjax',
+    'numpydoc',
+    'nbsphinx',
+    'sphinx.ext.autosummary',
+    'sphinx.ext.autosectionlabel',
+    'sphinx_tabs.tabs',
+    "sphinx.ext.viewcode",
+]
+autosummary_generate = True
 
 # Add any paths that contain templates here, relative to this directory.
-templates_path = ['_templates']
+templates_path = ['templates']
 
 # The suffix(es) of source filenames.
 # You can specify multiple suffix as a list of string:
 #
 source_suffix = ['.rst', '.md']
-source_suffix = '.txt'
+source_suffix = ['.txt', ".rst", ".ipynb"]
 
 # The master toctree document.
 master_doc = 'index'
@@ -173,3 +181,6 @@ texinfo_documents = [
 ]
 
 numpydoc_show_class_members = False
+
+# nbsphinx options
+nbsphinx_execute = "never"
diff --git a/docs/conversion.txt b/docs/conversion.txt
deleted file mode 100644
index d773537228bf3bd882ab3ad1131016f42070009a..0000000000000000000000000000000000000000
--- a/docs/conversion.txt
+++ /dev/null
@@ -1,17 +0,0 @@
-==================================================
-Transient gravitational wave parameter conversions
-==================================================
-
-Sometimes it is useful to sample in some parameters and return others in the output.
-E.g., sampling in chirp mass and mass ratio can be much more efficient than sampling in component masses.
-
-We have many functions to do this.
-
-These are used in multiple places:
-- `PriorDict`s have a `conversion_function`, for the GW PriorDicts, these are from this module.
-- `WaveformGenerator`s can use a `parameter_conversion`, again these are from this module.
-- A `conversion_function` can be passed to `run_sampler`, this is done as a post-processing step.
-For CBCs either `generate_all_bbh_parameters` or `generate_all_bns_parameters` can be used.
-
-.. automodule:: bilby.gw.conversion
-    :members:
diff --git a/docs/faq.txt b/docs/faq.txt
index 55063c8f1411d343565fadb33cb1bdc022093c1d..0818b3e4a0ba402316d2a6dcf67dbfd9eaf4f045 100644
--- a/docs/faq.txt
+++ b/docs/faq.txt
@@ -9,11 +9,6 @@ I'm running into latex errors when :code:`bilby` tries to create plots, what sho
 
 Matplotlib can be a little finicky. We wrap plotting commands in a function
 which can set up the rcParams and we use environment variables to allow
-configuration of this. See the docstring of this function for the allowed
-configuration options
-
-
-.. autofunction:: bilby.core.utils.latex_plot_format
-
-
+configuration of this. See the docstring of this :code:`bilby.core.utils.latex_plot_format`
+for the allowed configuration options.
 
diff --git a/docs/gw_eos.txt b/docs/gw_eos.txt
deleted file mode 100644
index 905c43669af6104bbf89d5fc357b92fe2926dd6f..0000000000000000000000000000000000000000
--- a/docs/gw_eos.txt
+++ /dev/null
@@ -1,20 +0,0 @@
-.. gw_eos:
-
-====================================================
-Neutron Star Equation of State Modeling and Sampling
-====================================================
-
-Base class for EOS objects. Initialized with energy-density pressure data from either an 2D array or file. Includes plotting routines for common representations of EOS:
-
-.. autoclass:: bilby.gw.eos.TabularEOS
-   :members:
-
-Spectral decomposition parameterized EOS from Lindblom, 2010 (ArXiv: 1009.0738):
-
-.. autoclass:: bilby.gw.eos.SpectralDecompositionEOS
-   :members:
-
-A Neutron star EOS 'Family'. Constructing this object maps the passed EOS object to its corresponding mass-radius relationship by solving the TOV equations. Also includes plotting routines for mass-radius and several equivalent representations of NS Family:
-
-.. autoclass:: bilby.gw.eos.EOSFamily
-   :members:
diff --git a/docs/gw_likelihood.txt b/docs/gw_likelihood.txt
deleted file mode 100644
index b1a90ea1b8f53497f6f534a62193ac09c2666f31..0000000000000000000000000000000000000000
--- a/docs/gw_likelihood.txt
+++ /dev/null
@@ -1,21 +0,0 @@
-.. gw_likelihood:
-
-=======================================
-Transient gravitational wave likelihood
-=======================================
-
-The likelihood for gravitational waves transient analysis is
-:code:`GravitationalWaveTransient`:
-
-.. autoclass:: bilby.gw.likelihood.GravitationalWaveTransient
-
-The likelihood for gravitational waves transient analysis with an ROQ is
-:code:`ROQGravitationalWaveTransient`:
-
-.. autoclass:: bilby.gw.likelihood.ROQGravitationalWaveTransient
-
-We also provide a simpler likelihood, :code:`BasicGravitationalWaveTransient`:
-
-.. autoclass:: bilby.gw.likelihood.BasicGravitationalWaveTransient
-
-
diff --git a/docs/gw_prior.txt b/docs/gw_prior.txt
index 03c360a52f3beb913feddbad3a6fd323a5e07b9d..1e14afc1b9b44c130ead9fbbee9e47e21f997cb1 100644
--- a/docs/gw_prior.txt
+++ b/docs/gw_prior.txt
@@ -98,35 +98,3 @@ produce priors directly from a Jupyter notebook. You can have a look at one of
 the Bilby tutorials to check how you define and plot priors in a Jupyter notebook:
 `making_priors.ipynb <https://git.ligo.org/lscsoft/bilby/-/blob/master/examples/tutorials/making_priors.ipynb>`_.
 
-Notes on GW-specific priors
-===========================
-
-A Cosmological GW prior, :code:`Cosmological`:
-----------------------------------------------
-
-.. autoclass:: bilby.gw.prior.Cosmological
-   :members:
-
-Uniform in Comoving Volume GW Prior (inherited from Cosmological) :code:`UniformComovingVolume`:
-------------------------------------------------------------------------------------------------
-
-.. autoclass:: bilby.gw.prior.UniformComovingVolume
-   :members:
-
-Uniform in Source Frame GW Prior :code:`UniformSourceFrame`:
-------------------------------------------------------------
-
-.. autoclass:: bilby.gw.prior.UniformSourceFrame
-   :members:
-
-Aligned Spine GW Prior :code:`AlignedSpin`:
--------------------------------------------
-
-.. autoclass:: bilby.gw.prior.AlignedSpin
-   :members:
-
-HealPixMap JointPriorDist (See JointPriors in bilby.core.prior.joint) :code:`HealPixMapPriorDist`:
---------------------------------------------------------------------------------------------------
-
-.. autoclass:: bilby.gw.prior.HealPixMapPriorDist
-   :members:
diff --git a/docs/index.txt b/docs/index.txt
index 4f4074a62eb4a9f34e41e44923a182cc56c285f4..efdbda91f0adf10e31725228d88118eff7535723 100644
--- a/docs/index.txt
+++ b/docs/index.txt
@@ -5,7 +5,7 @@ Welcome to bilby's documentation!
     :members:
 
 .. toctree::
-   :maxdepth: 3
+   :maxdepth: 1
    :caption: Contents:
 
    installation
@@ -23,10 +23,32 @@ Welcome to bilby's documentation!
    gw_prior
    conversion
    gw_references
-   gw_eos
    writing-documentation
    hyperparameters
    containers
    faq
 
+.. toctree::
+   :maxdepth: 1
+   :caption: Examples:
+
+   making_priors
+   compare_samplers
+   fitting_with_x_and_y_errors
+   visualising_the_results
+
+.. currentmodule:: bilby
+
+API:
+----
+
+.. autosummary::
+   :toctree: api
+   :template: custom-module-template.rst
+   :caption: API:
+   :recursive:
+
+    core
+    gw
+    hyper
 
diff --git a/docs/likelihood.txt b/docs/likelihood.txt
index 0896768829da6758e0a7dbe33b072704d9161ead..46c38102bc83d2e06d8476eb4b5a5502fa181898 100644
--- a/docs/likelihood.txt
+++ b/docs/likelihood.txt
@@ -213,10 +213,7 @@ instantiating the likelihood::
           return -0.5 * (np.sum((res / sigma)**2)
                          + self.N*np.log(2*np.pi*sigma**2))
 
-We provide this general-purpose class as part of bilby:
-
-.. autoclass:: bilby.core.likelihood.GaussianLikelihood
-   :members:
+We provide this general-purpose class as part of bilby :code:`bilby.core.likelihood.GaussianLikleihood`
 
 An example using this likelihood can be found `on this page <https://git.ligo.org/lscsoft/bilby/blob/master/examples/other_examples/linear_regression_unknown_noise.py>`_.
 
@@ -226,19 +223,12 @@ Common likelihood functions
 As well as the Gaussian likelihood defined above, bilby provides
 the following common likelihood functions:
 
-.. autoclass:: bilby.core.likelihood.PoissonLikelihood
-   :members:
-
-.. autoclass:: bilby.core.likelihood.StudentTLikelihood
-   :members:
-
-.. autoclass:: bilby.core.likelihood.ExponentialLikelihood
-   :members:
+- :code:`bilby.core.likelihood.PoissonLikelihood`
+- :code:`bilby.core.likelihood.StudentTLikelihood`
+- :code:`bilby.core.likelihood.ExponentialLikelihood`
 
 Empty likelihood for subclassing
 --------------------------------
 
 We provide an empty parent class which can be subclassed for alternative use
-cases
-
-.. autoclass:: bilby.Likelihood
+cases :code:`bilby.Likelihood`
diff --git a/docs/prior.txt b/docs/prior.txt
index cea75744c1ce37145b97422aaad4dc1f9e5c984f..2789e4726b69e1956928b253a8f89595f8975605 100644
--- a/docs/prior.txt
+++ b/docs/prior.txt
@@ -51,27 +51,12 @@ which provides extra functionality. For example, to sample from the prior:
    >>> priors.sample()
    {'a': 0.1234, 'b': 4.5232}
 
-Here is the detailed API information:
-
-.. autoclass:: bilby.core.prior.PriorDict
-   :members:
-
-   .. automethod:: __init__
-
 -----------------------
 Available prior classes
 -----------------------
 
-We have provided a number of standard priors. Here we document a few of them,
-note that this list is incomplete.
-
-.. autoclass:: bilby.core.prior.Uniform
-   :members:
-   :special-members:
-
-.. autoclass:: bilby.core.prior.Gaussian
-   :members:
-   :special-members:
+We have provided a number of standard priors.
+An exhaustive list can be found in the API section.
 
 ---------------------------
 Multivariate Gaussian prior
@@ -113,13 +98,7 @@ a :class:`bilby.core.prior.MultivariateGaussian` prior for each parameter, e.g.:
    >>> priors['a'] = bilby.core.prior.MultivariateGaussian(mvg, 'a')
    >>> priors['b'] = bilby.core.prior.MultivariateGaussian(mvg, 'b')
 
-The detailed API information for the distribution and prior classes are below:
-
-.. autoclass:: bilby.core.prior.MultivariateGaussianDist
-   :members:
-
-.. autoclass:: bilby.core.prior.MultivariateGaussian
-   :members:
+The detailed API information for the distribution and prior classes can be found in the API section.
 
 -----------------------
 Defining your own prior
@@ -127,10 +106,6 @@ Defining your own prior
 
 You can define your own by subclassing the :code:`bilby.prior.Prior` class.
 
-.. autoclass:: bilby.core.prior.Prior
-   :members:
-   :special-members:
-
 -----------------
 Prior Constraints
 -----------------
@@ -194,6 +169,3 @@ Sample from this distribution and plot the samples.
     plt.show()
     plt.close()
 
-------
-
-
diff --git a/docs/samplers.txt b/docs/samplers.txt
index 9ec78dd04c7140d51c5d3bda87b40130e1a3d5f0..a36471a5a1d1e9b39ab4e57e11454b3ba7057e9b 100644
--- a/docs/samplers.txt
+++ b/docs/samplers.txt
@@ -9,9 +9,7 @@ using the :code:`run_sampler` function. This is the core interface which you sho
 use to setup a sampler and switch between different samplers easily.
 
 This can be accessed via :code:`bilby.run_sampler` or
-:code:`bilby.sampler.run_sampler`. Here is the detailed API information:
-
-.. autofunction:: bilby.run_sampler
+:code:`bilby.core.sampler.run_sampler`.
 
 --------------------------
 Switching between samplers
@@ -34,7 +32,7 @@ handle this, we allow the user to pass arbitrary `keyword arguments
 :code:`run_sampler`. To document what keyword arguments are available, below we
 give the API for each sampler. In each of these, there is an "Other Parameters"
 section which contains information on all the available keyword arguments that
-sampler takes. For example, to use the dynesty_ sampler with 250 live points,
+sampler takes. For example, to use the :code:`dynesty` sampler with 250 live points,
 you would use
 
 .. code-block:: python
@@ -55,63 +53,21 @@ recommended for direct use by the user, rather it should be accessed via the
 Nested Samplers
 ---------------
 
-Dynesty
-=======
-
-.. autoclass:: bilby.core.sampler.dynesty.Dynesty
-
-
-Nestle
-======
-
-.. autoclass:: bilby.core.sampler.nestle.Nestle
-
-
-CPNest
-======
-
-.. autoclass:: bilby.core.sampler.cpnest.Cpnest
-
-
-PyMultinest
-===========
-
-.. autoclass:: bilby.core.sampler.pymultinest.Pymultinest
-
-
-PyPolyChord
-===========
-
-.. autoclass:: bilby.core.sampler.polychord.PyPolyChord
-
-UltraNest
-=========
-
-.. autoclass:: bilby.core.sampler.ultranest.Ultranest
-
-Dnest4
-=========
-
-.. autoclass:: bilby.core.sampler.dnest4.Dnest4
+- Dynesty: :code:`bilby.core.sampler.dynesty.Dynesty`
+- Nestle :code:`bilby.core.sampler.nestle.Nestle`
+- CPNest :code:`bilby.core.sampler.cpnest.Cpnest`
+- PyMultiNest :code:`bilby.core.sampler.pymultinest.Pymultinest`
+- PyPolyChord :code:`bilby.core.sampler.polychord.PyPolyChord`
+- UltraNest :code:`bilby.core.sampler.ultranest.Ultranest`
+- DNest4 :code:`bilby.core.sampler.dnest4.DNest4`
 
 -------------
 MCMC samplers
 -------------
 
-Emcee
-=====
-
-.. autoclass:: bilby.core.sampler.emcee.Emcee
-
-PTEmcee
-=======
-
-.. autoclass:: bilby.core.sampler.ptemcee.Ptemcee
-
-pymc3
-=====
-
-.. autoclass:: bilby.core.sampler.pymc3.Pymc3
+- emcee :code:`bilby.core.sampler.emcee.Emcee`
+- ptemcee :code:`bilby.core.sampler.ptemcee.Ptemcee`
+- pymc3 :code:`bilby.core.sampler.pymc3.Pymc3`
 
 
 -------------------
@@ -207,21 +163,3 @@ enable this, we have base classes which can be subclassed. Below we provide the
 API for reference, note that the :code:`NestedSampler` and :code:`MCMCSampler`
 inherit from the :code:`Sampler` class.
 
-A base Sampler class
-====================
-
-.. autoclass:: bilby.core.sampler.base_sampler.Sampler
-   :members:
-
-A Nested Sampler class
-===========================
-
-.. autoclass:: bilby.core.sampler.base_sampler.NestedSampler
-   :members:
-
-A MCMC Sampler class
-===========================
-
-
-.. autoclass:: bilby.core.sampler.base_sampler.MCMCSampler
-   :members:
diff --git a/docs/templates/custom-class-template.rst b/docs/templates/custom-class-template.rst
new file mode 100644
index 0000000000000000000000000000000000000000..efab7a95410fbe876b4bdeb51f45101e08230499
--- /dev/null
+++ b/docs/templates/custom-class-template.rst
@@ -0,0 +1,33 @@
+{{ fullname | escape | underline}}
+
+.. currentmodule:: {{ module }}
+
+.. autoclass:: {{ objname }}
+   :members:
+   :show-inheritance:
+   :inherited-members:
+
+   {% block methods %}
+   .. automethod:: __init__
+   .. automethod:: __call__
+
+   {% if methods %}
+   .. rubric:: {{ _('Methods') }}
+
+   .. autosummary::
+   {% for item in methods %}
+      ~{{ name }}.{{ item }}
+   {%- endfor %}
+   {% endif %}
+   {% endblock %}
+
+   {% block attributes %}
+   {% if attributes %}
+   .. rubric:: {{ _('Attributes') }}
+
+   .. autosummary::
+   {% for item in attributes %}
+      ~{{ name }}.{{ item }}
+   {%- endfor %}
+   {% endif %}
+   {% endblock %}
diff --git a/docs/templates/custom-module-template.rst b/docs/templates/custom-module-template.rst
new file mode 100644
index 0000000000000000000000000000000000000000..aeda5b733df1cc0755582b350c6e9d8de9f9585e
--- /dev/null
+++ b/docs/templates/custom-module-template.rst
@@ -0,0 +1,73 @@
+{{ fullname | escape | underline}}
+
+.. currentmodule:: {{ fullname }}
+
+.. automodule:: {{ fullname }}
+
+   {% block attributes %}
+   {% if attributes %}
+   .. rubric:: Module Attributes
+
+   .. autosummary::
+      :toctree:
+   {% for item in attributes %}
+      {% set _path = item.split('.') %}
+      {{ _path[-1] }}
+   {%- endfor %}
+   {% endif %}
+   {% endblock %}
+
+   {% block functions %}
+   {% if functions %}
+   .. rubric:: {{ _('Functions') }}
+
+   .. autosummary::
+      :toctree:
+   {% for item in functions %}
+      {% set _path = item.split('.') %}
+      {{ _path[-1] }}
+   {%- endfor %}
+   {% endif %}
+   {% endblock %}
+
+   {% block classes %}
+   {% if classes %}
+   .. rubric:: {{ _('Classes') }}
+
+   .. autosummary::
+      :toctree:
+      :template: custom-class-template.rst
+   {% for item in classes %}
+      {% set _path = item.split('.') %}
+      {{ _path[-1] }}
+   {%- endfor %}
+   {% endif %}
+   {% endblock %}
+
+   {% block exceptions %}
+   {% if exceptions %}
+   .. rubric:: {{ _('Exceptions') }}
+
+   .. autosummary::
+      :toctree:
+   {% for item in exceptions %}
+      {% set _path = item.split('.') %}
+      {{ _path[-1] }}
+   {%- endfor %}
+   {% endif %}
+   {% endblock %}
+
+{% block modules %}
+{% if modules %}
+.. rubric:: Modules
+
+.. autosummary::
+   :toctree:
+   :template: custom-module-template.rst
+   :recursive:
+{% for item in modules %}
+   {% set _path = item.split('.') %}
+   {{ _path[-1] }}
+{%- endfor %}
+{% endif %}
+{% endblock %}
diff --git a/docs/transient-gw-data.txt b/docs/transient-gw-data.txt
index 9f076a5eb4165b1a24bd09836196830b0704e1b3..78501e6d56b10110b46e3be839adf9b1a1d1ec49 100644
--- a/docs/transient-gw-data.txt
+++ b/docs/transient-gw-data.txt
@@ -72,11 +72,6 @@ this can also be done::
                                                        duration=duration,
                                                        start_time=start_time)
 
-Here is the full API:
-
-.. automethod:: bilby.gw.detector.Interferometer.set_strain_data_from_frequency_domain_strain
-
-
 Setting the strain data to be Gaussian noise
 ============================================
 
@@ -84,18 +79,18 @@ Often, for testing, you may want to just generate a realization of coloured
 Gaussian noise from the power spectral density. This can be done using this
 method:
 
-.. automethod:: bilby.gw.detector.Interferometer.set_strain_data_from_power_spectral_density
+   >>> H1.set_strain_data_from_power_spectral_density
 
 Setting the strain data to be zero noise
 ========================================
 
 You can also set the strain data without any noise at all
 
-.. automethod:: bilby.gw.detector.Interferometer.set_strain_data_from_zero_noise
+   >>> H1.set_strain_data_from_zero_noise
 
 Injecting a signal
 ------------------
 
 If you wish to inject a signal into the data, you can use this function
 
-.. automethod:: bilby.gw.detector.Interferometer.inject_signal
+   >>> bilby.gw.detector.Interferometer.inject_signal
diff --git a/docs/writing-documentation.txt b/docs/writing-documentation.txt
index 45bd1494023940272417b955918551e460152fff..34c1402f2442ac9aa26779fbd92e74367b01f377 100644
--- a/docs/writing-documentation.txt
+++ b/docs/writing-documentation.txt
@@ -81,20 +81,12 @@ You would write::
 reStructured text is very powerful, but can be quite particular. For example,
 **all code blocks must be indented by 3 spaces**.
 
-Sphinx autodoc
---------------
+Sphinx autosummary
+------------------
 
 Most of the documentation for ``bilby`` should be written in the `docstrings
-<https://www.python.org/dev/peps/pep-0257/>`_ of the functions themselves. We
-can add these into the online documentation using `autodoc
-<http://www.sphinx-doc.org/en/master/ext/autodoc.html>`_. To add the documentation
-for a class, add a line such as::
-
-   .. autoclass:: bilby.likelihood.GravitationalWaveTransient
-       :members:
-
-into your documentation file. Similarly, to document a function::
-
-   .. autofunction:: bilby.sampler.run_sampler
-
+<https://www.python.org/dev/peps/pep-0257/>`_ of the functions/classes themselves. We
+can add these into the online documentation using `autosummary
+<https://www.sphinx-doc.org/en/master/usage/extensions/autosummary.html>`_.
+New code should automatically be added to the API tree.
 
diff --git a/examples/tutorials/basic_ptmcmc_tutorial.ipynb b/examples/tutorials/basic_ptmcmc_tutorial.ipynb
index 1c1874afcc904e28c02aaecbacf32e1d5966a221..d465dcfc1e18870a1ff7de16460c841bdc5fd2e5 100644
--- a/examples/tutorials/basic_ptmcmc_tutorial.ipynb
+++ b/examples/tutorials/basic_ptmcmc_tutorial.ipynb
@@ -2,17 +2,9 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "14:35 bilby INFO    : Running bilby version: 0.3.1: (CLEAN) 06cce8b 2018-10-18 05:02:54 -0500\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "from __future__ import division, print_function\n",
     "import matplotlib.pyplot as plt\n",
@@ -38,7 +30,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -78,69 +70,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/home/c1572221/src/bilby/bilby/gw/detector.py:1986: RuntimeWarning: invalid value encountered in multiply\n",
-      "  frequency_domain_strain = self.__power_spectral_density_interpolated(frequencies) ** 0.5 * white_noise\n",
-      "14:36 bilby INFO    : Injected signal in H1:\n",
-      "14:36 bilby INFO    :   optimal SNR = 12.09\n",
-      "14:36 bilby INFO    :   matched filter SNR = 10.88-0.37j\n",
-      "14:36 bilby INFO    :   luminosity_distance = 2000.0\n",
-      "14:36 bilby INFO    :   psi = 2.659\n",
-      "14:36 bilby INFO    :   a_2 = 0.3\n",
-      "14:36 bilby INFO    :   a_1 = 0.4\n",
-      "14:36 bilby INFO    :   geocent_time = 1126259642.41\n",
-      "14:36 bilby INFO    :   tilt_2 = 1.0\n",
-      "14:36 bilby INFO    :   phi_jl = 0.3\n",
-      "14:36 bilby INFO    :   ra = 1.375\n",
-      "14:36 bilby INFO    :   phase = 1.3\n",
-      "14:36 bilby INFO    :   mass_2 = 29.0\n",
-      "14:36 bilby INFO    :   mass_1 = 36.0\n",
-      "14:36 bilby INFO    :   phi_12 = 1.7\n",
-      "14:36 bilby INFO    :   dec = -1.2108\n",
-      "14:36 bilby INFO    :   iota = 0.4\n",
-      "14:36 bilby INFO    :   tilt_1 = 0.5\n",
-      "14:36 bilby INFO    : Injected signal in L1:\n",
-      "14:36 bilby INFO    :   optimal SNR = 9.79\n",
-      "14:36 bilby INFO    :   matched filter SNR = 10.00+0.07j\n",
-      "14:36 bilby INFO    :   luminosity_distance = 2000.0\n",
-      "14:36 bilby INFO    :   psi = 2.659\n",
-      "14:36 bilby INFO    :   a_2 = 0.3\n",
-      "14:36 bilby INFO    :   a_1 = 0.4\n",
-      "14:36 bilby INFO    :   geocent_time = 1126259642.41\n",
-      "14:36 bilby INFO    :   tilt_2 = 1.0\n",
-      "14:36 bilby INFO    :   phi_jl = 0.3\n",
-      "14:36 bilby INFO    :   ra = 1.375\n",
-      "14:36 bilby INFO    :   phase = 1.3\n",
-      "14:36 bilby INFO    :   mass_2 = 29.0\n",
-      "14:36 bilby INFO    :   mass_1 = 36.0\n",
-      "14:36 bilby INFO    :   phi_12 = 1.7\n",
-      "14:36 bilby INFO    :   dec = -1.2108\n",
-      "14:36 bilby INFO    :   iota = 0.4\n",
-      "14:36 bilby INFO    :   tilt_1 = 0.5\n"
-     ]
-    },
-    {
-     "data": {
-      "text/plain": [
-       "[{'cross': array([0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j]),\n",
-       "  'plus': array([-0.-0.j, -0.-0.j, -0.-0.j, ..., -0.-0.j, -0.-0.j,\n",
-       "         -0.-0.j])},\n",
-       " {'cross': array([0.+0.j, 0.+0.j, 0.+0.j, ..., 0.+0.j, 0.+0.j, 0.+0.j]),\n",
-       "  'plus': array([-0.-0.j, -0.-0.j, -0.-0.j, ..., -0.-0.j, -0.-0.j,\n",
-       "         -0.-0.j])}]"
-      ]
-     },
-     "execution_count": 3,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
+   "outputs": [],
    "source": [
     "# Create the waveform_generator using a LAL BinaryBlackHole source function\n",
     "waveform_generator = bilby.gw.WaveformGenerator(\n",
@@ -169,7 +101,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -188,7 +120,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -213,7 +145,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -244,7 +176,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -258,75 +190,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
-   "metadata": {
-    "scrolled": false
-   },
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "14:36 bilby INFO    : Running for label 'label', output will be saved to 'outdir'\n",
-      "14:36 bilby INFO    : Search parameters:\n",
-      "14:36 bilby INFO    :   mass_2 = Uniform(minimum=10, maximum=80, name='mass_1', latex_label='$m_1$', unit='$M_{\\\\\\\\odot}$')\n",
-      "14:36 bilby INFO    :   mass_1 = Uniform(minimum=10, maximum=80, name='mass_1', latex_label='$m_1$', unit='$M_{\\\\\\\\odot}$')\n",
-      "14:36 bilby INFO    :   phi_jl = 0.3\n",
-      "14:36 bilby INFO    :   dec = -1.2108\n",
-      "14:36 bilby INFO    :   psi = 2.659\n",
-      "14:36 bilby INFO    :   a_2 = 0.3\n",
-      "14:36 bilby INFO    :   a_1 = 0.4\n",
-      "14:36 bilby INFO    :   geocent_time = 1126259642.41\n",
-      "14:36 bilby INFO    :   luminosity_distance = 2000.0\n",
-      "14:36 bilby INFO    :   ra = 1.375\n",
-      "14:36 bilby INFO    :   phase = 1.3\n",
-      "14:36 bilby INFO    :   phi_12 = 1.7\n",
-      "14:36 bilby INFO    :   tilt_2 = 1.0\n",
-      "14:36 bilby INFO    :   iota = 0.4\n",
-      "14:36 bilby INFO    :   tilt_1 = 0.5\n",
-      "14:36 bilby INFO    : Single likelihood evaluation took 1.670e-03 s\n",
-      "14:36 bilby INFO    : Using sampler PTMCMCSampler with kwargs {'Niter': 10000, 'Tskip': 100, 'verbose': True, 'covUpdate': 1000, 'ladder': None, 'burn': 5000, 'NUTSweight': 0, 'AMweight': 1, 'logl_grad': None, 'HMCstepsize': 0.1, 'groups': None, 'Tmax': None, 'Tmin': 1, 'HMCsteps': 300, 'p0': None, 'neff': 10000, 'logp_grad': None, 'HMCweight': 0, 'loglkwargs': {}, 'custom_proposals': {'normal': [<bound method NormJump.normjump of <__main__.NormJump object at 0x7f2ee3cf7e10>>, 5], 'uniform': [<bound method UniformJump.unjump of <__main__.UniformJump object at 0x7f2ee3cf7d50>>, 1]}, 'logpargs': {}, 'MALAweight': 0, 'loglargs': {}, 'DEweight': 1, 'thin': 1, 'isave': 1000, 'outDir': None, 'SCAMweight': 1, 'logpkwargs': {}}\n",
-      "14:36 bilby INFO    : Adding normal to proposals with weight 5\n",
-      "14:36 bilby INFO    : Adding uniform to proposals with weight 1\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Finished 50.00 percent in 26.952440 s Acceptance rate = 0.1046667Adding DE jump with weight 1\n",
-      "Finished 90.00 percent in 47.835580 s Acceptance rate = 0.140667"
-     ]
-    },
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "14:37 bilby INFO    : Sampling time: 0:00:53.551375\n",
-      "14:37 bilby ERROR   : \n",
-      "\n",
-      " Saving the data has failed with the following message:\n",
-      " Can't pickle <type 'instancemethod'>: attribute lookup __builtin__.instancemethod failed \n",
-      "\n",
-      "\n",
-      "14:37 bilby INFO    : Results saved to outdir/\n",
-      "14:37 bilby INFO    : Summary of results:\n",
-      "nsamples: 4000\n",
-      "log_noise_evidence: -8086.279\n",
-      "log_evidence:    nan +/-    nan\n",
-      "log_bayes_factor:    nan +/-    nan\n",
-      "\n"
-     ]
-    },
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "\n",
-      "Run Complete\n"
-     ]
-    }
-   ],
+   "execution_count": null,
+   "metadata": {},
+   "outputs": [],
    "source": [
     "# Initialise the likelihood by passing in the interferometer data (ifos) and\n",
     "# the waveoform generator\n",
@@ -338,21 +204,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 10,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAGGCAYAAACE+xF/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXl8VNX5+P8+s08m+wJhDQQQQZRdUdwFbV1b19paPrZVsNrFVj9aW621X1oVq7U/W1vQtvrpYlW0LrXWiqK4goioiIKQAGEnkH2SWTLn98csTCYzycxk5t47k/N+vXiRu57nybl57rnPec7zCCklCoVCocgPTHoLoFAoFIrMoYy6QqFQ5BHKqCuyihBioRBiXuj/2gTnXBw6Z6kQYkac4zcJIUqzL61Ckfsoo67ICPEMdshAj5NSrpBSLgPuTnDOLVLKFcCTseeEjPmi7EitUOQfyqgrMsXFcfbNA96L2u41CpdSrgPOiDr+cswps4C6TAioUAwGlFFXZJOK2B3x3ChSymYhxMXAbCnlkqhza1EGXaFICYveAihSI2QUF4Y2ZwN1UsqbY85ZGLVZGm0oE9wz4flCiLuBO6WUzQOTvG+klMuFEM1CiCellJeEdtdKKVcIIbLZtEKRVyijnnvcEm3EhRDvCyHuDu+L/jm0PUMIcVMiw57E+RcDN8UxrLcB3qjt+VHnNId86AeB8uiLYl8OIZ96rZRyObCWkPsltH9tX78IhULRG2XUc4jQKP1gzO6lBCcXw4a5h99aSrlOCHFLH7ft7/zloTaiWSSlXBwjG3FeHCuAy6K266LOLw0Z+HlRx6PdLbVAbehFUQtcKoR4IttfDApFrqN86rlFLXB3TNjfIaCHn1oI8WTYdy2EmAc83tdNE50f2rdUSlkX/kfQCN+ZjLChSdCtoXDFm+gZxVIfMuxLgLBPfRFwSeja5aHRe3PU/ZRBVyj6Qag0AbmFEGJeKPwvvL2UoPtifmi7Fng/dPhOgj735X3cL+nzQy+T8uj2o44tDLlcFAqFjiijnsOERtL1wBmhUXF4/0JgPkF/+PKoicdE90nqfCHEUimlihlXKAyMcr/kNg8Bl8QY9KXAipBhng/ME0I8megGyZ4fco+8H7tfoVAYC2XUc5RQqOHSGFfMDIKRJ3UAoWNjCRrqXvHhKZ6/iDRixlWaAIVCW5RRz0FCo+aXwwY9yhCWA1ujzw1NLj6R4FapnD+PFI26ShOgUGiPMuo5Rig6pRxYK4QoDRm9cFjgWkLRI1HnlxIcjTeHtmdELTbq9/zQvrgj7CRQaQIUCo1Rceo5RMjgho1edOz4cogst18Ucs0cJBgOWBqz4nQewdjxZUmeH82hFEWuIMYgR8WnR4hJE3BJ1LkqTYBCkSIq+kWRNUIvi/fCIZJCiK3AzETx5qGvkEVhwx4O3xRCvExwQljFqSsU/aBG6oq0Cblx4k1grgv5yFWaAIVCY5RRV6RNEouNVJoAhUJjlFFXZI1QHplZIbfKDHqnCRgrpVwSCne8mGCcfCRNAERcMuH7KYOuUPSD8qkrFApFHqFCGhUKhSKPUEZdoVAo8ghl1BUKhSKPUEZdoVAo8ggV/RLFkiVLZGmpfnmjQtWDNG1z68EuAMZVOLLeVrL6aSlTJtmzZ0/j7bffXqW3HIrBjTLqUZSWlrJw4cL+T8wSzc3N6PlSyTb5rt8dd9yxXW8ZFArlfjEQfr9fbxGySr7rp1AYAWXUDYTJpH133PJCPbe8UK9JW8nqp6VMCkW+odwvBqKgoEDzNt/Z3qpZW8nqp6VMCkW+oUbqBsLj8egtQlbJd/0UCiOgjLqB8Pl8eouQVfJdP4XCCCijbiBCGQnzlnzXT6EwAsqnbiAKCws1b3NkiV2ztpLVT0uZFIp8Qxl1A+HxeLDbtTVof/3akZq1lax+WsqkUOQbyv1iILxer94iZJV810+hMALKqA9yrn9mK9c/s1VvMXpgRJkUilxBuV8MhB4+9fW72zVrK1n9tJRJocg3lFE3EF6vF4fDuEmsxixezfamYKx5TZmdbbcel9L1RtdPocgHlFE3EEb3OW9v8iDvPRkAccOqlK83un4KRT6gfOoKhUKRR6iRuoFwuVyat3lElVOztpLVT0uZFIp8Qxl1A6FHatpllxyhWVvJ6qelTApFvqHcLwYi3xNe5bt+CoURUEZ9kLPwyc0sfHKz3mL0wIgyKRS5gnK/GAg9fOqbD3Rq1lay+mkpk0KRb6iRuoEIBAJ6i5BV8l0/hcIIKKNuIDo783uEmu/6KRRGQBl1hUKhyCOUT91A6FGjdNpw7fLNJKufljIpFPmGMuqDnPu/NE5vEXphRJkUilxBuV8MhNvt1luErJLv+ikURkAZ9UHOFX/7jCv+9pneYvTAiDIpFLmCcr8YCKdT+5wnO1u0W+WZrH5ayqRQ5BtqpG4gTKb87o5810+hMAJqpG4gOjo6dBmta0Vf+kUX4LBbBHNqirUUTaHIG5RRVxiCgRbgUCgUQZRRNxB2u13zNo/XcEScin5ayqVQ5BPKqBsIi0X77rjznLGatZWKflrKpVDkE2rmykB0dHToLUJWyXf9FAojoIz6IOeiRzZy0SMb9RajF0aUSaHIBZT7xUDYbDbN2zzo9mnWVir6aSmXQpFPqJG6gdDDqGtJvuunUBgBZdQNRHt7u94iZJV810+hMALK/aKIS/RioJoyO9tuPU5niRQKRTIoo24g9HBPnDGhNO7+bCwGSkW/RHIpFIq+UUbdQOix+Oi2+TWatZWKflrKpVDkE8qnbiDy3eec7/opFEZAGXUDIaXUvM0vPvQxX3zoY03aSkU/rWRSKPIN5X4xEFarVfM2O32BjN4v0QTrmMWrMXk7qO+wJDXxmmm5FIrBwqA36kKIhcBCgAULFrBgwQK8Xi9erxcAl8uF3+/H4/FEtgOBAJ2dncDhYsrhUm1OpxOTyRRZEm+327FYLJFtm82GzWaLuCJsNht2u5329vZIG3a7HbfbTSAQwGKx4HA4Itsmk4mCggK6urrw+/2RbY/Hg8/nQwhBYWEhHo8nokNhYWFCnUbaOmnuttLR0dFDpyH2bhobGwGodnTT2dnJlBIfjY2N2O12ymyByPFonYoC7bTcPhu73c6Mu96ksbERq9VKc3snn35/ElarlTkPfERXV1cPnUqsAZqbm/H7/Uws9lNg6qalpSUtnbLdT1JKrFZrr35SKIzAoH8SpZTLgGUAy5Ytkw6HA4fD0eu8oqKiHtsul6vHdthohInNGx67HduG3W7n0KFDlJSUxD2e6nbspGQinXZ6dwFBfaJ12u8xU1lZCcDeLjNOp5MNLdbIvmKXk6o7g0v5wyNvh8PBhhYrxcXBDIsbWw+f3+IzYbfbKS8vZ2t78EUVLVOLz0RpaTDiZVOrheoqc+R3kapO0WSjn/qTQaHQk0Fv1I1EIJA7Lodo90myIY9h/WrK7JFrVAy8QpFZlFE3EHp8wp87qVyztsL6JfNC0FIuhSKfUEbdQOjxKX/jaaM0aysV/bSUS6HIJ1RIo4EIT+LlK/mun0JhBJRRNxB6+NRPffBDTn3ww6zcO+w7FzesoqbMnpJ+2ZJJoch3lPvFQJhMxnzHho1zTVlqaQxiJ0APHTqUsXsrFIr4KKNuIGLD7YxCpqJT4umnIl8UisyijLqB6Orq0jXuOXY1aKbRWz+FYjCgjLqB8Pv9urYfnW43G+itn0IxGFBG3UDo4VP/eHcHhzr9A/Jrxy4mSkQq+l06tSotWRSKwY4y6gZCD5/6oU7/gEfnyfrFU9Hv2rnD0xVHoRjUGDPcYpASTkalNW5vtybtpKKfVjIpFPmGMuoGwufz6dLu2Q9v0KSdVPTTSiaFIt9QRt1ACCH0FiGr5Lt+CoURUEbdQBQWFuotQlbJd/0UCiOgjLqB0MunrhX5rp9CYQSUUTcQ4So++Uq+66dQGAFl1BVcOWuo3iL0wogyKRS5gDLqBkIvn/OVx1Zr0k4q+mklk0KRbyijbiD0ck80tmsTSpmKflrJpFDkG8qoGwi9jPrF/7dRk3ZS0U8rmRSKfEMZdYVCocgjlFE3EC6XS28Rskq+66dQGAGV0MtA5Htq2oHqF5vvXRXYUCh6o0bqBiLfF+cMVL9wvnd578kR465QKHqijLqCbx8/TG8RemFEmRSKXEAZdQOhl8/5sulDNGknFf20kkmhyDeUUTcQgUBAl3Ybmro0aScV/bSSSaHIN5RRNxCdnZ26tPv1xzZp0k6y+tktgtGL1yBuWMWYxauzLJVCkV8oo64wHHNqijllXImaEFUo0kAZdQOhR41SLcl3/RQKI6CMukKhUOQRyqgbCLfbrbcIWSXf9VMojIBaUarghlNG6i1CD4wmj0KRSyijbiCcTqcu7Z53VIUm7SSrn1byKBT5iHK/GAiTSZ/u2LRfG7dIsvpt2u/WTCaFIt9QRt1AdHR06NLuouWfa9JOsvotWv65ZjIpFPmGMuoKhUKRRyijbiDsdrveImSVfNdPoTACyqgbCIslv+et810/hcIIqL8yA9HR0aFJBEx0sQm7RWS9vTBa6adQDGaUUR+EhItNAKzY3KSzNL25dd5ovUVQKHIWZdQNhM1m07zNeUeUadZWsvpFy1RTZkfcsCrys0Kh6Btl1A2EHkZ9/a52AKaNKMx6W8nqFy2TqkOqUKSGmig1EO3t7Zq3ef2zW7n+2a2atJWsflrKpFDkG8qoKxQKRR6hjLqB0MP9oiX5rp9CYQSUUTcQ+b44J9/1UyiMwKCfKBVCLAQWAixYsIAFCxbg9Xrxer0AuFwu/H4/Ho8nsh0IBCL1NsPVfMK5wp1OJyaTKZLnxG63Y7FYIts2mw2bzRbxL9tsNux2O+3t7TQ3N1NZWYndbsftdhMIBLBYLDgcjsi2yWSioKCArq4u/H5/ZNvj8eDz+RBCUFhYiMfjiehQWFjYQ6cyW4C2tjY8Hg8jbZ00d1vp6OjIik5SSqxWK3a7nT179lBUVNSvTsNsXbT4rbS0tCTUqcQaoLW1VZd+itYpup8UCiMw6J9EKeUyYBnAsmXLpMPhwOFw9DqvqKiox7bL5eqxHVuqLXaRTex2bBt2ux0pJSUlJXGPp7odOyqOPt7kNVFUVERRURHXnmGN6JMNnaIpKiqisrKyXx2+G5Ip/LuId78Wn4ni4mJi0aKf+jquUOjNoDfqRsJqtWre5gljS/o/KUMkq5+WMikU+YbyqRsIPXzOb9e38HZ9iyZtJaufljIpFPmGMuoGQo8anj9+cRs/fnGbJm0lq5+WMikU+YYy6gYiEAjoLUJWyXf9FAojoHzqBiKbERTRmRn1yqGiIkQUiuyj/soMRDYjKaIzM+qFihRRKLKPMuoGwu12D9jwxY7IjZQQKxP6KRSKvlFG3UBkwuccPSIPp6zti/svGDfgNpMlWf20lEmhyDeUUTcQJpP289ZapNwNk6x+WsqkUOQbKvrFQMSudtSCFZubNKt+lKx+WsqkUOQbaqRuILq6ujT3OS9esQPQpgJSsvppKZNCkW+okbqB8Pv9eouQVfJdP4XCCCijbiD08KlrSb7rp1AYAeV+MRB6+NS1RAv9jBzSqVBogTLqBsLj8aTlUzfCatFkSFe/VEg1pFOhyDeUUTcQPp8vresGslp06cUT0rouHZLVT0uZFIp8Qxl1AyGE0LzNiUO0c/kkq5+WMikU+YYy6gaisFD7RTfPf3IQgPOOqsh6W8nql6pMueJ+Uii0QBl1A+HxeDQvlHHv6zsBbYx6svqlKpMRkpUpFEZBGXUDES6inClqyuyRyUIjjGAzqZ/RdFMojIIy6nlMPofz5bNuCsVAUKtBDIQePnUtyXf9FAojoIy6gci0+8Vo5Lt+CoURUO4XA5Gq0QtHfQzEp/yXyyemfW2qJKufljIpFPmGMuo5TCaiPkaVGa8SkRFlUihyBeV+MRAul0vzNh//YD+Pf7Bfk7aS1U9LmRSKfEON1A2EHqlpf//OHgAumz4k620lq5+WMikU+YYaqRsIj8ejtwhZJd/1UyiMgDLqCoVCkUcoo24g9PCpa0m+66dQGAFl1A1EIBDQW4Ssku/6KRRGQE2UGojOzk7NR7PLF0zWrK1k9dNSJkVuI4RYCNQBtcAKKWVdzPFSoB44FNpVDpwhpVwnhFgqpVwkhKgFaqWUK7SUPVsoo55jZDrNbGWhdcD3yDSZkimc9EuVtct9hBC1cQz2DGCclHJZaPtJ4JKYS2dJKcuirlkopVwXPiaEaAKWSSlvzqL4mqKMuoFIpoZnptPMPrJmLwBXHludsXsmItkapZmSKWzIVVm7vOBiYEnMvnnAe1HbM2Ivih59CyEuDr8AQtwppVyeUSkNgPKpD3IeWbuPR9bu01uMHhhRJoUh6ZVwP+Ru6UWC/eVCiHlCiJtCo/68QI3UDYTb7U56NJuL5Lt++UDI+C0EmoFxALGuiZAPehGwNbSrLpE/Oup+ALND594cdfxugiPm5kzqEYdbgKXRO6LcNmuBV4CZWZZBE5RRNxBf+ctGXgkW/VF+YIVe3BJjdN8XQtwkpVwS2q4Flkop54e2bwJuBhJNMsa7391R+y4GbopTv/Y2IDoD3Pyoc5pDBvkgwYnPCH28HObFyHExMFtKebOUslmN1BVZ4ZPGbuS9pwH56Qd2Op16i5AUsZPRg+zlulAIcTBsxAlGlsyOOn43PUe8y0L/ehEapR+M2b00dI+wgV0ecz+ARVLKxTH3IkqmMCuAy6K266LOL40x8LFGuzncbuhFlReRL6CMelZI1yj4Za/RStz75SomU25M4URPRufjy7UfZnI4/A+CoYKPQ8RIXwxcHT7Yj9ukFrhbCLEiKuLkEFAadb+l0VEtoRDFO5MRNBSWOEsIMY+g0V4UdbheCDE2Sr66mGtXCCEWCiEOEXxpRV+b0yijngXSNQrVju5+75dp/n3VlKzcNx4dHR1JjdYzLVNsPdNBNvJOiRgDOwMojRohzwr9Xxsa3ULIhZHgXuuEEPOjDDrAfEKj4pDBjbwUQu3VJXhRxH15REWzrIjZXxazPa6Pa/MqAkYZ9UFOgc2stwi9yLRM0UY8+iU7yN0sCQmNoC8lGPMdHfcdjiApD4cCCiHKw4t44t0rJqQwfN8zEjS9qI/7xHXxKHqTG9/Dg4RDXu2748G3dvPgW7s1actuT851pJVM4S8gee/JEeOuCI6gpZTLQpOhD4VcIhAaLcdEuqzlcHRLfzwEXBIzcgciE5fvD0BsRQg1UteBRCPEzu74PvVs8sSHBwC4du7wrLdlsST3uGkpk6IncVZuLg39W0ZPX3uY5tB1sROTsfe9m6D/PNGE5CKCE6ipyttnmoDQObUE5wLWEXQnLY+69lDo2mUahFVqghqp60CiEeII52GfetgPHF7mng90dHToLYKiD0ITjluj/OXRx0pDI+zmmIU8pdD3hGloFP5y2KAnCB+cR8xkZhLyhtMErAi5ZxK9FJaG5gXqCE2IhnSdGTLwywh+ReQFaqRuUJR/NzvETpoqerCW4Ig12rjOJzgCDhvtZQT94mEf9zyilu+HDO2sqIU98wjGkq+IehnMIzhqDl/T6yWSJP2mCQi9UOogMgk8P0qvraH9zSE58wJl1KP4eE+HrlESzb78/nCy2Wx6i5CwTxMZ+2QiZ8LutJ8VZ0FgDQkZt6WhBUXhFaWHpJSXRJ1zsxDi7tA5ABUx0S/zCMaOLwsZ8ZdD+6Nj0RNFm8Rz7/RFBTGj+zhuoNmh/fMIulnWhr44YuPn46YXyEWUUY/C2y1TCkXMdPREm097n7qWGMGoJyJR3yWKnIkm7E67446VWZFNS0IGr9dEZsw5CTMahtwcS0I/NwP9PtShEXRWH/4o189Wgi+riLsmn1aTAggppd4y6EposmQhwNlnnz3x2GOP3aSXLG+99Vbl3LlzG/VqP9vku35r1qyZ+MILLxTpLUe+EPrbjDeCXhdaPHQTh1MGIITYGhuPHr5HVJoDKWVwlV/ImJcT/EJ4Ml4sey4y6I26kRBCrJVSzur/zNxE6afIJCGjfFn4y0EI8XJUTprSkDupFrg5HP8eNvyhaxeFimTMA2bESUOQkyj3i0KhyEmSTBNQF0oidjFBn3p4fqCOYKTPxQSrHuWFQQc1UjcU+T7SU/opFNknv8Mtco98Xwqt9FMosowaqSsUCkUeoUbqCoVCkUcoo65QKBR5hIp+ieIXd90tHa6eywIPtPto7vQzY2Rh1tsPVXfJejt6ke/67dmzp/H222+vSnR8yZIlsrTUeAsXtx7sAmBchSOl6/Tuz3TlzhRa69/f8xVGGfUoHK5iZn7x8sj2wQ4fP398M6PK7PxhYfaDGpqbmzHiH32myHf97rjjju19HS8tLWXhwmSz1BqffO/P/tBa//6erzDK/ZKA7oDkntd20uUPsHzBZE3a9Pv9mrSjF/mu32BjsPenUfVXI/U4tHn83LNyJ6t3tPHgReM5cmiBJu3mSg3PdMl3/XKVW16oB+DOc8amdJ3e/Zmu3JlCb/0ToYx6FG2ebl7YeJBH1u6nqdPHvefX8u0TtCvUUFCgzctDL/Jdv1zlne2taV2nd3+mK3em0Fv/RBjzVaMTe1q9/Or1XbhsJlZ/bzo/PGWkpu17PPldUi3f9RtsDPb+NKr+aqQexVFDC/jkopmMr3Ris2j/vvP5fJq3qSX5rt9gY7D3p1H1V0Y9CofVxORql27tC5Hf+dTzXb/BxmDvT6Pqr4y6gSgszH4svJ7ku365ysiS9Mr66d2f6cqdKfTWPxHKqGeBJrcPb7dkaFFqlX48Hg92e/7Wzcx3/XKVv37tyLSu07s/05U7U+itfyKUUc8QbV1+/rZuP39cvZcPdrcjJcwdU8wvzh7LiWOLk/pU83q9GkiqH/mu32BjsPenUfVXRj0D7GvzMveB9Ww92MXIEhuXTa1CAv/aeIiTf/chx40uYuW1x+C0mvUWVaHoxfXPbAXg/i/lVjW3XJU72yijngHOfXgDu1o8/PLsMcwZXRQZlS+YOZRnPznI0nf2cMsL2/p9+Izqo8sU+a5frrJ+d3ta1+ndn+nKnSn01j8RyqgPkPcb2li7s51Fc6o5vqZnMjCH1cRl06rY1tTFH97ZzY/PGMWQPvzsXq8Xh0Of5ERakO/6DSbGLF5Nt8fNTreZmjI72249Tm+RNMeoz7NafDRA/vdfdbhsJs6dXJHwnMunVeH1S369alef9zKqjy5T5Lt+g4ntTR4++P7RyHtPZnuTMRfhZBujPs/KqA+A7oDk9a0tnDmxjEJ7Yn/56DIHs0YV8tf392konUKhGIwo98sA6PIFCEiocln7PdfbLSl19v3rdrn0W/ikBfmuX65yRJUzrev07s905c4UeuufCGXUB4CnOwCA1dz/B8/eVi/zJ5b1eY5RU3lminzXL1dZdskRaV2nd3+mK3em0Fv/RCj3ywCwm01YTYLPD3T2ed6b9S3sa/cxdVjfb3ajJgjKFPmu32BjsPenUfVXRn0AOK0mvj13GC9vbkpo2He1eLjr1QYmVjn57kkjNJZQoeifhU9uZuGTm/UWI2VyVe5so4z6AHD7Aiw8rpoih5lfr9rF+zvb6PB2A8FSeA+8uYtrlm/BJAT/WXg09n4yPxrVR5cp8l2/XGXzgU429/O1GQ+9+zNduTOF3vonQvnUB0CB1USFy8YdZ9Zww/N13Ph8sBLL8GIbh9w+/AG4dGolN50+ijHl/cezBgKBbIusK/mu32BjsPenUfVXRn0AmEyCIYVWrpozjAWzhrJ2ZxtrG9r5YFc7hXYzt84bzbjK5GfoOzs7Dfv2zwT5rt9gY7D3p1H1V0Z9gJhMIhijbjdz5sRyzpxYHve8QEDi9gUosJowmYyZh1mhUOQ+OW/UhRBmYDhQIKXcpLc8iXD7ArR2+QFLwoVKqdQ83Nvq5eHVe9h2yMPoMjs1ZXbmH1HGcJ1zTPeFUWs6DnamDU8vh4ne/Zmu3JlCb/0TkdNGPWTQvw54gHFCCLuU8jadxYpLgdUEWEL/902iUb2UktU72vjtm7t5fP0B/AFJqcNMc1dwcrbUYeY/C4/muJgcNApFX+RqlsNclTvb5KxRDxn0rwKrpZSfhvZ9RwgxREq5X0/ZpJT4umWPOqcRNw2Jjbbb7aagoAC3L0CT20ezENgtAn9A8u72Nm7+Vz2fN3ZSYDVx/lHlfGlKJaNK7Xj9AeoOdfH/Xt7BKQ9+yKrrpnLsaOMZ9rB+ivxgsPenUfXPWaNO0OXyoZTyUyGEVUrpA7YC3ancRAixEFgIsGDBAhYsWIDX640k63G5XPj9/shCA5fLRSAQoLMzGEoV7lS32x28n8XGxY9+hs/Tyf1fqmXisFIsFgsdHR0A2Gw2fFg4cKgZl81MSaETm83G2roDvLt5F09u/pQdbZISix+rkHR2Cxo9JoY4AowssnD5yWUcO7YSh/AjA5343V1YbE4mFAX47ReqWPzKDh5+q4EjS0dFdCgsLByQTk6nE5PJFNHBbrf30slms9He3h7ZttvttLe3I6XEarVit9tpbW0FwGKx4HA4cLvdBAIBTCYTBQUFdHV14ff7I9sejwefz4cQgsLCQjwej+F0CutgseTun9IVf/sM0L+SUKrkqtzZJnefRKgBjgE+AqQQYjZwHHC5EKIDaAN+EjL2CZFSLgOWASxbtkw6HI646TSLiop6bMfOehcUFODxBzj5tx/yXkMXRXYL8x7dwcpvlzF9pBOn83AUTCAgsdvtFFhNvLy5iUXLP2V7k4eRBQFGV5Uwd4idIrsZl82ExSwwCUF5gYXja4oxJ5pktdgocxZSWeHmsY+a+e0lkyguPvylkK5O0UTrEG87to3YUl9Dhw7t0Ubs+f1tx97PCDoZMfVqquxsSW9lZOzvSmvSlTtT6K1/InLWqEsp3xRCXCmEeA+oAkYDzcAnQAdgB+4TQnxfSqlJQOmPXqhnTUMb1580gpkjC/neM1s56Xfr2fnTOT2SebV7u3l49V4eWbOXj/e6GVVi48ZTRnDSaAfFhQMLkTp1XAn/3dzEyi3NnHVk/EgcvTCZBt9at0x/CWbjC6PA1E2x2U9jY2PSX001Bd00NzfT2dlJiTVAa2ur5jqNsHUhkLQDdClmAAAgAElEQVS0tPTSSYsvwa6uLkN+CeaMURdCWAj60LuAbVLKNVLKq4QQFwAlwJHA01LKtVHXXE9wIvVRLWScNTI4G//ujlZ8AUlzp5+jh7kotAV96S2dfh54cxdLVu6kzdPNhEoHC+dUc9ExldjMJvwdzQOWYebIQmxmwWMfHDCcUe/o6DDs6CZbZPJLMJpMfmG4A2bcATOVlZUJr4/d3u42Y7fbqayspLTQSckd6wF6FMzItk67vMHtkpKSpGTO9JdgR0dHj98ZGONLMCeMemhS9FpgCHA+sEcI8VMp5Wop5bOhcy4CNoR+dkgpu4C/AOO1kvNrM4fS7u3mmuVbeHd7GyfUFPHrC8ZhMQve3d7KeX/cQGOHnxNqilgwaygTh2R+ksVmMXHBlAr+b+0+vn/SCKaPNGbJLUVuMmbxarY3eagpO2x8oqseiRtW6SGWIgrDG3UhhAm4BlgppfxYCPE2cDtQC6wWQpillN3A8UAB8BcpZZcQwgV8CXhNS3kXHT+cyUNduLv8VBbZOKrKyY6mLk7+3YdUuaw8eOF4Jg2Nb8yFJXGpu1RYMHMo/93UxDkPb2DpJRM4d3J5pG6qnsSOQhTGILYMY19sb/Ig7z0ZgLa2tmyJlBSpyJ0NjPo8G96oAwJYJ6X8GEBK+W8hxDTgcuAxwEHQh/4ocKIQ4nIp5WME/ZjLpZQNWgt8Um1Jj+0VHzbi65Ys/sIYxlYk/pwSpsTVk1Kh0G7m52eN4d7Xd3L+nz7hf08dyZLzajNy74GQyxEi+cyd54xN6zq9+zNduTOF3vonIhdmrlzAz4QQrwohxoT2PQd8LoT4CfCQEOJ7IaP/DnCaEOJK4CU9DHo83trWQrHdTE1532/2gDdzGeeOGe7ij5cewfmTy7nntZ3c9/rOjN07XcKTRIr8YLD3p1H1N+arJgopZasQ4gZgspRyW8gdMwd4AwgApcD9QgghpfwNoUgDI/H2tlaGl9gwaewCsZgF3ztpBC1d3dzwXB2njy9l2gjlY1f05KJHNgLw1JWTNWkv7JeHnhOrqaK13LlCLozUkVJukFI+EbXrGSnlM1LK54C7CLpezoGID95QfGXaED7b30n9wa4+zxPm/mudporZJLjh1BFYzYKH3t2T8fungs2WmTkDRWY56PZx0N3nco64pNufYb+8vPfkiHFPh3TlzhRGfZ4NZwD7Q0oZkFI2QtCASykPAs8CO8LH9ZQvHt89aTgOi4nH1vedvUBYMm/UAYrsFk6uLeHRtfto96S04DajGPWPQJEeg70/jap/zhl1ACHECCHEIillQAhhA0YB9+stVyLKC6x858ThrNjczN/W7afLF/+9E/C4sybDuZPK6fAGmHDnGh58azedPu2Ne3ihhSI/GOz9aVT9E/rUhRAXEgwbTIc6KeXTaV6bDCcDvxZCfAZMBJ6VUu7IYnsD5udfqOHd7a08vHovT3/cyOXTqjh+TDGVLmu/Ze4ywbQRhfzyi2P467r9XPf0Fm77zzae+PokzjiiLOttKxQK7ehrovRM4O4073sTkE2j/jjwAVAOvCCl3JXFtjKC02rmje9M4426Fr7/zy387u09/O7toI+7yG7miConc4eZOWmSi0pXdtwwx48pZk5NER/u6eD+Vbs4c9nHLDm3lu+eOLxHRslsYdTP1cHOGRNK07pO7/5MV+5Mobf+iejLqL8vpaxP56ZCiHVpypMUIb/5Z9lsI1ucVFvCuhtm8t6ONjbu62BXi5ftTV38d1MTj65v5VC3nW8dV53yfZs7/azb1c4nezt4q76Vr88cwjmTK3qdJ4Rg2vBCfnfheH75SgM3Pl/HkpUNrLjmGI4elt3SXEZdrDHYuW1+TVrX6d2f6cqdKfTWPxEJjbqU8qF0bzqQawcLs0cXMXv04TwSj63bz+LnP2bmqNRDDl/9vJm7Vjbg65ZYTOCwmvjV67uwWUzMT+BecdnMLP5CDe81tHPPazuZ+8B6/rvoaOZkcZVee3u7Yf8QFKmHGmrRn5kKf8wGRn2eBxSnLoSYJqVcH/p5upTyg8yINfj47Zu7KHNaOCaF0XJLp58/vLOH/2xqospl4fyjKhhWbENK+OOavdz5agMlDgvHji5CSklzZzcmU7AKk9VsQgjBsaOLeOBL47jh+TpOe/Aj/n31FE4bn53PWillVu6rGBhffOhjoGcKgGRyuGjRn33JFJb7xauPzroc8TDq85yWURdCPEGwIMVBYD2AlPIDIcTpUspXMyjfoOCQ28eahna+ObU46QVKDc0evv3U57i9AU4aW8yp40p6VFG6cvZQlr6zl5/+ZxsnjC1m9fY23FFRNzaz4IenjOSsiWVUF9v4/0KG/dyHN/Di1VM4eVzmDbvVmp25AsXA6EwQjdUfqfRn7Ig7E6Qrd6Yw6vOcllGXUl4qhJgO3C2EmB/aHfajK6OeIk9+GKw3Ontsbx94PDYfcPP9Z7YC8K3jhjIiTrFpu8XE12ZUsfTdvazZ0UZthSO4qhWBtzvAhr1u7nq1gQ93t/O9E0dQ4bJyz7ljufH5euYv/Zinr5wc1yc/EIz4qapIn1T6M3rEnS8Y9XlO2/0SGpnfTXDE3kQw/HHgCcEHIQ++tYeaMjs1hf2PPLY0dvKdp7diswi+MXsoFX1EylS4rPzo9JFxR/9zxxTz2tYWXvysiXe3t/Hny46gqjA4Yr/phXou+PMn/OzMGr4yfQjjKzOTA93tdudFpSBFkMHen0bVf6BxbDOAJcAK4EfpRssMdlq7/FS5rCTjeHlne7AAx1XHVfdp0MMkcueYTILTJ5Ty1elVtHT5ueapz/F3S0qcFu47v5ZZI4u47T/bmXDne4xZvJqHM5BiIBAw3GJfxQAY7P1pVP0HatTXSSkvlVLOBn4khLgxE0INNi6eWsX63R10dfdv1p3WYHpeuyUzycEmVDm54KgK9rb5eODNYLi/y2bmrnPG8vevHcl35g6nwGrm6ic/59YX6wc0OWTUVKWDnXMnlXPupNSrZOndn+nKnSn01j8RAzXqkRWnoVG6in5Jg/Mml+MPSN5u6DvhF4DLFuyyLl/mZt6PGe5i7phintt4iIfe3UNrlx+AYcU2Ljqmkge+PI5zJpXzixUNXPvUlrQNuxE/VRVw42mjuPG0USlfp3d/pit3ptBb/0QM1KivEEL8VwhxoxDidGB6JoQabJwwpoQjhzj55/pdvL6172mJseXBB6nuUP8vgFQ4fUIJtRUO/v7BAS58dCNLVjZQH2rDbBLccMoIvjKtij+8s4cfPleXlmEPF+VV5AeDvT+Nqv+Avh+klPVCiEsI5jCfQajAriI1LGbBu9+bzhV/XM3PX97BsZuaOGN8KXPHFkfcLWEmVjkpcZhZvb2VmRmsP2oSgq/PHMLeNi/vNbTz8uYmXtrUxI/PGMUZE8oQQrBwTjW+bsn9q3YhgHvPr02pTJ5RfZCDnVMf/DCt6/Tuz7Dcr107VZf29dY/ESmP1IUQvxdCXBiuQiSlbJFS3gO8QjAXiyINSpwW/nDJRG46bRR1B7v4xSsNXPjIRp7Z0NjjPCEEX50+hAMdfva1eTMuR3WRjfMml3P9ySOocllZvKKBf3ywP9L2dXOHceHRFfx61a6UR+wmU04mBVUkYLD3p1H1T0eqFoJ1Q38khHhJCPG4EOIqgmGNMzIq3SCjoqSQO88Zy57b57DquqkcPczFb97Yzd/W9czDftaRZVjNgn9tPJQ1WVw2M1fPqWZMuZ2l7+6NvFyEEHxn7nAuOrqS+1ft4qZ/JR/wVFAQv+C2IjcZ7P1pVP1TNupSyh9JKZ+SUl5D0N2ykKBB/xEwv8+LFX3S1RX0YZtMgpNqS3jru9OYN6GUh1fv5Y+r90bOK3FYuHLWUHa2eNmWYd96NGaT4IoZQxhZYuM3b+zm+Y0HgcMj9i9NqeBXr+3k/lXJ1T8N66fIDwZ7fxpV/4F+P5SF3C9hI788E0INVvx+f49tq9nESwuP5qvTq/jruv3sbz/sbrnomEoKrCae/vggHVmsZmQ2Cf5n9lBGFNu47/Vd/OX9fQSkjIzYT64t4QfP1vHnNXv7vVesforcYMzi1YgbViFuWNVjif9g70+j6j9Qo/6+in7JHPF8dCaT4NZQitG3trVG9tstJu46ZyxuXzd/XLMv7TwYbm83b9a38J/Pmnj640Ze3dJMIMZPbjEJrpw9lNpyO39as48r/7GJLl8As0nwkzNGMWtUId98fDMPvNF3Wnuj+iAHO5dOreLSqVUJj0fXFI3Okqh3f/Ynd7bRW/9EDEiqUFbG/wUKCbpensqEUIOVRD66SUMLGFVq56361h77jx7m4s6zx9LS5edPa/bi8adm2KWU3PPaLl75vIXVO9r4eI+bN+paeW1LS69zLWbBFTOH8IWJZTQ0e1nw2Ge0dPqxWUz84gtjOHFsMd97Zis//nfiBUpG9UEOdq6dO5xr5w5P+Tq9+zNduTOF3vonYkBGXQjxv8BPgHOBWpUmYGB4PIkrq39txhA+2NXO+t096yLOHlXEHWfVcLDDz0ubmlJqb1dL/OiZN+pbqTvY218ohOC4miIunVrJQbefBf/YxP52LzaLiZ+dWcN5k8u585UGZty3jne2tfa6vi/9FPrh9nbj9qbuwtO7P9OVO1PorX8iMpUmYBYqTcCA8fl8CY/dcMpIRpXa+cm/t/HZ/p6LHk4cW8K8I0rZuNdNIJB8iKHLZk547C/v78ef4F6ThhawYNYQOn0BFj75Oa1dfswmwQ9OHsEPTxlB/aEuTnhgPbPv72nc+9JPoR9nP7yBsx/ekPJ1evdnunJnCr31T8RAjfrY8A8qTcDA6WshT2Whlbe+O40Sh4Ubn6/jw5gR+9wxxXi6JQ0tyY8eSp2JjTrAqq0tCV0pNWUOvjq9ijZPN1c9sZkuXwAhBOdNruCxK45k0Zxqthzo5IQH1rPsnT396qfIPQZ7fxpV/z6NuhCiv9pmr6iJ0sxRWNj3CtERJXbe+d40Kgqs3PxCPZ/s7YgcmzWqCLOAf3/ahDdJ37oQgiOqEqfVfaO+lZ+/3JBwkdOYcgcXHVPJgQ4/j394ILLfaTXzlelD+PsVk5hTU8Si5Z+zentrv/opcovB3p9G1b+/kfrCvg6GRueXEFyMNANQtUkHQDI+uppyB+9dP51Kl5Vb/r0tEqfuspn5ybzRHGj38cc1++hKMhpm84HOfs/5wzt7eW1L/Jw0k4cWUF1k5emPGnuN6p1WEz+dP5ryAgvfenyzYeN6FemRLZ9yohBKo5GrPvVrhBDfCqcEiEc4TYCU8ldSyt5hE4qk8XqTW/Y/pMjGquumYjEJfvrSdvzdQWN62vhSbpsfNOz3vLaTP67ey7qd7QlH7qlEy7xe18r7O9vjHps9qohWTzdPf3ywVzik02rmW8dW88k+Ny9t3B/3ekVukuzzmiqJQiiNRrb0Hyj9GfV64NtAnRDiYDglQKyRD7leFBpSW+HkL1+dSEOzh8Wv7Ohh2H9/0XguPLqS5k4/z288xH2rdvFGXUsvI96W4qKlRGkJjqouoKLAwm/f2s3X/76Jls6eizLOmljG2HIHj67dl1J7Cm24ctZQrpw1VG8xUiZX5c42fRp1KeV84GZgJjAPWAtcSoyRBxZlXdJBQKo+unMmV3Df+bW8vrWFn/13O97uoNGeOKSA6+YO57lvHsUDXx5HZYGVV7e08OtVuzjQfnjGvtyZepLOeBOndouJ6+YO45xJZext8/K1v3/GwY7D7ZhNghPHFvPObj9rdvQOdVToy5XHVnPlsdUpX6enT3nM4tV84/HNfOPxzYxZvFoXGXLVp46U8hWgDigDlkopz5RSmgguNgob+YuzKuUgIZ3PuR+cMpLffnk8b21rZeGTn/PiZ4cihlcIwZRqF3/92pE8eOF4/AHJuzvaIteaTKnP3icKcxRCMGtUEd88digd3gDPbDjY4/ilU6sYXWzmokc2ZjWtgSJ1Gtt9NLanHp7X3/OaTd/49iYPB+44ngN3HM/2Jn1820Z1vyQ1VAv5yl8VQkwXQpRJKV+VUq4D1gH3CCHuyqqUg4R0H5LrThzOsGIbP3qhjiUrd/LR7g5+cMoIbObD7+xJQws4ubaE1dvbOG/y4QzJZ08q49+fJr9oaUezh3EViSNmRpTYKXWY+exAz1j6QruZa2ZX8u0XD/DrVTsjqQ/yHSHEQkIBBwsWLGDBggV4vd5IX7tcLvx+f2TSzeVyEQgE6OwMTmCHVy2GCzI4nU5MJhMdHcHIJ7vdjsViiWzbbDZsNhvt7e2RbbvdTnt7O1JKrFYrdrsdt9tNIBDAYrGw4B91FJv9TCnxcejQIQoKChhX6KexsRGTyUSJNUBLSws+nw8hBIWFhXg8Hg4cOIDX66WwsDCi05QSH52dnfj9fooC7Ry4ZWpEp8bGxl46TSnx0dHR0UOn4c5uOjs7e+k0pcRHY2MjNpuNEmuA7/9jHQLJWJefrq6uHjo5HI7ItslkoqCggK6uLvx+f2Tb4/H00incL9E6JeqnlpaWyHEt+ilZUvr+DqUFQAhxEfC+lHJb6NDjqdxHkXkuPKaSL02p4Ocvb+eO/+5gZ4uHO86qobzgcHHqCZVOVm5pocsXwGENGvxZIwtp6+rmjfrk3CJ/ff8At585OuFxf0DS6ulmfBzDP77KyQk1Rdz96k6+c+IIStNw/+QaUsplhIrHLFu2TDocjrhl0IqKinpsu1yuHtuxS9KdTmef27Ft2O32hMfdATPugJkNLV2Ulwdf+H6ri6o7NwJQU+akpKSk1/28Xi+VlZU97rehxRqRZUOLNXI8kU5tpkIKf/p+qB072249jt2dZpxOZy+dou/X4jOxyxtss77DS7zfa6rbff2OwkT3k9Pp7KFfWKdoMtlPyZLW4iMp5VOACE+Qho29YmDEPvSpYjIJfnbWGP5xxZF83tjJt5/awvamw2GENWXBB2R/1Ke2EILTJ5Ry9qSypNuJjo+PZV+bl4CEESW23vLZnHzj2Gravd3cs7Ih6fYU2rPt1uP6jUAZ6PMa245ebpR0yYT+2SAtox5alFQClIUKZUzLrFiDk0yl8rxs+hDe/u40fN2S2/6zPZIf48ghTiwmwXOfHMTX3TMSZvaoIi6bVhnvdr1Y/tFB/vlxY1zfuMUkMAn4/dt72Nnc849UBroZX+nk9PGl/PKVBm55oT4StaPIPbROPVtTZjdU/HpOpt4VQpweWi36+5Dx/lwIESBYFONJglEv9QQjYxQDJJOLGWaMLOLpKyfT0Ozhn6FJy/ICKz87czQH3X4e++BAr5jyI4cU8LUZyaUy/WiPm1+9vosNMaP2oUU2/mfWULql5KonNvdIQCb9Qf/jzaeN5NzJ5dz1agOz71/H3lZjTjgp+kbrxTfJfD1oSa4uPloBzCZYwm45cA3BwhhmKeWEUCTMNVLKX2VbUEXqnDq+lCOHOHl1S3NkRDx3bAlXH1dN/SEPD761p1dM+fhKJ1+fOSTpNp766CArY1abji6zs3BONQ6riRueq+PtmIyNNouJG04ZyY9OH8Wn+90cdc9aPkiwsEmRfb59/DC+ffwwvcVImVyVO9v0Z9SXA08AW0PbB+OtGk0iR4wiCbLho7vl9NHUHezil6/uoDsUjnj59CpumzeaVk83D63eyyF3z3C22goHV8xMvvjAqrrWXiP28gIri46vptRp4ScvbuNPa/YiLT0/mc+aWMbvL5yAxSQ4c9lH7EohGZkic1w2fQiXTU/+RR4m3vOqpYskXbkzhVF96v2FHywNxakDIIQYG4p8KQckUCelfBW4JfRPMQACgfSqF/XFgtlD2d/u5X//VY/F1MDNp43CbApOjo4stfG9Z7by8Op9XHN8NcWOw49DX2GL8Xjqo4OUF1gZXnx4gtRpNXPN8dX8+9Mm/vL+fj7c3sgvzp9Eof1wdsixFQ7uPHsM3/3nVk578EPW/XBmj+OK7NPQlF5OnnjPq5ZukXTlzhTZ+HvNBP2tKH0lZrs+VI/0ISnlw0C9EOJq+kn8pUiOcGxyprnxtFEs/uIYXt7czMNRBayPqCrgdxeOx9cteWJ9Y6/rFh2f2irDh97dS0PM5KjVbOKCKRWcN7mcgN/Dgsc29UpXUFvh5KfzR7OlsYsbn69LqU3FwPn6Y5v4+mObUr4uW89rsqQrd6bQW/9EDLScXb2U8iFUdkbD85N5o5k1qpCP9/R0k4yrcFLqNEdSDERTXdQ7LLE//rRmX6/IGoAZIws5fXwpTZ1+/r6ud2Kv42qKOaLKyZZGY/6hKLJP2HVjhMiWXCZTlVPvzNB9BjXZrnlYXWTrZbwPuX00dviZMiy+f/CCo8rj7u+L17fGX8g0tLSIseV2/rpuf1z/eZc/MCgWJOULmX5ew9EtRohsSYacq1EqhEjaUMdOngohfj8QoRTZwWk14Y2JC18XijoZXxnfhz5xSOoP7lvbWtmfoLDGl6dUYBaCW1/c1utYlz9AGuloFEkQnYdFrwRY2SJ6cjbfdEuHvoZF49KsOSqAijTlGdS43e6svv39AYk5pgRXeFLSk6CohtNq4viaIt7Z3hb3eCLeqG/lomN6LmaySS9FjkLGlttpdPdeuDF9eCHPbDjIjqYuRpelvjxakZhwjnIAccOqjNwz289rskSP7DOlWzIYRf9Y+jLqNw/gvssHcK0iS7i9h3O+hJlSHXS7bG/2MLYiviGdf0RpykZ9w143p47zUeGy9jpmt5ji+vCvnD2UV7Y089P/bOeRyyem1J4ifW44ZSQAr2/NrRo3YbkVPUlo1EOl6hQaEpvsJ9PsbfP2cm8U2s2UF1h4Z1srHn+AmSMLqYwxxEIIbp03isUrUsvXsnpHG2dPOuyT94rgfYsdFjq8AZ775CDnTi7HFPp6GFpk48IpFfzf2n1UuqzcfuZoihzKx55tzjsqvQ/rbD+v/ZGu3JlCb/0TkamJUkUGMJmy2x0njS1hS2Nnr+iUJeeOpbrIxuodbTz49h5W1bUQiMmbbjYJfnxGaiOj9xp6rhKVIeM9p6aI6kIrv161i6/85bNInVWA/5ldzdmTyrnv9Z1MXqJWmmrBpv1uNu13939iDNl+XvsjXbkzhd76J8KYUg1SwrmWs8W8I0rp8ks27uv5hzCuwsmjl09k+YJJ1JTZWbmlhT+803ulqdVs4tspxq5Hx6TbA6Fc1XYzV8+p5ktTymn1+Lnqic08v/EgUkqcVhM3njqSX19QS5dfctxvPuDXr+9k494ONuzp4NN97sjKWEVmWLT8cxYt/zzl67L9vPZHunJnCr31T4T6th1EnDquFLMJVnzezNThvUtxlRdY+fNlE3nl8ybuXrmTP67ex/dPGo7NcvjdP6TIxvwjSnl5c3Ov6+Nx16s7OWZYAUMKbUwr91NQLBFCIIRg6vBCxlU4+fsH+7nv9V38fd1+7jm3lpGldqYOL+ThSyZw18oGfvhczwVJRXYzZ00s47yjKrhixpC0KjgpFPmKMuoGIjZBfqYpcVr49vHDefDt3VxwVEXCMMYzJpRR6bJy/bN1vL29jVPH9SyQMGd0UdJGHYIZHcHNRmc3uzvb+dKUCqZUF2A2ieCo/bhq1ja0s+LzZq5+cjO/vXA84yqclDgt/OKLY1jb0E6HtxuTgC6/5MPd7by+tYXlHzWyflc7955fixDKsGtNtp9Xo2NU/ZX7xUCkUrIqXX7+hRoK7WYeeHN33CLSYaYOL6SmzM5b9S20dvUMPzSZBJdOTS73ejSd3UHD+8yGgyxe0RBZgCSEYPboIhbOqcYkBNc9tYXNoXJ4JiE4dnQRp40v5ZRxpZw1sYybThvF418/kguPruDXq3bxixU7UpZlMJOpuG4tnlcjY1T9c96oCyFMQojjhBDf0FuWgaKFj66swMqvzqvloz0dkTzribjz7LFIGVz6H+tfP3JI6jP/I5w9i2o8vHpfj0nSCpeVq46rxmIWXP9sHc2diYsQCCG4bu5w5k0o5bb/bO9xH0XfZKrakFF9ylphVP0zatS1roAkhLAA84G5wJFCCGPGGBmMbx1bzfE1Rfz+7T181kf0wLBiG786v5YuX4AH397DG3Ut+EOTlEIIvnviwHNZP7p2Pzuisu2VFVi4YsYQPP4Al/3lU/60Zm9C424Sgq/NCKZefXlz8sWzFT25dd5obp2XuO6sUclVubNNykZdCDEtVBGp1z/gsizI2BcLgU+BB6SUN0spczoblM2WegKtdDCZBP+6agoVBRZ+9t/tvQplRDNteCGPXj6RkSV2Xt3SwgNv7I6UqSsvsHLR0cnHCjf74j9uf35vP3uj0gpUF9v41nHVVBfZ+Mv7+7no0Y2ctexjzvjDR8xf+jGvRhXlqCmzU+mysCIFH7+iJ/OOKGPeEcnXqA2j1fOaiHTlzhR665+IdEbq44AlwKVx/mld1u5IoFNK6QMQQswUQswSQpypsRwZQcuHpLzAyrPfPIpDbj/feHwzS1Y28PLmJho7fL3OHVpk45GvTOTuc8bSLSV/W3cgUp90yjAX00ckVyygzZd4MnPpO3t7lNcbXmzjG8cO5bq5w5hTU8S0ES7m1BRRYDNxz8qGyHyAEIIp1S7erM+t1ZBGYv2udtbvSn09gN5GLV25M4Xe+iciZU+/lPIpIUR5KOVuD4QQZ2RGrKRpBk4FnhRCzABOAFzABUKInwMnhQ1+IoQQCwnlg1+wYAELFizA6/Xi9QZHji6XC7/fH6lH6HK5CAQCkVzK4dwPbnfQjeF0OjGZTBF/m91ux2KxRLZtNhs2m4329vbItt1up729nebmZiorK7Hb7bjdbgKBABaLBYfDEdk2mUwUFBTQ1dWF3++PbHs8Hnw+H0IICgsL8Xg8ER0KCwvj6jTO5WXllTX84b0m3tnWRMOe/Ty3FgJmO+OrHEyrsjKh0smw8kKEycSMim4e/GIVP3l5Ny9u2Mv/TCtGILhwYgF1+9sYVRA09G0+E6s0vY8AACAASURBVM0+wQhnMGKlwy845DVxQqWXBreZzm5Bo8fEEEcAu0niCQj2d5nYte8Qk6rsSCHwCBtW6WeMo5ua8VY8wo5F+plS4uftba1sb2xnVJEJ2e1jQqGX7Qd8tLW1adJPUkqsVmuvfspVrn92a/8nxaG9vR2HQ78cPWG5X7t2qi7t661/ItJ6EuMZ9ND+V+LtzyLtwDVCiLeACinlAwBCiL8ALwBvE6yxmhAp5TJgGcCyZcukw+GI21FFRUU9tmNLWcUm9oldQhy7HduG3W5HSklJSUnc46lux4ZbJdKpshLmTh5NdyAYKriqroV3trXx2tZmntvkBlooL7Bw2rhSFh5fzWiXiS9NN/Pbt3azchccOzoY7/79U2v4aI+bZ6ImX1ti3C0NbjMbWqwJj//pow5+fEYZ1tBKPb/oma7AL6w4iqxsaOnkg30exlQFI3CapJu9nR6Kioo06ae+jiv0JRzZE/45V9L4ZpIBDS+EECXxapZmg9Ck6NeARmCHlPJjKeUSIcQ3geeA60LnWaWUu4QQZwHPCiFOllJql7ptAOj5OWc2CWaMLGLGyCKuDybzo/5gJ69uaealTU08+WEje9q83HFmDRceXcE/NzTy0qYmRpXaGVZsCy0mclFTZuc3b+yO20ZbAp96NJsPdHJUdWJ3TqnTjM0s2H7ocNSGzSziJggb7IxZvDoS3ZKNwhNGdD9ombHRiPpDBqJfhBAXZTvqRQhhBq4FJgK/AH4lhJgTOnwewVS/9wBIKX0hw74PWAnET+xtQIy2mGFshZNvHTeMJxZM5ncXjuftba0sfmUHAQm/+/J4HBYT//jgAN6oVAClTgv/e+qIuPdr7sOnHmb5R32HWQohMJtEJAoHglEwfYTcD1rC6XazVXjCaM9rLNnOs25U/VMy6kKIu4QQh4QQB0OFMGZKKZ8CarMjXjAOHbgGWCml/DHBAtflwJjQKfUER/BjhBDPQtCwh441ATuzJVumCftvjci1c4dz3/m1vL61hT+t2RtZ7dnq6ealTT3DCQtsZm6bN4rjRvd0hcTGqSei/mDfMecmQQ+jLgQEJAQCknZPd69kZIrE1JTZeX1rC69vbUl5NG/k5xUyF4+fCKPqn6r7ZauUslwIUUIw2mWJEGIssAJ4OuPSHeZDKeXHAFLKF4UQRwPnAv8ATFLKt4UQJwEvCCGeBv4FlAJPSSlzxqj3tcLTCPzglJG8v7Od5R8d4KJjKpk2opCvTKviH+sPcFS1i9qofOwmk+ALR5YxeWgBf35vX3Bfkiv5/+/9/Zw2voQTxxZH0vJGYzML2qJWuYZTBb+0qYmpw12AJVL8Q9E32249jrdDkUMnjC3p5+ye6P28/vKLY3RtX2/9E5Gq++UQBMvXSSkfklLOAmqllNmMTy8EbhZCPCGECAelvgjsFULcBjwihPihlHK7lHIK8DCwmaBBT29aXyes1t4FJYzGz86qwdct+VuoePSVs4dSbDfzz48be7hhwowus/PT+aO44KhyOvzJ52dZuaWF//dyQ9w/nEqXlc/2H16ScNbEYK6aHz63lSK7mQJrzi+U1pQTxpakbNBB/+c1Xbkzhd76JyLVp79ZCDEmeke2J0qllK3ATcBjUsqmkH/9OOBN4ENgF0Ef+w2h8/8tpXxTSrk9m3JlA6P66KIZX+nkG7Oref6TQ+xq8WC3mPj5F2po9wZ4cVNTXCMshGDaiELOPSa1tL0Ar8WpxlPisNDu7Y7EtdstJr4xeyif7e/k+Y2HVNbGFHm7viUyWk8FvZ/XdOXOFHrrn4h0hjQrhBC/F0JcKIQozrhEcZBSfiql/Gd4E/inlPIZKeVzwJ3Ao8AciPjgc5JwDLXRuf3M0TisJn723+14/AGmDi/kihlDWL+rgxc/i2/YAUa5JD88Jf4kaiJW1bX22je6zI63W7J6x+ESe2dNLOPIIU6ufmKzroUTcpEfv7iNH8cpBN4fej+v6cqdKfTWPxGpGsBLgEVAHcHJy21CiPfSLFCdNlLKgxCMipFSHiIY0tgQOpazsW2BQG6IPqrMwT++PoktjV38PeSG+eaxQ7l0aiXvNbTz4mdNPYpjhBFSUmQ3c8XMqpTa64opij15aAEFVhP/3xu7IvvMJsEdZ9VgNQvm/+Ej6g/mdMaInCBXntdsYVT9UzXqL0spX5FS3iOlPFNKWU5wNaZm30BSyoAQwimEuFxK2S2EcABjCS0gymVyaVXi2ZPKmVNTxHOfHORAe3Al6zXHD4sY9rtf3clD7+7tkTCsO/QRNa7CyTHDkq/Cvq+tZ1Sq2SSYO7aYvW0+1u8+HIEwpNDG4i+Oobmrm+n3reNPq/eqKklZJJee12xgVP0H7KqQUn6QaIVpFvkSwQnSU4GrgGellJ9pLEPGybXVib+/aALebskNz9dxyH3YsP/mgnF8ZXoVzZ1+Hl/fyCufNyOlxBe1QvSsicknYoothA0we1QhLpuJxS/v6JEzZkq1i99+eRwjSux864nNzPr1Oto9yYVS5jJjFq+OxGSH/2VjwVE0ufa8Zhqj6p+qUV8nhHhJCKFPsoXDPA5MJbiw6Olci3JJhFF9dImYNqKQlxYezYF2Lzc+X8+eVi9CCI4Z7mLhnGE8982jOHdyOW/Wt/KfTU1YA4dH3AU2M987cXi/bZw9qQxXnPBEq9nEvAmlHHT7e02mji5z8Nsvj+PGU0bw0Z4O5j6wPpKALF+JXmiUzQVH0eTa85ppjKp/qkb9ZuAD4I+hBUgvCSFu1DqPupQyIKX8TEr5tpQy/pr0HMSoPrq+OLG2hBeumsKeVg//89imHguRzCbBD08ewcXHVLJmRzsf7m7rcW1ZgYXvzO07J/uskb1rqYY5ZriLMqeF36za1WO0DsGIm3MmV/CTM0azYW8HX37kkzS0Gxzcf8E47r9gXMrX6f28pit3ptBb/0SkatTfB34ppZwlpawgmIK3Erg745INQkym3AzcOX1CGVt+fCxThrm469UGHl59OI2uEIJrTxjGF44s4/2dbvbH+McrXNaEETHfP2l4n7VHTUJw6vgSWj3dfLQ7fhWa0yeUctExlby6pZndLZlfVZgPTBtRyLQRiV+eidD7eU1X7kyht/6JSMnTL6V8SAhxhhBiq5RyWygro9aZGfOW2AyCucSIEjurvz+N657ewkPv7mXTfje3nDGK8gJrxNd+9WOHeO6TQ1w1p2e8epHdzA9PGcF9rwejWa6cNYSa8uT8lZOGOPmXWfDiZ00J/8AvOKqC5R828od39vDzL4wZkJ6polVq5yklPhobG9NKGfzebg8BXxczR7hSSu3c1dVFY2NjwtTO2U6D/Nqne0BK5tSW95uuusQaoLm5ecDpqqN1AmhsbMyoTplI7ZxOPnVlxLNEV1eXYSdfksFqNrH04gnMHlXEd57ewvXPbOUPF0+gwGamxGHhm9PLuPudZj4/0MmEqp4pbovsZm4/M/XSZFaziWOGuXh5cxOjSm1cNq0Kq7nnCGpEiZ25Y4u57/Wd3DpvNDaLdiMsrVI7b2ixUll5uBh4KimDf/H3DwF47dqahNfHu18gEKC0tDTucch+uuo73w7Opbw2fWy/Mrf4TBFZE90v2XTVYTweD+Xl5T2OGyG1szG/HwYpfn/isnK5ghCCq+cM47+LjmZXq5d7X98VWYx0am0hJQ4zz208iC+DqXJPH1/C6DI7f1yzj0v/71M27u3tijnziDI6vAHW7GiLcwdFOuTS85qNjI1G1V8ZdQNhVB9dOpwyrpTbz6zh1S3NfBrK02KxmPnp/BraPQHerO+9UjRdCmxmrpw9lK9Mq8QXkHz3ma094tcBpg53IYCVW1Ut00yRS89rNjI2GlV/Y0o1SMlln3o8fnDyCJxWEw++tRuPP4DJ5mTGyELOmFDKm/WtbM3wqs+JQwq49oRhFNnN3PJCPW7v4TDGYoeFI6qcLHtnT68Vqor0yLfnNVWMqr8y6gYiPAmTLxQ5LDx6+UQ+2efmzlcb6PYF9bv+pBH8/+2deXxV1bXHv+veJCSRkBBmwmDCjAqKiFoQtYKtqK2+gjjVqS04Vlun2vfU8p7VYtFqWwe0rbXaOotaZ3BARUBRijjgAGGSISAJEUiAJOv9cc7FyzUXkpuTnHNP1vfz4UPOuefcu3737L3u3muvvXd+dgYPL9zIlx5npORmRZkwtCPVNcpDCzfs9tpPDu3K6s07uPGVlZ5+ZmslbOW1sQRVvzn1ALFz5x73yE5LJgztxM0nFDN76Wae/dBZJ6Ztmyj3TuhHdobwwHtlbNzqre6i/Dbs3zWXhxaWUbblmxTKQ3rmMbZ/ATe+spLXv6igpp71aVoj08f3Y/r4fo2+z+/ymqrdXuG3/mSYUw8Qe8rJTmeuOKoH5x/ejVmfVfD4Iqf13GGfTO4e3w8B7n93/W6bXnjBMf2cTIfLn1m226qRF32nO22zolw84wvKPP4xSVcGdM5lQOfGhxL8Lq+p2u0VfutPhjn1ANG2rX8TKZoTEeFPJ/elZ+f23PH2Wl5YsglwWtS3/bAP1TXK395dT5WHse6CnAzG9C9g9eYdPPHBxl3n83MyOP/wbny0bhvPfrTn/VBbC//+6Cv+ncJ34Xd5TdVur/BbfzLMqQeIoMbovCAjKjw4sYThPdsy7fXVvLHMyTEe0DmX3x2/L5XVtdz3zvp6d09KlUN75dGzIIs7567lk/XfrNPxvQHtGdJtH658tpSNW6y1fsvs1dwyu/G7PvpdXlO12yv81p8Mc+oBIjZ7LbTU1fD6BUPp1zGH2+LWazm4Rx7Xje3Fhq07mfraau6cs4ZnP97EglVfs2bz9t02mW4MIsJpB3UmJyPC9S+t2BWGEREuG13Etp11THzgY8/ktTZCX173QlD1m1M3WpR92kT5n7G9KK+q4bMN36Q0HtmngGknFnPS/h2IiLB47Vae+6Sce+ev56ZXVvHkBxtZW9n4SpSTGeHovvls2LqT91Z/k7teXJjN2cM78+oXm7nimWWUb7MWuxEOgrnKeyslqDE6r4jp+/6AQgR4e3klA+MGug7ukcfBPfK4ZFQRqsq6r3fy2YZtLFqzlWc/3sTiddvompfJmP4FlBRmN3ig6sCitry+dDM3zFrJY2cN2rWMwGkHdebLyh3cOns10+eu5YqjenDxqO50qGf9duPbhL287o2g6reWeoAIanfOK2L6OrbN5NDeeTy6aAPLkkxAEhG6tcviyD4F/PyIIp48ZzAXfKcbldW1PPjeBu6eu46lX1Ul3Q81noyIcEy/AjZX17Kq4ps4aDQiXH10T+6Z0I8DuuXym5dX0PuG+Ux9dRVVO8O9/roXhL287o2g6jenHiCCWki8Il7fjHP2o21WlOtfWsHWHXt3oG3bRDllaCdmnDuYy44oYst2x7n/ec5aPly7lbq9xN3z3I026suw6dsxhxvHFfO3U/pzQLd9+NVzpex7wzt8VM8aMmHkgdMG8MBpAxp9n9/lNVW7vcJv/ckwp274Qtd2Wcw4dz/WVO7gyn+X8umGhu0ikxWN8MP9OzDj3MH88sgiamqVJxZ/xS2zv+SVzyvYnCTfPRao2baHtMniDtncNK6YP/yghNo65cg7FjGntMW23/WNnu2z6dk+/VYHTVe7mxuLqQeIxKVJw0aiviNK8nng9IFc+MTnnP/4F4ztX8C+7bNZUraN0k3VHD+okFMP6lzve2VFI5w4uAPHDyrk7eWV3D13LXNKK5lTWkm77Ci9CtqQmxVle00dK8qrqaiqJSsqFDdgnfYDi9ry+xNKuOaFUo748yIuHV3EtBNLiEaCOdmkqTyy0JnpOzHJd50Mv8trqnZ7hd/6k2FOPUAEdSlPr6hP3+nDOnP8oEJ+9+oqbpm9mp21FRTlZ9G9XRumz1tHRIRTDuyU9D0jIowqzmdUcT7rKnfw/JJNvPp5BaXl1VTvVDIi0CE3kxMGd2BMv4J6N7Guj+IO2dw3sT/T567jtje+ZOuOWqaP7xfYWYRN4a65a4HGO0e/y2uqdnuF3/qTYU49QGzfvv1bGwuEiWT68nMyuOn4Yq48ugcAhbmZ1NQqY6Z/wF1z19I+N4Ox/dvv9f27tsvivBFdOW9E171e2xByMqNcNrrIWatm3joGd8nlstE9PHnvMJCu5TW2tnrv9m3q3Zx73xvm71qeN9k1EFz9FlM3AkNhbiaFuU5LOiMqzJx8AEO67cPtb36ZUo66V/xkRBf265rLn98KzR7nrZrY2urJ1lVfUb7d87XXWxJz6gEiqDE6r2isvsxohCfPGQzAz59auiv9UVX5YM1W/jJ/Hfe9s45/vV/GzM/KqalNbebp3hARRu7bjqVfVbO6Iv0qeXMR9vK6N4Kq38IvAaKuLtxLwaair0/HHN6+5ECOuXsxF89YyriBhSxY/TUryrcTEYjPZHxo4QZ+c2wvejVDRsSIXnncM28dsz4r5xyPwjvpTtjL694Iqn5z6gGiqqoqsL/+XpCqviHd27Lwl8OY+MAnPLF4I/065vDXU/pz6kGdyMmMUF1Tx8xPKzjroSWc/8QXTBjibGtXvq2G/OwoR/UtYECnnCYNcm7Z7uTSd2wbvtmmj581OKX7/C6vqdrtFX7rT4Y5dSMt6FHQhjmXHEhFleOo4x10TmaUH+zfgQ+vHM5x9y7mH++VkRERCnIyqKiq4ZFFG+neLovzD+/GESX5KX3+x+4qj4f1aueJniCRrj9U6Wp3c2NOPUAEdc9Dr/BCX0FO8iLbo6ANH1xxMJXVtbRzHX9FVQ1PLd7Ir54v5bY3v+Tw3u3IiDa+xf5pWRXd22WF0pH8/Z11AI0OK/ldXlO1uz4SM14agt/6k2FO3QgVIkJ+nOMvyMngnBFdaZ+bwUn3fcz8lZWMLG58a728qoZOIXToAH9fsB7wxjm2JF7aHct4CQPm1APEtm3bAvvr7wV+6hs3qJD2ORk8v6Q8Jae+ZXstB3TzJ36aLG86ldall4S9vO6NoOo3p260CjKjESYf3o2bX1vFvBWVHNa7cbHxWlU+3bCNujol0sLLBcS3IuXyN+o9bxgxLE89QOTk5PhtQrPit75fH9OTPh1ymPLyCt5ctrlBy/bGOGVoJ5aUVXG3OzXd8P95NpXYzNLY7NLGElT91lIPEJFIuH9j/daXl53BmxcP5dDbF3LdSysoLszmzGGdObpv/l7THY8b2J7Xllbwi6eXMqhLLkf3LQBg245abp29mo/Xb8O/RWD9we/n2VSSTf9PRmK465PLhzSHWU3GnHqA2Lp1a2B//b0gCPq65GXx+TWH8PDCDVz74nL+b9ZKlm3qzE8P3fNgm4hwzXd7MvGBJUx9dRVH9y3g8w1VfP+exSzbVE23vCwGpOlaX8//dP+U7vP7eaZqd6okhsH81p8Mc+pGqyMzGuHHw7twxrDOnP/E59w7bx1F+VkcN7Bwj/e9s/JrauqUSYd15aH3y/jZY58RFWHq8cWM6JXH6w++1EIKvCU3K+q3CSmRLnY3dIEwrzCnHiDatGn5DIaWJGj6IhHhjv/qy8LVW7hl9mq65WVxYFHyfSdfX7qZzm0zmfLySj5Yu5WBnXO4/tjedM3LAqCGSJZXtrVkZsudc5yFyi4c2b1R9/n9PFO12ysaqj/ZQHdzYU49QGRkhPtxBFFfZjTCrPOHMGTae/zu1VXcd+oAcjK/HSt+9D8bmL/ya0YVt+Ot0kouHtmdk/bvsNvGGRnUNWgpyYa03JJltsQG92J/e8GjizYAjXeOfj/PVO1uDHv6vv3Wn4xgWtVKCWqMziuCqi8/J4N/njGQ0Xcs4rezVjLle713OWtV5f4F67l/QRlH9sln8mHdeKu0kqHd9/nWTkgNXVqmKS235u66N4agPk8v2dP3HVT95tQNAxhVks8fT+7DJTOW8qe31nDZ6CL+s2YL0+euZUlZFecc0oW/nNKfT8ucNWBKN1XTt2PTK3R8SzDxvJG+eBU+i3+f3zRwaoU59QCRleVZSDaQBF3fxaOKmLu8kqc+/IrLRhfx3MebWL5pO386uQ8Xfqc7kYjsWtZ349adjX7/xWu3fisnOkgt78YS9OfZnPRu34aDbl/M6m3RekNoXk0Mi3+fKVNea9A95tQDRNgrSTro69oui/gpSYW5GVw8qmjX8Z4mk+7UPQ+U7qjVUM0ATYfn2Vws/59Dqa6uJjs7m31vmP+t3pafPS1pzKy6sDNlypQNwAq/Pn/OnDkdR44cudGvz29uwqxvp0ay3nt3ft8Xnnt2t8VARGQSMAlg3LhxA0aMGPGpLwY2A2F+ng3BB/29r7/++uS7sLuYUw8QIrJAVYf7bUdzYfrCRWvTm0hQ9af3PF/DMAxjN8ypG4ZhhAhz6sHiHr8NaGZMX7hobXoTCaR+i6kbhmGECGupG4ZhhAhz6oZhGCHCnLphGEaIMKceEEQkKiI9RSSUG+i4+opEJPnatmmMiEREpIuINH5X6zTE1XuoiJzrty1+EOT6assEBAARiQJnAduBYhHJVtVrfTbLM1x9FwBDgFoRqVPVi3w2yzNcfWcA+wERV9/VPpvVbIhIBnAMjt4uIpKjqlU+m9ViuM/7xzj1tY+ItAlSfbXsF59xK8iZwFxV/dQ99yvgXlX9ylfjPCBO3yvAZuA7wK3AJuAYVd3uo3lNxq3gJwJvA9uAA4C7gK3Ad9NdX32IyIXAs8BaVW38ymZpjPu8TwcWqOon7rmLgUdVtcxX41ws/OI/+wKfqOqnIpIpIm2AMqDOX7M8ox/QSVVXqWqlqr4IHAd0AF4LQbhiX6Cnqpap6hZVnQucBGQD80WkgQumphUDgaqYQxeRg0VkuIgc67NdLUF3YJGqfiIime65pUCtjzbthjl1/8nF6cYCCDAIKAKuE5HbROT3vlnmDV2BkbEDEYmq6grg1zjhmEf9Mswj8nB0AE6sWVWXA4fhdM9f9Mmu5qQCOApARIbh9L7GAFNEZF6cswsjvYFR7t8qIocAhwJ/EJG7RORmv/Vb+CUAiMjjQF8gC6cVBPARToiiA05o5mc+mdckRCQClOJ0V38Ud74NMBE4D5ipqr/1ycQmIyLzgBWqOtE9zlLVHSJSBLwKvK2qoRlQFJGrgO/hxJX3U9WZ7vki4Dlgp6oe4qOJzYqI/AUYCnQCeuH8yH2EE3JrA3wIXKqqvvS2zam3MG6M+fs4g9TlqjrbPX8SjlM/EpgJPBMrFCJyDbBGVe/3x+qG4+qbCESBMlV90e2WPwzMVtWT3euygdE4YYrhqnqdXzY3BlffGcBGnGeyUESKgRnAnNgAsNsjqRWRA4BLgFtiYybpRILelaq62D2/BNgCXKSq80UkU1V3ikgX4GngKlVt/l2WmxlX/+lANbBcVd9xz/8QyMdphD2pqgvi7rkMp277Ul/Nqbcg7iDLNJx4+UicsMtUVb0h7pqzgTdUtdQdVd8uIoVAL1X9jy+GNxBX3804Dv1wYDAwRVWnicjhwCPAG8BsnF7IfGAn8DhONkWNX62bhuDquwgnpDQOWA/8t6ouEJFjgHuBN1X1bPf6WHbZ/wIPq+oHPpidMkn0Xq+q80SkH/AysEpVR7vXxxz7TcDTqjrPL9u9IE5/Z+AHwFrgOlWdH3fNj4DnVLXazVqrFpEOQN/461oUVbV/LfAPZ/ziUuAQ97g7cC1Oa2d03HVTgQvijnOBc3Gcuu869qLv5zit7pi+X+BkvMTrG44zZtAu7txVftvfQH0XAQe4x8cB7wKnucc57rlS4KmEe68CuvqtwSO9p7rHGTix9JU4DjxRbw+/NXisfxxOIyT2vKPu/9OAH8fdtw/wE6CPX7bbQGkLoU4LtFRV33WP1wCPAZ/gxM1j/BNoLyJnusenAS+r6sqWtDdFStXthrr6HgcWAMWxC1R1gap+CRwtIoeLyGSc9Lh0YJG64QdVfQHn+R3vvrbDPXcSMFBEHhSRk0VkPPCQqq7zx+QmUZ/eE9zXIqr6NnAETq72kyJynoj8EnhCVVf7Y7JnCPB+nP7nccJKp7mvZ7v/3w+0FZHY+Uk49XVpSxobj4VfWgAREaAAuBF4wK0MsdeuBerUHSgUkRycNLmzgCXAu6r6cYsb3UhEpD1Oy/wp4CN187NF5NdAgapelXD9a8Ac4C7XyQcaNzXxn0AVMFlVy914+dk4vZFBwDuqept7/ZnAl8AydbJ90ooG6l2gqre6148DKnHCMWmnNxFX/2NAJnCeqi4Xkf1xes2bcEKn81T1jyJyIHAhzlyFd/yurzajtAVQ55ezXETuAN4UkUtV9R/uy5/hZL4gIt2BfdSZ1HCNP9amhlvp/4UTL58C3Om+9AFuyp+I9AByVfUzVT06Nmbgj8WNQ1Ur3ayPga7WKE4q21s4YyTtgFtFJENVp6nqg37a21QaqHeaiIiq3uK2ZEODq/9yYLDr0CM4aapv4ugvAG5z9d+Ouw9tELCWegvjDhiujLVOxVk7YpSq/lVEsoDfA8+r6kt+2pkqIjIWZ6bhh+5xf+AIVf2re3wtMF9VX/bRzCbjVvL26s76dQezbwHaquoEN189sIO+jaW16U3E1V+oqhvd4w448fQiVT02SPotpt7CqOrchHBDFCeVEaAHTu5vIKYbp4Kqzow5dJcMXH1uHvMlOOlxaU+cg4uq6ibgGWCV+1ogKriXtDa98ahqXZxDj7jfxdM4A8WB0m9O3X++BkpFpDcwFzhLVRf6bJOXxOtbiBOffN9nm5qMqtaJSI6InKZOPno2zoBwILc4ayqtTW99iLPK6GT3u8gCegK3+W1XIhZT9xlVXSUiZ+BMzjlDVZ/z2yYvCbm+k4C/i8haYH+c1D7fsh5agNamN5HROMsBLAEG4OgPXFaaxdR9RkTygC9wWrBhcnhAuPW5cdb+QCHObMM1PpvUrLQ2vYkk6F8R1Kwtc+oBQETaq2q533Y0F2HXZxhBwpy6YRhGiLCBUsMwjBBhTt0wDCNEmFM3DMMIEebUarqsoQAAA5xJREFUDcMwQoQ5dcMwjBBhTt0wDCNEmFM3DMMIEebUDcMwQoQ5dcMwjBBhTt0wDCNEmFM3DMMIEebUDcMwQoQ5dcMwjBBhTt0wDCNEmFM3ABCREhF5TESm+m1LIiIySUSmi8h4v20xUsPKV8thTt2I511VvTr+hIiMcSujisiYZDeKyEwRWSoiV4lIgZdGqeo9wFSgxMv3NVocK18tgO1RauwRVZ0VV4mGAbMSr3ErYyEw1a0ghtEgrHx5j7XUjYZQCCwD+iS+4FbITSSpkIbRAKx8eYg5daOhLKX+7ulw9/8KVV3WgvYY4cLKl0dY+CUNEJFJwME4cb9h7umxwGPu3wU4rZ0+iTFLDz67BFjgvn9JwmvD3NcmYa2otMXKV7gwpx5w3Hjiozhd0+mqOtY9XwFMB8bGWjAiUg4kDkSNB5ap6vspmjBMVR93u8GJLalCVX1fROIdQEM0TQUKVHVyijYZHmHlK3xY+CX4LFPVCmAMu1eoYcCsuAr3rYwAtwV2DU4rKFUKAVwbdn2OiIxX1VjraQyNa0m9C8zc0wUi0uBKbDQJK18hw5x6wImLI5YktIbGsnvBPQWnxRV/7z043VevWAaUuF3m92FXF7mx8c6xsfvrw31Pi5+2AFa+woeFX9IAt4ucWHmGAxPijicDV8daOrGWTxM/t4TdC/8ynC5yxZ5aUe59Y9zrh6nqzW5FGo6TyVAS1wLc7Vqcyng1MFNEhjWhW280ECtf4cJa6unBbq2mWEsjocta4laEMV5UOJcxcZULnIoxOeFcom0FOLHZe9zrDhGRA/kmx3gWUJHsWvczUNWbw1jhAoqVrxBhTj09SMzRHQ48EjtwK9ms2KBVUz9MRArcwaapIjI1Lp66FDfuKiLD3GvGAGPjZgNOYvduewlwcty5MXF/13ftpqbabzQaK18hwsIvaUAsIyHu+Fuz6lR1QuK5JnxeBU7lujrh/M1xf7/PN13ZRGLx0Fj3Oht4031tLE5lHpbk2t3iqWFtTQUJK1/hwpx6iHFbN8OBChHZ1EIF+B5gkoiAE++c4Fao8e45+Ca2mexaRCSxa24EDCtfwURU1W8bjAAQqxjxraUgEXT7jD0T9OcXdPsag8XUjXgOEZHpfhuRiJsPfTUhTkNrJVj5agGspW4YhhEirKVuGIYRIsypG4ZhhAhz6oZhGCHCnLphGEaIMKduGIYRIsypG4ZhhAhz6oZhGCHCnLphGEaI+H/Gvc6tO/4x+gAAAABJRU5ErkJggg==\n",
-      "text/plain": [
-       "<Figure size 396x396 with 4 Axes>"
-      ]
-     },
-     "execution_count": 10,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
+   "outputs": [],
    "source": [
     "result.plot_corner()"
    ]
@@ -366,7 +220,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 11,
+   "execution_count": null,
    "metadata": {},
    "outputs": [],
    "source": [
@@ -376,32 +230,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 12,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "<matplotlib.legend.Legend at 0x7f2ed97a0f50>"
-      ]
-     },
-     "execution_count": 12,
-     "metadata": {},
-     "output_type": "execute_result"
-    },
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEaCAYAAAA7YdFPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXtwJNd97/f99bwfAAaDxz64y92dXYpPySQWK1myyg9y1r5XSexYwu7eOJX1vbaIteJU4nL5AqLvHzQr5awAOeWqVN26AnRvqlKppLJckAz/sG8kYOWUIyf3epdDyrJIShRmySW5T+xgAMx7pvvkj36gZzADzBlgnvh9Cqjp0326+/R3evrX5/zO+R0SQoBhGIZhGkVpdwEYhmGY7oYNCcMwDLMr2JAwDMMwu4INCcMwDLMr2JAwDMMwu4INCcMwDLMr2JAwDMMwu4INCcMwDLMr2JAwDMMwu8LZ7gK0gtnZWREKhRra1+FwQFXVPS5R78J6ycOaycF6ybEbve7cubPy8ssvj+yUb18YklAohMnJyYb2zWaz8Pl8e1yi3oX1koc1k4P1kmM3er3yyisf1ZOPm7Z2IJ1Ot7sIXQXrJQ9rJgfrJUcr9GJDwjAMw+wKNiQ74Ha7212EroL1koc1k4P1kqMVeu0LH8lu4JtWDtZLjr/+679GNpuFovA7Xb1omsZ6SVCvXh6PB1/5ylcaOgcbkh1IpVLwer3tLkbXwHrJkc/n8Zu/+ZtwuVztLkrXUCwWWS8J6tXrjTfeaPgcbNYZhmGYXcGGZAe4qUYO1ksebqaRg/WSoxV6cdPWDng8nnYXoavoGL2EADbuAok4sHoTSNwExn8PGHik3SXbAhEBAI5/86+k9vvwW/9JM4qzI/F4HJcuXcLi4uKeHzuZTOLVV1/F9PQ0rl27hrGxsS15TL0aIRaL4cUXX0Q0GsWZM2dw/fp1nD17FtFodDfFboilpSXMzMxYOs7OziISiQDQNZ6amrLyzs7OIhQKIRwOIxQKIRaLlW2/dOkSZmZmYA68jsVimJ6extmzZ/Enf/InZee8dOkS5ubm9vSa2ZDsQCqV6pyHYxfQUr3UErB2SzcSiTiw+mH5cim7mZccwIlf7khD0m3O40gkgqtXrzbl2Obg4ZmZmapGBNidXmNjY4hEIrhw4QLGxsYwMTGBkydPYnl5eTfFbohoNIq5uTkAwMLCAqLRqHXN09PTVr5z587hpZdesrbFYrEt5V1aWsLS0hImJiYA6Nc5PT2N6elp/PEf/3GZXpFIZM8NJxuSHRBCtLsIXcWe61XI6EbBrFXYaxjJW4CwhX5w+oDB40A4Apx6YXM5fAIYOAo4OtNB2233WDweRzKZrPmgbzbN0Csej1u1gXaQSCSQSCQsTS9cuGCVKx6Pl2k9NjaG06dPW2mz9nHlyhXLkJhEIhEsLy/j8ccfBwCEw+GmlL97XoPawepHcN36IbB+u90l6Roa6k2TXQU+jQE/XgD+9tvA//mHwP/8T4H/8QngfzgE/JsvAv/H7wDf/1fAPy7o+Q8/B3z5j4Df+tfAP/9r4I/fB/70NvCH/wH4L/534Df+HPj8i7pBCUc61ogAu2uq2Y7Z2VksLS1hdnYWADA/P49YLIb5+XkA+lvwyZMnkUwmrSYPM9/CwoKVb2lpCWfPnsX8/Lz1pmx/Y66V3zz30tJS1TIlk0krbe5biXksc9/p6WkQ0ZZzLCwsWNdgXs/p06etYy8sLFQ9fjKZRCgUQiQSqXqdlZrVOm61fLFYDEtLS2V57DrZOX/+PGZmZnD69GnMzs5ahmNpaQnj4+Nb8ttDPsXjcUxOTpbpbHLp0iWrN1YsFmuaseQayXb89N/Ds/TnQGkd6D8CHD0DHP0CcOTzwMHPAk52LFdStVnL9FdUq1Uk4kAuWZ4/eFCvRZx8Hhg8oS+HT+jL/ua8UbWTZjRrmQ+jaDSKxcVFzM7OljWdzM7OYmpqCnNzc1bb+9zcHJaWlrC8vIzJyUmcPXsWk5OTiEajmJ6exuTkpPXgNdvit8sfjUYRiUSs9vjKMl2+fNlqYjKNWCXRaBQzMzMAgImJCczNzUFRlC3nmJ6extWrVxGPx3Hjxg1rvdmEc/r06bK39aWlJSQSCcTjcVy7ds06l/06a2lWedx4PL4l38OHD3HhwgVEo1HE4/GqOtkJhUJYXl7GwsICrly5gnPnzkk3H0ajUSwtLZU1W0WjUXzrW9/CN7/5TaljycKGZDvGfw+Z0OfgTf4I+Pg/Ah9fB35i9LV2eoFDzwJHP6//H/k80HegveVtJ0IA67eRufUuvLmPDCNxUzcYqx8CxcxmXlL0pqZwBHjmq/qnaTAGjwPuQLuuoi00w0dy/fp164EyMzNT9vAKhUK4fv06AL39fWFhwTIM0WjUeqO3Y77JVkbRrpW/WhNKtTKdOXMGgP5ANo3UTph62c9hf9NOJpNb9olEImXNV6ZBq5bPvM7FxcWqmlXmf/PNN7fkm5mZwczMDJaWlnD16tWaOpnEYjHLZzMxMWHVwux+FDumwYjH41a5wuGwdS47oVAI8Xi8Lm0bhQ3Jdjjd0IY/AzzxJeAXv6GvW78NfPz3wCfXdePyH78D/L//k74t9OhmjeXoGeDAMx3dpNIQQgCpe8D994AH79s+3wfya9CCTwCp93VDO3hcNxCRX9usUYRP6Dr1mi67oBlt/mfOnLHa1k1/hj1tPsDPnz+PF198ES+99BIAvfklHA5bNYGdfAcy+auVKRKJWJ+XL1/G0NAQpqamyh565rJpIBrRqxEfSC3NKo9rPtDt+WKxmGUApqencePGjW11unHjBiKRiHWt5rZIJIJIJGIZGlMH04jGYjGrxhaNRst8JyYTExNWja2akd0L2JDsgNNZIVH/YeDp/1z/B4BSHrjzI8O4/D3w4Q+BHxtVUqcPeGRss8Zy9PNAYLi1F7Ab0ivA/Xd1I/Hgvc3P7OpmHl8YGH0S+OwEMPoknIGTwJHHgb5DQBf1RGonzfCRTE1NYXp62nowzczMYHZ2FolEoqzrqNmsZT6kwuGw1RRj+g3MB5n5MDOX4/F41fzj4+OIx+OIxWK4ceMGYrEYksnktmVKJpO4cOEC4vE4ZmdnrYcjoBugpaUl643+93//95FKpbacIx6P46233gKgPzzNcsXjcet4Zr7FxUWMj4+XGSzTr2FeZy3NKo9rNtvZ89mv07yuajqZ5THPbx7f3tR39epVzM7OWsYoFApZzViXL1+2DHE8HkcikbCa5OxNgrdu3QIAvPrqq1Y59rLnFnVbj5FGmJ+fF43OR5LL5eRCfggBrH2iG5WPr+ufd34EaCV9++CJ8uaw0acAR5vteSZh1CpMo2HUNDIrm3m8A8DIk8DoE+WfwVHA9iCU1muf88Ybb+C3fuu3uqr7b7uptymwET9DPTTruM2iXr3eeOMN/PZv/3bZuldeeeWtl19+eau3vwKukexAJpORezASAaGj+v8zX9PXFbPA7XcM4/L3QPz/Bv7hir7NFTBqLV8wjMuZ5jmUc2u22sV7m81SqXubedx9upF4/J/qNY2RJ/TPvkNlBqMW0noxXTeOpN3Uo5dZu9jrbr3NOm4zacX91XZDQkRTAOIAwgAghKjeD1DPOwEgAmABQALAJIAFIUS8WeXTNG33B3H5gGNf1P8BvdaS/GizxvLx3wM//MvNMRFDpwxfyxnduIw8ASiO+s+X3wAe/LTcj3H/PWDD1o3ZFQBGHgdORTeNxcgTwMCRugxGLfZEr33GfmgV2Evq0SsajTZlkGGzjttMWnF/tdWQENEMgOtCiAUzTUQTZroKYQAzxn8SwIvNNCJAk+LUEBmO6OPA587p6wpp4Pbbm478n30PeOd/07e5+4Aj45vNYUfGAV9I3+fBT7c6vddubZ7L6QNGPqOP6rY3Sw082hQfBr9Zy9OscSS9CuslRyv0aneNZFIIMW1LLwKYhl7jqMUggHCzDYiJ3+9vxWn0Lq/Hv6z/A3qtZfWmblhMR/7ffhsQxht/8KDRJGW8bTjcwPDjwKNfAEZ+d7OGMXhcrjazS1qmVw/BxlcO1kuOng7aSETV4iskAGzblUAIkYReG2kJbXMeExnhPSLAL/wzfV0+BdyO6Ybl4bLeldZslho80X6nPdjZ3gjsI5GD9ZKj130kYeiGw04SAIgoZBiMLRDRpLFfGEBICDG7Tb5JALh48SIuXryIQqGAQqEAAAgEAiiVSsjn81Za0zRks3qgP/PN+uHDhyiVSvD5fFAUBel0GoA+gtvpdFppt9sNt9uNVCplpT0eD1KpFIQQcLlc8Hg8yGQy0DQNTqcTXq/XSiuKAr/fj1wuh1KpZKXz+TyKxSKICMFgEPmhZ1HoewoAEAwGN69pNVn3NWUy+uDAZlyTuSx1Tfm89b2UXZPE99TMa2roe6rzmorFIjRNg6qqcPz3cp0siv9K71WnKAqICKqqWum3334bk5OTeP7553HmzBl8+OGH6O/vx9e//nUQEd55552y7aurq/j2t7+N999/H0SE9fV1XLlyBX/6p3+K733vexgfH4cQwvKBORwOqbT5ILOnK8tcT1rTNJRKJWudpmkQQoCIGkp3yjXt5hp2uiZVVS0/yXbXVCwWrd+R+Vkv7TQkIRgOdhumYQmjeq1jCUDCNDJENEdEk9Uc9Ma6eUDv/uv1equ+Kff19ZWlA4HyUdWDg4NlI2h9Pl/Z9sp05TkqQ4ZUbpdN73Q8YOdrqmx+2str0jRty6jmbr+mRtL1XpPL5YKiKHA45JsfK+Oa2d86x8fHcfLkSfzO7/xOWeiON998ExMTE1W3Dw8PW8cMh8P4xje+gb/4i7/A5z//eeu4leXcbbryTbnetDm+q9H9d1PmZl3TXqUry+RwOLaMh6t2DS6Xy/odyTZRt7N+WM1QmE+gypoKAEAIEa+oqZg+labBbf5ysF7ytKqZZnJyEpcvX6653RzJ3elws5YcrdCrnd9IAnqtxE4IsPwgZRBRiIgEEdn3SULvDtw0zCYVpj5YL3la1WXanBCpGuaI61phxqtF4bWv320UXhm4i7kcrdCrbYZECBHD1lpJGHrzVS1mK4xMBPoYlKZRLBabefieg/WSp53jSK5cuYLZ2VnLwNQK7GcPp2GPohuNRpFIJBCNRjExMYErV65YMZ8qo/DuVCOqFx53I0cr9Gp3HXHeGGRochaAFeqSiCLmdsOAPKzY/xya3LTFfdblYL3kaZVm1SajunDhAqampsoCAsrSSBTe3cD3mBw9P45ECDFNRFO2EevLFYMRo9CNhblu3hgJnwRwEsDcNoMX94RgMNjMw/ccrJc8rWrzn5+ft6L8VmLWOG7cuIHFxcW6ovA2wl6EFmEfiRw9PY7EpFb3XWOb1fPKSCcB1MzfDPL5PM/ZLgHrJU8zmh7MeFBXrlyxIs+GQiGrWapyeyKRwNWrVzE3N1d3FF5zyt1GovDuBm7akqPnQ6R0A2bff6Y+WC95NE3Tu2P+2dqeHXNsbMx6mNe73R4hu9p87GYYdaDcT2LGnhobG7OOYZ+MyT6j4F5g6cXURSv04joiwzBNwx4tl+lduEayA9zmLwfrJU8vv103I1puL+vVDFqhF9dIdoCbauRgveThNn85WC859kP3346HH4xysF7y8AA7OVgvOXp6QCLDMAzTG7CPZAcqgwMy28N6yWO2YX/2f/ms1H4//t0f72k5Tp482RWz/7GPRA72kXQAZshqpj5YL3k6pc1/u+7CnUSn6NUtsI+kA+AghHKwXvJ0Qpu/OWiwG+gEvboJ9pEwDNMQ9UbrNY1HJBLBlStXrFHrnRLpl+kO2JDsALf5y8F6ydOMNux6o/UuLi5a28zgi50U6bca7CORg30kHQBXo+VgveRpdZt/rTlHZPdtRaTfarCPRA72kXQA5tzgTH2wXvI0y/juJlpvp0T6rQa/rMjRCr24+y/D9Cj1RutNJpNbJrTqlEi/THfAhmQHeA5yOVgvecz5IvZ6XEi90XpNA9HIvkBzI/1Wg+cjkaPX52xnGKYDiMfjmJubw8mTJ2tOtVsPHOl3/8I1kh3IZDL8li0B6yVPu+fXGBsbqzr/iCzNiPRbjXbr1W107HwkRHSciC4T0ddt675GRMf3qmAMwzBMdyBtSIjoBQBLAAiAVQ8WQrwG4CQRPbt3xWs/Pp+v3UXoKlgvebjNXw7WS45O9ZGcFUKcEkJ8E8BN+wYhxDUAe9/fr43wTSsH6yUPEbW7CF0F6yVHK/RqxEdy3bbc8yOD0uk0v2VLwHrJo6oqFEXBe088KbXfk++/16QS7Uw7IwWbejH10Qq9Gjn6oG25mqk702BZGIbpErolUjDTGhoxJEREXzWWhW3lcSK6gvIaS9fj8XjaXYSugvWSp9vertsdKbjb9Go3HekjEUJ8F7pTPQHgu0T0ARE9BLAMYFEI8fpeF7KdOJ3cQ1oG1kueZrRh14ryCwDz8/OIxWKYn58vyzs/P4/p6ekdo/y2O1Iw+0jkaIVeDZkqIcS3AZwA8E0A8wAmAYSFEP9W9lhENEVEE0Q0SUSTkvvO7Zxrd6TT6WafoqdgveRRVXXPj1kryu/s7CzGx8cxNjaG8fFxzM7OWnknJyfx0ksv7RjlF2hvpOBm6NXLtEKvhus8Qog1IcR3DaOyiAYc70Q0AyAuhFgQQsxDr+lM7LSfbd9x2XMyzH6hWpTfxcVFK5BiKBTC9et6S7R9XeW+O0X5ref87YoUzLSGRsaRfL3K6pMAzhiDEp+XONykEMJep10EcKmOMrSsi7Hb7W7VqXoC1kueVrb5j42NWQ/sZDKJM2d23zem1ZGC2UciRyv0aqRB+1TlCiHE2+ayzRG/LURULSZDAkA9Ed+i0I1Oc6PDgR+MsrBe8jSjDduMeVUZ5XdmZgazs7NIJBKIxWKYmpqyYmTFYjGMjY1V3bcyyq+dVkcKZh+JHC3RSwgh9Q/g8jbbjgP4N3UeJwpguWJdBHoTWWiH/ULG51v1nGtubk40yoMHDxredz/Cesnx+uuvi0Kh0O5i1M3q6qpYXl4Wk5OTYnV1dVfHmpiYaGi/btKrE6hXr9dff33Luj/7sz+7Iep4xu5YIyGi54yH9gUAzxnrpmpkj6OOpimDEIDKRtyE8RkGUKueHBJCJHeysobjfhIALl68iIsXL6JQKKBQKADQp4QtlUrI5/NWWtM0a2ImM/Dg2toaAD30h6IoljPZ4/HA6XRaabfbDbfbjVQqZaU9Hg9SqRSEEHC5XPB4PMhkMtA0DU6nE16v10origK/349cLodSqWSl8/k8isUiiAjBYBD5fN66hmAw2NA1ZTKZpl1ToVBAIpHoqWtq5vdULBYhhICqqtYERGZThD1NRJbTtN60pmkQQoCIoCjKrtNCCPzsZz/Dq6++ikgkgr6+PhSLRQD6dK5CCKvMlenKa/rBD36AWCyGn/70p4hEIlLXpKrqnl5TrTLLXlMnfU/2MmuaVtf3VCwWrd+R+Vk39Vgb8x/AFIDvABio/Jc5jtisWaxWrNu2RgJgomL/ptdI1tbWGt53P8J6yfH666+LUqnU7mJ0FayXHPXq1dQaSYXRmSWiF4UQa5XbiKhfCLEucbgEbEEfDULGebbURgwHe+PevAbhAXZysF7ycJu/HKyXHB0Za0voAxLLIKIBAONGgQdEHYMShRAxIqo0DGHokYWrMQYgYnPSnwEQMprZFoQQTek7mEql+OEoAeslj9lkxtQH6yVHK/RqeBgyEfWj3MexDD321rcA1Du6fZ6IJsRmF+CzAKxBhkYtZEzo40zKhr4aPpCIEGK20WuoByF6Pi7lnsJ6ycOaycF6ydEKvaQNiVH7MMPFDwAwm7lC0I3JdL3HEkJMmyPbjeMtVxiMKIBzAKoZkXPQayhTAOarNYftBS6XqxmH7VlYL3nMpod//Qc/kNrvD78jM2Rr74jH47h06ZI1Wn4vSSaTePXVVzE9PY1r165VnblxN001sVgML774IqLRKM6cOYPr16/j7NmzTZ9nvhpLS0uYmZnZouOlS5cwMzNjjc+JxWKYnp7G2bNnMTU1Vbb/pUuXMDc3t235OzVEyjcBnBNChAGcF0KEjX8FwB9A77lVN0KIWaPGMSv00e32bfNCiLNV9pkXQpwVQgwa+zXNd8LNNHKwXvJ0WzNNJBLB1atXm3LsUCiEyclJhMPhmtP/7kavsbExRCIRXLhwARMTE5iZmcGlS/V2NN1botGoZSzsLC0tlcVGGxsbw/T0NK5cubIlrxlmZjs6Mmgj9JAm5oRW9pDyED04sZV0N7h9Duslj9kVs1uIx+NtDWfSDL06JTyLWfuoZTTs5awWAqcarbi/GjEkD23LNyVDonQd3fYjbzeslzzNasM2o/7OzupuxMqovwsLCzh58qQ1It18Mzej8daKDgzA+twuf7XIw/YyJZNJK23uW0m16MJCiD2LLpxMJhEKhRCJRKpeZ7VIydWOWy1fLBbD0tJSWR67TtWIx+OYnJysGqb/0qVL1rFisVjdIWVa4SNpdD6SE0T0PejNWLNE9NvGhuPQBy72DBwWXQ7WS55mtGHPzs5ibGwM0WgUDx8+rBr1d2JiApFIBKFQCOFwGHNzc1haWsLy8jImJias5qvK6MDmPgC2zV8t8rC9TJcvX0Y0GkU0Gq05UVa16MJEtOvowmbz0auvvopr165Vvc5akZIrj1stn3nN0WgUY2NjVXXajmg0usWYRKPRhvxSHekjEUK8Br0r7hr0wYPnAXybiFTozvamh3ZvJV6vt91F6CpYL3ma0YZ9/fp1q+nDdOhWi/p77tw5LCwsIJHQg0qYTujKh1hldGCTWvmrNbtUlske0+v06dN1B3009dpNdGHToE1OTpZdk/06a2lWedw333xzSz7TCW7W+GrpZCcej+P69etYWFhAOByuanBCoRDi8XhV30otOtVHAiHEa0KI80KID4UQcSHEKejBHMNCCLmuJx0Ot/nLwXrJ04zmwDNnzpRF+a0V9ff8+fO4cuWK9VA2m13MmsBOvgOZ/NXKFIlEMDY2hvPnz1tv90C5waqMLtyIXjLRhU3qiZQcj8fx5S9/eUu+WCyGubk5LC8v48qVK3XpFIvFMDMzY3UCqGZ0Lly4gOnpaalraUVzcyPdf7+KKpNY2RzwPQW3+cvBesnTjDbsqakpTE9PWw/halF/AVjNWmYPqXA4bEXlNf0GkUhkS3RgszZRLf/4+HjVyMPblSmZTOLChQuIx+OYnZ0tiwZcGV34937v95BOpxuKLmzmW1xcxPj4eJnBqoyCXEuzyuNGo9Et+ezXaV5XNZ3M8sTjcVy+fNkyrvF4HIlEwmpOM8tvXhcAvPrqq9Yxt+u51ZJxN/XEUbH/A3gV20QA7sT/3cTaevjwYcP77kdYLzlef/11USwW212MrqJevRqNLtyu4zaLevXaTaytRpq2rgghXqq1sd75SLoFM7osUx+slzzdNo6k3dSjl1m72Otuvc06bjPp1Imt3jKMRVwI8U6V7WdRf4iUjieXy7EDWQLWSx6OHSVHPXpFo1EsLy/v+bmbddxm0qmxtmLGZ4iIKhvfCHpPrm/sqlQdRKlUancRugrWSx7BsaOkYL3kaIVeDY1sB3BCCKEIIRwV/wqALdGBuxl+U5SD9ZKHw6LLwXrJ0ZFh5AFUnY/ERk+NI+E2fzlYLzk8Hg/efPNNNsAScFOgHPXqtZs4eY3MR/L2brZ3G/l8ntv8JWC95PjKV76CtbU1DAwMtLsoXQPrJUcr9GKzvgPmXMdMfbBe8rBmcrBecrRCLzYkO8DtsXKwXvKwZnKwXnJ0ZKyt/UYwGGx3EboK1kse1kwO1kuOVujFhmQH8vl8u4vQVbBe8rBmcrBecrRCLzYkO1AoFNpdhK6C9ZKHNZOD9ZKjFXqxIWEYhmF2RUOGhIiOE9FlIvq6bd3XjImtegpuj5WD9ZKHNZOD9ZKjI30kRPQCgCXo4VCsGMxCn/DqJBE9u3fFaz9cjZaD9ZKHNZOD9ZKjU5u2zgohTgkhvgmgbA4SIcQ1AHKzx3Q4fNPKwXrJw5rJwXrJ0amGxD7fJEdPYxiG2ec0YkgGbcvVRrpsnY+yiwkEAu0uQlfBesnDmsnBesnRCr0aMSRkm7xK2FYeJ6IrKK+xdD0cFl0O1kse1kwO1kuOVuglbUiEEN+F7lRPAPguEX1ARA8BLANYFEL0zKRWAA9+koX1koc1k4P1kqMVejUSRh5CiG8T0TyA89B7bsUBLO0QXr4qRDRl7B82jj2/Td4QgEkASQAnjfzT0hfAMAzD7BkNGRJjvEjUqJ2Y654lItSYfrfWcWYAXBdCLJhpIpow01V4yW44iOgtIprczvjsFm6PlYP1koc1k4P1kqMjfSRE9DyA0wDm7WNGDANCxvZ6mawwGosALm2Tf4KIJm3pOPQ54puGpmnNPHzPwXrJw5rJwXrJ0Qq9GnG2R4QQrxlT7ZbVPoxJrQZr7FcGEY1VWZ0AEN1mt7MVtY8Imuzcz2azzTx8z8F6ycOaycF6ydEKvRpq2tqBeseWhKEbDjtJQPeFCCGSWw4sRNxcNg2REGK22sGNmsskAFy8eBEXL15EoVCwBucEAgGUSiXLERUIBKBpmiW6OWXs2pru9vH5fFAUBel0GoA+LaXT6bTSbrcbbrcbqVTKSns8HqRSKQgh4HK54PF4kMlkoGkanE4nvF6vlVYUBX6/H7lcDqVSyUrn83kUi0UQEYLBIPL5vHUNwWCwoWvKZDJNu6ZCoYBEItFT19Ts7ymfzyOdTvfUNTXze1pbW+u5a2rm95TJZLCystLQNdULCSE3ppCIvmWMaq+1/bIQ4qU6jjMB4LtCiEHbuhCAVQAn7UajYr8QdCf/OQDTQojYTuean58Xk5OTO2WrSiaT4XnIJWC95GHN5GC9tkcIgfVsCfc3cri/kceIF/jMkeGGjvXKK6+89fLLL4/vlK+RGskiEX0PwJQQ4kfmSsNfMgNgrs7jbKlxwOi5ha01FQujpjIP3UfzFhHNNdPZzjAM0wlomkAiU8D99bxlJO6vm5+2dRt5FEqbfpHp6PGGDUm9SBsSIcQ1IhoE8DdENADdIISMz0mJcSQJ2II+GoSMc1QzMtWavOaDSdrdAAAgAElEQVSM/6YZEn77kYP1koc1k6PX9CqpGlZSBd0QrOcNY5DDvfU8HmxsGoqVVB4lbWsLUr/XidF+L0b7PBg/Nmgtm59Dzs4dR7IAYMHwU5wAEDcc7TLHiBFRpcEIQ48svAUiikKvDQ1WGppaPhWGYZh2kSuqeGDUEOwG4d76Zs3hwUYOD9MFVPMwDAXcGDEMwmcO9OFAvwejfaaR0JdH+jzwuhzblsP0jzSTXTnbDf9EmY+CiJ4XQvygzkPMV4wbOQtb0xgRRQCMGdtvAJivMBhnASw004j4fL5mHbonYb3kYc3k6BS9VE3gw4dpvHt7He/fXcedZA73bLWKtWxxyz4OhTAcdGO0z4vDA148e3QAI33eLUZiOOiBy7E38w62Qq9GByT2o3a4+GkAdRkSIcQ0EU0ZjvcIgOWKcSVR6E71BSFEkojmjJHwADAEvSbU1JHtisKTSMrAesnDmsnRDr1yRRU/vbuBd++s4ye31wzjsYFMQQUAOBXCgX4vRvs9iIwE8IuRIYz2eXCg34uRfo9uIPq8CAfccCjVYt02j1boJW1IiOhF6E71Wg7xEzLHq9V919g2D5v/o1oNqNmk0+mOeQPqBlgveVgzOZqt12q6gHfvrOPd24bRuLOO5QdpqIZ/os/jxJOH+3F+/CiePtyPpw7347HRPridnflC0Ir7q5EayWkhRLjWRiL61i7KwzAM0xKEEPhkNYuf3F63DMe7t9dwey1n5TnY78XTh/vxG08f1I3GoQEcGfRBaXGtotNpqPvvDtsvN1KQTsXj8bS7CF0F6yUPayZHI3oVVQ0/v5/Sjcbtdbx7R2+eWs/pIdYVAiIjQZw5EcZTh/rx9OEBPHmoD0PB7v9uWnF/NWNk+wkAdQdu7HSczmZI1LuwXvKwZnLspNdGroj3726UNU397G4KBVUfW+F1KXjiYD/+s184jKcO60bj8QN98Lm37/3UrbTi/mp0QOJXoQdMjAsh1iu2XwLwjV2XrEPg9ms5WC95WDM5TL2EEHiwkbeapkwn+IcPN8N7hANuPH24H//iy8etmsaJ4UDLHd7tpFN9JJVjOOw9oAl6rK2eMSQMw7QeIQSyRRXr2RI2ckWs54pYz5Wwmi7gkzv3cf3uMt67s46VVMHa59iQH08d6sfE6SNWTWO0zwOi/WM02kUjhmRJCPHrtTYS0Xd2UZ6Ow+12t7sIXQXrJU8vaqZqAqlcyTAARZtBKGE9W8SGsW3D2KYvG/mN7dVGcQPAkQAwMNCPX3t81Og1pfsz+ryuFl9ld9CK+6sRQ1J13AYR9RvNXDO7K1Jn0Ys/8mbCesnTiZoVShrWssX6Hv7ZYsVyCan8zvOEB9wO9Ptc6Pe60Od1YqRPH4PR73Wh3+dEn9dVsexEv8+FUb8DfQFuCqyXjjQk1UKhGDG3xo0q5ACAm7svWmeQSqXg9XrbXYyugfWSp92aCSFwK5FB7NYq3vpoFbGPknj/7jpqVAgA6L2c7Eag3+vCsSF/1Yd/n5Hut20LepxwNjhye2VlhQ2JBK24vxp25xuj2+3jSZah+0i+BaDewI0Mw7SYbEHFP3ySROxWErFbq3j71qrlawh6nHj2aAj/9a+ewoF+D/p9m4bCbhD8bgf7HhiLRka2DwC4Bj2kyQCANWNTCLoxaWrIklbTic0OnQzrJU8zNRNC4NNkFm99tIq3DcPx7u11y/9wYjiAX/nMKMaOhTD26CA+c6Cv43s08T0mR0c2bQH4JoBzQoibRPQ1IcRr5gYiegHAwz0rXQfAg8XkYL3k2UvNckUVP7m9hthHSb2Z6tYq7m/oYcR9Lgd+4egAJn85gtPHBvHco4MIB7rvocz3mBydOiAxLoQwfSBl87Mbc5V8FT00IDGVSvGNKwHrJc9uNLuzlkXsI72mEbu1ip98um4NvHs07MeXTg5h7Nggxh4dxBMH+xr2S3QSfI/J0Qq9GjEk9hrHTcmw8V2H7FTE+x3WS556NSuUNLx7Zx2xj1bx1q1VvP3RqhUXyuNU8LkjA/gXXz6OsUd1wzHS15sPW77H5GiFXo0YEiKiEwC+A+APAFwloj8XQrxBRMcBXEAPOdtdLu6bLgPrJU8tze5v5BD7KIm3jd5UP/50DXljCtVHQj6MHRvEi0Zt48lD/R0bfXav4XtMjlbo1Uj339eI6GvQnewCwHkA3yci++RUPQNXoeVgveTxeDwoqRrev7th+TVit1bxcSILAHA7FDzzSD/+q188ZjVTHRzYv12s+R6To1N9JDAc7K/ZVp0yaikJIcRajd26kkwmw+MiJGC96kPVBN6+tYq/+el9fPjpffzgZgbZoj5J0oF+D04fG8TvfvE4nnt0EM880g+PszcDCjYC32NytEKvPQkLaYwpeVglgGPXo2lau4vQVbBetckWVPzw5ytYfPcurr13Hw/TBTgVwgsnfLhw5ihOHxvE2LFBHB7w8hiNbeB7TI5W6NXIOJKvCyH+bcXqkwDCRBQCsNpLzncO8S0H61XOSiqPH7x3H99/9x5++PMHyBU19Hmd+LXHR3H2qQP4lcdHoOXSCIVC7S5q18D3mBydGkb+VOUKe9gUo/tvz8BVaDlYL2D5QQpL797D4rv38NatVQihO8f/2ZlHEX3yAD5/IlzmGM+BNZOB7zE5WqFXI4akZl8yo9fWWfRQry1uj5VjP+qlagLvfLyK7xvGI/4gDQB4+nA//rsXHsPZpw7gqUP9NZur9qNmu4H1kqMjfCRE9ByAKPRuvc8Z66ZqZI9Dn9iqZ+D2WDn2i152f8cP3r+PlZTu7/jiySH88y8dxwtPHsAjofoCC+4XzfYK1kuOjvCRGM1WbwP4tmFAIqgST6vXemuZKMr+6Ju/V/SyXg9TeVx7/z4W372H/+cDw9/hceJXn9D9Hb/6+Aj6G5gTo5c1awaslxyt0EuqaUsIMUtEL/aq0aiG3+9vdxG6il7TK/4ghcUKf8fhAS8ujB9F9KkD+MKJoV0PBOw1zZoN6yVHK/RqZEDidwGry28Ueg0lDn3mxJ7r/pvL5bg9VoJu10vTBN7+eBWL797H4rt3sWz4O5461I//9nnd3/H04dr+jkbods1aDeslRyv0aqhfGBH9S+gzISYBJKDPSzJARJNCiH+3h+VrO6XSzjO9MZt0o165oooffrCCxXfv4dr79yx/xy9GhnDxi8fxwpOjODLYvLe6btSsnbBecrRCr0bGkbwI4AyAk7YowCCiCIDvENGqEKLuXluG3yUOY5IsIcR8HflhlOG6EGJW8hKk4PZYObpFr1r+jl95fMTwd4xiwNeamE7dolmnwHrJ0XE+EoPTQojzlSuFEHEAv05Edc+QSEQz0I3BgpkmogkzXSX/nBDiki39FhGhmcaE22Pl6GS9bq6ksfjuXd3f8dEqNAEcGvDi/PhRnN0jf0cjdLJmnQjrJUdH+kgAvLXD9usSx5oUQth7gC1C7xG2xZAYo+aTFavnoDexNc2Q5PN5bo+VoBP0KqoaPnqYwc/vb+CDeyl8cD+Ff/x0DfEV3d/x5KF+/DfPP4Zfb4K/oxE6QbNugvWSoxV6NX3sPBEdF0J8WGX9WJXsCegO/GqEAUwZtZK4bX1TY0sUi8VmHr7naKVe+ZKKmytpy1gs30/hg/sbuLmSRlHdHDf7SMiHxw/24eIXjyH61IGm+jsage8xOViv+lBVDesPskjl0hgYGGjquRoxJItE9NVqfhAjPMpyxeppAN+ocpwwdMNhJ2kcJySEKKt9CCHiRHS6woicBbBUrZBENAlgEgAuXryIixcvolAooFAoAAACgQBKpRLy+byV1jQN2aweutvv9+PDlRT+4WcfIRxO4PDQAA4N+CFKen6PxwOn04l0Wn/LdbvdcLvdSKVSVtrj8SCVSkEIAZfLBY/Hg0wmA03T4HQ64fV6rbSiKPD7/cjlciiVSlY6n8+jWCyCiBAMBpHP561rCAaD0tcE6CNdAcDn80FRFOsa9uKaisUiEonEnl5TOlvAzXur+DSZxc21Ej5aSePhWgr31nNY0ed1wpBX4ECfF08M9+E3ngjjxIATRwZ9OD4aQp/fs3lNjhJyuVxHfU+FQgHpdLql31M333tra2s9d027+Z5Sa2kk7qeQWs0jmxBIPtjAxloG6dU8ChuEp38jDF/Q3dA11QvJzp5FRAnotYBqO5ptBMKWFkKILTGwiWgCwHeFEIO2dSEAq9Ad+fHKfSr2DwG4Cd1ns23e+fl5MTk5uV2Wqvyv/9+HmPmrf0SqtNn0EfK7cGTQh0dCPjwS8uvLRvrooB/9Pmfbm0raST6fb3j+g1S+hJ/fT+GDexv6p1HD+GQ1C/M2dSqE48MBPDYaxGOjQZwcDeKx0T5ERgLwuroz1PpuNNuP7Ee9hBBIJ/NYvZvB6t0MknfTSBif6bWClU9RCAOjPgweDCB00I/wQT8Gj/ow+khjDTevvPLKWy+//PL4TvkaqZHcAHCu3kGJRPSdGpsq/R2A0XMLW2sq1bgK4IWdjMhu+C+/cAxfPhZAoujEp8ksPl3N4pPVDD5NZhF/kMbf/mzFmkPCJOhx6kZm0LdpcAZ9ODLoxyMhH4aD7p42NPX8yNcyRfz8wab/4oP7Kfz83oY1bSygT+YUGQngF46EMDF2FI8d0A3HsaFAz80EuB8fjLuhl/VSSxrW7mexei9tGI00kobxKOY3nzVurwODhwI4+mQYg4cCCB3wY/CgH/0jPjgc5b+P9fXmD+9rxJBMS45sn6ux3qzZ2AkBQGWzViVGb68ZIURMohzSKAqhz004cXgQp48NbtkuhMBqplhmYD5Z1f8/TWZx48ME1nPlfbg9TsWqwRyxGRjT8Iz2eeFQutfQmM0CgN7F1m4ozOUHG3krj9el4NRoEF+IDOGUUct47EAfjg764HT0lsGohV0zZmd6Qa98pmjVLlbv6kYjeS+DtQdZCG2zsSc46MHgQT+e+NIhhA/6EToYwOBBP/z99b+QtkKvRka2v21E+b0EYNmcm8SYfvetSse6PcR8xfoYEVUajDBq+DxMjCaxRSHEkpEea7ZB2aYsCAfcCAfc+OyR6s6s9ZxuaOzGxqzdfP/2Oh6my79kp0I4FPIahqbcyBwJ+XFwwCv9Rq5pAkVNQ0kVKKoaisZnSdXXm8sF47OkatZyUdVQ1PR1VfctCZS0zfzOwgbefvABfn4/hYTt2oIeJ06NBvGrnxnRDcYBvUnqkZAPShcbToaphdAEUsm8ZSjMJqnVuxlk1m3NUQ5C6IAfQ4cDODk2gkHDWIQO+OH2dsfcK40MSHwBei1jAbYahTGX+wuGo/ydOg83XzFu5CxsNRhjkOOYbZxJFIaxMXwkYehRiZtmSILB4K727/e60H/IhScP9Vfdni2oRk0mY2s+043NDz9Ywb2NHOxuLCLgYL8Xo/1eCCFQKGkoaaLCGNiWNQFVk/ODyaIQ4HIocDkUDPkIIwNB/MbTB3BqtM+oYQRxsJ9n/avFbu+x/Uan6CWEQKmoIZ8uIpsq6k1SttrF6r0MSrbmKI/ficGDfjz6zBAGD/gxeCiAwQN+9A97oTSx9t0KvRoxd2eFEKcAqxZiIYS4ZvTcqsuQCCGmiWjKqGVEoNdw7GNIogDOAVgwDMeisd7eXFZ18OJeUSgUmtoH2+d24NRoEKdGq3/ZhZKGO2ubBuYTw9jc38jBoZDxACc4FcVadjkUOB0Et/HpVBS4nQqctvx6HtuyQnA5FbgU43gOxdrfOoeZX1Hgsh3P3hS3vr6O/v7qRpOpTrPvsV5jr/USQqCQU5FPF5HPlJBLF5GzLefTReQyJf2zbH0JamlriPa+sBeDB/04dOqQVbsYPBiAr8/VlpepVtxfjRgS+4DDXb/qbjcq3QiXMm8sJ7HZK6xltLs91u1UcGwogGNDgbaWo17arVc3wprJUUsvTRMomIYgoz/o9Qd/Ebm0YQjK1m9+im1q7U63Am/ABY/fBW/AidABP7x+JzwBl7HeCW/Ahf5hH0IH/HB5Oqv3YEf6SADYvc7VHuxn0EMzJDIM0z6EEMisF7D2IIv1B1msrWSxkUlC27i7pZaQz2wfnNDtc8IbcFoGoW/IC6/fBU/AaRkK0yhsrnPC2aXdyltJI4aEbAMShW3lcejhSq7sTdE6g0CgO2oCnQLrJc9+10zTBFKJHNYeZK3/9QdZrD3IYG0lV+ZnIAJ8gw64XR79oR90I3TAr9cOqtQSTKPg8Tmb6ofoZFpxfzU0HwkR/UtjYKIwuuKGoTveL8lE/u0GOGS1HKyXPPtBM7WoYf1hFmv3DWOxoi+vr+j/mi2kjcOpoH/Yi4FRP448HsbAqA/9Iz4MDPvQN+RFJptGX19fG6+mu+jIMPIAIIT4NhHNAzgP3YCYE1v13MyJ+Xyeb1oJWC95ekWzQq5kq02Y//rYiNRqvsyj6vI6MDDiw9AjQUSeHcHAiA8DI7rBCIY8oG26hPeKXq2iFXo1OrHVcQBRc7ZEY92zRkj3erv+MgzTRQghkEsXN2sV9iaoB1lkN8qDKfr6XBgY8eHwYyEMjPgtYzEw4oM32J4eTExzaGQcyfPQHe7zRHTDNBxCiHeI6Dkiel4I8YO9Lmi72O/t17KwXvJ0mmbZjQISd9K6sTCMxvpKFmv3MyjkbCGBSB95PTDiw4nPDWNg1I/+YR8GRvVmKLevOYPpOk2vTqcjfSQAIsZo9i2eK2PU+9eq7NO1aNrWfuJMbVgvedqhmRAC2Y0iErdTSNzJYPVOGgnjP5farFkoDkLfkBcDI34cjAxs1ipGdX9FO3o08T0mRyv0asYrQ3OHUbeYbDbLb0ASsF7yNFMzs/ts4rZuJOwGI5/edMJ6/E6EDwUQeXYE4UMBDB7yIzTqRzDs7bgQNnyPydEKvRoxJKd22M7jSBimxehhxgtI3Elh9U5GNxa301i9my4bX+EJ6Abj1NgoBg8FED4cQPhQQCoIIMNU0ujEVt8DMCWE+JG5koiehT6OpFa0366E54eWg/WSR0YzIQRSq/ny2sVtfdnuv/AGXQgfCuCx8QNlBqNdYTr2Er7H5OjIOduNeFqDAP6GiAagzytizqc+2WvjSBimHQhNYGM1ZxiJDBJ3Nw2GfV4KX59uMB7/wkHdYBhGw9fnbmPpmf1Go+NIFqAHUhwDcAJAvFa4+G4nk8nwG5AErJccQhN4cGcVIp0pr2XcLY8c6+93Y/BQQJ+X4lAA4UN69FhzCtX9BN9jcrRCr0bHkZwA8LwQ4t/BCOFuNG3xOBKGqYKqGjPf3dH9Fok7xux39zJwBAvIJ/SfYmBANxhP/dIhw+mt1zK8AVebr4BharObcSTfJaK3en0cic/na3cRuor9rlcxryJ5b7N2Yc6At3Y/C80+813Yg/DBAB55bBDBAw4cODKEwYN+Nhh1sN/vMVlaoRePI9kBRdmfgd4aZb/olUsXrWYoa7rUOxlsJDbnnSeFMDDiw+BBPyLPjugTGVWZ+S6bzfLDUYL9co/tFa3Qi8eR7EA6neYfuQS9pJfZpVZvijIMhtE0ZQ8H4nQpCB304+DJATz1ZXMyowAGRn1w1DEtci9p1gpYLzlaoRePI2H2PZomsL6S3TQUhrM7ebe8S60+VWoAxz83bM18Fz4UQF/Yu22QQYbpdXgcyQ54PJ52F6Gr6GS91KKG5P2t/ovkvWzZlKmmw/vxXzykT5NqNEk1a9BeJ2vWibBecrRCLx5HsgNOZ3MCz/UqnaSXpmq48/M1xN95gFvvJrB2PwNhNrwS0D/sQ/igH48+NYTBQ/q82oOHAvA0KdhgLTpJs26A9ZKjFXrt2TgS6GNJem4+Em6PlaPdepWKKj5+bxXxdx7gwx+tIJcuwuFScPSJQZwaH0X44GYcKae7M6ZQbbdm3QbrJUen+kgshBAxADGjZnKa9Hr/QK/VSpjOJp8t4aMfryD+zgN89JMESnkVbp8Txz87hMizI3j06SG4PJ1hNBimF2nYkBBRP/Qpdk3iAAjAt9BDzna3e/+NHN4NrdIrvZbHzR+t4OY7D/DJT1ehqQL+fjce/8JBRJ4dxiOfGayrx1QnwPeYHKyXHK3Qq5EBiQMArgGIABgAYDZnhQAsA5jes9J1AHzTytFMvdYeZBF/5wFuvvMAd+JrgAD6R3z43PNHEXl2BAdP9Hdl7ym+x+RgveToSEMC4JsAzgkhbhLR14QQr5kbiOgFAA/3rHQdQCqVgtfrbXcxuoa91EsIgYefphB/+wHi76zg4acpAMDw0SA+/5+e0OfOOBzo+mi2fI/JwXrJ0Qq9GjEkcSHETWN50L7B6NH1VQB1x9sioinozWJh4xjzdewzAeCMEKKnaj+MPqbjbnzNqnmsr+QAAg6dHMAvTZxC5NkR9A+zo5VhOolGDIm9xnFzN7G1iGgGwHWjFxiIaIaIJsx0lfxRAGMAzkI3Pk2Hq9FyNKKXWtTwyU/1nlY3/2EF2fUCFCfh6BNhnP4nx3H8c8Pw9/fu98D3mByslxyd2rRFRvTf7wD4AwBXiejPhRBvENFxABdQv7N9sqJWsQjdx1LVkAghlgAsEdEQdJ9M0+HBT3LUq1chV8KtnyT0nlY/XkEhp8LlceDYM3pPq2PPDMHd4vEc7YLvMTlYLzk6dUDia0ZgxjXocbXOA/g+EZkP/7P1HMcYg1JJAkBUtkzNJJVK8Y0rwXZ6ZVMFq6fVx++tQi1p8AZdOHl6FJFnR3DkiUE4Xfuvmy7fY3KwXnK0Qq9GByS+BuA126pTRi0lITEoMQzdcNhJAgARhYQQyUbKttcI0VMxKJtOpV4biZzhLH+AOz9PQgg9hPozv/wIIs8N4+DJEJQu7Gm1l/A9JgfrJUcr9NqztgObA75eQigfhwJsGpYwDKPSKEQ0CWASAC5evIiLFy+iUCigUCgAAAKBAEqlEvL5vJXWNA3ZbBbA5jzHqZTeU8jn80FRFKTTaQB6ddHpdFppt9sNt9tt5Xe73fB4PEilUhBCwOVywePxIJPJQNM0OJ1OeL1eK60oCvx+P3K5HEqlkpXO5/MoFosgIgSDQeTzeesagsFgQ9eUyWSadk2apuHDn93Gpz9L4PYHa1i5mYXDKzBwwIPP/pMRRJ45jMCQA6VSCUQaisVCx19Ts78nVVWRTqd76pqa+T2lUqmeu6Zmf08rKysNXVO9tLMRupqhMA1LZU1FGqP31zwAzM/PC6/XW7ULXF9fX1k6EAhYy5nY23D8X/8eKhHSLhfgckFxu0EuF4rGv8NYB5cLBZcLHpcLZPxrbjf8tjS53OhzG8tOF0hR4AmFQLb5AirLWJmurKLWc01+jwdaLg+Ry0Hk8+jP56HlCxCFPEQ+D28+D2Gk87kcHPkCRD6PYiGPvLktn0e6kEfK3JYrIFNwIV10I635kBEBZCiAVHAYaU3/GgcdSTzdt46jh1SEDgTh8ObgeJiFUxuEY3AQjoEBkNPZ0DXZvycAW6YSrQwJUZmW1VU2LXNNuVwOXq+3LdckhABKJYhCAS7ob68im4VYX4dXVeFRVUAIiHv34FI1uDQVQtWgaSocqgafkVaFBqgqPJoGoaooqhqgqXAZnwVVA4QGh6oCmoa8qgKqBtL0z7ymIm/kEUY6Z+wrVA1ZVUVG08+hOBRk8gWkNRXQBKCqyGsa0qoKITRA1SA0FWlVAzQNwthvQzPT+jk3bNuEpmHdtk1oKpLGsc08CWFLaxoe2rYJIfRu6E6n/nt2OkEOB+BQQA7bOkUBnA6Qw7l1my2/+ZlyKIBjc1vOvp/DgYLDUbbfmrnN6QAUB9IOB/zPPYvQWLknQfb3tBPtNCQJbHWYhwCgU5q1ip98jIext+H78EOIQgHCsPJ7Tpmxsf27deNTdZ2iQBSL0PI560EvCoaByOsGQivoy1DVnctQgQCh4O5H1juEbPAA8oFRZH3DyHqPIecOIefoAxwEGC4NBSr8lEFfKIfIyg2MJH8C18NPoa6uIpfJ4G6N8yj9/XAMhuAMGcbF+g/BaU+H9HWOgYEyw9stmA9sLb9p0DXje1pdX8eAw6HfY8UitEIBMD5FsWitL1suFLfZVuOzxjp0alORw6F/17ZPKAqyR4/Cf/fu5jaiijwEUhyb6xRl6zaXS/+0bSOHApCiP5QV4+FMtm2K/dgV20ixjCDUEoSqQagloKTqxqlkGp1ttpVK+vevZcrXmZ9qlfyqqhsydXNd5ffpmZraYkj2mrYZEiFEjIgqDUYYwFI7ylONgd/8TRz50pcwPDwMwHgYqOrmj7LyR1prXbUfvcz+tvVaOq3/+NWSblA8HpDHA0dfn7VMHjcUt23Z4wEZacVrrHd7UFJcSBfcSOUdSKUVpNLAxoaGjXUVG6sFqKXyGzIQ8qB/2IsDwz70D/swMOxF37APA8M+PcS6QlhZWbH0MtHyeajJJNTVVeu/tLoKddW2LrmK4r17yL3/PtREorbRVhQ4Bga2GpxQbSOkBINlgxaFpuka53LWg918qOvLBYh8DlrONNI5vUaXz+uGu3K5kLdqfFohr6+zHdM8BzSt6iVlIhEk4xK92R0O24uFu8anC+T1QOkLWuvMmrNSmbfa/i6X8ZB0AKRYD9Kqnw4HQKTn3SaP+cCHohh5lfJ9Kh/8Nah2jzGbWLUkw8isrK83/Zzt7l85XzFu5Cxs85kQUQTAWK1xJa3AHoLZqro6nUAXRB/VVA2p1TzWVrJYf5DF+sMc1leyWF/RP3OpIoC8ld/tdaB/xIfwIwEc/wUv+g2D0T/sRd+Qt64eVdVCViseD5QDB+A6cKCucpvNK7rBSVqGZtMAbRqh4ke3kP3Rj6CuJvW3seqFgqOvT39ry+V2V7MkAnm9+sPY69Uf1m6Pvs7jgaOvHzTs0Y2312sYciOfxwOqXPa4kVIUDPj9NR/oW9Y59l/PNjscRn57LGPscgEA3MXiDnvsnrZ+I0KIaSKaMkaqRwAsVxiNKIBzMMaVGF2GowAmAISJaBnAkhGFuCl0cob/v0MAAA8WSURBVCgGIQRy6SLWHxgG4mG5wdhI5CG0zVqFohCCQ170D3kReW4EA8M+9A15MTCiGwyP37nrcCN7oRcRgfx+KH4/XI88Utc+QghoqVTtGs/GOsjlhuJxb3mYW7U0jweK17tledMoePQH+R6HZHEbPhKmPlgrOVqhV9tNuxBidpttlsPcSMcAxADU3GevyWQyu/4ihCZQKmkoFVSUClU+i/pnsSJduV1PqygVNeQzJWw8zKGYL/d/+Ppc6B/24cCJATx2prxWEQx5oDia61/YC70agYjg6OuDo68PePTRlp9/N7RLs26F9ZKjFXq13ZB0MmsPMvjwvRXcVXLGQ958sNse6hXpYkGDaqRNw6AWq7eN74TDpcDpUuB0O+B0G59Gun/YhyOPD1pGot+oXbi97f1KtRp+AKY2rJkcrJccrdCLDck2fPqzJN76q49QWCtvk3a6FThdtoe7lXbAG3TDVfHQL8tXll9Pu6oYCqdL6cqQ6EoX9qhqN6yZHKyXHK3Qiw3JNkSeHcHwo+PwB33Wg9/hUro+bHkzke1/zrBmsrBecrRCLzbt2+ANuODuIwQHvfAGXXC6HWxEdiCXy7W7CF0HayYH6yVHK/RiQ7IDpVpdSpmqsF7ysGZysF5ytEIvNiQ7wO2xcrBe8rBmcrBecrRCL/5GdoDbY+VgveRhzeRgveRgH0kHYEbJZOqD9ZKHNZOD9ZKjFXqxIdmBYgvCC/QSrJc8rJkcrJccrdCLDckOcC8tOVgveVgzOVgvOVqhFxuSHQgGg+0uQlfBesnDmsnBesnRCr3YkOwAt8fKwXrJw5rJwXrJwT6SDqDQrMmsehTWSx7WTA7WS45W6MWGhGEYhtkVbEh2gNtj5WC95GHN5GC95GAfSQfA1Wg5WC95WDM5WC85uGmrA+CbVg7WSx7WTA7WSw42JAzDMEzHw4ZkBwKBQLuL0FWwXvKwZnKwXnK0Qi82JDvAIavlYL3kYc3kYL3k4DDyHQAPfpKD9ZKHNZOD9ZKDByQyDMMwHQ8bkh3g9lg5WC95WDM5WC852EfSAWia1u4idBWslzysmRyslxyt0IsNyQ5ks9l2F6GrYL3kYc3kYL3kaIVebEgYhmGYXeFsdwGIaApAHEAYAIQQ83uZfzeki2mkkYYz54Tb4YbX6YVCbHu3g+fTloc1k4P1kqMVerXVkBDRDIDrQogFM01EE2Z6t/l3y/c+/B7+8j/8JZJa0lrnUlzwOrzwOD3wODxly5XpWtu8Dq++zlh2O9xbtnmdXms/nhGOYZhOpt01kkkhxLQtvQhgGkAtwyCbf1c8N/oc/uiZP0LOm0OulENezVv/9rS5nCllkMwnq25ThdpwOdyKe4uRcTvccJITCilwKA44SP9XFMVadpADDsWh57GlHaSvcyrOsm1b1tmPW2WbQsqWMqgpFZ5+DwgEIgKBoJCyNW0sExEUGOnt8tdK2/c3j2fUGs18ZtrKYztW2XrDYJt59L/y/M0w6plMpiffsoUQEBBQhQohyj81oVX/hwZN0z+r7SeEQGYtA/+AH8bXt/k9VnyHdrZ8txXrjIUd81TNWyOP/V6pebwd8lTLZ6Zrnc9+7USE9dR60++vthkSIhqrsjoBILoX+feCEwMn0He0D8PDw7s+VlEroqAWLMOSU3PIl/Jblu3pnGoYpCrbTONk/ihLWgl5kYeqba4zt5vrVKFC02zrjW32vJrYXQ+PE84TuFm6uWu9Op0y41LD6AAVD4Vq+YnwqPIoPtY+rmqoaj6oKh+i2zxYauazLVv5bOu2e8ib6yof8mV5d3kv1WK/3GN7xZ88+Sf43dHfbeo52lkjCUM3BHaSAEBEISFEcjf5iWgSwCQAXLx4ERcvXkShULAiYQYCAZRKJWvUZyAQgKZpVg8H04Jns1msrKzA5/NBURSk02kAgMfjgdPptNJutxtutxupVMpKezwepFIpCCHgcrng8XhAWYJbc8Pv9MMb8CKTyUBTNCgeBX6/H7lcDqVSCYqip/P5PIrFIogIwWAQ+XzeuoZgMNjQNWUyGQCoeU3rG+vQhAaHywGHy4GNjQ1o0OBwOqC4FGRSGahCBSkExa0gm8lC0zQIRUDV9JqXpmqAAihuBaVCSU8DIC9BLajQipr+MPUQtJIGtWjU2DyAKAloRQ0CAvDoxxJFob/hugWEJiCKQj+PUz+uKBhvv05Vf8gWoKcdqt6lJK+/IWtOvZxKQYGAgKZoUB0qHAWHfjwzXXQAGqAqKlSnkRaAIIGiowhFVUCq/kAvOAtwlBwgjaztDs0BRVMghEDemYeiKXCo+jnyzjxIIysthMCzjmfh0lz6dkX//lyqni4oBWjQ4FE9m2nS4C65AQBFpYgiFeFTfRAQKFEJRaUIb8kLAFbarbpBgqCSirySh0f1QBGKlXZrbihC1yWjZOATPjih1zjzzjw8wgOXcEEhBQVnAU7h1PchBUVXEU7hhEvTt6suFQoUuFQXFCgQbgECwaW6dEPlAkghOEtO3Vi6CIpDgVI0apEuBYpDARV1w2beeygAWkGDw+sAuQhqTgUEAAcAl3EfqAKkEMhN+n2kCkAByKXfa0LV7x3ykH4fqfq9Qh7S772SZt2L0PRj6j9q6PeAce/Bpe+Hov4dwoWye0849PPCCL6rOTW9nDnjIeUANIcGKuiGWyj6/akUFf0eVwSEU+gaCIJGGoRTACUAqn4u1aVa96Ig/f4nlfR7EQKqS8VjvsewsrLS0DOiXtppSEIwHOY2TEMRhmEkGs1vOOHnAWB+fl54vV54vd4thejr6ytLVw7eISL4fD4rbV+ulq48h8fj2Xa7bHqn4wE7X1NlNXenaxrqGyo/weCWU1pks9kt+zPbw5rJwXrJUU0v2WfETrSzC1KloQA2DUVlzaOR/HuC+bbO1AfrJQ9rJgfrJUcr9GqnIUlAr2XYCQFAlWatRvIzDMMwLaBthkQIEcPWWkYYwNJe5N8rKpuSmO1hveRhzeRgveRohV7tHl03T0QTtvRZAHNmgogiFdu3zd8MnM5295DuLlgveVgzOVgvOVqhV1sNiTEmJEJEE8aI9eWKwYVRAJck8u853B4rB+slD2smB+slRyv0artpF0LMbrPN6nlVT36GYRim9bS7aavjcbvd7S5CV8F6ycOaycF6ydEKvdiQ7ADftHKwXvKwZnKwXnK0Qq+2N221gjt37qy88sorHzWy79/93d8N/9Iv/dLKXpepV2G95GHN5GC95NilXsfqyURCiAaPvz8gohtCiPF2l6NbYL3kYc3kYL3kaIVe3LTFMAzD7Ao2JAzDMMyuYEOyM02bgbFHYb3kYc3kYL3kaLpe7CNhGIZhdgXXSBiGYZhdwYaEYRiG2RVsSBimAyCipgYfZZhmsi8GJDaCERQyDmPyLCPuF7MNhmYAcAbAdY6LVh9ENAOAx0XsABGFALwE4Dr03+UNY3oJpgrG79GceiPUzN8jG5IqGD/s62ZkYSKaIaKJZkca7maIaE4IccmWfouIOMjmDhBRpN1l6AYMI3JNCHHaSE9CNyrn2lqwDoWIpuy/PSIaq1y3l3DTVnUmK4zGImzh7JlyjB955aRjc9B/6Mz2RKHfX8z2zMA295DRQvBi+4rT8VywJ4ya25lmnYwNSQVENFZldQL6D56pThjAVJW368qpkRkbRBQF8Gq7y9ElTKJiNlSeYntbEkR01XjJM2twV5p1Mm7a2koYuuGwkwT0N2++ebcihIgT0WkhRNy2+iyaPA1yDxASQiSJqN3l6GhsLygR40UvjCa3+fcAl6DXdG8S0WUA8WY2zXONZCshGA52G6ZhqVzPGNidnsZbUNnslkw57HOTwqrpCiEWzI4vhi+TqYLxUjcH/dk1A/3FrmmwIdlKtRqHaUAqaypMda4CeKGihsIYGG/YXLOtH/N3d8O2bgnAVJW8DKzu5DEhxEnoL3Tniehqs87HTVtbSWBr234I4DbZejDeEme4W+a2jGGzmQbQnaAho7vmAhvgLSSBLb8/bm6ugXlfCSGWjM95IloCsNysc7IhqUAIESOiyhszDG7v3xEimgCwaN7ARDTGBmUrlU1ahiM0wm3+1TF8cEkiitiMLL/c1SaMCqNhaMg+khYzbzwUTc7C1vWQ2YrRAykM4AYRhYzmmws77LbvMYzIOeg1lCmzlw2zhcso7zl5AcB0m8rS0RgvcmVdfY37qmk1XY7+WwPbyPYIgCSPbK+NcZOuVtm0IITgAWPMnmCLnAAAPNh1G4wXuUuw1Uya+QxjQ8IwDMPsCm7aYv7/9u7urIkgDMPwMx0AHRg7IFKB0oHSgdIBXJaAHUQ7UEuwA4QOEisgpoPxYL6FdTMx0ZFA9LlPkl2GXY54r/n9JKmJQSJJamKQSJKaGCSSpCYGiSSpiUEiSWpikEg7KDZ91koeSFtnkEg7JjabfQCuHvpvkcANidLOSinlnLPFTPTg7JFIkpoYJJKkJgaJJKmJ9UikDcWR71CKnx0RtVdi9dQF8AwYc3fc+Ri4qp26GmUKDuJZB8C8UqfkBaWEQXeC66yr9dJr05U1JtpW3yfdJyfbpQ10ZQX6/+xTSlPgOIoGdUfpvxq0+QRc9o88j0Da+9W9CJrTnPNxr81LSvnUWVznyvu+A08s+KRtMkikNSIkvuWc9wf3LwByzudxvbSKKpbqToH9nPNi1bOi7W0IxPfn/QqTERynXY8jrseDNlNKuFiZUlvj0Ja03gnc9gj6boja4at0ZWIpw0+f43O+ovkMOEkpfaX0ToZhMK7cs767HpxBIq23R2UO4zfMKZU2ic9V4TMHnsbnUptaL8MhLD0GrtqS1ptRJsT/1AF3PYcFJZhWtbuJttZu184wSKT1vgB7Md/xk8pw1/DnI0oodKutPgKjmCsZOqTUub8GFrWztDxfS4+RQSKtEcNHp5Qlvrdiee714N4wWCaUCfJF71nnwNvB750B77oVWcDryvsMET1KrtqSNhQhcQRcxq1ZZVXVmLv5kCPK0t+luZV41ogyjDUCFsP9H5X3LWLfyogSRm+A95SwmlHC6YzS+7kY7jmR7otBIv0lHqKo/5VDW5KkJgaJJKmJQSI1SikdppQm8X1SW90l/cucI5EkNbFHIklqYpBIkpoYJJKkJgaJJKmJQSJJamKQSJKaGCSSpCY/AF8rJV/k0gj1AAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 432x288 with 1 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "plt.figure()\n",
     "plt.xlabel('epoch')\n",
@@ -420,22 +251,9 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 14,
+   "execution_count": null,
    "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgoAAAHzCAYAAABBtDUZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvIxREBQAAIABJREFUeJzsvXuYHNV17v3uvk7PjGZGIyECAxjNgJFtwEhAhINjMEhRAk4sY0k8jh3Fic3IifPlED5LgtixkG0CAgeTyzk+GuJ89jG2IyFj+QIxljA4MQcIuiEMkgCNbgghMRr1XPpSfdvfH1XVU11dVV3VXdVVu2f9nmeemaraVb2r3+neq9Zea23GOQdBEARBEIQRIb87QBAEQRBEcCFDgSAIgiAIU8hQIAiCIAjCFDIUCIIgCIIwhQwFgiAIgiBMIUOBIAiCIAhTyFAgCIIgCMIUMhQIgiAIgjCFDAWCIAiCIEyJ+N2BIHD//ffznp4e164XiURQKBRcux7RfEhD8SENxYb085YTJ06MrFu37iw7bclQANDT04PBwUHXrpfNZtHW1uba9YjmQxqKD2koNqSft6xfv/6I3bY09eAB2WzW7y4QDUIaig9pKDakX3AgQ8EDyF0mPqSh+JCGYkP6BQcyFDwgFKK3VXRIQ/EhDcWG9AsOpIQHtLe3+90FokFIQ/EhDcWG9AsOFMzoAZIkURCO4JCG4iOihlt3H8cdm/agpNl38ZwObLvjer+65Bsi6teqkEfBA/L5vN9dIBqENBQf0TTcuvs4btcZCQDw+qkUFj/4jB9d8hXR9GtlyFDwAMaY310gGoQ0FB/RNHzgyQOmx14/lWpiT4KBaPq1MmQoeEBnZ6ffXSAahDQUH9E0fCuZ8bsLgUI0/VoZMhQ8QJIkv7tANAhpKD6iaXhuT8LvLgQK0fRrZchQ8IBcLud3F4gGIQ3FRzQNVy+5xPTYxXM6mtiTYCCafq0MGQoEQRABYOn8Pjx06xVVX8rTNeuBCA6UHukBNLcmPqSh+Iio4dL5fVg6v8/vbgQCEfUzY94Xn0C2yMvbbWGG/ffc5GOPnEGGggfkcjnK/xUc0lB8RNZw8YPPVGQ6NNursHX3cTzw5AG8lczg3J4EVi+5pOkGjMj6adEbCQCQLXLM++ITwhgLNPXgATS3Jj6kofiIqqHeSACaW0th6+7juOuxl3E8mQEHcDyZwV2PvYytu4835fVVRNVPj95IqLU/iJBHgSAIwieMPAdmNROaVUvhgScPIJMvVuzL5It44MkDNC0yTSGPggd0dEy/COVWgzQUn6BraOY58Buzeg7NrvMQdP2mE2QoeAAtjyo+pKH4BF3DIBgFRpjVc2h2nYeg62eXtrBxhUmz/UGEDAUPoEIh4kMaig9pWB8fnneWo/1e4bZ+W3cfx7X3/RJz73wc1973y6bFXOy/56Yqo4CyHgiCIAKCHJi3F5m8fqklIB4JYcPHLxdm3r2vSU/0T+9/x9F+EVADNNXYCzVAE0DD+tvJEBHJKDCCDAUPoLk18WkVDdUvsePJDMKMocg5+nxKd2s2vz40gTt++GrVaowqUqGEOzbvAdD4YFEPVoGLehisKze6SSvGKDQSoPmlrS/jBy8cQ5FzhBnDJxaej68tvQyAtwZIkKCpBw8olcy+mghRaAUNtWluAFDkcjqWX+luzebh/zxoaiSolLj1qo1esu2O622XZv7kNRc0beAxS9prdoyCm5/Beo2fL219GY88f7T82SlyjkeeP4ovbZWNASsDpJUgj4IHZDKZlnkina60goZGX2Iq0yHdLSdlYOdZqJlPylt3H8cdm/ZUGTDXDvTi2YOjpuepT7BeM++LT5gec9ujsfCebTg5MVUr4ewZMbzwxcXlbTc/g+f2JMoGs36/FY88f9R0v9kxoPVWAiWPAkG0KLW+rFrty0zPrM64rXbNelLeuvs4bjcwEgBYGgnNxKoIkJtGpd5IAICTEzksvGeba6+hZfWSS5CIhiv2JaJhS+Onkb6EQ/YzGvwKsnQCeRQ8oL293e8uEA3SChqaPUVpj7cKqotYS2+cQ57dNyfEmjf3L7o7+ktbX3bNs6E3Eoz2u/kZVI0cu2Wpv7T1ZdM+2qFQsld10SzG4dEdR/H88BkUOQcD0B4LI50r+lZOmwwFgmhRVi+5pOJLSEutpymRMDIS7NDsrId6PThBWWL6By8ca9oUiBc4WXDrBy8cc/W1zaZZ7ti8B3qbIpMvVniYOIBUzt9gSV8NBcZYD4BBAEkAAwDAOV+rOb4RwAbO+bDN6y0D0A9gC4BR5dpb7J7vFul0uiWeSKczraCh9imqlbMezL7Ue+Mco1K1R6GvJ4Fn77zB625VUcvDA1RnQjR7Mai2MDOdflAD+pqFF59Bu4tduXmvZtMsF975eF3X8yO+yG+Pwl06w2AnY2yQcz6k7FoEYJCxqg/7Kk0bLb0ANig/SQC3NdtIIAineLlS33RYttjpl7pfsRmrl1yC2zftMT1+7UAvvnfbB5rYo2r233OT6QAWrv4erpuzZ8QMXftnz4jVPPeTDz9nGNNx+L6bLc9zksqoGtWNMPfOx3FuT6KhKQwzmv0/7Hcw4zLG2KBmexjAYs32dgBXQvY2qD/3mxgJKjMBDHDOZ3LOt7jdYTskEq0z9ztdaZaGQVmpT2TMBrAzBt4EwL/YjKXz+/DQrVcYfum6aSR8aevLGLjrCVx45+MYuOuJciqfXT51zQWG+z+x8Hw3ugcAeOGLi6uMAn3Wg9Fn0MxIAFDzfp2kMrpxr+rn2QuaXfzZb4/CYt0Tfz+ATUB5WqJi2kExKu61uiDnPAnZm2CJcq1BAFi5ciVWrlyJXC5XXtq0o6MDhUKhXEa0o6MDpVIJmYwsvOoSS6fTAOR/6lAohFQqBUmSUCqVEIlEkErJbsRYLIZYLIbJycnydjwex+TkJDjniEajiMfjSKfT5XPb2trK26FQCO3t7chmsygUCuVtSZKQz+fBGENnZyckSSrfQ2dnp2v3BADxeHza3FMymUQmk/H8nv79v15BBAWcnQBmROUnmFMZjm89vQ8fPD9OOtm4p8GFs7F17ylM5IA5CSDEODIFBoDjwk4gEuLIFhnGcsDsNuB/XHcORkdHfbmnJfN68d9fWGh4T1/buhObdp7A2Qn5/6CEMP76996L3507w7ZO//SfR/DMy8cxdwZHocRwWuJ4eu8RbEAGn/3dAVv3tPbGC7H39WNI54sYyTKEGdDXGcLtHzynfC+N/u/9x65D6GJZRNoZxvPArDhw4UyGZDJZvqdMJgNJkip0On7yNGZEga4okIhwlDjDqQwwIwZ0ROT37cc7j2DbS0cwI8oxsz2K/7PqOhQKBbSXUrioC+V7mhmX249m0liw7mf4xf9zTfmevrjkIsxABk/tO4WkBORLDLPa5HyViTxDuoCyTqkCq/rfU+9J+7/XGweiIY58iWFUArpjQFtY1cn6nk5mGNoj2u8IhomJiYY+T05gvMnzTmYwxhYAeJhzfqXF8V7O+XaLa6jeiVHI0xA9nPP7a7320NAQHxwcrNXMNiMjI5g9e7Zr1yOaT7M0nHvn44YFbhiAQzVcqcQURgGNF3WV8Mb41PN7RyyMjy3oww93vlku6RxiwB8vvMD3ID2zgMxwiOEflr/f9vTRwF1PGLrMw4zh4L2VZYSNns674mGc3d1mWDGyKx7G3vW/b6sfVqhpokZoYzKMPoP1zOurnopr7/tlzSd8/fSFtipj0Kg11VKL9evX71y3bt1Vdtr67VFQPQcrACwHcJtF01Wc81U1LrcdwKjiVQBjbKMu5sFT1Lnm9lIK6VCHbwFjbs9513s9J+fZaevlXL5f1FsIhqjka0svqxrs9QONUbGjEp8qquOnsfA9k6yNYok7ClwzG9D0+81c+ONSEeMmZaXHpWJDKZJW0wYqXqyoqcYIWGUBGVFvsGEr4neMAjjnSc75EOd8MYCHdTELAADG2CIAB21ca1g1EhS2AVhr1t5NtHPNYznm21yz23Pe9V7PyXl22jZ7Lt+pa65e6ikEQ9hDr+EDTx4wLensRjpcI7EBVs+rTgLXzOI19PvrLfBU7/tkx0jQ4/Zn8PZNe2oaCapuQTcSplWMAmOsRzewb1R+9B6AVVBiF6yuBeAMgJmaayYhxz14jjZQJqv8L/qRxtLI4iduXs/JeXba1mpj5W0wO2a0X32tyVQanR3tFfvUdh+edxae3v+OK54Np4VgCPtEIpVfb1YDbqOuZf3UgbomAGDsqXBS+4Gj+un2U9cYT5d8YuH5htfVBuctfvAZW69rhNP3ySg1sBZbdx/H0vl9Vfo1gt2BX6tbkGn2RIhvhoLiJdjGGJupMxaMDIhlqBHEqHC/7rx+yJkUnqP9EpqT4BjPs6r9ze6Hnf1eXc/JeXbaWrWxSnsCYHhsx5FR/HDn8Yr9qx99CWBAvshxURfHG7p9ajvtF4kbBVCmQwqjH6RSqYrIeas6Bo2m/pk9aRsVKaq3QJQWMyNE3TZb7RBozL3v5H2qx0gAUDb+9fp5Vd6ZqI2fUw87AAzpBvbFkAsklfcpngLAIJOBMdavFFlSsx1O65osR5OmHszmlJs91+x2P+q9npPz7LS1amPlbTA79oMXjlXtz5d42SCw2qenFVeLa0VWL7nE9Auv0XQ4u7EBgHtV/8yuc+idyYrVDg+9M+nK6wHO3qd66weYPRR4UY+AsIdvhoIysG9kjK1RfjYAGOacLzdoPgw5k0HPIsjTEipDyrUGlettbFYtBe1c84TiTfBjrtntOe96r+fkPDttrdpYeRvMjtVyoaoa2qXVF1gSkVisMk9/6fw+PHjrFUhEp772Qszcje8Eu7EBgHtV/4yuYxQL8OzBUXzy4efKx+vFjffJDupDgVY/q1UtCe/xNUaBc74LwK4abcrlnQ2ODUETz6C0rZkO6QXauebxVNq3Mrluz3nXez0n59lpa9VGLVGsR/3CMTpWq/JaumB5e6avRQQHvaEAeDfNYxYbUOQcF975eMUg60bVP/U6eswCBlVjoZFVKq96V2/578vX/Rzj0pRHTk2d1O+vh9VLLsEnH34Oe4+edmywE94QmDoKfkJ1FMRGH6MAyN6Ge2+Rv5iNjn38yr6KGAUAiIaYJkZBzsHX7jNDfS2KMwgWzfwc2ok7UI0FN2IU/KItzBCLhBo2Bqy4dqAXzx4craqDQVQyreooEESj2PFIGB276l29plkPrJQqe4X057uZ9aBFm4XRnYiCMeBMOl9+AlV/91gcU3/LdQllZrZHse4P30eGjIfYiTtQAxtVz4KIxkK2yJEtemckXDynoyGvB+ENZCh4gJHLk/AWK5ey2TGr/ePj4+jq6qrY5yV6r0gyky8f0wam1Tqm/tb6P86k81i95SUAzV2athl8aevL+N7zR8v32xEL456Pyd6dZn4O7UwlaNtoDYZ6swOcoD6lBwWtIauiVmVUUxlTBZp2CApkKHhAs4r1EN7RbA2NsjPcJF90VuFPBIxc+KlcEf/vo7JR9Afvbd70n524A7OAR+1CSIBsNK5+9CXkS+5MC6sLTjUao+AmRnf2+qlURQE1SnIIDmQoeMDk5CQZC4LjREOjKYNkOu9omqIZWROtlplh5u5Xyx7/7gVtTfscmgUz6tvYQf3/uPsnr5S9R+r0kVngrhkhBsw9qxMAAmcsGHHXYy+jKx7GuFTEnAQwOeF3jwiADAVPoABR8bGrodWUgZPiTFbFgNwiyJkZ+ikEoHZshdUT/FvJTFM/h7XiDpymFlpNpZktqGSEupbFtlfexgtfXFxeyrrZJYoP33ezrdfM5ItQPwUhxtH8YsVi0BUP127kImQoeEA0GvW7C0SD2NXQ6ZRBJl/E7Zv24O6fvFLledBnYbhJNMxs19LYuvt4xdOsE+oJnDTLAqgVW2Hl7j+3J9H0z6HRwlRuo74PTowFQC5W9MmHnysbChfP6fBkASYjLp7TgYvucm6YZChGwRQ3VvF0AuWeeABNO4iPXQ3rdecnM3mcSefLC1z9cOdxfPzKPvT1JMAA9CSimNkuD3Tq3Lb62+qY+lv7FTuzPYoHltlbqlidH6/HSACmBncni3VZZQzkixy3b9qDC+98HBfe+Tje9+Wfl69t5soPh2SjKEifw8UPPlO+B/XHyaJR2uvojYSueBiH77u55rO3dsph2x3X4+I5HY5f3ykXz+nAoXdSKNTh3Bmv719wWlDP/04jkEfBA9LpNNra2vzuBtEAdjV0a8ogky/i6f3v4Nk7b2j4Wo3wwJMHGg6icxo46aT4kDZYUX16N8t6GB0dDcTncPGDzxg+vT/y/FH8ZPdx20+HZtcZl4q4fN3PHf8vbrvjetdrOhjl9tc7zTErDkyQsWDI91842tRl0clQ8IBSyWwxW0IU7GrodI17K4IQbOhWH5wujezEWFCDFZfO77N09wflc2jl4h+Xilj84DPYdsf1DV9nXKr9nusH7Y6Yu3Pd6sqPbuBy11oKlxJibEOGgge4uTwq4Q92NdQXezLLerDzpBeEYEO3PCRO7sVOxoAeO4ZIMz+H+qd9tSaAHZoVK2BEKuduTMztm/bg9k17wAAcarBy4Oa/+CCuuO9ZdzpGNASNaB4QBHcn0RhONLSzfoBRmWktfiwgZsTqJZe4ksN/PJmpeno1C3Ssp1IhR+XTMQPwSV1mQbM+h0ZTAq+fStn2FASRvp4E2mOhuo0YDmDunY/j0H03I8JQV4wCfY+ao13YrBlQMKMHpNNpv7tANIjbGi6d34d7b7msKliRQf5SDspaEUvn9+GB5e9HT8L9jAGrQMevLb2soUQ4DtnQ0AZ5NetzaDaYqvvdCBrcuvt4U7+sPzzvLGy74/qG1hNQjbl6jISueBhLvr697tduZUIA7r3l8qa+JnkUPCAoc6NE/XihoVcrF7pNPf289r5f2pqysAp0dGPaQ11PAQjO53DbHddbrqpYy5BQvVHNvJun97/jyXXVKZla/y/jUhFz4lRHwYizZsSa/j1ChoIHhELkqBGdVtRQrSB5PJlxfdEoJ8GL+rbafjWKNigySBruXf/7hhkGdmIZvC7vbYRXgbWql2X1kkvwN5v2GJZyVsmXyEgw4uRErunTWmQoeEB7e7vfXSAapNU01MdIuL1oVE97FGfS9nLZVJd0iAEf6O/FrqNjrg2E2vUUzDSU34u9yOStn9HVNRJqYVa8SO8pqLcgk5fZMB2xsGFAozYY1WgBp0a48M7Hcfi+m2sWjRqVXHzRFqPZAbBkKHhANpulQBzBaTUNaz2VNrJo1NbdxzGZLTg+r8Rhuu5AX0+iXFPCSa6/tgiTkYZbdx/HHZv22HLjP3twtKKaoYqd/jjJeqiF2ZRMX08CF85KOFq74aFbr6jQ2CjIVhtY+8mHn3PVSNDSV2OqqTtGdRSCAhkKHlAoOP/SJIJFq2lo56m03idXN4o0WfXFTlaEUdaDkYYPPHnA0Vy/fhCuZSSoXogvbX25KusjEmL4+nJ7FTK1GNXqUAfzpfP7bMeHAFPpiwBw9oxYeeVKNb1Xv3CZVwtI2SnC1BamGIWgQIaCBwRpbpSoj1bT0E6gYL11HMwMDPUrvh4TQt+Xetz2Rho26sa3KjcNyAOrmTFRKHH8jTJIOzEW9LU69IP56iWXOF77AZDnui+663G8ce/NgQyyLVCMginNKL+thQwFD2i1+e3pSKtpWKuCpJNFo/SYGSHqYO80SNGtmhJGGtaTWaE+/X7qmgtsVZC0MiY4UNcUj1UmytL5fbj3iVdxciLn6JqAXN9g4T3bMDKZR5FzhBnDJxae39TywGacphgFU5pdn6O1HpsCgiTRf7jotJqG2joOQP2LRhmxesklSEQr6+2qg/3qJZcgGrL/ZBhmzLWaEkYarl5ySd1feo88f9SWI7yWMeFFcKI6hVAPJydy5T4XOa+oR3H2jJgr/auHLlqENzCQR8ED8nmKwBGdVtTQqzoOtVzjAGwvW13i3LU+GmmoXttO1oMRbkRidNdRzMpsQahP6eIy3EKtRzEy6d/nIBGpL0ahJxFFPMLq8rAQxpCh4AGM0dya6EwXDbfuPm46iDupr1DLNa4eqxV45+Z6F2YamvW13lUOnTKWyTtaPMnMSABkL8e2V952fVDUehj8osTNP4OfuuYC06DSZCaPw/fd7Jme9ZakFhmaevCAzs5Ov7tANMh00HDr7uNY/ehLpk/6ViWX66XWVMSH553l2msFVUM1TsEutXLmvXhyDgfAUD6lsyfDjOHwfTfj8H031/SiaEt5u43fRoIf00FkKHhAq81vT0emg4Z20hrV+gpuoa4lYbaozaYXj7lmmDjV8NqBXlde1w7NXFJcHVwP33dz1T2aDTpFznHRXc3xsJih75q2RkYtb0Gt7BRR0aa0NhMyFDwgl6O5MdGZDhraHazcHtSWzu9Db0fc8JibholTDb932weaZiw0a0nxPt3rfO+2D1QYDnfd9F7Tc+t5cg4x89Q9p+9tR6SyA05iMexOmbSF/fec2IWhsaDVRiBDgSCmKXYHKy8GNSvjo5lP23rUgfShW69o6DoXz+kwHRhDDI7SPxvJma/1Oo0YZUb3V+LmUyXfu+0DDZVPmv+VX9j2NoUZq/m+XTvQi1hEjCGQATjUwEqejeLru8QY62GMrWGMDTLGNjDGNuiOL1OO92va9te45hrlvEHG2KC3d2BMUOdGCftMBw3tpC42Ul/BCivjwy3DpBENl87vw0O3XgGTGZKapHMlUw9FyOH8/7Y7rjcd9Kzmq9vCrGbAZL1GmVqB0mg6w4yL7noch+672baxcDJT2dJJzMwnFp5v+r596poLcPi+m/Hym2OmK3oGDT+NBMD/rIe7OOdr1Q3G2E7G2CDnfEjZ1Qtgg/KTBHAb53zY7GKKofEi53yLus0YW6ZuN4tcLtdS6wRMR6aDhuog4kbWg1NWL7kEqx99qSpGwk3DpFEN9dkRTkolWw3AhRLHHZudVWi0KrDzyYefqyq13BUPY+/63695XTsFqK4d6K24vn6xLLtlngtcDqDVDnpGfVdpj1Sv9WB3akqdprB639wwEqZLBoTfhsIyxthBjWEwDGAxgCFNm5kAeq0MBA2DWsMDwDYAawE03VAgxGa6aOhVbQU7rwtUGiluGyZua2hm3BihekXMBsESr69CoxF2Vrg0o1b55whr7Pp69Pesv/ZFdz1eHnhnRHmVVwGQK33WWlCqWbxxr2z01JOKyQC0x8JI54qeLbzlFn4bCot1BkA/gE3aBpzzJGRvgiWMsQUGu0cBLGqohwRBeIJfRkq9GBk37dEQ8iWOfHHqq95uCWo/YzFU1HsyMhYibGogdIta9/zGvTdj7p2P1xw4613fIkjopxOaVcejHnw1FLRGgjrQc87v17ZR4gxGIU9D9OiPa+hV2mlJKtfoUQwO/XUHAWDlypVYuXIlcrlc+Smko6MDhUKhnGLV0dGBUqmETEb+R1fryKfTaQBAIpFAKBRCKpWCJEmYmJhAJBJBKiUH9sRiMcRiMUxOTpa34/E4JicnwTlHNBpFPB5HOp1GqVRCJBJBW1tbeTsUCqG9vR3ZbBaFQqG8LUkS8vk8GGPo7OyEJEnle+js7HTtngAgHo9Pm3uSJAkjIyMtdU+tqJPVPUUiEYyOjrp6TzcMzMAHP7+g4p6e+s2b+PcXj+HASA7ndrfhtt/pwwfPl9/P3jhHb1we9s5IDEUOzG6TtxNtCWQyGd91umFgBnZ8YaGhTplMpqZOiy7uxuGTZwAA4zmGbBGYk5DvcSLPkC4AZyvbHYk2SJJkeU8XzYojJ2XRHgHe1ckxKslLTreFOQolhtMS8OH+Tlx/QRxHz2RxKiOnUqpZEhfM6cX4+HjN/73LZzGk80WMSrLXwkwnq3ta9Pc/RarA0BkB5iSAEOPIFBjG88CsOBAJcWSLDGM5oDcOREMc+RLDqAQkk8kKnfraORIRjhJnVfeUzWZd/zw5gXEfK28B8iAOYAWA5QDWcs53aY71AxhVB3nG2EYAOzVTFdrrLAPwMOd8pu7aZwAMWE1dDA0N8cFB9+IeJyYmMGPGDNeuRzQf0lB8gqCh2Rx8iAEPrrhCKI+KFVaxBloeurX2PasehTltHKeyxqGPh5Wncf3r6uMnanH5up9bxiqEGfOkOuVhg+BEK4+CUftGWb9+/c5169ZdZaet31MP6tTCEIAhJZhxo2oIGAzu2yAHNlYZCjCenlDDcb1ZVN0ESZJ8/4IiGoM0FJ8gaPi92z5QNZjFIyFs+PjlLWMkAJWxBlt3H8fqLS9VTMcAcraBnXtWAyy7YsaGgrb2QaPxE2rAp9kg7YWRIE7lhil8NRQMpgQ2Kj9DGm/ATE2bJOQ4BiNGAfTo9vUAZWOEIAii6bgZDCgCdhYJs0JdEh0wXrRr/z03udXVMmaeg0Y8Ch2xMFK5am+FWfovg/GiY0EwLHyro8AYWwTgjGIQ6I+p++7XDfL9kDMjqlCmLPQGQS+A7S501xEdHfUXSCGCAWkoPqShfyyd34dn77wBh+67Gc/eeYMj74m6JPqIybTDwnu2udXNMtry0Hb22yGdK5ouv27EJ6+5wNH+ZuJnwaUdAIZ0hsBiAFs450ll/2ndOcshpzsCkGMYlNgElSHd9mLIHoqmUio5X76WCBakofiQhuKydH4fzKore7EI1teWXoZPXXNBeTGsMGPlJbzrjQ/gAO695TL09STAIJfTvveWy0yNJqs++I1vUw+c8yRjbCNjbI2yaxaAYV0dhCHleBLAAICNuuJJiyAbD1uUa65VKzNC9j4cbHaxJUCOFKanGbEhDcWHNBSbmXGO01LzHO9fW3qZ6aCsNRYG7nrC9nSE0xRgqz74id/pkbsA7LI4ngRglg4JJehxSLfPtD1BEARBNMInFp6PR54/6nc3morvWQ+tiJrDSogLaSg+pKHYjDbRm2CHJ554ApIk4UoAcy5OYWSy9hTIj370I+87VoN4PI6bbmosAJQMBYIgCIKogSRJ+NjHPla1f++b5kl1l59XFavfdNwwVsRYY1Mw1GpYhLiQhuJDGoqNWikx6ETDxsOo2X4RaZ07IQiCIIgm855zuqqMgmg4hPec0+VTj9yHph48IJET+YEUAAAgAElEQVQwLqhBiANpKD6kodj0/1YP3hgfr9p/7UCvQWt/aSWjwAjyKHhAKERvq+iQhuJDGorNP37iqiqjwOlaDoQ7kEfBA1KpFD3NCA5pKD6kodikUikyCgJCw4YCY+xGAN2aXUnO+S8bvS5BEARBENbs2rULO3bsgJsrIOtpyFBgjH0WwGbO+bhmXzdj7LOc839tuHeC4nStbyJ4kIbiQxqKjSj6bd19vGoBLKD+RbGcsGXLFmzatAlXX32169fWUrehwBi7BcCjWiMBADjnY4yxRxljt3DOH2u4hwISidCMjuiQhuJDGoqNCPpt3X0cdz32MjJ5eZXI48kMVj/6EsBQXmb7eDKjrIYJ142FZcuWYXR0FMmktwskNxLtwzjnY+UNxsphn8r+YJXVaiKpVMrvLhANQhqKD2koNiLo98CTB8pGgkq+xMtGgkomX8QDTx6wdc1du3ZhYGAA27dvx65du7Bq1ary32vXrsX27U1fELkhQ6H8TjDGugEkGWObjI4TBEEQRKvxVjLjetsFCxagv78f/f39WLBgAQYGBjA8PIwFCxbg1ltvxaOPPlpvd+vGlfwhxYPwMIDNblxPdGKxmN9dIBqENBQf0lBsRNDv3B77WTVO2gJAb2+v4d9+0IihMEu7wTlfxTn/odnx6YQI/+CENaSh+JCGYiOCfquXXIJENFyxLxpiiIYrZ94T0XA5yFFEGjEUtjPGbjA6oOxv/kRKQJicnPS7C0SDkIbiQxqKjQj6LZ3fh3tvuQx9PQkwAH09CTyw/P14YNn7K/bde8tltgMZd+3aheHhYWzevBnJZBIvvvgitm3bhmQyie3bt2N4eBjDw8MAgO3bt2Pbtm148cUXPY1dMAwrZYxdyDk/bHUi5/wQY6xHSZHczjk/zBibC2ARgBc554fc7y5BEARBBIel8/sMjYB6MxwWLFiAgwcPlre1MQlr1qzBmjVrytuLFi3CokWL6nodJ5h5FNbaOZlzvluplzBTSZfs5pw/zDnf41oPBUQElxlhDWkoPqSh2JB+wcEsUfUqxtgMzvmEnYtwzncD2O1et8RGlEIhhDmkofiQhmJD+gUHM4/ClZDTHV9njH2TMfYxbZ0EwhoR5tYIa0hD8SENxYb0Cw5mhsLnIKc7PgVgMYAfAjjDGDvNGNvEGPsMY+xC7QmMsW962VGR4JxKSIgOaSg+pKHYkH7BwXDqgXM+pBRRWgFgA4BRAFdDNhpuhGxEcMZYEsA2yBkOVzWlxwIQjUb97gLRIKSh+JCGYkP6BQfTYtpqESVldcj5yroN5fwLxtgiTBkOK0CVGMvQ3Jr4kIbiQxqKDekXHGquusE5fwoAGGMfB3BQzWjgnG9HpeGww6tOikY6nUZbW5vf3SAagDQUH9JQbEi/4GC74JJSdXGMMfZZk8BGMhQUSqWS310gGoQ0FB/SUGxIv+DgqDIj5/yQUjfhaqVughZbtRemAyIsj0pYQxqKD2koNqRfcKirhLMyHfEUY+w2xtgVyr6xGqdNG8hdJj6kofiQhmJD+gWHuk02zvkYY2wbgGWMsRWc8791sV9CQ3Nr4kMaig9pKDakX222bNkCAHjxxRdx9dVXY9myZZ68jqWhoNRK6Fd+BjR/9wPoUZspba/knC9x8uKMsR4AgwCSyvXBOV+ra6MWtr4a8hoS91tcb5nSty2QUzoHAWzhnA876Vej0Nya+JCG4kMaio0w+u3dDDz1FWDsTaD7PODGL8v79fsuX+Hqy+7atQv9/f1YsGABli1bhoGBASxatAg9PT21T3aI2aJQr0MecAHFEAAwrPzsBLBZsz3cwLTDXVrDgDG2kzE2yDkfUrY3cs5X6Y7DwljohVz3YQNk4+O2ZhsJABAKNbIoJxEESEPxIQ3FRgj99m4GfvrXQD4jb48dA7b+JcAYUMxN7fvpX8t/u2gs7NixAzt37sTGjRsBAD09PRgeHsaCBQtcew0VM4/CAOTUx42QV4b0Kv5gGWPsoGoYQDY8FgMYUrwNSV37jZCNAFOvAoCZAHr9MBBU2tvb/XppwiVIQ/EhDcVGCP2e+sqUkaBSyle3y2fktjYMhV27dmH58uXYuHEjent7sXHjRixfvhy9vb3YtGkTFi9ejEWLFmFwcLB8TjKZRDKZ9MRIAMyDGbcAWAX5Cf02xtgXGGO3WK33oC/pbJPFGiMBkL0YLyp/9wJYwxjr151j6VfhnCf9NBIAIJvN+vnyhAuQhuJDGoqNEPqNvel62wULFqC/v788rTAwMFD2FNx6660Vy06r3HvvvYb73cLMo7CNc34IcqlmAIBS0nmxMnBzyE/72znnh5UmGwDc6uTFtQM6Y2yBsu9+9ZgS96Ad9BdDU+TJCMbYIOT4hF4APWbTFEq7QQBYuXIlVq5ciVwuh1xOdhd1dHSgUChAkqTydqlUQiYjW4+qtZtOpwEAiUQCoVAIqVQKY2NjCIfDiEQiSKVSAOQlU2OxWHmhk1gshng8jsnJSXDOEY1GEY/HkU6nUSqVEIlE0NbWVt4OhUJob29HNptFoVAob0uShHw+D8YYOjs7IUlS+R46OztduydArpQ2Xe7p9OnTKBQKLXVPraiT1T2p/W+le2pFnczu6cyZMyiVSoG5p3w+j3w+j1AoBMYYisUiIl19YOP2DADe3YeC0udQKIRSqQTOueE25xzd3d3I5/MoFovo6elBsVhEoVAo/09zzlEqlfDDH/4Qy5cvx/vf/37k87I3Q522KZVKyOfzSKVSVffkBLO1Hh422DcGeXEoAGXDYRFjbDnkqYq6wi2VKYYVAJYDuE33mrt07RZBXtnSjO0ARjnnSeWcjdqYB921hwAMAcDQ0BBva2szjLCdMWNGxXZHR0fFtt49pv6TqeclEomK4/rX0AumP+50u9b1gPruyWq7Fe9p5syZ6O3ttd0HEe6pFXWy6kOxWKzQ0Ki9aPdkp8+tdE+qfkG4p2g0WrH+RCgUAhatq4xRAIBQtDJGAQCiCbAb11Wfr0G7zRhDOBxGNBpFOBxGKBQqP3yGQqFy26effhrvfve7sWDBAiSTSYyOjqK/f8oJr15DvVf9PdmlofRIVBoOi+q8ThLygD2kBCtuNBrYATwK4EaraQWDY9sgezqMrucZQsytEZaQhuJDGoqNEPqpMQcuZj3s2rULw8PD2Lx5M1asWIEXX3wRBw8exKJFi7B9+3YMDw9jeHgYyWQSy5cvLxsGyWQSBw8e9OIu6zcUDLCcEjCCMdajPv0rbFR+hnTtNgDYoPUwGF0LwBkAMzXXTGIqe6NpSJJE+b+CQxqKD2koNsLod/kKYyOgzgyHBQsWVAz42tiDNWvWYM2aNeXtM2fO1PUaTnEt/4Rz/jkn7RUPxBllgNcf69H8vQxyzMR2ZdsqrPN+neHRDzmToqmo80SEuJCG4kMaig3pFxz8TFTdAWBIN7AvhlwgSY0xWAQ5KHEHY6xHCaQsB0wyxvoVQ0Kdwjite43l8GENCsZY7UZEoCENxYc0FBvSLzj4tuoG5zypBBuqfpRZkIs3rQXKXoVtyrGNmlO3aP5eBNkYUPcNKddTKz1u5Jxr2zeFzs7OZr8k4TKkofiQhmJD+gUHX5fnUmIODOMOFA+BpUmpzVzQnGNVjKkpSJLkOP2ECBakofiQhmJD+gUHAWpkioeav0uIC2koPqSh2JB+wYEMBYIgCIIgTCFDwQNobk18SEPxIQ3FhvQLDr7GKLQquVxOjPxfwhTSUHxIQ7EJmn7xeBw/+tGP/O6GY9yI8yBDwQNobk18SEPxIQ3FJmj63XTTTX53wTdo6oEgCIIgCFPIUPAA/WIjhHiQhuJDGooN6RccyFDwgEKh4HcXiAYhDcWHNBQb0i84kKHgAeq654S4kIbiQxqKDekXHMhQIAiCIAjCFDIUPIDm1sSHNBQf0lBsSL/gQIaCB5RKJb+7QDQIaSg+pKHYkH7BgQwFD8hkMn53gWgQ0lB8SEOxIf2CAxkKBEEQBEGYQoaCB7S3t/vdBaJBSEPxIQ3FhvQLDmQoEARBEARhChkKHpBOp/3uAtEgpKH4kIZiQ/oFBzIUCIIgCIIwhQwFD0gkEn53gWgQ0lB8SEOxIf2CAxkKHhAK0dsqOqSh+JCGYkP6BQdSwgNSqZTfXSAahDQUH9JQbEi/4ECGAkEQBEEQppCh4AHxeNzvLhANQhqKD2koNqRfcCBDwQMikYjfXSAahDQUH9JQbEi/4ECGggfQ3Jr4kIbiQxqKDekXHMhQIAiCIAjCFDIUPCAWi/ndBaJBSEPxIQ3FhvQLDmQoeAD9g4sPaSg+pKHYkH7BwddoEcZYD4BBAEkAAwDAOV+ra7MGwDCAXuX4UI1rOmrvBZOTk2hra2v2yxIuQhqKD2koNpOTk2jbtAI49KupnXOvA/70J/51aprit0fhLs75/ZzzIcVAWMQYG1QPMsY2ABjmnG9RBvwBxtgys4s5bU8QBEEElCf/ttJIAOTt7/yRP/2ZxvhtKCzTGgaQPQGLNduDnPMtmu1tAFZZXM9pe08gl5n4kIbiQxqKTezYs8YH9MYD4Tl+J6ou5pwPa7b7AWwCAMbYAoP2owAWGV2ojvaDkKc9sHLlSqxcuRK5XA65XA4A0NHRgUKhAEmSytulUgmZTAYA0N7eDmBqKdREIoFQKIRUKoVcLgfGGCKRSDnFJxaLIRaLYXJysrwdj8cxOTkJzjmi0Sji8TjS6TRKpRIikQja2trK26FQCO3t7chmsygUCuVtSZKQz+fBGENnZyckSSrfQ2dnp2v3BMgFUKbTPeVyuZa7p1bUyeyeGGMYHR1tqXtqRZ3M7ikbn4NCKIb23Aiy0V4Uwm0I8QLapVOQxsaEvKcg6eQExjl3dIJXKAP9w5zzK5XtRQA2cs4HNG36ARwEMJNzntSd76i9lqGhIT44OGh22DGnT5/GrFmzXLse0XxIQ/EhDcXm9ANXY1bqNeODd481tzN3zwRQqtwX7wbuOir//fV5wOSJqWOd5wBf2A/s3Qw89RVg7E2g+zzgxi8Dl69oWretWL9+/c5169ZdZaet3x4FNaBxBYDlAG7THOqBEpCoYVT53Qs5AFKL0/aeERTji6gf0lB8AqPhd/6o0l0ejgMf/ZfADBhBhTO/Z8YVjIwEAJDGgLu7jc+ZPAHcewFQygF5+SkfY8eAn/61/Ldg2vtuKChP+kMAhhhjOxljG5VARKOBXTUERg2OOW3vGdFotJkvR3gAadgE9m4G/mMtkFE+nole4A82uPYlGggN9UYCABQl4EdK6JRgA0YziRbTzX3Bn90B7Pw2wIsACwNXfhr4yIMwNBLsIBl4PfIZ2cNgprtpH/zFV5NN8SZo2aj8APLgrj/eA5SNCz1O23sGLWYiPqShx+zdDGz9yykjAZD//vHn5WMuEAgNzQLveEkeMFqVvZuBb1wK3N0j/3aq6c/uQDzfxK/tn90B7PiWPEAD8u8d35L3u83Ym/73wSG+GQpKTMEZA2MBjLEezvkuVHsJegFsN7qe0/ZeogaQEOJCGnrI3s3yE3UpX32smHNtAA28hmYDhujs3Sy72MeOAeBTLne7xsLezcCOf0M6Pqd22+/8kez+V3/qSZ38l4XygGzEjn9zfr2amEyJ7fy2s/1NxE+Pwg4AQ7qn/cUAtmj2DenqICzGlMcBjLF+3XHL9s2iVKrTVUUEBtLQI1RPArd4f10aQD3RcO9mYMPcqYFpw9z6PSDd57nbt6Dw1Fem5uVVVJe73fPBUWI1Zsbv7m68zsK/LARG9ls08CjO5e7uaq+L6kmo6oLJ/ibiW4wC5zzJGNuoVFIEgFmQiyWt1bRZyxhbowz+/QAO6uokLIIcBLnFZvumQMujis+00VAfJ6DF5ZgBAPIgYORJ0OLSAOq6hqqRo+2/Ol0CGL9Pc68znn5gITkCvlUwisXQM3asep9ZMCCASDFrfICFLM9zVGfB0kjwmB+tmjKYjd6bAOHrt6EyXbCrRpv7LY4NQQ6EtNW+WVDZWPFpSQ3LqVrHADDUfFqqNQg6eV0zY8SIi3+v/tfS4LqGZkaOOl1i9B796U+8z3owGqS1qXtWbe2URDa6/lWfAU6/4WxQZuHKbavBHkBb3uT/JZIA8i4sQX3vBY1foxGsvGoBY5o8NjWXdDrdmgPNNKLlNFTnjcsuYZsuVatBUH99o3xxo6fwWrz0feCCaxoeSBvWcO9mYOvn5RS3Wowdk13IRrnyXq5NYPYkL43JA6HWWDBqq7rqzfpodn2zOX0rHLrQ07HZaCuMVx9wYiTUMEYIe5Ch4AE0vy0+Laeh0byxXWrFDOiNEG2+uJ2pBj21Ushs0pCGezcDj91Wu10FSuCeF6mPZp4Aqyd6fXqeWdtDvzIeUFkU4A61q4WDgbsUarAEdysZCXd3A7PnAX/1gi8vT4aCB4RCASkUQtRNy2nYSIBgrZgBq+C1el937JgcKKjGSKipY6Yw4Ko/r8g5r0tDO3PtteAl4Md/JffbjWkHM0+AnYGwkcHSbSPBISE7nhwz/J5W8IKR/XLwpQ/GAhkKHqDW2SbEpeU07D6vvoCpcKx20J2ZMaBOQ9QbqJUZlZ/qbT3Z8ylDQjEWHGvohpGgUpSMB+l6ii1N00WQ2nMj9Z9sVOyoFfAp+LLFHpuCQTZrEq1LCEPLaXjjl4Fowtk5iV7go/+z9oBm5nFQ5+tDTayQqMk5N9Vw72bgnnMr8++NUu28otWLLblENqqvyE8AkL0KTYY8Ch5QKBT87gLRIC2noTrYG2U96NMgtVkKtp/odUQTlUF9RlkPLARc+Wf1BcaZoQmYM9Rw72bgsVWouyyvW7RqsSUXKYRbKJjYTXyYgiBDwQNabn57GtKSGl6+wl72gtMsBSPe/8dTr1XrddXa9m6gScEz1PCpr8B3IwFwVisiFAFKVoarjVRXAQnxFjPW3aTJUxBkKHhAy81vT0M80VCbQpiYKe/LnAnW8rP1ZCkY8fov7Le98tPueRWu/HT5T0MNG3mS7zwHmHeTO311Umwp3mVdgyLWDuRcqCugx4usBwe0S6d8e22iEjIUPECSpNbKwZ+GONLQygC4+PfkQVPv7td+8Qdp+Vm3XOJOrqNmKrgxAO/993INBkMN6w2u1BcmMupr5zny8sK1uOozznTOnDE/Zvc1HcOAWQO+Vi6Uoj3GdRSIpkOGggfk8/6mFRGNY1tDfQ0BvQFQMaBYuIddqh3QMI1kKVTAq6P+rUpCf+RB+cduFcfu82UjTD9g51LA1s8BAPLn3lB93o1fdhajYFS5UO2rlprpmwDAgFuGnGtspYknRgIAcH/LGwPIh8kza0rYYWByg7TgRKz/MMb87gLRILY1bKSQkZ4gBLh5maVgZxnpy1cAaw8Bd4/JT95GhMJyP81W1SsVgae+Yqzh5SuAWzYC0Y7a/bVT3ljFjjeEheozBOvJWGkBmEAljptO0aXvHJuQR8FNFBd0Z2oM6Oj2b97ZrJxus6/n5Dw7bd2+Lws6OzvtNXRzcA/CaoJWWQpuYLckNKCZkvg3lL0xsQ7gIw/J51tlY4y9aazh3s3AT2+fKgOsZl7oPQROsJuuxovVXharantfn+ehxyD4dErT996DBhkKbqFxQUtt5yHu17yzVTndevpR7/WcnGenba02VkaE1ToE+v0A8NRXIElAPI6KfeV25biDN+WBxo2I/WhCvu43LtXFOozKkfy8OPU70Wt+TP1tlf5YCzvZEXru7oHtyHun8Qtmg3j5Xg3oPg+SJCEej0/tM0qN5KWqQk2OacRFb5bqNs2NBACQIt2IFyb87gYBMhTcQ+OCzkWUJxk/5p2tyunW0496r+fkPDtta61xb2ZEmB07+ry8+JB2/9a/BBgDijnkOucBY/sr9pXbad3Mjo0EZQAvD/aaoEdtf7RP8+prqL+tjpX7oxm03VoF0gonsQ1ueU7MsiWUqYlcTlcC2Co1cue3G/MqNIKRoTHNjQQAyH32V8C/DPjdDQJkKLiHVRlbkftR7/WcnGenrVWbWkaE0TGj3H2jtEC7qYIsLD+dmmY91Jgu+cal7sU6GOHE5V8PN37ZXv0FOyWh7WI0NQHIMQqP3QZ0zgMmbT7tu1XHwQ2sYjgaYe514pSDnnud3z0gNJCh4BaaJ6rO7FuV+33qR9X+Zl7PyXl22lq1qceYqTEwVGhoB14C7k46O0dLMwxKL1/DTmyD0ykQO1ikVjrSUFOoyTGz5xl7BdT4A68Xb7IDC8uBmW6uZ8HCwDpFa7f7/6c/QWc263stB0KGsh7cQhOZXJ56UMvY+tSPMo30o97rOTnPTlurNlZrDZgdqzEwlDW0SyMG4d7NcqyD13httGozFox+1h7yxqNhkv3gSENNoSbH/NULslGg58Jr5d9Gx5qNen9/+hNZCzfS67TvmVmGSj0o03K5XA5YNyIbC4SvkKHgFpevAP7wn4Du85GLdMt53n/4T83PetD0A2CN96Pe6zk5z05bqzZWRoTZsSs/Xb0/FJVd4wByka6qfaY0YoipQZpeu77ddPkHDZP3rqxhLeZe13h8gmoUaNnxLbm+gpkh4QWz58mDtmoIs7C8rb+/RtPr9Nf8yIPuGQt/sAEApmJM1o1MGZuELzDOW69GuFOGhob44OCga9cbGRnB7NmzXbseYQOXsx5Gip2YHZ6snfXQaJrmNy41CQJkcryDG1kPLCRPjajHus8PTsloN1jfa2gsjHTOw2w7MQrd5wN/8xtP+lDhnq/VthbhmL3VPO1Q71SB0f2YsX52fdMGikFg+D3q9RSNSDRoOK1fv37nunXrrrLTlmIUPKCjw0YxF8JdrFL6zI5Z7O/IZIBEorKtF1jFDaw91Ni19Sml6uAUpJLRbmCS/dCRfdve+W7EbpgN/Pr9ezfXZyR4Ed9RD076vm5k6u86YiPoezQ40NSDB7TcEsXTkKZpaBVf0ShWVSO1WSGiY+L2tr1MsRvvtVnMi3b/3s31Ldl9y8Pux3fUm1VQb9Dnn/7E8Wu69xl00GdtTA1RhgwFD5Akye8uEA3SNA3dDj7VUm8Kq4h85MGq4Enphq+h5lccC7nzXpsFQ2r312uYeWHQ1TFwA2gs6FMNpLQ5CLvyGYwmgFv+txLb5JCGjAWGcixVC0CGAkH4idvBp1rspLC2MgMftl7XIRwHPrbRnfda9WpYBRG6XcukUbQDt50BfPY894pSdZ7jbL+KmXEz9zq5/7c8bPxZsvMe6u//O39U+xwzbhmS06UbjX0JCBSj4AE0tyY+TdWwnpLJdrjxy5UxClr8SN1tMh0dHd69t0ZYlZsGGliZkxuXeW42Iwfcu9YX9leXqe48R96vYPgZNKoFoV28y0xv0zosFoGsjdSbaKi4WQg1VzdtsqeCDAUPKJVo1TPRaQkNteWvx461btaDCYHT8MYv1xejAJivCeE24YRF6qTLGXJfsM5IMdXP7oqeWoyMZi+N5Xq9QOpn8+jzxtVjAV+MfDIUPCCTyZBXQXBaRsNmPlEHjMBpqOrw2OcA1JH50MjiU3b5u7cDk4Loqn4VRrP3q8/antYzm+65fMWUd6qJq+aaQYYCQRBEs9AabgEZkKvR1OCo2i8wTo1m22tj6N4vt5/4A2Ds+x7MyBhbo/w8yhhbozu2kTHW7+Bay5Rr9TPGetS/3e+1Ne3t7c1+ScJlSEPxIQ3rxWyKobnF+XzXzywzJN5dGQB6y5A3wcgBwlePAmNsI+d8lWZ7J2MMnPP7lV2LAAwyVmXJruKcDxlcshfABuUnCeA2zvmwB10nCIJoDLPFpPym+3zzwL/php14iFpP/GZxH26st9EkfPMoMMZ6IA/mWjYCuEuzvR3AlQAGND/3mxgJKjMBDHDOZ3LOt7jYZduk02k/XpZwEdJQfAKvodM1IJo1UHtZ28MBgdfPLn/3drVREE7I+wXBT49CL4A1ildB+9TfA5QNiQ3aY4yxQQD3Wl2Uc55EtQFCEAQRPLRZDLUqNzZroG524N90QCCjwAjfDAXO+TBj7EqdkbAYshehasBnjC0AMKzsN0UxJkYhGyI9mmkMo3aDALBy5UqsXLkSuVyuvGJZR0cHCoVCuTpYR0cHSqUSMhnZhaTOn6lWbyKRQCgUQiqVQiaTwcTEBCKRCFKpFAAgFoshFothcnKyvB2PxzE5OQnOOaLRKOLxONLpNEqlEiKRCNra2srboVAI7e3tyGazKBQK5W1JkpDP58EYQ2dnJyRJKt9DZ2ena/cEAPF4fNrcUyaTwcjISEvdUyvqZHVPoVAIo6Oj4tzTf34TsUgXJtvOlbcLk4gXxjAZPwechRB91xLEs9nm6HTuDcCf3FB5TyMjTf3fy2QyGB0dDZ5OLfJ5ckJgVo9UPAiHAOiNB/V4RTyDyTX6AYyqxgRjbCOAnTWmKlxfPTKTySCREGf+iaiGNBQf4TS8uweWAYPTbP0B4fQTDCerR/qe9aDhUQA3mhgJiwAcrHUBzrne47ANwFr3umgP1WojxIU0FB/hNGz1ktoOEU6/FiYQhgJjbAPkeIRdJk1WAbDMXlDSIbnimVBJAmh6eiRBEIRjrGIQnAQ9EoTL+G4oMMaWAdjGOd+ubC8waLYMNQwFhft1HoV+m+e5itP5HyJ4kIbiI5yGl6+QFzXSL4s8e57/6zz4gHD6tTB+11FYBDnocLviCegFcCuAXZo2qoegKohRiUlYwDnfwjlPMsZO65oshw9TD5EIFbwUHdJQfITUMABV+IKCkPq1KL4poRgA25TNjZpDRrUPhiFnMuhZBNkYUM8ZUqo7JiHXXNjoRy2FVCpFQTiCQxqKD2koNqRfcPAzPTIJG8XDlXYDJseGAAzp2hqmQxIEQRAE4RzfYxRakVgs5ncXiAYhDcWHNBQb0i84kKHgAfQPLj6kofiQhmJD+gUHihYBcOLEiZH169cfAYCXX365+7LLLquqbOJk/7PPPjv72muvHfGux/Yw63Ozr+fkPCTgOfYAACAASURBVDttrdrUc4w0dPe8Zmto1j4IGk5H/ayO02cwOBru27fvYtsvzjmnH80PgKFG9wPY4fd9WPW52ddzcp6dtlZt6jlGGoqtoYWuvms4HfWroQl9BgXRUPtDUw/V/NSl/UHA7b7Vez0n59lpa9WmnmOkobvnNVtD0s/d8xrVz+o4fQbF0bBMYNZ6aCUYYzs457ZqaBPBhDQUH9JQbEi/4EAeBW+wXISKEALSUHxIQ7Eh/QICeRQIgiAIgjCFPAoEQRAEQZhChgJBEARBEKaQoUAQBEEQhClkKBAEQRAEYQoZCgRBEARBmEKGAkEQBEEQppChQBAEQRCEKWQoEARBEARhChkKBEEQBEGYQoYCQRAEQRCmkKFAEARBEIQpZCgQBEEQBGEKGQoEQRAEQZhChgJBEARBEKaQoUAQBEEQhClkKBAEQRAEYQoZCgRBEARBmEKGAkEQBEEQppChQBAEQRCEKWQoEARBEARhChkKBEEQBEGYQoYCQRAEQRCmkKFAEARBEIQpZCgQBEEQBGEKGQoEQRAEQZhChgJBEARBEKaQoUAQBEEQhClkKBAEQRAEYQoZCgRBEARBmEKGAkEQBEEQppChQBAEQRCEKWQoEARBEARhChkKBEEQBEGYEvG7A0Hg/vvv5z09Pa5dLxKJoFAouHY9ovmQhuJDGooN6ectJ06cGFm3bt1ZdtqSoQCgp6cHg4ODrl0vm82ira3NtesRzYc0FB/SUGxIP29Zv379EbttaerBA7LZrN9dIBqENBQf0lBsSL/gQIaCB5C7THxIQ/EhDcWG9AsOZCh4QChEb6vokIbiQxqKDekXHEgJD2hvb/e7C0SDkIbiQxqKDekXHMhQ8ABJkvzuAtEgpKH4kIZiQ/oFBzIUPCCfz/vdBaJBSEPxIQ3FhvQLDmQoeABjzO8uEA1CGooPaSg2Xul3JpXDibFMQ9d449Qk7nn8VeSLJQDApFRAMp2raMM5h1Qo1v0a//fgCLbuPl5+DT+hOgoe0NnZ6XcXiAbxQsOUVMB9/7Ef+98eL+/7zAf78fuX/pbrr0XQ51Ak9p0Yx44jZ/An17yrvM+pfmdSOSRiYbRFwwCAbL6IQyMpfPY7O/C+c7swtPIqAMCH7n8aE1IBh++72XE/OefgHLjn8Vfx9IF38NEr+nBpXzd++57tSOeKOHzfzTh6Oo1XT4xhw88P4NBICv+5+sPom5lAOFRt+GRyRYxn8+iIR3Dpuifx0K1XYOn8PvzDLw7gn3/5BgDg7fEsPnfdgOO+ugkZCh4gSRLi8bjf3SAawG0NXzs5gb94ZCcOjaRw9YW9CIcYdh9N4md73yJDwSPoc9g4mVwRe99M4uoLexEyGOjc4g/+8b8AAH9yzbvwwvBpbHv1JD73O+c40m/+V7fh0r4u/PvgB5DOFfDb9zxVPnY8mcG3fn0IADAhyWmXO4+M4t4n9uPf/uxqdLVFkckVMfjdHbhj8btxxflypV69V+Pz39+F0VQO45mp1M1coYR0bspz8KEHnq445y+/vxOvn5zENz+1ADfMOxsAUCpx9P/tE1X38I3tr2Hp/L6ykQAA9/3HfjIUWpFcLle7ERFonGq488gZHE8auzNPjWfxD794DR3xMB757EL8zsBsAMBH/+ezGMvQPKxX0OfQPv/1+juYO7sD582szDT45jNv4J9++Qa+/WdX4/pL5njejz/4x//CvhOyx+33Btoxu3emo/N/c3wcq767AzuPnKk69tWfvarb3oc9x5LYf2ICvz23F/veHsd/vT6CfLGE82a24+jpNDZ/7gMV5zzx8tsAgPee01Xe96+/Hq7ZJwD42UsnyobCqkd2GrY9cjqNdT/+TdX+o6fTuGCWf1kgZCgQRINMSgXcuvE5FErctM1vX9iLf/7j+Ti7a6okbU8iWjWvSRBesnnHMfyvp9/A33/sMvzORbPL+//kW/+NRDSMfV/9/Yr270xK5fPqMRRePzmBh556HQ/degWi4dohcaqRAABmH6fXT07gkeeP4Esfea/hNZ9947Tp9UNs6rp7jiUBAO0xeaqCK/uz+RK27HzTsp/arm179aRlW5XHdh/Hn39wLr75zEHLc77zXHVl5Q898DR+s34JOuP+DNlkKHgAzY2KjxMND7w9jkKJ456PXYqFc2dVHQ8x4MJZHVWu2+5EFIdPpxruK2HMdP8cvnkmjQNvT+C6d5+FiDKg/uq1d3D4dBp73kxWGAoAkMlXB97FI/IgGtYVP+KcmwYbJtM57DsxgQ8MzMIdm1/Cy8fHsOpD/bj8POOF954+cMpwfySeMNz/tcf34VevvYNlV56Py87rNmxjhtb4iIYZ8kWOqduQD6oGBAB86l9fwFeXXoq5szuQ0UwvaA2aosUDgp6P/POvHfVXy6XrnqwrrsINKOvBA8jlKT5ONHz1xAQA4Lp3n4WL5nRW/fSf1Wk4v9udiNLUg4d4+Tk8MZbBj/ccx4/3HMdrJyc8e51G+ItHduEz39mB/z48Wt5XUgY1bnNsS+fkufhiaSry/sRYBvO/ug1P7TuJsUweXHexP/v2i/jEw89jUiqgpBwLGRgVn/vuTqz78W/wveePlvd96eb3lP8uFow/G6dT1vUVetqjNe5KJl+U+/bLfadQKJYM35NfvzGCD3/9GTz5ytvIGhhSJSW4sdUhj4IHkKEgPk403HdiHF1tEfT1GD8BmdHTHsV4Jo9SiXsaKDZd8fJzeO8T+/GTl94CALz77E784m+u8+y16uWI4q1KSVMDnP7p99evjyBXNE/h27zjzarz9r89gWQ6jw0/34/XTk7iize9B7d9qL98/BVlTv5//GB3+QneyPnw81fk+f5F75ma0rj+kjn42uP7AACFfH36OR24/2Hba7hgVjt+YTEd8LlHdmLPl3+v4dcSFTIUCKJB9p0Yx3vO6XKc992diKLE5Sjs7oS9pyAiGKRzRQyc1YG5szub5lH4/Pd34bp3n4UVV51vq7063aDNw1ef8FUvwKe+9YLlNdqiIWTzJWhT+dX/8hNJeXXHe57Yh9kzYgCAi+fMQFG59lP7T+GSs2cAMPYoqGzfNzX1EI9MObmbOQb/718NV0wn6DEzCEqcgze1p/5AhoIHdHR0+N0FokHsalgqcRx4e8L2l7eWLsU4GM/kyVDwAC8/h5xzJGJhdCUi5cHXax7fewKP7z1R83/txFgGP33prXLevtZQKDqceggrA7x26kE1iCPhqcH/bza9ZHi++t4Y1RAwYk7XVDpkKNpWdTyZzpWzCJzyxwsvwPdfOGp4zMpIsMJBeILQBNJQYIwtArCYc77W4NgaAMMAegGAcz6kOz6o2ezhnN/vZV+NoOVRxceuhkdG00jnihXpUnbpUYyDsUwezs0MohZefg6LnCPEGMKMlef9g8Kq7+7E3jfHytu5wtQgr2bm2O2x2q7IZSPjr3+wGznF8NAGOP7JNe/CmXQOP9t7ouL8UxNyPIFdX1s8Esb3b1uIP374BZRK1VMi9yjTElaY6eHF7N4rb41VGF2f+65x2qPoBMpQUA0EAAsgGwP64xsBPMo5365sr2GMLeOcb1G2N2iNC8bYAsbYmmYbC5IkYcaMGc18ScJl7GqoPom8pw5DoVtjKBDmrNj4HPa9NY6l8/vw1aWX2j7Py89hsSQbCiHGAvdUqf9/emj76/jOc4cBAMPvyHELdj0KartSieNMOofHX54yBKIaj8Kszlh5ysGoL4wxPLbrTQy/k8JVF860TLVUpykKBjEmj5qkLRY0XhO1oJLb/Pr1kap9X/7xK3jfuVOffTXuotUIVNYD53y7MtDvMmkyqBoJCtsB3KXZXqC73i4AV7vbS4KY4tW3xhEOMVx8tvNUvG4lOjuZJkPBih2HRzEhFbD7WHURHb/gXHanh0Jo2tSDXfTdmfdbM3D2jDacPaMNC+f2ym1s+hTUdoVS9XoD2vuOhJil1yDEgHU/fgX/8vQb+PNvv2iYQTDVVr7S8TMZHB6xlz78v545WLPNI88bTzvY5fPfNx6WgrAWg9cEyqNgBWNsAYCkbvcwdMYBY+xRALdxzpOKh2JTk7pYhmIUxMeuhvtOjKN/dke5vrwTehJyABh5FMwplXj5ib1QdDYgu/E53Lr7OHo7YvjQu8+q2C97FKB4FIJjKIxn8zijK+L1rU9PPStxzjH3rifq8ChUH9OOj6EQM8xsUAmHGLoSUUxIBZS4de0B9ToP/PIwvvjzI7ZqB2jXTwmHmKPaBo2iLd/cqgTKo1CDfgCjRgcYY2olj1UAFgE4pMQy9KjTEs2kZPSpIoTCroZqxkM90NRDbfIaHXImT25//8Q+fODep/DAk/sr9jf6OSyWOG7ftAcr/+2/q4/xYE49fOj+pzGRNXe9q4GITmMUCqXqOgNaAynMGKx8CiFWOXhbGVdqLEHYQUyB9nJhxtB/Vus9rNkNCPUCYTwKNegFkOScDzPG1kKOc9gAYIvyU4US9DgIACtXrsTKlSuRy+XKudcdHR0oFAqQJKm8XSqVkMnI9fzb2+W62+l0GgCQSCQQCoWQSqUwNjaGOXPmIBKJIJWSXWexWAyxWAyTk5Pl7Xg8jsnJSXDOEY1GEY/HkU6nUSqVEIlE0NbWVt4OhUJob29HNptFoVAob0uShHw+D8YYOjs7IUlS+R46OztduycAiMfj0+ae3n77bXR3d1ve03haQqiQwfvObsfo6Kjje5IkCfN6gIl0GuPj46STwT2NnBnHRV0ljOcYYihgZGSk6p4OHjsB5DPYfegdnD59VvmeUqkUJEmq+55YtA3ntHN0RDhGRkYq7mlOVEKaR5FgOVzQLvfLC53+9f8eRW+U4yPvPwd97RzjeZT/14zuqZjP4bwOoC3MUSgxnJaAsbGxCp3OaedoK0xiZGQEM6Ic7RFgRlQeaTOZTIVO3VGOUpjjrFgOY2dOozcut+uNc3TGC2AFjiIH2oopzGAS5rRxZIvAnITcbiLPkC4AE8lRnNcut5/IyfdwUVcJmQLDeB6YFQciIY5kMolSIY93dXJc2FnC4ckQstlsWacLOzlOS0BXFMhMnMHp0wXEE+3YM3wCF3XJr3laAs7vAEKSbCieyjC0hYGumHx8JMsQZsBM5V5GJVa+JwA4IzEUOTC7Td4ezzHDezpb2e6MF5GMcMxJACHGq+4pW2QYywG9cSAa4siXGEYloDtWqVNXFEhEOEqc4VQGmBEDOiLya5zMMMzv6yj//7vxHeGEVjEURoFysOMGzvmQMu3wKGPsUc75cv0JSrbEEAAMDQ3xtrY2tLVVp+Pog6H07kxVEJVEIlFxnrqton8NvWD64063a11P2zcVu/dktt2K99Td3Y3Zs6dK3Br14cCZ03gzxXBJ30z09vZa9tHsnk4X4ziT5ejqqvZKkE7ADB7GG+Oy4zMUYxWaqK9xNBXGiTTDb5VCmDVrqoR2Pp93rIt2+9REFifSDMDU66rH38pG0R6LIMfiGJ4IVfTLTZ3+6Rm57v+nb7wMx9PKgGZyT5xzTOQZJvKANs+gu7uyzPHbGYZMuAOzZ88utz+ZYRV9UXVK5oB8keGtTBTdM2eVB9VRiaGrLYRxZTAuxmbgdB44lZWP/8MnrsZt/2fHVB96Z+HwZAgjyj28cDxX1hVAuc89PT2ITiRxZJIhGmJIQf5eVu/x8CQrt0/MmIlZs7qx88hoWSdAfvKOtXfijcNT8Q3jmr6pnJYqt0d128lc5fZ4vnJ7QtnuC4UxWWCYnAC077teB6fbk4XK7TP5SNX/f6PfEXYRyVAop0RqUFMkk2oMA+d8WNm3nTE2F/I0RA/nXB/f4Bl6cQjxsKOhmvHw3nPrm3oAqIxzLfKauASjgDq5jbxfPwXQ6OcwmzOfuihxeV4+HPJn6mFSKuAb214rl1i+cd7ZuOIC47UU9DA4z3o4NJKqCoDU3neIAb95ayolU+8kZ6iMS1jzw71Vr6UuzqSeOyoxnN1r/uSr9idX0PeL45zuaiNVdJoZd6FHGEOBc75LE4ug0oOpDIleAAd15yQZY5ub0T9i+rHvxDhmd8YwZ0b9X0rdiShlPVigGgdt0VBFPQAtqjGhX3OgUdL5qbl+fZntEleDGb3LetDej742wM4jZ/CtXx/CzPYoUlIRr5+cxJ9dO9fWdRljplkPY+l8ORsHmIpRmJQKeObAOxVttQNXSGMwfeWj7zMMbCxxOVDR7O269FzZ82FVxVGLeh39vTiR473ndOHVOostNRs/Q2FECmYEgCHG2DLN9q0ANip/7wBQMcWgGBbJZnoTgKl5IUJc7Gi47+36AxlVesijYEleeVrsiEUqvAsVbRSPgn6AaPRzqF0tUNIZKcUSR7gczOjNV7jWNtC/hqSkF373MwuxsL8XJc5tp+lZeRT0tRA45+U1TNZsqfQCaFeb1A7uF88xrl1RUt4z036xyt+9cW5p/PGqPzTXMj3L+DUb4Xgy0/hFbOC2IeyEQHkUlOmDRQCWKdtrAGxX6iGAc76KMbZBidztBXBarcyoeA9WMcY2ADgNOZWyx6i6I0E0Sr5YwmsnJ/Hp37mwoet0J6I4ENDVB4OAmvWQiIUxnjU2qNRqg24P2FpDIZMvIhGbSoFVpx6YRdZDoVjC/rdlbd9zTpfjqHXt/ehfQzVc2qKhch/MskL0MGb+dKp/DznkYkq1BsMQY+WBLMSqB2CuXNtqYFaP2fUoqOw+Vv0caHfdFaev5Sd+puEGylBQDIJdAEwrKVoN/Ep8gu+GQb0BI0RwqKXh8Dsp5AolvOecxir/dSWiGKOpB1PU2gmJaBj5ovyEqR8E8gXjGAUrDU+OZzH43Z1IG1Txm90Zx1c++j4cGZ3ySOgLBJWUOgrhkHnJ4P/v2cO45wm55PCGj1+GW6++wLQ/RlilE6qGQjwSRojJT5t260wwMFOPgn4/50AsXNvxrG3CTFIli2XtzEosM+V8efuMxHCWJszkjk17dH2Tr/PAkwdq9k/lqnfNxI4jU4W7BLITfE3DDZSh0CqEQqLN6BB6amnYSOlmLT3tchGaYon7midthFQo2p7vDTGGWMT9/3vVnd4ejyjbHLFI5fuUK089VHbWSsPXTk7gpWNJXNPfi96OWHn/ibEsnhs+jcXf+M+K9n/+7RcR1xTVOnByAgNzOiynHrRTSvXEoWgvq32Nb/36EH7w33KVwXgkVK7lYLtCIDOvzGi0346uWuPN7N+4VLIemPUeBb3ds+/tSs+b1b+m0evMiFcPd8H6xFlDHoUWI5VKkVdBcGppuO/EOGLhEAbOcl66WUu3ZgXJmZoBy2+++/wR/N3W39huH2JyBcAPW9Twr4eyoaAM0vliqWrgKi90pPsetdJQfVpfveQSXPmuqWQqzjmeOfAOkhm5/kMmV8KvXjuFbH5qEH7jlFznIMSspx60X+xG6yDUomgy9bD5xWMYmZRw8+XnYFZnHCEGJDM52ysgMsB8lNXsVw0vW4aC9m8GwxE4VywhYVHBVDUQVENDrWOg78/UduX0UC1mz4hXGxACuRT8LABKhgLRUmTzRVdqr6dzBUyYzIkDwCv/f3tvHibJWd95ft/IO7Ourqo+1Oqz1FLrRFJLjQTCoKMbAWIYZLeQYU0Dy9DyYg+Lj2mtjA3Gs4Pdws+s8ezsuBuvZ/2Mx2OjZmzvGo9sNQZsjMCS2phTSOrSga5uVVVX15GVWZkZ7/4R8UbGnRGRcWb+Ps/TT3XG8cYb+cvM9xe/8+Ul7Nk0goIHs6wbQlFYTJmi8OiZOWwcLeFDt+zqeWyzJeNzX34az762itv2hjsPoQSI+ACzeV2Wubbo+3nikjV/unGhYIzhtsuNys77bjK6DD7zVz/Eib+b1bpHinlIpkdp2bDoep6aZY6AsemRzDneMDOF//i+fdqcf7ywhj9Z+LGncSXGXGIUrP/Pe7B0Xbu9m5CmuB6MCBfPmkuPB2ZyPdgf030vWx0ZV3zyYfvjbDQVu2FTZsRzhSwKA4bfqldEODz+3ALec/zRUHx5m8rcUqDFzKEbtvV9nYlqOss4/+jVZezbMYGP3rqn57GNVgef+/LTlsyAMBBKn1AUzAF7+hLPZrG7fQ/FaUHcPaJrYk5i2kIjcw7JtBRxzlHIMbQ6PFAOvD72QX/fHMbFVMxhslbEZK2oWTycYMw5rkLvevAaZf+hW3bhss3dWB27d1RcbstYGa8uNWzHEfchFIaldYZJXYwC50BBkrT34v/822cc52SrbNhsy5CegNWIumJ6gRSFCMjn6W1Ngi999xXkcxL+zVv39m1RlOQWZKngeszbrt7S30WQzn4PjVYHz83X8Y5rLvJ0vAh2a7bDb44jLAh614Mefcqk+YnL7XvYcbAoeEFYkRigWRHs1l0OIC9JaHU6gRQF/Tl3/e7Xu+NybnhiFvdQzkvYPFbqrSjAxfOgt4Kof3dMuvdNMDfMYqpLRo+Xp2FxhrifRsc8H25Y2b/+jLXts3msXtuylPWQpFpDK1oEUIxCMnztR6/h5pkpfOTNM32PNTc3ZymXGgWa68HU8S9JZl9bRUfmhqdENyRJCWTU+/HDQotRcHA9tHRWDD8xCuKJOphFQVEUOrp0P7uFUGRGsIBFmfS6xW17N+ILj7+ISzeNKEqOwaKgWjg8dlFizCXrQf9/9cVkrYD9uzZgfnUds69Z2z4z0/ESsy5p+n1u89IfI3or6MfwI61//MQdePh7r+KTf/F9dVwbd0SW9IQESy5ReD4xELwwX8fs3CpuNT3dpJ1xtdX0UoosCk+pdR32bvGe+lnKS5FYFITFoFJUnmlcXQ8+FmNhUejH9SCKLgEOigKHFscQyPWgjvnv7r4aDx66Ftdun8BFExWYHqy1xS7nogDoWWm28UfffB7/5dHnLPv076FwQ4gF3E5JAGziPODccvrOq7fgzqs2a4qfcZzu+XaYXS5uMAZsGi1j81i3aurtl1sDbb3WWxh2SFGIgGIxPUFpw8JXnzoHAJZAtKDEJcM0uh6eOruMQo5h15T3Vr3lQi4Si4Io4SwWFnfXg/FcNxmKhbsf14Ostpq2u7bYz5hicQmS9SAUhZzuSZtzri6YVteDndLztqvs3WPrHRm/pj5p6zGY+nX/b7soOmIqXcXCeozYt21DFcfff6NttpA5mHG5xSwxE26trG3HUl+PlvL4xbdeZjk/S2oCZT0MGKQoxM9XnjyHnVNV7J4Opw99XDIs5iVUCrlE+z08emYez851nxb//uk5zEyP+KqLEJ1FwV1RENkAduZ9NxnKfVkUVNeD7O56ANTGUYw5Bg+6YVZmJNVioCyYXcQc8pKEX75zL37+v57GyxeUgMGfv905GPXWvRst/RvsbsMt+BGwWgAYs24T4zLdMdZxFETcR70N6Pte+rIoqH9FjYwO5yjl7awY2VEVEtQTSFGIgpWVFdsWu0Q0NFodPDo7j3tv3B7amHHKcKKabL+HD//hY6ib8tHf+3p/VQTLhRyakcQoGNMjzf0ehOJQzEmWRc5NhkLfcOs94ERRUxS6iobdQiqrC7rSOMr3Zbp+falrUZBVi4Jev9EUCYlh344N+Pv7b8clv/JXPccv2yycxid45S8Dc1WozG+hnetBG8vl7TbXUdhsilEABy7bPIpv25Rstk5K+SP6TjileGZIT6BeDwTRD996dgGNloxbQy72ExdJtppud2TU1zs48uYZfPhNu7XtG0f8pfhGZVHQsh4cLAqixXApL/n6IRULe5AiqnktRkHu6XqQGFNcD31ZFJTXDAzfODOP7ZMVg+uha1Ewmtv1+8zkJGZ775YsA3WM3dMjOP2C/QKtuR40xcZmXDGWOMdmHHHe5tEyPvym3fjadwzNgMEBbJ+selMUTNd1giwK3iBFIQLI9RAvX/3RORTzEm6emQptzDhlOFYpYDEhRaGhZg1MjxQNgV9+URSF6GIUKgVRwlm23V/M5/zFKITheuDdRdwpmJEx5Wk8SNaDqLTYMSk1CyvrhoVWb1EwY+fT/+L/8kbUSjnbOgR2WQ8MxuqMh27Yhq0TFfzul5+2vYZdp4euRcHFMoHuffzaO6/E0tISvv1qUzcG91wgyeoOyb5FIYj7KiwomDECqOBSvIi0yIpNJHVQ4pThRKWQWNaDaHZUdimt6wUlmDF8i8J6u0d6ZEc0R5IsT49uMhSLbxDXgxbMKHcbVNkpAmJhC571oPwV/UTuUutaWNMjlb9eU2xv2LkBl28Zs32a1t+H+B9jQFGXerl/1wb84sHLtNfdYEbda4e31UuvB0HLtDzJPtIjvWdHZEdTSNKiQIpCBKysuBc8IcIjqrTIOGWYpOtB1MrvV1GIzqJgdD1Y0iM7XdeDeS12k6FWwjmARUE0pdI38pJtbp1zaFkPQSwKQvHRnuZ1bg67gkviO6Bf+9zWQTtrijHrQbgLmKu1zjyK3SUtd28zMXPWTJUZKxFyWDuHep1Tv8elggQ1BVIUIiDJoJNhI+y0SEGcMhyvFBLLehBWALdmPV6IyqLQNpVwtqZHCteDNUbBTYb9WBR2TFaRlxjuet1FPVwPvK86CuZMAe1aumwLoPtUXLXrjujhCX7S0GPE3qLwdpcqnWZli8Nq+pc1pcOZbRuMxbEY4xZXSNgLe5Z6PSQJKQoRUCi4l/4lwiPstEhBnDKcqBaw1upoZvY4EU9xabUoaFkPBXfXg6IoGM91k2HX7+9/pdizaRRP/7u342du3unqetAKLknOHSa9IBZ0sfiKbArBxhFlob94oqIerwt0dFlahZJ07/5utpD+Nh7+7qv28/FQi8Ap68FNc9k4anQVdbjxM8m5w8U8XN/5ONIUvEDBjBFAMQrxEEVapCBOGeqLLm0cLWG50Qr0BGpHpZizzR8XrKXcotDqyMirJaIB4MlXl/HN2Xlt/w9eVgL+FNeD9xiFfuooAPpyw8rfLzz+Iu64fJOhi6IouAQEC0Qzn9G1XhgXwo8fuAw//foduGjcaymd2QAAIABJREFUGozqJR1Rf4j+mke/+B11DPf3yJoeaUfvrIeSqW5Hk1s/k54LLjkGSRhfZsmiQN0jB4x6vU51FGIgyrTIOGU4plMUTj7xIo49/GRoY0+PFPHoA3c4tsPWFIVif8bFKGMU8jmG0VIBEgN+72tn8HtfO2M5brxStDy1u8lQeDD6XSi2TpTBGPC7X34aX/3ROfy/P/+m7k4Ro8CCVWbsoi7oeneDPkZBYtg6Yd/Twu32JGPoAwDg3FITp58/j5/W1dFwGuPf/surcPzvZrFtg9LiUe/qcc56cJ6PWSGpmGMUOPdhKfB2XJaiFCg9csCQ7SKbiNCJIi1SEKcMJ6qK6fjUD8/is3/9JG7bu9HSkS8I35pdwMPffxX1ZgfjVXtFQFgB3KwOXihFVnBJRkGSMF4t4OGPvxlzK03LMeOVAh56/EV861njT6mbDLVgxj5Nz2+8ZBrf/fU78bH/9k94eXHNco3+YhSM59jVTuiFtwJH3YN+9o+ewEqzjVv2dBuiWcZQX7//Dbvw/jfssr2medHXPA82So/z/Lip90T4QYpZsiiYi6LFCSkKEUBtpuMhirRIQZwyFK6HBx9+Etsnq/gP79uHEZvANL8U8xIe/v6raLQ7GIe9v14LZuzzPSznJTTaHfWpL7xf31ZHRkE1SV+2edSxo+UX2UuWRy43GfbTPdLMSCmvFnwyXUONUQia9SAQb6dkUBT6n7ed62GlqTzF661DXq+kv0PHGAUftHUhdF958hxeudDAq0sN/wO5QCEK3qAVLQLI7RA9Ii3yZ27eGcn4ccpQKAo5ieE/vPf6UJQEoBt3sObyJCL29RujUCrkwLkSfCjSB4PyyoU1fOg/P4bV9TYWVtZR8/B+2PV6cJOhVnAppJXCzr2gNYViwF9991V8/+ULuGrruMMIvdHPNAzTuqYk9ain4D/g0y7tslvl0StNufuZ/IN/eBaAtYPlrqkqnpuv20zBZNFw6sWRAU0haAnwUOeQ7OUHk3rd5oNLhEpUaZGCOGW4eayEqVoRn3jHFXjdtoneJ3hEZDI0XEorh1VwSQSiuV3LK7OvreLJV5exa6qGO6/ago/dcWnPc+x+TN1kKPeR9WCHnaIi0vneoaYWfufFC77GtKRH6n6twyg81M2msKJ3lXipkwAA792vxDVM1orWGAXTuV7mX5Ha2nlOFpnj77/Rdnv3Ov4CMdNIv0p8GJBFIQIoRiF6okqLFMQpw2oxj8c+cSC0RUvgyaLQkg3HBqWknt9syUCfxhixKHzsjkuxf9ekp3MkxiyVGd1k2OE8FLeD4fqWHkZKjMJP79+B3zn1dOCxuy2TA8QouO6zxigI9IqC14fZf/UTu3Hv67djrFzAs3PGfV6CGc3kPFx5rGK/hHm9DpW88QZZFCJACtJphvCMSIsMuxqjnrhlGLaSAAClgvqU7xJkuKYFM/Z3v2VhUQghRVKsUb7eEhuLgpsMO3J4bgeg29lRjywbF2G/i5JZ8XHKenDDtbeCs+fBoCh4Te1kjGGsbB8L020K5TIf8xxgfe/M77FfGZqP7vdzL/ifbvLXbdUPadBlaEWLgGq1mvQUBpo4ukUOggyFlcBt8W62Oijlpb4VFc2iEEKKZJCMBOWJ3viT6iZDmfNAnSMdr2/TIVLEKHR7IQT7ydfM6EGyHryMq9smPgb6eAtTjSuPgZTGY741u9BzDPO705C71gIxHbOy5fS5FQpJr/d875Yx1/1Vj0G+WXBh9AMpChHQaIQbmUsYiTItUjAIMix7UBTWWp1QskbEk1kYraa1+AFfioJ1EXGTYUfmIVsUrK4H0T1SXMW3RcG8KBosCt7wFKOgH1dUmtS7HgLY583X/ZzaadJP2YKS1LFoD2aLgtNnxFIEyuE4h/IiAIBvPnAHbtrtzfUVJT93256kp0CKQhS02+3eBxGBiTItUjAIMqx4DGYMI1iqq5SEYVFQ/vpRFBisKYhuMuzIPFR3j53rAVDbImsWBX+Y/fphp0dqsQ+6scRb0tYpCmFVCQW8WTgEBWZfFluPk7LnvY6C/ZG/etcV2GJT6dIJvUulkGP46i/f6vncXuzZNBLaWEEhRSECKEYhOqLqFmlmEGRY1oIZ3WIU5L4zHoCQLQoBUunssh7cZChHEMxoiVFQ6yhoi0jAyDmtSFEf59rus7EoSDYWBfP76t/xoL+m93tZbnYwO6ekQ3ZdCMbJjJb7C2Z04l/9xIznY//7R99ovDYYdkUUZJ0U2f81TCGD4N9OK1GnRQoGQYblQu8Aw7X1TiiKQlmf9dAnPECMgliA9GZyNxmG7nqQGEyNLdXKjPoYBX+Yjw+7MqPmx9ddSLznf/39bkOoIMWinCweft7xU08vAgCeObesm0t3/8UTFUgSwyUblUX5na9z7nDZnZePCaC35YYxYN+ODYZxg8aiOJGGzAxKjwTwwkIdP/fHp0Mbb1Rax7Jc7H0g4Zt//vFipGmRgmazmfnCWZpFwS2Ysd1BpdD/80K4FgXlrx+jDtM9tIv/u8lQCWYM1/Vg9uXLXJlY0BgFgduTfy+KLlH9dre/aayE5+fr+MNHn9e2mbs6esHZomD868ZYAVhuKUW8RBt2vdKSzymD5NUPypVbx/CX33lFHb//rBBP55v+AulY2MOGFAUoT1xPvrIU2ngXV9p4aY3e2igo5SV84I27Ir9Oq9WK/BpRU8pLYEzJbHAibItCODEK/qsmaiZzziGpP9tuMowimNFacElYFKzWDi+YjzfEKHgcY/OYs7L79qsvwlNnl3Hb3k347F//CACwY7KK5+fryKlZHFO1In7y+osN54XxtlWKvX8fK3mlu0NOYlo7cb1LRMjvFw5ehgcffhJbx+0bY7kRVnqknnbSZRQjgFYzKDXkf/vIraGNNz8/j6mp6CLyiegZhD71jDGU8zlXi8Jaq6OVkO6HMC0KInjOjwzE07Gx34Dz+R05nD4P3esziy+fazEK1rnpabQ6+OB//kcsrK7j0A3bcOTNl9ger59tGB/Pa7aN4/c/sN+wTSg7eVVRuHb7BPJuqQEOOM1PbP/kO6/EN2fn8at//j3HMWSuHCwxYKpWwpnXVvH63ZM49UPF/SgsQm+7egvedvUWnNP1gfD6/oyW8/izj74Rd/9f3/B2ggPR/l4kr3hQjEIEjIwkH6VK9MegyLBckFyf8hutDsohZI+IzInVZv+KgniQ9rOOM51FQeAmQz8ti71d31qYSOYcDEa3iB1nlxr45uwCnjq7gr/5/lnbsQFTCeeIFiZRzDIvBQ+gVM5zr2+wZ9OIpU+L+ZbOqc04JcYwNaK4co/91Ou0/ebPx6axsqPy52TNYYzh+h0bbPf54WzIzarSBikKEdBsWlvhEtliUGRYKbhbFBotGeU+W0wDwFilAMaAxbX+XTZBCi7ZLcZuMgy7hHPONuuBG7IenJ4L9acZWglbsg38ux688qC6AGvvvct704+O4ufcUTXMK6d239y7eRRTI914CbvPRzdmgBn+OmF3m8YKmN7YtsG/28MraYh5INdDBKyvryc9BaJPBkWG5ULOQ8Gl/p8XcpJSvvdCvf/3LUgdBXGs/kfVTYbtCLIeZA68tLiGL33nZXD1/1vHK906Cg6/+Pqt9XVr7YduvQP9xpAmrrJjSskQEdUkhRIV9C0K462tqTEKopiVeUwRzKhH+Rw4W4vMikOY3UMFn7n7mlDGTBOkKBDEANNLUWi0OqFYFABgQ7WA8/UQLQp+sh5M57rxF99+CV/6ziu4bHN47iXGlGv/4Teew4m/m9W2v2FmqueiKRSIWjGH5+brmF9pYmqkZEmzMwYzhqspiNE6suIu6V4r5OsEWJiFEmZWHG0XeWb4E2g+fmaona876X0R9n1ICnI9RMCg+LeHmUGRoVuMAuc8tBLOADBeLeJ8CBaFIHUU9FkPAicZnnlNKeLzqX9xVdAp2l6fc0XxGq8U8IPfuBM/+I07ceynXtczPVJsvlg1Xz/23HnD8dqSrTeJh2xR6MZ4KP+3NevHHN/73lsu0/5vF1Nyz43bLecIV4LXudq5DPx87gT9Km4feMNOx30p8DyQohAFg2K2HmYGRYaVorNFodmWwTlCSY8EFIvChVBiFJS/gWIUdNscZaiuwLfsmQ4wO3tyjKHDOVodjkJOQrWYR7WYV3o9CLeI6Se/0ergiefP48y5FQDAHVdsFhM0HCfubedkDVvGyhivFHDVVvdmRn7pxngoFgWR6GDnr/eyKDqb/l3OMb0eK3S3cFg/D+ZgSMC7K2GqVsR4pYCrLx63ziOAQtavEjVRTXfdHXI9RMCgLDLDzKDIsJzPacVqzIgqiuEpCkWceW2l73FEemSQrAeuM544yVCtgxQqotdDuyOjYPKdO1kUfufU0/i9r50xjKE/zvwkuWOqim/+yh3hTdpmjs/OrSoxCjZvkF2tCOfxHLIe/LzvcjdeQ1S57HldrUS0vXIm+NS7rsJbr9xsuy+IdaDfj9N1OyYc96UhmJEsCgQxwLjFKIhsiDCaQgHAeKWAxdX+LQrC9RCkjoKXhYzz8LMGmOp6aMvcEmTnVMJ50eSm0QIyzWOHPlsru6druHb7BDaOlnDnVVu0rAdD/GQI0whyL5xzrcplz/EdXA/mz5LEXBTkAPcZ5L3Rt7C+bW+0Jen7hSwKEVCrDVZDkGFkUGSoKAr2MQqaohBC1gOgWBSWm220OjIKAYr0CLquB+/n2C2yTjLk4KHXIRDXX+/IKJiiMO16KohjDceZMjfifJKcGinhL37uFu31Wz77FXVO3WOU+/BWf6JXwSUv8EI3FZJ7tCgEiS8wE2SEMK67e7qGZ9UmWGmDLAoRMAgtioedQZGhEsxob1EQ20PLeqgpFR77jVPQSjj70BTE77TeouAkQ6ViYvD52SHGW2/LLhYF48rf6phiERzGTqJIqFtGgRfMp1+7fQK3X74J1253NrFbxlCrP3Hu3QoUtlx70U9uyO8fvtF2LDNhN5kKAlkUIqDZbGJ0dDTpaRB9MCgydCu4JLaHUZkRgFYKerG+jukRYyOhhx7/MU4+8aL2emqkiN+593rbpkXCouDnqd+uMqOTDGUevjlfmOqbbRk5h7xOs4Wg1TZaFLpWEW74mwTdrD99SqaP801Hf/CNO3H39dv8zUHuKpwcXHt/br98Ey7fYv/dFMf07ProcjdG60B00YyXbDJm5SSvDjhDigJBDDAiRkFJLzP+mDXWw41R2KBGbptrKXDO8bkvP431tozd0zXMrTTxrWcX8G/uXLPtAtpNj/R+be1YD7+2HOEHKWiuh3bHGszocK22bFYU1PmZXA8JGBRsrTl9VWT0lCnhfMz8yjrGyooi+gcf3O94nE1ZA9v97vPofYzlHP+neCYNwYypVBQYYwcAHOSc32+z7yiAWQCTAMA5P2HaPwPgPgAinHiWc34q2hkbGRT/9jAzKDKsFHOQueIPL5lcDA21gVOYWQ8ALFkWT51dwYvn1/CZu6/B+27agS995xX83B+fRrtjHzvRzXrwYVFAtw6AwFGGEQQzGlwPpkW2G6Ng/MVfN7kehFXCsi4koCl0n8yt27xgPtSLdcRSuTKvdL78r996AU++uozJmpcUQuu8vcwvKE7Bk57ODWcKsZAqRUEoCAD2QVEGzPuPA3hILPyMsaOMsUOc85Pq6xkAxznnB8V+APcDiFVRkOX+W+0SyTIoMhRdHRstq6Kwtq7cY1gWhYmq8sR39OQ/o6prIyzKEt9xhRLZLZ64zcF8gmAlnMW53cXGSYbRpEd276lqaqHsdC2z60FfywBI1hQtLAr6tduf6yEMlIv//dOvAQAWVnunLAv5m6/vt8W3X9Lw1B8lqVIUVAXgFGPsGAC7qJcjnPP7dK9PAfg8gJPq62MAjuv2n1D/xcra2trAPJEOK4MiQ1F1sWHTTjrs9MhtGyr46K2X4NyytRnT3s2j2DymPCEWVOXFHMwn0H7s+8x6cJKhUlQoohiFlozxiv3YlhgFc9ZDj46LcdJWZfOMri4G8+j/tyOI60FqK4qBH4Vx11TVoFAkURMh6IW89AJJilQpCm4wxvYBWDRtnoVifQBjbALAIQAfETs55+bjCWKoEBkNIsPhyVeX8J++egYdmeOFhbpyTCGc5CfGGI6+7fKex4n0QfNCKeABsh7Ej6651bP9+NEUXAIUi0Lekh6pXlf9+8y5FfzUf/qGJTvEMqcEH1N/4eBl+Nk/ekJzAwE+LQohvr9+PgbXbd+A0y8sot3jc+B1yCQyTtJIZhQFADMAFux2qEqCyDWZUV0QALDfLs5BPecIgCMAcPjwYRw+fBjr6+taNbdarYZ2u621qq3VapBlGWtrSpP0alXptlavKz+2lUoFkiRhdXUVjUYDy8vLyOfzWF1V8mKLxSKKxSJWVla016VSCSsrK+Cco1AooFQqoV6vQ5Zl5PN5lMtl7bUkSahWq2g0Gmi329rrZrOJVqsFxhhGRkbQbDa1exgZGQntngCgVCoNzT01Gg3Mzc1l/p5KnVVsrnCs1BuY42v4mydewGNPvYwNY1VsKMi4+4pR5NpraDQQ2z3JaxcwUeRo1FcxN6coC7PnW8hLDDvG8yi0VjFV4mg2GriwVvf02ZPaDYzkOZYXz2NOrqNQKCCXy2FhYcFyT1Vex/aqjEajEdo9FVurmChyrKysYvNFBczNzWlyWl5ZxZ4xGbnOOtbW1vDsi69gY6GJd165BdOjFXzp9LMAgILcwGiBg68tYW6uBNZew0ieY2lxAaxZ8PXZ2zMmoy0zNBqNQPfE15awZ0xGOdfB6uoq1tbWsHu0gxfBwVtNzM3NuX/2Lixiz5iM5RZDvQ2wpnJP5u/TwUtG8c0XljBVAvLrK1hcXNTuCfI6do5wVPMc22oc5RzHwsKCq5y2FNcxWuBAaw1zc3NYabQxVuCYLsmYm5vDxsI6JoocvNXQ7qFarWKyxDFZUpSLX3jblVhbW8Pq6iqmck1sKnM0OsCmirJf3NPmCkdeYlhaWkIObcyMckiM48KFCyiVStg1wpGXOBodhgvrwGQJKEgcLZlhoQmsLF0wyGljqYP8mAyZM5xbU9ps1/IcfO0CRgsc1Ty0OYfxG+GHLCkKbkyi66qY1MUsTDLGjpvcFQC0IMgTAHDixAleLpdRLpctA5vTq8ymTCEQQaVSUX6M1O2VirHpiPkaZoGZ9/t93Ws8INg9ub0exHuanJw0nJPVe6rOdXB2jaGFHKanJ/DcyotgxSq+9PHbLdeL655G6jksrjN0ciVMTyv9Fm787S8BAJ77rbuwllvAfJOhVq1gpOZ+j+Ia0gsNrLQZauMTmJ5S3if991B//ApexctrOdh954PeU6e0gsV15fFzoVPW7ks5p4JnliS0pAIqlQpy1TE8syTh37/hUsyvrONzX30eAMDzFSy3GHh5FNPT05DzK1hpM0xsmMSULt3Ui1yeWZK0/we5p0KtjmeWJOwsSKjVaqjVanhuJYelJodUKBnuD7DKpTa+QZsDAPDSmOEcMYdj77sZP//Hp/GNM/NoF0cwMTHRnVPpPJ5fYdg4lcOLqwwAw+TkpO2cxXjvfsMIVqQq3nXjDkyPlVGot7DUYkBTwvT0NF5rFbG4ziAVjTJaaDIsNBX53bVvt3ZP853ncK6hbF9qGc0Lyy2GQo5hbGwMMstjdlmZ4/i40j9i4/Sk1uBLOR7Q2zJGxyYMcnqtmcNzuvdspa0eXx7DcothuQXL+97vb4RXBqXg0gJUt4Qpw+FxqFaDOBFaHJFdBkWGZtfDueUmNo/5e5oIm2KuR4yC7L+Ec7fgUnebkwzlCGo464d7y2XGH/NukKJ6fVmcw0wNiIwBhEkGyJnnrGwLnvXgxGStiD2bHDq1ihgFH76HTWNl/OLBy7BpzKr8+JmXV0QMRNvms/xfPnwT/uP79nke6/c/sB8/ue/i0OYWJlmyKGgpkTpEiuQiY8zOLbEIKK4JilcghhFRTEkELp5dauCSjcm20C7k3GMU5ACVE+3aTLsRuuvZpeUgMwVact1h+sXXXEfBfH6cmIs/Af4qbppn7HYLTiIT53jtCGk7dsShgCJz55ULDcu+ciGHDdWCZbvAfFt7No3g1991Ff776Zcsx/7tL70FHsJvIiMzFgXO+WlYMyEmAJzW7V9U4xX0+2MPagxq3iHSw6DIUFgUmjpFIWmLgkiPdFYUuO/a+eanccBZhnbFp/rFUy0/dXL6rA6386JO6XPFRmm5ZKNi1o5Kb7GMm1PqJoiyz7/1k9f0MbZFdfF2Xo/9okJk1ArJzMYRZ8tLDGRGUVA5wRg7pHt9L6zpkO/RvT4A4ME4JqZHcijhSmSHQZFhRWdRaLQ6WGq0Hc2ycVHo5Xrg/szNgC6zQLeyOckwijoKLgYFbZtmUdDVidArROaCS5rlIdSZekOyUbyClNTuB8ZU/72alfP63WaDcvLYvU8GQhBeGmo0pOrXkDG2Ty2SdAjAAbWgkubkUYMS9zPGDqlZC/P6yoxqhsMl6nlHAUw5ZT1EiYgsJbLLoMhQ/Mg2WjLOLSkR0ptGk7Yo9E6PDO566G5zkmEkbaYNPRGsozPoYw90FgXbGAVTs6hEKjNat0VVcGm/qgBccdGYcUdbMedHsVCGXZnRq8vLcK7H46gplAnVfXAaLlaAXgt/EooBQaQVUUxpbb2Ds8vKD+/mxC0K4bseNP++l1LBEbSZ7m1RYLpmTwoSMwYzdu9B/Zuo58FeadHvcz3fx9v7rmu34uaZSWwaNX4uxRif+/LT6usQrBQ+VUSvpaAdZeVThvrL3bR7Ejsmq3j71Rf5GyQCUmVRGBT85qgS6WNQZCj6ODTaHZxdSomioFZmXG+7BTMG+0HXV212kmE0FgX7/+u3aVkPujLD+oVLu2dzMGMCzgez0gJEa9kwKwkAtBiFNOM1iPY6m/badorPaLkb/Dg9WsJn77k2tF4s/UCKQgTk86ky1BABGBQZar0e1jupcT30So/syNz3omTXZtpJhhzhPJ3q0Ss2XmMUmMmiYAlmDHWG/rALDvWjsISi3LDwlieLOyekcbuxMT2OC3DBJGJTnCBFIQIGxb89zAyKDBljKBckNNoyzi43UMxJWvOmpPAWo+DX9WA93jlGwb8i0hPDgm8Xo8CsFgVmr2BoLooE+0yb56Lf5uf8vmgbUw6DDBm1NUYoVPOr1v4mgwQpCgQx4FQKOTRaikVh01gpkbx8PTmJQWLudRR89XlAdxHxElQWtevByfdgjp8wxyjYPcUr20OZoi/covnjm090FzJ/B9565eZA44iPaRB3XposBr0gRSECisX0+9YIdwZJhuVCTglmXGok7nYQFHKSS5vpAFkPkji3u81JhlE0hdIvPE4xCrCNUehi1wEzKbptuxOcRC4+y9cD77jCdnsvi4SQey8LmH7vr73zSvzVx36i55ySVuj1kKIQAYO0yAwrgyTDciGHRltWyzcnG8goKOQktNomE7uKzP3/SNqlFjoqCgi/zbQhmNFm7voYBRFwqVgU9MGM6vwswYzx051WME0hjDWO5YwxJmGum+ahgrZaZ6a/TujfxbuuuQhXbh3LVGdKUhQiQHS0I7LLIMlQb1FIj6LA0FZXTPNTa5A6Cl3XQ3ebkwyjsShY52LYD6YpMcYSzt1jzGWTk+314OJ66GM8X6yvBbhSMILWKtAsCU6353LbiVprfEKKAkEMOOWChG//eBHLjTY2psj1IGIUzLEKHTl4MKOXssccEcQo6Bd8m19VxqzpkYB7toRYvJIwQdsqOzFXZowCp2n16jfhxAfeuEs5LsAnqlpMPu3RK4EVBcbY7Yyx63ocs5sx9hhjbGfQ62SRQTJbDyuDJMODV27GeCWPy7eM4pY9071PiIFCTsK66npoy1bXQ2BFQbfNPUYhbNcDs/1/d5tubqKEs8RsXRZpcD3YvZ9+5hHGnJkpvTVMd5FVKVMYLXtPi/7KL9+Ku16nFEN6z43b3K9nc+1e9RHSpGoFShZnjD0GYJ/6/4Oc87+1O45z/ixj7DSAUwAuDTzLjDEoxXqGmUGS4Udv3YOP3ron6WkYKOa7FoWOqZ4C59z2qdyNbsGl7liOBZcQfnqkp8qMdsGMBteDmJ/6N8lugS6FhLy8d6G8vyEEM/p1KYyWgtVPuWlmKtB5WSGoReEGKJ/zLwKYcTtQ7c/wvzHGfjPgtTLHIPm3hxWSYbQUcqzrepCNrodg3SPFud1tccYo9EKxKFhLOBuaQjnUA07Cim83ldjfs1Z4tQnMFiSLRYH7d/Ok6Yk/aoIqCrMADnHO38M5/30Pxy8COBLwWpkj0fawRCiQDKMlL+ksCqG6HrpjOcmQ8wiyHgyxBnYmBZsSzqbDLBaFUGfoj66iELDgkun9DfJux/kdDBKj4K8AVbbViqCKwvHehxjYB8Ba7HpAKRSSrXxH9A/JMFoKeQnrqsvBHMwoB6icKA7X/+A7yTCSNtMO/7fb1i3hbA5mdIpRiH+Rca/p0Hs+Yby/Us7ow8/4WquRxWeQQIoC5/yzAH6FMXabx1MOQrEqDAWD5N8eVkiG0VLMMbTaVouCLPNg3SMlq089zqZQvXo9GK8vYhR69HpIND1STEK3rY93bWZjzf9JITaFEu/5Cwt1AMBL59dM+5W//VhNvDLSI2Dy4wcu9T2XqOknPfIIgC+qWQ139zj2AJSAxqGgXq8nPQWiT0iG0WJMj+yuRh3OIctAzrfrQfmrX1ydZBhFUyjjgm9XcMlaR0Ey1VEwF43qpkeGOlVP9FslUj/lr/zyrbhq67j/QUy9HoLNw/jmPT+vfCb+7J9esj/elzsh2Jx61QjZNRVAqYqYwIoC5/w0gBuhWAq+yBibZ4z9CWPsbsbYmDiOMXa9+t9H+ptqdpBl+9K0RHYgGUZLISehpVoS9BaFjmpR8P8jbLUoOMlQiVEIF7v0N5i2dSszdgPnjMGM6vxCnlsOVaCAAAAewElEQVQQuopXsKwH/RuyeSygdS5Ck4rZYqUpZTG4eXpdI2jxpyjpq5cu53wWwEHG2AEA9wF4D4B7AIAx9gSA34SijHAMkUVhUFoUDzMkw2hRSjhbCy4pikKQYEbl758+9mM8emYeAFDmDTTYawCAf3HtVlx9sfJUG0mMgosLQWwT657BoqA7xtyIKUnXg7DyrK53tG2xZz3koitIZFEUHFwPYSkOvRTJtBPKryHn/BRURYAxdghKTMI9UNInz6vHPBfGtbJAuZyOMrlEcEiG0VLMd9Mj9QWX2jIPVEfh4okKNo6W8JUfndO2jeQ5VtoMjZaM11aa+PfvUerDKW2mo7MpONZRUFUEcbuWGAUHi0ISC8vC6rplm7+CS8z2/35gIcYoCN593Vb8+bdfxt4to4bt6XuGTxehPzZxzk8COAngPsbYPgAPAPgpxthOzvnzYV8vjdTrdVpoMg7JMFqM6ZFdi0LQYMZNY2U89okDhm0LCwuYnJzE7b/9VUMcRCRtpg0D2sQoQG8pUM3ckoe0yoRotjuO+zx5HkK4Fd42KithjHnFRWP482+/jHLBqIl2A0yjoVdBLttzoplKICLt9cA5P805vwfAWwGciPJaaYL829mHZBgtSjCjSI80WhQ6IZVYFjLMScygjETSFEr//x4xCpqZ23SeOS5Anx0RNzfumrRujFuR4eF/Bx17PWj7k49RSCOxOGI556cYY2fiuFYakPzaTYnUQTKMlmKeodmW0Wx3jOmRXHE95MLIw1dlmJMY2nqLQhRtpvWWAfsjdDEKyn8kxpDThcA7WVGSMDQUc9bPvz/XQwiw+L6DeuXNK0Hl0jt9Nti4URJbxBbn/Nm4rpU01Wo16SkQfUIyjJZyIYe5lSb2/urDePd1W7Xt7YCuBzuEDPM5ZlBGorYo2M1d2WSKUWAwKArmssn9LBgffOMu7JwK/hl2r0jopeCS97oSTkgFY7ZEmE/71vfWXlOQ/PY7d8AYs9Hl6/ff1rM5VBqg0O4IaDQa5N/OOCTDaPmfb9mNzWNl/PZf/wg/eGVJ2y7LSh2FMBQFIcOcJBkCJqN4YOvZFApWBUBiDAXdk7tdGWpxrl9+/V1XBThLf83+3v8wlldzjEIY3HvjDnzjzDyOvMXYomjrRAUA8L/eYexd+Ml3XonRch5//K0X+rquXqZ6hWfbhmw8kJB9NQLa7XbSUyD6hGQYLdsnq/jZt1yC8UoB5+stbXs7cB0FK0KGecnOohBhwSWnGAVTrwcAtq4HcxplWojdBSI7B1R6xax0jVcL+H8+9HpsGjU+BFSLeTz3W3fhX153sWH7xtESPnP3NYGv79Ry3NO5KQpuJUUhAsi/nX1IhvEwUs7jvC4VryNz8AB1FOwwxCgYglN5z+p4fumVDsjALIuWxBgKus+ZtaOh2B7/guHqeujz/FAm4Xuo9Cy6KZqKZ+jXMALIv519SIbxMFrOG9wCojJjGHqaFqNgsijIUcQoGNIe7PdrFgWtMiOQyzHLaZY6CqHN0jtORaO8n9//rHNF41N/PyMm3Q3WoEj2+PANdTDjMNFsNsm/nXFIhvEwWjJ2eOzIHJ2QghmFDHMSw1rL2H46/qwH4KEnXsS55SbOLik9DCTGkJesC4g5OyIJ7BazuJ/KeafV+6AeZDEVUZCmmZOiEAGtVv8fcCJZSIbxMGrqpBe0hLMdQoaWGAVEXUfB2S/9tadeM2wzBjOK+ZmCGRNYMfq1KISyynWMcUK1YrqWqzS5M6ImXe/8gDBMH6BBhWQYD6Nlk0VBraMQRgyBkGFOkox1FCKuzGg39v9x73V46uwy/u7pOTzyg7PaOXZplWno9eCeHunv/MBfJdOJ1VL60wgd8fEeXLp5BABwy57piCbjH1IUImBkZCTpKRB9QjKMB6tFQQ6tjoKQYd4UzMiB0B/TjT5o6/6bZqZw08wUrtw6hvFKAZdsHLEoo5ZgRm17EsGMTrUg4kMqVozXj/fyifG6bRN49IHbsWUsPa5PUhQioNlsolQK2FqVSAUkw3gYsygKgCyHszgKGeZyzFhHIYo20waLgvPoN+ycxA07bcojw+puWW1mN0U3lDoKIcQoRIn5Hv/ggzfiubm6YVvQOJOLxiu9D4oRUhQiYH09/EIhRLyQDOPB7HpoaxaF/scWMjTHKADx93rwQrWomNY552h1ZPzfX09nMVtvrgf3dFEvmBWFtLsDb798s+O+dM+8N6QoEASRGPbBjNxQiKhf8jYxCmG4Ngz0iFFw429/6S1YarSxfVJJ5+QcWG8rrpI7Lt8U0gT7x8+CXyv2H09gFlEWF9ssZ13oIUUhAsi/nX1IhvFgCWYMMetBH6NgbjwVuuuhD01hZqMyz7badpujG59w04y9myIRfNxXGE//5hiFtJFyA0eoUMGlCCCzdfYhGcbDZK1oeN0JsYSzkKE1RiHagktBnyLF4vr1p+c0xSaNT6SxzaljLOE8TAtz2iBFIQJokck+JMN42L9rA373vdfjV++6AkC4JZyNMQr6rIcICi7p/h/UayJO+8fnFvBPL5xXtqVocQwpy9EzaYxR+LfvvjoUt0rWIEWBIIjEyOckvOvarVrOuFbCOcQ1Qen1YLQohP1QbGyr3P/g9fX+GyKFTQrWad+EXd3y/TfvxIgaV5NGa09UkKIQAbVaLekpEH1CMowXEbzY4Ty0OgpChraVGfse3UgYBYb054kOk2l4irYQ05TCjFFI5fuYIUhRiABqUZx9SIbxoikKMocsA1IIJgUhw5wkGSwKiCBGQT/d4Cb67pndGIX0EDj2IugFQ2gzLQizKVQamzZFDSkKEdBsNpOeAtEnJMN4yTGdohCS60HI0GpRCD9GQb8chqGEdFtM9z9WVuHt/uOEhsk9ECWkKBAEkTjCotCWw3M96MdWgiSV1ZdzhNLGWo9xusHn/jM37wCgcz30MaeoiG1OKdWSgkwr60YIUhQigPzb2YdkGC9CUZDVOgph+JT1MQpA15wvR9FmWv//Poa+54btAHSuh4QXS336atxTyRXT0+tAjx/XQ0p1Hd9QwaUIkHWpWEQ2IRnGS15nUQire6SQYS7XHTufi6jNtKFkcT/jKH/T4Hr4kyM3Y/d0V2EOHqQZND8y3c/hg6IEeCGVFgXG2AHG2DGHfUcZY4cYY0cYY0d6jPNQNDN0Z21tLYnLEiFCMowXEbwoc8WiEEYJZyFDs0UhivXHaFEIPnfhcumkwPVw88wUNtt0MIzLyiG3KE4oLaRKUdApCPcDmLDZfxzAac75Sc75CQATjLFDDmMdAzAT6YQJgggFzaLQiSJGQfmZE5kPikUhZNdDCFkPeuQ0mBRMNFqKhWYthTUeiGhJleuBc34KwCl1kbcoCgCOcM7v070+BeDzAE7qD2KMJaogVKvVJC9PhADJMF4KOWUx/42//AGAcCwKQobFvDL2tZ/+GzCmWBSu3W738xIcFlLWg1CQ5BSmR4oGXmstf6nDQe8hV0xnm/d0O0SiIVWKghuMsX0AFk2bZwHsszn8AIBH1L8EQaScWimPBw+9Di+eXwMDcPf1F4c29juu3oLF1XW0OjKePreC//G9VzG3HK5ZO4xeD/pxhJsk9C6XfbChqgQ2pjx0IDa8SGZQ3qvMKApQ3AgLdjsYYxOc80X1/wcAfAHAjTHOzUC9Xqcn0oxDMoyf99y4PdTxhAynRkr413dcCgB4+Huv4n9871VDXYWw6WdtF+fK6fM8WOYWNWmKUbj7+ovxZ//0UuDzUyTGQGRJUXBjEl1rwwTnfLGXD1INhDwCAIcPH8bhw4exvr6uNZKp1Wpot9ta0ZZarQZZlrUAKbGI1Ot1AEClUoEkSVhdXcWFCxdQKpWQz+exuroKACgWiygWi1hZWdFel0olrKysgHOOQqGAUqmEer0OWZaRz+dRLpe115IkoVqtotFooN1ua6+bzSZarRYYYxgZGUGz2dTuYWRkJLR7AjBU93ThwoWBu6dBlJPbPa2vr2NhYcFwT2x9BXvGZIyU22g0GqHd09ryCiaKHDkGrC2dx1ypFeie5FYLe8Zk5NaXcVGVg3VamJ+fT4WcNkgNTJY45FYDc3NzPe9pz5iM5RZDs9kw3KPXz167sYqdIxwLTWC8CMzNzfm+p5VGG2MFjumSrM05yGfvM+/ai0/csQ1zc3OYKspoFDgunF+AtF50vaf1lUVsq3GUJRk7RzgKEsfCwkIqvk9+GBRFYQEAGGOHOOcnex0MAGow5AkAOHHiBC+XyyiXrRG+o6Ojhtfm/HrzU2elUkGlUtGOq1SM9crN1zALzLzf7+te4wHB7snt9SDe05YtWwxjDMI9DaKc3OaQz+ct4xerY3hmScK0nIPddz7oPZ1bL2JxXXk4qY1PYnp6LNA9FdaW8cyShGa+hlfqDCxfwNTUlOsc4pLTEn8JC00Gnitienq65z09syRp45v3e/nsFUZW8fzKiwCA5RYM1/R6T4V6C0stBjQly5yDfvbmmhKWWwzjk5OYHu3Ow24OxfMcL64ybJUlfO4Db0Kj1cHk5KTjPXu5Jz39fp+8kiVFYRaK5UDPJACoFoQZWGMYEkEKu+wbETskw+xjJ8OcLg0z3Gt1/9+f60GkcqqvU2S0FvEScfndC7n+2zmXi4pg3nvTjr7HCoL+s3BdyAG0cZIZRYFzfpoxZn6nJwCcVv+/D8CMGvQIAPuhpE8eBXCScz4b01SxuroaWHMj0gHJMPvYyTAqRSGsrIduHIAIUuhjUiETd4zCnsk8fufe6/DxP/124DFK+Rye+t/fjkIuzDdyQCIUfZAZRUHlhMm9cC+A4wBgdjmoMQgznPMHY54jQRApJWcqvhQWYWU9pDk9Uqsa6XOhDFqzIp+T8O7rL+5LUQC66bFhkyZrT9SkSlFQrQEHABxSXx8FcIpzfhoAOOf3McaOqR+8SQDzaqyBeZwjAO6BYmE4CuCEyIqIA7+BIkT6IBlmHzsZisJOYZvPw+r1IE7tZj2kZzFiMbse6DuYHlKlKKgKwWkAjlYAzvn9HsbRAhWTIJ9P1dtKBIBkmH3sZCjFYlHof5w0do8UNbB4TJpCWr+Dg1IbwQ8UsRUBIgWFyC4kw+xjJ0Ot70Pov/YhV2YUikKKNAVhao8rRoG+g+mBFAWCIIaGbuR+uKvdSKn79Fst9v8knEZFIW6LQlpJk0ziIp22nYxTLBZ7H0SkGpJh9rGTYT4XzVPxlvEy/vJfvwkAsHUieLZM1zWivE5TwBxj8VoU0vodHEY9iRSFCEjrB5zwDskw+9gqChHFKADA1ReP9z2GUAt4Ci0KltTNiEn7d9CXbDKuXJDrIQJEWVkiu5AMs4+dDNPUZMmOuBdjP8T93g3CdzDdnzbvkKJAEMTQkE95xU3JXJkxRYpNN3UzfUpMnAzj3af7W5NR0m4yI3pDMsw+djLMhVqhL3zMi3GaZqsVXBryGAVBmmQTNaQoRAAVCsk+JMPsYyfDXIqe0O1gKU6P1DJGYrreIHwHB8X6QIpCBAyCb23YIRlmHzsZihLOacVacCk98zUrMVGT1u9goPTQ9IgxEKQoRMCw5xkPAiTD7GMnw7QrCtYYhQQnYyJu10Pav4Npih+JGlIUIqBQKCQ9BaJPSIbZx06GaVcULOmRyU3FQtwFl+g7mB6ojkIEDIJvbdghGWYft6ZQacXiekjRdCWfBZe+9LE3YaXRDny9gfoOpts40hNSFCKgXq+jXC4nPQ2iD0iG2cdOhqm3KJhcD2myKZQLOQBAIefNEH3V1v4KUKX1O+hnzU+P9PqDFIUIkGW590FEqiEZZh87GaZfUVD+fvH0i4bXaeDDb9qNRquDD92yK5brpf07mCLRRA4pChGQ1vaohHdIhtnHToZpT4+smRpKpWm25UIOv/TWvbFdj76D6YGCGSMgjeYywh8kw+xjJ0Mp5RaFnMTwiwcv016nveR0lNB3MD2QohAB9Xo96SkQfUIyzD5ZlaFeNRhiPSGz8htESFGIgLT71ojekAyzT1ZlqLd6nHktnUWH4iCr8htESFGIACnljWeI3pAMs88gyHBuZT3pKSRGWuWX8jpQkZBOSWScarWa9BSIPiEZZp+sylAfl1BfD16HIOukXX7D5BYiRSECGo1G0lMg+oRkmH3cZHj5ltEYZ+IP/QJUUWsXDCOD9B3kGa+4RPknEdBuD+9TwKBAMsw+TjL85gN3YLSc3p8+/YPqR35iJrF5JE1av4N+SlgPSj+I9H5bMkxafWuEd0iG2cdJhlvG0512p3c9FPPD+zlM+3fQS2fPtDe28kq6JZFR0u5bI3pDMsw+WZWh/iF0UJ5Ig5BV+dmRpnbhQSBFIQKazWbSUyD6hGSYfbIqQ71yMMR6QmrlNxg2An+QohABrVYr6SkQfUIyzD5ZlaFeNxjmyoypl98QiYZiFCJgmM2FgwLJMPtkVYYG10Ny00gcIb/HPnEAi/XhrSeRBkhRiICRkZGkp0D0Cckw+2RVhnorwjBbFIT8No6WsHG0lPBsdAyh74FcDxGQVt8a4R2SYfbJqgyNwYzJzSNp0i6/YZINKQoRsL5OZrKsQzLMPlmVIQUzKmRVfnZkveASKQoEQRApwtA9cqijFNLJWKUAwFv8SFbjZMxQjEIEZNU3SnQhGWafrMpQv7ZIg7HOBCKt8vtvH7kZX37yLEbLhaSnEhtkUYiAQTKZDSskw+yTVRlKBtfD8GoKaZXfjqkqPnTL7qSnESukKERAWj/ghHdIhtknqzI01lFIbBqJk1X5DSKkKBAEQaQIsigQaYMUhQio1WpJT4HoE5Jh9smsDEk3AJBh+Q0gpChEQFrboxLeIRlmn6zKkPQEhazKbxAhRSEC0l4ohOgNyTD7ZFWGw1yNUU9W5TeIkKJAEASRIkhPGBwu3lABABy4YnPCM+kPqqMQAeRbyz4kw+yTVRmSRUEhq/LTc/FEBf/8ybdirJLtpTbbs08psiwnPQWiT0iG2SerMiQ9QSGr8jMzXs1+YSZyPUTA2tpa0lMg+oRkmH1IhtmG5JceSFEgCIJIEeR6INIGKQoRUK1Wk54C0Sckw+yTVRmSnqCQVfkNIqmMUWCMHQBwkHN+v82+owBmAUwCAOf8hG7fBIAj6sv9AGbtxiAIgkgrZFEg0kaqLAqMsQOMsWMA7gcwYbP/OIDTnPOTqoIwwRg7pDvkAc75g+q/ewCI8WKlXq/HfUkiZEiG2SerMiQ1QSGr8htEUqUocM5PqRaA0w6HHOGcn9K9PgXgAUCzJsybjj+OroWBIAgi9ZBBgUgbqVIU3GCM7QOwaNo8C2Cf+v8ZAMfU4wQLsLFMRE2lUon7kkTIkAyzT1ZlSK4HhazKbxBJZYyCAzNQFn4LjLEJzvlpxthBzrneGnEQitXB7pwjUK0Nhw8fxuHDh7G+vq61Nq3Vami321oZ0VqtBlmWtZQdEWgjzGOVSgWSJGF1dRXNZhOyLCOfz2N1dRUAUCwWUSwWsbKyor0ulUpYWVkB5xyFQgGlUgn1el07t1wua68lSUK1WkWj0UC73dZeN5tNtFotMMYwMjKCZrOp3cPIyEho9wQApVJpaO5pcXERa2trA3VPgygnt3vinGNhYSFz97R3A/BLb74IWydH0Ww2B15OTve0traGZrM5UPeUJjn5gXHOfZ0QB2pcwQTn/D7dtkMAjnHOL9FtmwBwHsAlnPNZ0xgTAJ4FcIdJebBw4sQJfuRIeB6Kubk5TE9PhzYeET8kw+xDMsw2JL9o+fSnP/3Epz71qRu9HJsZ10MP7CwNnwdwTy8lgSAIgiAIZ7KkKGgpkTpEiqQhdkG1SBw3BT7Ghl+zDpE+SIbZh2SYbUh+6SEzioJqGTAHJk7AlCGhuigeEUqCKbgxFvL5LIV+EHaQDLMPyTDbkPzSQ2YUBZUTproJ90JJgQSgFWqaBPA4Y2xCjVM4EPMctYARIruQDLMPyTDbkPzSQ6pUNvXp/wCAQ+rrowBOiTgDzvl9jLFjTEkfmgQwLyozqkrBI+pQx3XDnoxp+gRBEAQxcKRKUVAVgtMAHnQ5xrYksxqnkIoE5GKxmPQUiD4hGWYfkmG2Ifmlh6y5HjIBfcCzD8kw+5AMsw3JLz2kyqKQFK+88srcpz/96ecB4Lvf/e74Nddcc8F8jJ/t//AP/zB9yy23zEU3Y284zTnu8fyc5+VYt2OC7CMZhnte3DJ0Oj4NMhxG+bntp+9gemT4wx/+8FLPF+ec0z/dPwAn+t0O4PGk78NtznGP5+c8L8e6HRNkH8kw2zJ0kWviMhxG+fWQCX0HMyJD/T9yPVj5/0LangbCnlvQ8fyc5+VYt2OC7CMZhnte3DIk+YV7Xr/yc9tP38HsyFAjlSWcsw5j7HHOuafSmEQ6IRlmH5JhtiH5pQeyKETDiaQnQPQNyTD7kAyzDckvJZBFgSAIgiAIR8iiQBAEQWQGxtghxtgBxtjxJEr0DyOUHkkQBEFkAlUxeIBzfoNaofcYgIPJzmrwIYsCQRAEkQm4Ur33DvXlPnTL9hMRQhaFEFEbVu3nDmWmifThJjO114jW3pyrfUWIZOlHZiTT9KA28TvoV46c80XdZ+CeuOY7zJBFIQRUf9lRAPfB2gqbSCG9ZMYYOwZglnN+Uv2RusTUuZSImX5lRjJNB6ocjwG4H/ZyPA7gtE5OE2Y5cc5PAjjOGHsolkkPOZT1ECLqh3+Cc35f0nMhvOEkM8bYec75Bt3rAwDu55yTPzRhgsqMZJouXOTIOedM93ofgM+rcQn7AMxwzk+qHYPP648looFcDwRhwiGSegFKC3QihfSSGck0G6hyWjRtnoUSjwAY5TWj7iMihlwPBGFlEsoiomcRANSnGCJ99JIZyTQbzMAqJwCKnDjnDwIQMQr3AaAYhRggiwJBWBELix7x4zUJ6xMPkTy9ZEYyzT6TABZ1gY0nk5zMMEEWBYKwYrdoiEXG9mmHSJxeMiOZZh+SU0KQokAQVhZgjcaeAJTUrPinQ3igl8xIptlAS4nUIVIkSU4JQYoCQZhQi7qYf5QmAZxKYDqEB3rJjGSaDVQ52Sl0pxOYDqFCigJB2HPClLt9EMDxpCZDeKKXzEim2cAsp3tBckoUqqMQAmpKzwEoUbiTAH4TwClVOyZSiBeZ6arDzcAYREUkQBgyI5kmj0mOgKIEmOV4DMBjUANR1WwHIiFIUSAIgiAIwhFyPRAEQRAE4QgpCgRBEARBOEKKAkEQBEEQjpCiQBAEQRCEI6QoEARBEAThCCkKBEEQBEE4QooCQRAEQRCOkKJAEARBEIQjpCgQxBDBGDvCGDuf9Dy8kKW5EsQgQ4oCQQwXjwP4gnmjWlY3EVyubTtXgiDihRQFghgiOOenOef32ew6EPtkelzbZa4EQcQIKQoEQQBKh75hvDZBED0gRYEghgjG2D7G2AHTtqMAEnE9uF3bbq4EQcRPPukJEAQRD4yxCShP70cBMHXbEQCXqP8/ph56Rt9+WT0GABYA7AfwCOf8lBpb8HkoLZtvgLLg3wvgTznnJ9VzD6nnTqrX+U3O+WKva9vNVTefQ+p4C+Kv7nr7AByD4s7YgK5b4yCAJ0z3dQjAovpyQj3mfjE/giAUqM00QQwZjDHOOWe61xMAzuu36fYdBTArFmJ12xkABznns+q5zwL4COf8pLrgi8X+EIDTnPNZ9bwZAA9xzm/wcm2HuR4BMME5f7DHNg7gHtO8zwPYzTlfFEoC5/yUbv9xAMfEfAmCUCBFgSCGDK+KglACOOcbTNuPAQDn/H4xHoAbOOenTcc9BGUBP6jbpi3Wbte2m6vTfBzGtcxJVXDu4ZyfVhWgRZOF4QAUpYgUBYLQQa4HgiCceA9gcB8I5tE12QNQMhRszheKxAEo7okFKCb+SfP5HjmgjmHHrDrfE6ZtTpwE8ARj7CCARwCc0lsXCILoQooCQRBOTEDn/w/IQ1D8/icAgDHWj/9/Bs4KxgLUeAeBW6yB6jbZDeABAPcBOM4YO8k5v6eP+RHEQEJZDwRBGFCzDSagPJFP9jHUI1CCFy1P6ur4bte2YxGK8mLHJBRLhycYYwc454uc8/s55zeo7o0JXeAmQRAqpCgQxJBj8+QtlINTUBbPGfM5Nu4I8/4ZADM21gix0N/IGJtwubYdXwAw46BI7IPiTvDKQZv7ug9K9gZBEDpIUSAIAgBmdQvnhPq0vQhl8TymP1CNObCLSdCzoB6rLcYiWFC81ikJlmvbDahuvx+Ku0A/n6MAHgwQhGiu+jgDxQpCEIQOUhQIYkhgjM2oKYBgjB03PZnfB+B+U20BqLEFf8oYO8YYO6TuX1B9/PtM4x3SnbcIpS6B4TwoC/0xGF0Ilms7zVVNgXyMMXZUHVdkL9zvcN4+xtiEmqkxo87nABQ3xSPqGAfUa9tZQAhi6KH0SIIgCIIgHCGLAkEQBEEQjpCiQBAEQRCEI6QoEARBEAThCCkKBEEQBEE4QooCQRAEQRCOkKJAEARBEIQjpCgQBEEQBOEIKQoEQRAEQThCigJBEARBEI6QokAQBEEQhCP/P+KZ1zFLm9Z3AAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<Figure size 576x576 with 2 Axes>"
-      ]
-     },
-     "metadata": {
-      "needs_background": "light"
-     },
-     "output_type": "display_data"
-    }
-   ],
+   "outputs": [],
    "source": [
     "m2 = result.posterior.mass_2.values\n",
     "m1 = result.posterior.mass_1.values\n",
@@ -459,25 +277,7 @@
    "source": []
   }
  ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Bilby Py2.7",
-   "language": "python",
-   "name": "bilby"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 2
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython2",
-   "version": "2.7.12"
-  }
- },
+ "metadata": {},
  "nbformat": 4,
  "nbformat_minor": 2
 }
diff --git a/examples/tutorials/compare_samplers.ipynb b/examples/tutorials/compare_samplers.ipynb
index 569e4bd9f76e0b015d002f914cbabb36e891f993..6d5c6c3a452db623b9b8f3c7981a391bff36b7a0 100644
--- a/examples/tutorials/compare_samplers.ipynb
+++ b/examples/tutorials/compare_samplers.ipynb
@@ -14,7 +14,14 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2021-02-05T22:05:40.710069Z",
+     "iopub.status.busy": "2021-02-05T22:05:40.709587Z",
+     "iopub.status.idle": "2021-02-05T22:05:43.017567Z",
+     "shell.execute_reply": "2021-02-05T22:05:43.018795Z"
+    }
+   },
    "outputs": [],
    "source": [
     "import numpy as np\n",
@@ -31,8 +38,8 @@
     "sampling_frequency = 4096. # set the data sampling frequency (Hz)\n",
     "\n",
     "injection_parameters = dict(\n",
-    "mass_1=36.,                          # detector frame (redshifted) primary mass (solar masses)\n",
-    "mass_2=29.,                          # detector frame (redshifted) secondary mass (solar masses)\n",
+    "chirp_mass=36.,                          # detector frame (redshifted) primary mass (solar masses)\n",
+    "mass_ratio=0.9,                          # detector frame (redshifted) secondary mass (solar masses)\n",
     "a_1=0,                               # primary dimensionless spin magnitude\n",
     "a_2=0,                               # secondary dimensionless spin magnitude\n",
     "tilt_1=0,                            # polar angle between primary spin and the orbital angular momentum (radians)\n",
@@ -42,8 +49,6 @@
     "luminosity_distance=100.,            # luminosity distance to source (Mpc)\n",
     "theta_jn=0.4,                        # angle between the total angular momentum (both spin and orbital) and the line of sight\n",
     "phase=1.3,                           # phase (radians)\n",
-    "waveform_approximant='IMRPhenomPv2', # waveform approximant name\n",
-    "reference_frequency=50.,             # gravitational waveform reference frequency (Hz)\n",
     "ra=1.375,                            # source right ascension (radians)\n",
     "dec=-1.2108,                         # source declination (radians)\n",
     "geocent_time=1126259642.413,         # reference time at geocentre (time of coalescence or peak amplitude) (GPS seconds)\n",
@@ -86,7 +91,14 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2021-02-05T22:05:43.025484Z",
+     "iopub.status.busy": "2021-02-05T22:05:43.024858Z",
+     "iopub.status.idle": "2021-02-05T22:05:43.101096Z",
+     "shell.execute_reply": "2021-02-05T22:05:43.100588Z"
+    }
+   },
    "outputs": [],
    "source": [
     "# set the priors on each of the injection parameters to be a delta function at their given value\n",
@@ -110,14 +122,19 @@
    "cell_type": "code",
    "execution_count": null,
    "metadata": {
-    "scrolled": false
+    "execution": {
+     "iopub.execute_input": "2021-02-05T22:05:43.105117Z",
+     "iopub.status.busy": "2021-02-05T22:05:43.104639Z",
+     "iopub.status.idle": "2021-02-05T22:05:43.272793Z",
+     "shell.execute_reply": "2021-02-05T22:05:43.272156Z"
+    }
    },
    "outputs": [],
    "source": [
     "%%time \n",
     "result = bilby.core.sampler.run_sampler(\n",
     "    likelihood, priors=priors, sampler='pymultinest', label='pymultinest',\n",
-    "    npoints=200, verbose=False, resume=False)\n",
+    "    npoints=2000, verbose=False, resume=False)\n",
     "fig = result.plot_corner(save=False)\n",
     "# show the corner plot\n",
     "plt.show()\n",
@@ -128,13 +145,20 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# dynesty"
+    "## dynesty"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2021-02-05T22:05:43.276181Z",
+     "iopub.status.busy": "2021-02-05T22:05:43.275690Z",
+     "iopub.status.idle": "2021-02-05T22:06:44.384185Z",
+     "shell.execute_reply": "2021-02-05T22:06:44.384572Z"
+    }
+   },
    "outputs": [],
    "source": [
     "%%time \n",
@@ -152,7 +176,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# Dynamic Nested Sampling (Dynesty)\n",
+    "## Dynamic Nested Sampling (Dynesty)\n",
     "\n",
     "See [the dynesty docs](http://dynesty.readthedocs.io/en/latest/dynamic.html#). Essentially, this methods improves the posterior estimation over that of standard nested sampling."
    ]
@@ -160,7 +184,14 @@
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2021-02-05T22:06:44.389121Z",
+     "iopub.status.busy": "2021-02-05T22:06:44.388707Z",
+     "iopub.status.idle": "2021-02-05T22:07:12.688768Z",
+     "shell.execute_reply": "2021-02-05T22:07:12.689099Z"
+    }
+   },
    "outputs": [],
    "source": [
     "%%time \n",
@@ -178,13 +209,20 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# ptemcee"
+    "## ptemcee"
    ]
   },
   {
    "cell_type": "code",
    "execution_count": null,
-   "metadata": {},
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2021-02-05T22:07:12.692452Z",
+     "iopub.status.busy": "2021-02-05T22:07:12.692016Z",
+     "iopub.status.idle": "2021-02-05T22:12:28.559510Z",
+     "shell.execute_reply": "2021-02-05T22:12:28.560201Z"
+    }
+   },
    "outputs": [],
    "source": [
     "%%time \n",
@@ -199,25 +237,7 @@
    ]
   }
  ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.6"
-  }
- },
+ "metadata": {},
  "nbformat": 4,
  "nbformat_minor": 2
 }
diff --git a/examples/tutorials/fitting_with_x_and_y_errors.ipynb b/examples/tutorials/fitting_with_x_and_y_errors.ipynb
index 17f6414da7145374b2ca7302406e7291dd8adb6b..7318e42008a8bc90c992f8c3298d1d00be9e97c1 100644
--- a/examples/tutorials/fitting_with_x_and_y_errors.ipynb
+++ b/examples/tutorials/fitting_with_x_and_y_errors.ipynb
@@ -181,6 +181,7 @@
     "        parameters = inspect.getargspec(function).args\n",
     "        parameters.pop(0)\n",
     "        self.parameters = dict.fromkeys(parameters)\n",
+    "        self._marginalized_parameters = list()\n",
     "\n",
     "    def log_likelihood(self):\n",
     "        resy = self.yobs - self.function(self.xtrue, **self.parameters)\n",
@@ -247,6 +248,7 @@
     "        parameters = inspect.getargspec(function).args\n",
     "        parameters.pop(0)\n",
     "        self.parameters = dict.fromkeys(parameters)\n",
+    "        self._marginalized_parameters = list()\n",
     "\n",
     "    def log_likelihood(self):\n",
     "        m = self.parameters['m']\n",
@@ -285,48 +287,9 @@
     "result_2D_unknownx.plot_with_data(model = model, x = data['xobs'], y = data['yobs'], ndraws=1000, npoints=100)\n",
     "plt.show()"
    ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
   }
  ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.6.4"
-  }
- },
+ "metadata": {},
  "nbformat": 4,
  "nbformat_minor": 2
 }
diff --git a/examples/tutorials/making_priors.ipynb b/examples/tutorials/making_priors.ipynb
index 726cbd4cc127607d820dfdc4e875694345acf076..7f9d5719edbf85b17c49c9bb665a35dd05dd3999 100644
--- a/examples/tutorials/making_priors.ipynb
+++ b/examples/tutorials/making_priors.ipynb
@@ -4,18 +4,18 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "# Prior Distributions with `BILBY`\n",
+    "# Prior Distributions with `Bilby`\n",
     "\n",
     "Prior distributions are a core component of any Bayesian problem and specifying them in codes can be one of the most confusing elements of a code.\n",
-    "The `prior` modules in `BILBY` provide functionality for specifying prior distributions in a natural way.\n",
+    "The `prior` modules in `Bilby` provide functionality for specifying prior distributions in a natural way.\n",
     "\n",
     "We have a range of predefined types of prior distribution and each kind has methods to:\n",
+    "\n",
     "1. draw samples, `prior.sample`.\n",
     "2. calculate the prior probability, `prior.prob`.\n",
     "3. rescale samples from a unit cube to the prior distribution, `prior.rescale`.\n",
-    "\n",
-    "    This is especially useful when using nested samplers as it avoids the need for rejection sampling.\n",
-    "4. _TODO_ calculate the log prior probability, `prior.log_prob`.\n",
+    "   This is especially useful when using nested samplers as it avoids the need for rejection sampling.\n",
+    "4. Calculate the log prior probability, `prior.log_prob`.\n",
     "\n",
     "In addition to the predefined prior distributions there is functionality to specify your own prior, either from a pair of arrays, or from a file.\n",
     "\n",
@@ -25,17 +25,16 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 1,
-   "metadata": {},
-   "outputs": [
-    {
-     "name": "stdout",
-     "output_type": "stream",
-     "text": [
-      "Populating the interactive namespace from numpy and matplotlib\n"
-     ]
+   "execution_count": null,
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2021-02-05T21:53:59.048160Z",
+     "iopub.status.busy": "2021-02-05T21:53:59.047541Z",
+     "iopub.status.idle": "2021-02-05T21:54:00.520314Z",
+     "shell.execute_reply": "2021-02-05T21:54:00.520637Z"
     }
-   ],
+   },
+   "outputs": [],
    "source": [
     "import bilby\n",
     "%pylab inline\n",
@@ -55,34 +54,25 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAADYAAAARuCAYAAADQq3ItAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3Xl8XWWd+PHPkzRpoaWkKRTK2qbsgmhbQBlcRlJ1BMGlFZfRGRdamUFHfyiFGRV0XGh1nHFBaXEdFZQWXFGxVUdQFqEV2Qs0LRShlDZNC3TL8vz+ODe5t22Wm+Qm59ybz/v1yuue59znPM83J7e3JzfP93xDjBFJkiRJkiRJkiRJkiRJkiRJkiRJUvZUpR2AJEmSJEmSJEmSJEmSJEmSJEmSJKl7JoBJkiRJkiRJkiRJkiRJkiRJkiRJUkaZACZJkiRJkiRJkiRJkiRJkiRJkiRJGWUCmCRJkiRJkiRJkiRJkiRJkiRJkiRllAlgkiRJkiRJkiRJkiRJkiRJkiRJkpRRJoBJkiRJkiRJkiRJkiRJkiRJkiRJUkaZACZJkiRJkiRJkiRJkiRJkiRJkiRJGWUCmCRJkiRJkiRJkiRJkiRJkiRJkiRllAlgkiRJkiRJkiRJkiRJkiRJkiRJkpRRJoBJkiRJkiRJkiRJkiRJkiRJkiRJUkaZACZJkiRJkiRJkiRJkiRJkiRJkiRJGWUCmCRJkiRJkiRJkiRJkiRJkiRJkiRllAlgkiRJkiRJkiRJkiRJkiRJkiRJkpRRJoBJkiRJkiRJkiRJkiRJkiRJkiRJUkaZACZJkiRJkiRJkiRJkiRJkiRJkiRJGWUCmCRJkiRJkiRJkiRJkiRJkiRJkiRl1Ki0AxiJQghrgPHA2pRDkSRJ5WMKsDXGODXtQKS+eL0rSZIGYApe76oMeK0rSZIGYApe66pMeL0rSZIGYApe76oMeK0rSZIGYAoZu9Y1ASwd4/fZZ5/6448/vj7tQCRJUnl48MEH2b59e9phSMXyeleSJPWL17sqI17rSpKkfvFaV2XG611JktQvXu+qjHitK0mS+iWL17omgKVj7fHHH1+/YsWKtOOQJEllYsaMGaxcuXJt2nFIRfJ6V5Ik9YvXuyojXutKkqR+8VpXZcbrXUmS1C9e76qMeK0rSZL6JYvXulVpByBJkiRJkiRJkiRJkiRJkiRJkiRJ6p4JYJIkSZIkSZIkSZIkSZIkSZIkSZKUUSaASZIkSZIkSZIkSZIkSZIkSZIkSVJGmQAmSZIkSZIkSZIkSZIkSZIkSZIkSRllApgkSZIkSZIkSZIkSZIkSZIkSZIkZZQJYJIkSZIkSZIkSZIkSZIkSZIkSZKUUSaASZIkSZIkSZIkSZIkSZIkSZIkSVJGjUo7AEmSJEmSJEnSwIQQpgPzgPrcrmZgSYxxedbnLMU4IYQ6YC4wC2jIjXUXsBJYFGNs6k9MkiRJkiRJkiRJkiRlkQlgkiRJkiRJklSGQgiLgJnA+THGlbl9DcCiEMJ8YE6MsSWLc5ZinBDCxcB5wCJgXmeyVwihEVgAXBxCWBxjnDfAb1eSJEmSJEmSJEmSpEwwAUySJEmSJEmSykwIYRlJxasZhYlSuSSoWbnnVwDTsjZnKcYJISwA6mKMM/Z8LldBbEYIYTUwN4TQEGOc1Y9vVZIkSZIkSZIkSZKkTKlKOwBJkiRJkiRJUvFCCHOBRnqvkjUHaMhV2srMnKUYJ1cpbHoRlb06n28MIczuo68kSZIkSZIkSZIkSZllApgkSZIkSZIklZcFQFOMcWVPHXLJVcvJVcDK0JylGGceSVLXihBCXS/jLN/jGEmSJEmSJEmSJEmSypIJYJIkSZIkSZJUJnKVrOqApUV0X5J7HFTyU6nmLGHsnUlf04G3FDEWQH2R/SRJkiRJkiRJkiRJyhwTwCRJkiRJkiSpfHQmRK0uom9T7nF2RuYs1TjLco+dlcK6tUd1sOYi5pQkSZIkSZIkSZIkKZNMAJMkSZIkSZKk8jEz99jUa6/d+zTskQyV1pwlGSfGuBSYEGOcEGPsbazCql/LeuwlSZIkSZIkSZIkSVLGmQAmSZIkSZIkSWUghNAAdCZD9ZlEtUdy1MweOw7DnKWOPcbY0tcY5KuHtQCLi+gvSZIkSZIkSZIkSVImmQAmSZIkqfy0bk87AkmSpDQ0FGw3D+LYNOZMI/Z5ucf5RSaMSZIkSZIkSZXl0d9CjGlHIUmSJKkETACTJEmSVB7aW+Ebs+DzR8PnDoeO9rQjkiRJGm51fXcp+bGlmnNYYw8hLCBJHFsYY7T6lyRJkiRJkkaeu74N338TXP8+b7ApSZIkVYBRaQcgSZKyZ8olN/b43NorzhrGSCSpQHUNbF4Dzz+TtLf+DeqOSDcmSZKk7GshSaCaWIZz9nucEEIDMB94CzAnxrh0kDFIkqQK4mffkiRJGjHW3AK//Eiyfd9SqJ8Kr/pYujFJkiSNUKX8XNLPOEc2K4BJkiRJKh8Tpua3m9ekF4ckSVI66js3Yowt/Tx2oBW4SjXnkMUeQlgWQlgRQtgMrM7tnmrylyRJKsanRn2b86p/DzGmHYokSZJUGs1NcN07oaMtaR/8Qjjjw+nGJEmSJGnQrAAmSRXKDG+VQuFrpbfXlCQNmwlT4Ik/J9ub1wKvSDEYSZKkYTfQJC4oSMBKac4hiz3GOKuwHUKYDfw2hNAMzIsxNg1ibkmSVIG6Pvt++Ca4Zlmy/b8Pw9uvg5ox6QUmSZIkDdaOLXDNW2H75qQ97iB42w+hdmy6cUmSJKmka3Jd3zsymQAmSZIkqXxMmJLf3rw2rSgkSZKUYbnKX0tDCCuA1SGEOf2tBpY7tjvHDTpASZKUDTu2wM8/lG+PO8jkL0mSJJW3jnZY+l7YuCppV4+Gt14D+x+ablySJEmSSsIEMEmqcGZ4S5IqSv3U/LYJYJIkaQQLIdTFGFv6cUhzVuYcxtjnAKuBJQNJApMkSRVu2WXw7JMAbIzjOeC1V6QckCRJkjRIyz4Bjy7Lt8+9Eg6bmV48kiRJkkrKBDBJkiRJ5WO3CmBrUgtDkiQpJf1JmirVsaWac9hjjzE2hRCWA43A1SGE5cUmnsUYZ3S3P1cZbPpA4pEkSRmy5hZY8e2u5mWt/8yVYyemGJAkSZI0SCu/B7d9Nd9+2UXwwjnpxSNJkqQRpbciJYXFTDQ4JoBJkiRJKh+7JYCtTSsKSZKktAykElZd7nFTynOmETvAEpIEsDpgLrBwEGNJkqQy0tOCgzHshJ99oKt9U/tMbuw4jSuHKzBJkiSp1Nb+EX7x4Xz7uLPh7z+WXjySJEmShkRV2gFIkiRJUtHGHQyjxiTb2zfD9sEUkpAkSSo7hRc/DYM4No0504gdoKlge9YgxpEkSRXiolFL8pXlR+/Px1vfDYRUY5IkSZIGrLkJfvRO6GhN2gedCG9cBFUuDZUkSdLwW3vFWV1fKj0rgKlXluKTJElSplRVQd2RsHFV0m55DPap6/0YSZKkynFXwXZ9X51DCIWJVnf12HF45izJOCGE6SRVvQDmxBhX9jFUYeWx/iaeSZKkCrDb3zSfuAu++WuIufZrPsOG6yakEpckSZI0aDu2wDVvhe25j8DGHghv+yGMHpduXJIkSZKGhAlgkiRJksrLhCn5BLDmNTD55FTDkSRJGi4xxpYQQgtQR3HJTIWZ8k099hqGOUsY+6UFx8/LfRXL8rGSJI1kbTvhp/8KsSNpN/w9vPgf4bpfphuXJEmSNADTLvkZ36r5PK+oTv5uujPW8NbmC/nLFfew9orDU45OkiRJpdBbMZ+RxsJGCRPAVJTCfxS+kUiSJClV9VPz25vXphaGJElSSq4D5rJ7glRPOhOlVsYYB5P8VKo5SzFOYUWv1UWMU1htbEBJcJIkqULc/AV45qFku2YsvP5LEEK6MUmSJGnE62ktXl+LWD826vu8ovqervZHW+fyl3h0SWOTJEmSlC0mgEmSJEkqLxOm5LdNAJMkSSPPEpIkqlnAwj76npd7/FFG5izFOCuA5cCiGOPSPsYgN1enwZ4HSZJUrtbfC3/8Yr7deBlMODK9eCRJkqTBuPMbvHvUTfn2yy/my6/6D37mjd0lSdIIN9Dk+qzLYvxDXVSomJ/lSCxsZAKYJEmSpPJiApgkSRrBYozLQwhNQGMIoa6Pyl6zgZYYY4/JViGEJUAjsDjGOH8o5yzRONcB80mSwIoxO/fYVGTCmCRJqjTtbfDTC6GjLWkf/hI45fx0Y5IkSZL20LmQtc9FrKt/D7+8ON8+4Vx45aVDGJkkSVI2jcTkn8Ho7XxlIsGsbRfs3Ao7tsDOrby06n7Gs439wjb2Yxtj2cG4sANu/B3sfA52Pcf/1jzGuLAdlv0ZZn0y7e9gWJgAplRl/o1EkjRovtdLKrkJU/Pbm9ekF4ckSVJ65gHLgEtJkqH2EkKYm9vscXVzrk9ngtTFIYQfxRhXDuWcgx0nxtgSQlgA/DaEcGZvSWS5cRpyzTm9xCRJkirZbV+Bp+5OtqtHw7lfhaqqdGOSJEmSBmLjI7DknyC2A3BPx1Re+IarvL6VJEnaQ9HJ9Rq0rnXAMcKu56Hlcdi+GbY1c3bVbdSF5/jCf/yY/cPz7JdL6BrPNl52eG0u4Wtr8ti2Y7dxr63tYcI785svr85tPLOq5N9XVpkApgHr7g3RhfySJEkachOOzG+3rEvu4lztrzaSJGnkyFXSmg8sCCEsizHuVg0rhNAALCKp6lWSqlelmrMU48QYF4cQANaEEM7vrl8I4WJgQa45q5fENkmSVMEawpPw+8/ld7zyEjjg6PQCkiRJkgZqWzNc85akIgKwPk7g/F0XcUftvikHJkmSlC7zF/qn8Hz1miDX3gbbNsHzG+C5DfD8M7mvjbC9matqHmRCeBa+9unkWnV7M7Tv2m2Ir/aUxAXw5CC/kUK7nivhYNnmKkllQtFvJJJKwgROpcH3ekklU7MP7DcZnn0qubvd1idgwpS0o5IkSRpWMcaFIYSVwKIQwlKSqlrNQCNJda15McbFfYyxOIQwJ3fM4r6SpEoxZ4ljv4skkexqYDnQBNTlxmnI7ZsXY2zqKyZJklR5Ah1cUXM1tO9Mdkw+GU7/YLpBSZIkSQPR3grXvQuacx9zjdqH9z1/EU9Tn25ckiRJKitVdMDWp5J1d89t4C3Vv+cAtsKvbilI9NqYbG9rBmKPY722s/rWhhIFF6phzHgYPR7GjOf2J9t4Nu7LrBcfneyvHQejx0HtflA7FkaP413fv5/n4xiuf/25JQoi+0wAU791lyTiQn5JKl++h0sqN1MuuZHrasdzatVTALzj8z/kTx0nmcwsSZJGnFz1rGkhhEZgem53U4xxQj/GmDXcc5ZqnFzC2qwQQmHS1yaShLLlMcaW/sQkSZIqyzurl3Fq1aqkUTUKzr3SKvKSJEkqPzHCjRfB2lvy+954Ffd9rya9mCRJklRyg13Luy87YOMjsPXJJMFrj8fbRq/hQFrgix1dxyzsvKS8Y1BT540aA/vUwz4TYN/Cx3rYpw5Gj+fCG1azlX353wtm7ZbwRc2+EELXUG/NnY+1b+p5TeDNHbnPeydOK9E3kH1+wi1JI4gJnJKkSrEuTuJUkgU8R4QN/CnleCRJktKUS6ZaXo5zlmKcXKLX0sHGIkmSKsjmx5g/6of59hkfhoNPSi8eSZIkaaBu/zqs/G6+/aqPwQveALjeR5IkacToaE+SuVrWwZZ10PJ48rVlHWz5G/eMfpzxYTt8techJoeen+vRvhNh7IHcur6KTYzn9ae/CMYekCR0dSZ4dW3XQ+2+fQ75i6W569jDTxlAQDIBTJKkCtZbgt+eCYFWzpFUTh7rOAhyZaSPDKWqIy1JkiRJkqSyFyP8/N8YG3Ym7QOPg5d/NN2YJEmSpIF4+Dfwm//It096C7zsI+nFI0mSVKa6W0ubqTWzHe0cyjMcUbWBa+cckiR6dSZ4tTwOn34XdLT1ePj4/iR37TsR9jsE9juI61ft5Jm4P+9/3Utg7IHJ17hJyeO+B0B1km709tz5e/0/lO6cZf5nklEmgEmSSqY/yUaVJI3ve6Se6+HQ07n1vAoghDAdmAfU53Y1A0tyVQsyPWcIYS4wB5iZ23UXsBL4XK5iQllZGw/q2p4S1qcYiSRJkiRJkjLl7mug6fcAdMRA1TlfhVGjUw5KkiRJ6qenH4Cl74HYkbQPOxXO+QqEvlf3uphWkiQpe2pog02robkJmpu4bNRvOSJsgK9cBi2P8acxu5KOPx3Y+DtjDU/HOtZTz9NxAutjPevjBD7+tjNhv0M446qH2BAn8PDlb+g65qLcdeP7T/dasVyYACaNECaLSCNb4b/z3t4Phttwfujo+6AGK4SwiCR56vwY48rcvgZgUQhhPjCn1IlUpZgzl0B2NbAcmF8wznTgPGBNCOFzMcaFpYx9qK2NB3dtTw1PpRiJJEmSJEmSMmPrk/DrS7ua32p/Le87/JQUA5IkSZL6byJb4NrzYNezyY79D4e3/gBqxqQbmCRJUpnpbm3okK6h7eiArU/AMw/Dxodh06PQ3MTNtfdxaNgIX4ldXd/dmcmzqcix9z0A6g6HuiOS68Oux8Nh/KGM3mcCR4TAEbnund/nx09MzsETsbmoaYZ6jfGw/0wqjAlgkjLJCjzlLavJRkMtje97pJ7r4dB5bj2vAgghLAMagBmFCVcxxiZgVu75FcC0LM2ZS/L6bW6MpsLncolgK3NJZitCCNNijPNKFf9QK0wAOzI8TaAjxWgkSZIkSZKUuhjh5x+CnVsAeKxjEv/VNof3pRyWJEmS1B+1tHJV7X9Dy+O5HePgbT+EcZP6PNbFtJIkScOkdUeS3LXxYdj4SO5xFWx8FNq279X9iKq+h3wmjufxeBAzXnhyktxVdzjsf0Qu0eswqN13CL4RlRsTwFQWhrpqy0iqCmOySOmNpNdPuTCBMPvS/NDR90H1VwhhLtDIHolYe5gDbA4hLCpFElUJ51wCnLln8lehGGNTCGEOsCw31spBBT9MtjI2uavJto2MCa1Mprg7lEiSJEmSJKlC/fVaeOSmrubFrfPYjhUSJEmSVEZi5HM13+CUqodzOwK8+Rtw8ImphiVJkjRite2CTY/A0w/A0/fBhgeTRK/NjwGxz8P3Mv5QqG+A+qlccccuHosH8fUPzIb6qZxy2c0ArJ2djbXOaay5dk1v30wA04jjG0N5sQLPyGVi3cD570UquQVAU2+JUTHGlhDCcmBuCGFBbwlXwzVnCGE2UF9MQleMcXkIoQmYl/sqDxOPgm0bAZha9VTKwUiSJEmSJCk1W5+EX12Sb586lztuPj69eCRJkqSB+NP/8ObqW/LtWZ+CY/8hvXgkSZIq2O5rbSOHspE/vftg2HB/kvC14YGksldHW/8G3nciHHBM7utoqJ9G43fXsS5OYtXlb+zqdtWtufknv3Dw34xGDBPAVFaGumqLVWEGrr/nqxITeHz9ZE85JBCa6DY0svwzV3nJJVHVAYuL6L6EpGrXPGB+BuacBdzVj6mXAzP70T99E6fButsBmBrWpxyMJEmSJEmSUhEj/PxDsHNL0p4wBRovh5v/L72YJEmSpP568Bew/JP59ov/EU7/QHrxSJIkVahRtHF0+BsnVq3hBWEtL6hay7FhHePDdri22FECTDiyINGr4GvsxL16PxrTW9NaDutpXS9dPBPANGKVwxuFiSFDp6dz63kdOt2d82LOt4l1xfP1O7QG+hpW2eushrW6iL6dFbhmM4gEsBLP2d+EruZ+9k9XfUPX5hQTwCRJkiRJkkamv14Lj9yUb597JdSOTS8eSZIkqZ9eENbCDZ8GIgB3dBzHP972alpv++Vu/VyjIEmS1E+tO5KKXk/9tevr0bH3Q/uuood4Ih7AQx2HsyoezqqOI/jyB98GE4+CmjElCdG10eoPE8CkPuz5puov0r3r6/z4n5TUPRPdhobv2SqBzgSqpl577d6nIYRQF2NsSXnO1UBdCOHiGOPCIsZqBBb1I870TTyqa9MKYJIkSZIkSSPQ1ifhV5fk26fOhSlnpBePJEmS1E8Hspmra78ArdsAeKxjEu/f9SFaXdopSZLUP+2t8PT98Le74G8rk4SvDQ9CbC/q8JY4lropL4JJJ8BBJ/Cm67fwcDyM+66Yw2HA+3Jre7988Ildx2S52Et/5nfdcvnwtwRllm8keSaGDJ3Oc5vGeS32P/0sXxwUo7sYs/o6LvdzXYmy8DMpp9ewSiuE0ADU5Zp9JmPFGJtCCJ3NmcDylOdcmXtcEEKgtySwEEIj0AAs7m/MqZo4rWvTCmCSJEmSJEkjTIzw8w/Bzi1Je8IUaLw8xYAkSZKkfmrdztW1X+SQ0Jy0R4/nyPf+nL9MOm63bq5RkCRJI93e10ORyTTzoqpH4aZb4W8r4Mm7oW17cQPufwRMfiFMfhFMPpnTvvU0TzOBte8+u6vLyqVDew3mumQNhAlgKqnuftks1zenPeMu9S/SPY1XrudLpeUHNxrJfP0rQxoKtpsHcWwqc8YYl4cQVgLTSZLAZgFz9qxMFkKoA5YA8wZRtSwd9flv+YiwAdrboNpfcSRJkiRJkkaEv14Lj9yUb597JdSOTS8eSZIkqT9ihJ/8Cy+qWp20QxXM+TbskfwlSZIkGMNOTg5NvLjqEV5UtZoXVz3CQSG31O22Pg6eeBRMPjn/dfALYd/63bo8zeDWrZZrsRfzFsqPqyM15PZ8E+vrjcI3EmXFcFUeGki1r3K6OChHnuvs8WeilNT13aXkx5Z6zjOBNbnnGoE1IYTzY4xLoavi2BJgfoyxvKp/QbKgZ79D4NknqQnt0PLYblXBJEmSJEmSVKG2Pgm/uiTfPnUuTDkjvXgkSZKk/vrDArj/hnz7tVfAUY3pxSNJkpQl25rh8dvh8dvg8du4Z/RKakN738ftfzgcNhMOnQmHvBgOPgnGjB/6eKVhYgJYJbp8/5INtXZM55hF9itGwVjFjt/rnP08driP63O8PV3eTZ8+9vVrvhKMVez4pew3ZOe/l/F7fV1316+PfX3FMNg5ixl/MP2KUco5B/OaHejrZ0h+lsM4Z7FKeX4GMl+f/bpTcOxQv/5LMv7lW3qfWJWshSTZamIW5owxtoQQppIkeTXm+i0JISwFlgFzgPNjjCuHMd7SmjgNnn0y2W5uMgFMkiRJkiSp0sUIP/8Q7Mx9DjthCjRe7s3DJEmSVD7uux7+73Ndze+1NfLOU+emGJAkSVI6Oj/TO4SNzKxaxalVD3FK1SqOrXpit361oZuDa8clSV6HzYTDTkmSvvY7aBiiltJjApgkSZLUva46zzHGln4eO9BKXiWfMzfOrBDCAuDi3O7Zua9ZZZ38BVDfAGtvSbY3PQpHz0o3HkmSJEmSJA2tv14Lj9yUb597ZVIpXpIkSSoH6+6EH1/Q1byl/UQ+2fYu3hm6W9UsSZJUobb8DdbczBdqruElVQ9wWNjY5yGPdBzK0TPPTBK9DpsJBx4HVdXDEKyUHSaASZIkSd0baBIXFCRyZWjOTcBKoKFgnmUhhIUxxvkDmTCEsKKHp44byHgDMvGo/Pam1cM2rSRJkiRJklKw9Un41SX59qlzYcoZu3VZe8VZwxyUJEmSVJwzLv0OP679OAeGnQCs7pjMv7Z+kDaXcUqSpEr3/KbkJt9r/gBrbk5u9A3M7iF/qzVWU3PYi+CIl8KRp/Pi72xlM+NZe46f/Wlk8zeHSnT5lpIN1VlWsRR/KOlurMGM33nsnko1fk/zdTd+X3EUM16x56e/cfQW11Cfn1L268/3WOrxB/Mz6e/4xSrl+MX8TAZzfgY7ZynGH67XZ6nOxUDPT7GG+vyU6ri+xtvTYM5/X+P1Jy4XFyhrQggNwBJgUYxxRm7fEpIKYAAXhxAagTMHUHUsfROn5bdzHwxIkiRJkiSpAsUIP/8Q7Mz9LXTCFGi8PMWAJEmSpH7YsYVv1nyeA8NWAJrjON7T+lG2Mi7lwCRJ0khV6rXNu9n1PKz9U5Lw1fQHePre3vvX7AuHnQJHns7bflPF3R3TePD8N3c9vZn+rSOXKpUJYCpbe/7H0t8EoVIaaDLWUMYxknR3/tP8ORQa7jiG+jWQldd6VvT3HHjOSqOU7/8j9X1T/RdCqOtnclRzFubMJXYtAebEGJd37o8xzgkhzAauJqkGNh1YEUKY0Z85OxPKupl3RW7MoVdfkADWbAUwSZIkSZKkivXXa+GRm/Ltc6+E2rHpxSNJkiQVq70Nlvwzx1Y9kbSra6l/1xL+cOTp6cYlSZJUKjHCM6vg0eXJ12O3QvvOnvtXj4YjTmPhwwdze8cJ3PDxC6G6BoDbfu1aW6knJoBJZaqUiSTdjTWcSRHFfC/DmdhUCfOUiz1/9ll73ZXTPJKGxGCqYQ302JLNGUKYDiwDZhUmf3WKMS4NISwnSRBrBDorhc0aRAzDr34qbbGKUaEDWtZB63ao2SftqCRJkiRJklQiUy65kYNoZtnoixkfkn3faXs1l1+1hbVXpBubJEmS1KcY4VcXw+rf5fed81UYQPKXa1AkSdJQGHBxiB1bkwpfjy6HR38LW9b13DdUw6EzYOrLoeEVcNipUDOGr3XOl0v+ktQ7E8BGsJ7eoE1QUTnLyus3K3FoaAz25+vrQyobA6niVZd73JSBOZcAy7tL/uqUq/Y1K4SwALgYaAwhNPZ2TOaMGs3jcRINYT0QYeMjMPmFaUclSZIkSZKkkol8tuabjA/bAHisYxIL2t4KuABWkiRJZeCOq+Cub3Y1v9T2Rv7t5PNSDEiSJGmAOqt8rfplkvS17g7oaOu5/4HHw7RXJQlfR54Oo/cbvlilCmUC2AjhHz8qRykTR7obq/O1MtRVwdKuOqa9DefPZM9x03yPGq7vMYsGet6z+u/X/+s0BAorajUAKwd47LDPGULorOg1p5gDY4zzQwh1wNzcMeWTAAasjofQwPqksfFhE8AkSZIkSZIqyOzqmzmz+i9d7SPf8222X7UlxYgkSZKkIq36Ffz60q7mz9pfyn+3zebf+jlMFtZkSJKkEaq9DdbdDg/9Mkn82rym576jx0PDK+GoRjjqTNj/sOGKcli5VlVpMgFMXb8g+mZUWlmnroFGAAAgAElEQVRNkJAqje9d2eB7nirUXQXb9X11DiE09HBsGnPOAogx9ieBbD5JAlhDXx2zZnU8lFmduXIbH043GEmSJEmSJJVOyzo+Mep/8+1T58KUM1h7RXohSZIkSUV56h5Y+l4gJu3DTuWjj84DQppRSZIk9Wks2+H+nyTJ7I/cBNs399x58slw1Kwk6euwmVBdM3yBSiOQCWAVqLdkiJGwGN9kkMHprSrYUI2vdA31z1zZM9B/h/19rQzX68j3FQ2VGGNLCKEFqKO4pKi6gu2mlOds6G8MublXFjlvpqyOk/ONZ1alF4gkSZIkSZJKp6MDfvovjA/bk3Z9AzRenmZEkiRJUnG2PsWTV53LIeF5ANZ1HMgbHn03O6lNOTBJkqQePPcMPPRzvlPzHV5adT8saeu+X+24JNnrmNcmVb7GTRrOKFPlWlVlgQlgUon1liBRSUk1lfS9KDuKfV1ZbSo7TCDUCHAdSVWsur46kk+cWhljbEl5zuYBzt1U5LyZ8mjHofnGxkfSC0SSJEmSJEmlc+c3YM3NALTHQPUbroLasSkHJUmSJPVh1/Nw7Vs5JCR/st0a9+E9rR9lE/unHJgkSdLuDmALr6m+E757Faz9I8QOXlm9d7+nYj2TT3kjHPc6mPIyGDW6qPFHelEbaSiYAFbBsvrGOFSJAVn9fqWhZKKNssj3Y1WYJSTJWLOAhX30PS/3+KMMzLkCmBtCqOtnMtp0YEE/+mfC6nhIvrHpUehoh6puPo2QJEmSJElSedi0GpZ9oqu5uP1sLjjitBQDkiRJkorQ0QE3zIWn7gagLVYx/p0/YNlRZ6YcmCRJUs6zT8ODP4MHfsodo/9IdYiwppt+B50Ex72Os3+zH/fFqaw9++xhD1XS3kwAk4ZBJSdDVPL3puFT7OvI15uk4RZjXB5CaAIai0immg20xBh7TNoKISwBGoHFMcb5QzjndcAi4GpgTi/HF8bWCNTnji0rWxnLhljHpNAC7Tth81qYOC3tsCRJkiRJktSLnm5yV0UHTUd9Gdq2A/BQx+H8d9tsLhjO4CRJkqSB+O3l8NAvupqfaHs3nzX5S5Ikpe35TXD/DXD/T+CxPwERgOpQ2CnAES+BE86F486CuiMAuO+mwReqKFz72/mZoAUwpIExAUzDxsSN8ud/tnlpnwv/PUnSsJoHLAMuBbpN2gohzM1tnt/TILk+s3PNi0MIP4oxrhyKOWOMLSGEecCiEMLcGOPinuLKjdVAUnns/H5WDMuMRzsOYVJ1LvSNj5gAJkmSJEmSVKbmVv8CnvgzAK2xmotaL2AXNSlHJUmSJCV6WjN0XvXvWVBzdVf7G23/wDXtZ/LZ4QpMkiSp0K5tsOqXcM91sPq30NG2V5eOGLgzHstpZ70Hjj8Hxk9OIdCepb1WW8oiE8AkSZKkXuQqcs0HFoQQlsUYlxc+n0ueWkRS1WtpVuaMMS4OIdSRJIHNoofkrlwi2QJgfqniT8Oj8VBO54GksXEVHPvadAOSJEmSJElSUQpveveaS7/Oh0flP6L6ctsbuT9OSSEqSZIkqXinV93Hp0d9K7/jmH/gs/e8I72AJEnSiFGYJFVNO6dX3c8bqv/Ia6ruYlzYsVf/zqSvG9tP49ftp7KBCaw9bfiKUoykAhgmsGkomAAmZUwW3+xH0n+2ffFcKA1ZfF+QRpoY48IQwkqSZKqlJNW5moFGkipd8/qqspVLyJqTO2ZxL9W/SjnnwhDCcpIEr8257c55pwMzgbuAM/uKJ+tWx0PyjWceTi8QSZIkSZIkDUzbLm468gewPnc34kOmc9F7F3FRtX/SliRJUvZ0rSF65mG2fvV91IT2pH3wSfDmb9Bxzx/SC07dCiFMB+YB9bldzcCSPW/ImsU5K3WcXsZfBiwYyp+NJJWr7taTnhDW8ubqWzin+lYODFu6PW5lx1H8pP3v+NQl/85p+x3MacCnhjjWgXKtttQzPy2XJI0YJlJJGozcB4vTQgiNJMlTAE0xxgn9GGNWCnOuBGblqoE1kCR91ZFUEJvTXVWwcvRoYQLYRhPAJEmSJEmSys7NC2H9vcn2qDHwxkVg8pckSZKy7PlNcM0cxodtAKyPE3jD2rmsv8zkr6wJISwi+Vv5+Z03Rw0hNJDckHU+Q/C381LNWanj9DL+bJIb4y4a6BiSVI56W9/aXULU/jzHudV/4i3Vf+DEqrXdHzjxaHjhW+Ck2bxp4YMAfGq/g0sRrnphApuGkp+Yay8mSKTDN3uVK98zho/vE1I25JKyhvUuU6WYM/cB60ryFcAqyuqOwgSwVRAjhJBeQJIkSZIkSSreEyvgli/m22d+Ag48Jr14JEmSpL607YQfvh02rwVgWxzNe3d9hPVMTDcu7SVXTaoBmFGYmBRjbCK5meoyYAUwLWtzVuo4vYxfB1w9kGMlaUTo6OCMqns5r/r3vL52JbTv2rvPuIP4Rst0ftL+d/ziwgsL1k89OKyhShoaJoBJkiqeiVOSVPnWUw+1+8GuZ2HHFnhuA+x3UNphSZIkSZIkqS+t2+HH8yC2J+0jz4DTLkg3JkmSJKlXEX56Iay7PdcO7PvWb3Hj8WenGpX2FkKYS1JNakYvVanmAJtDCItijPOyMmeljtOHBUDdAI6TpIpRuN61q0DD5rVw9zVw9zV8v3Zdsq+94KBRY+D4c+Dkt0LDK/n0v/862e/Ns6WKYwKYupggIak/fM+QJGVLgAOOhidzBc42rjIBTJIkSZIkqRz89lOw6ZFku3YcvOFKqKpKNyZJkiSpFx+s/jHcuzS/49X/CSZ/ZdUCoCnGuLKnDjHGlhDCcmBuCGFBrppVFuas1HG6FUKYDrQATSRVxiRp0LoSqLqR+TWw7W28pupO3lG9HL50b/d9DnkxvPidcOKbYR/zZ6WRwAQwSZIyqrdfPiRJe7t+3VjeXJ1sf/wb1/O99mez/2GNJEmSJEnSCPaSqgfg9q/ld7zmMzBhSmrxSJIkSX05p+pW/l9NQfLXjH+Gl16YWjzqWQhhNkk1qcVFdF9CUt1qHjA/7TkrdZw+LIgxzsrNJUkj19anYOX/worvsKj2yb2ebo7j+HH7y3jvhR+Dg09MIcDuud5VGh4mgEmSJEmqCKs6DoNcAtixYV26wUiSJEmSJKlXY9nO50ctyu84ahZM/6f0ApIkSdKIMqCKII/fwedrCq5hG14Jr/sChFDS2FQy83KPq4vo21mpajaDSAAr4ZyVOk63QggXA4v67ChJA1T4f3smE5Vi5KVV9/PO6mXw3ysgtu/RIcBRjfDif+Ql34Nd1PDeDCV/SRo+JoBJkpQxVquRpP7pet98ZDT84FoAjq0yAUySJEmSJCnL/mPU9zm86pmkMaYOzvmKC2clSZKUXZvXwg/fzujQmrQPOAbmfBeqa1INS72amXts6rXX7n0aQgh1McaWlOes1HH2EkKoA06JMS4sYmxJqiw7n4W//ADu/AbX1j6S7Iv5p5+J4/lR+99z4Uc+DXVHALCLDCawFXD9qzS0TACTJEmSVBkmHd+1eWx4gt0+EZEkSZIkSVKqCu+u/Mqqv/Cd2t/nnzzrv2D85BSikiRJ0khXVEWQ7S1wzXmwbSMAm+J+THz7dbBP3XCEqAEIITQAnT+gPpOWYoxNIX9DipnA8rTmrNRxenE1g6u6JknlZ/NauGMx/OV7sHPr3s8f+Xdwyns5/fujaGUUF+aSv/ork9XOMs5zpqwzAUzqJ9/YJUmSMmr8ITB6f9i5hfFhGwfTnHZEkiRJkiRJ2kMdz7Kg5ur8jhPOhRPfnF5AkiRJUm/adsF174JnHgJgZ6zh/F0XcUP91JQDUx8aCrb7+4fjhr67DOmclTrOXkIIjcCdMcZiKotJUnmLER6/DW7/Gjx0I8SO3Z5+Nu7DDe1n8E8f/M+um2C3Zqjal+vnpWwwAUyS1CMv2CRJZSUEOOiE5MMS4NiqJ1IOSJIkSZIkSbuL3P3iG+HBlqQ59kA467+Tz3UkSZKkrImR6y6fzVtG/aFr10db57IyHpNiUCrSYMqzDfTYUs1ZqeN0Z36McdYgxpekzNlz3W0NbZxVdTv/c+St8NTdex8w8Wh4yfs57foJbGMM/5RL/hqMwgqnKo7nTOWipAlgIYTpwDygPrerGVgSY+x3OdzhnDNXonYe0Ehyx4FmklK1S4DrYowtJQ1aZck3dkmSpDIw6fh8Alh4POVgJEmSJEmSVOhNVbfAgz/L7zj3Shg7Mb2AJEmSpN7c8oXdkr/+q3U2P+v4uxQD0hBrIUlYGs5fUko1Z9mNE0JYACwY5DySNGi9FUoYzNrxfdnB26p/x/tG/ZLJoRme2qPDtFfBS/41eayqYtv12SzY4Pp5KVtKlgAWQlgEzATOjzGuzO1rABaFEOYDc0qdSFWKOUMIF5Mkfy0AfkRy4TkdOA9YlBtrXoxxcSljl6Qs84JNklS2Jp3QtWkFMEmSJEmSpOw4LDzDJ2u+m98x491wzGvSC0iSJEnqzb1L4Xefzrdf9A4uOvdKLrJ6bbnoLCjAANatDrTiVanmrNRxuuTW+dYNZXEJSUpLPVv5p1E38W/jfg879njbHDUGTn4rnPb+5CbXktRPJUkACyEsI6mcNaPwAi/G2ATMyj2/AphWivlKNWfuDgINMcY9+zQBS0MIs0mqgC0KIUyLMc4vVfySJEmShkBBAtgxYV2KgUiSJEmSJKlLRzv/VfN19gvbk3Z9A7zmM+nGJEmSJPXksVvhJxd0Nf/U/gL+7uz/AZO/yslAk7igIOEppTkrdZxCi4A5gxi3RyGEFT08ddxQzCepchQWTuitKliPNj8Gt32VP43+DvuEXbAj/9QzcX8OPPMDMOM9MHY4C01KqjSDTgALIcwFGtkjEWsPc4DNIYRFMcZ5WZgzhDAdaIwxzuhpnhjj0lwlsQXAxSGEO2OMSwcbvyRJkqQhUnB3nKPD36CjHaqqUwxIkiRJkiRJ3PoVTqt6KNkO1fCmq6F2bLoxSZIkSd2YGp6CH/4rtO8C4JGOQ7mg9UPcM6o25cikypBb/7tkANXEJClzplxyI8eEdbx/1M85p+pWRoUO9inMF58wlX/f8Cqub38Zq17+xtTilFQ5SlEBbAHQFGNc2VOHGGNLCGE5MDeEsCBXpSvtORcA5/c1UYxxYQjhUpK7GCwATACTJEmSsmrfehh3MDy3njGhFZrXwAFHpR2VJEmSJEnSyPXUPfC7T+fbL/8oHDYzvXgkSZKkHkxgK9+qWQjbNyc7xh7Iu5svZivevKCchRDq+pls1JyVOSttnBBCHTAnxjirH2P0S09FIXKVwaYP1bySyk8xVb5663NseJwra27grOo/7/XcfR1TOPEtl8EJ53LNv/96UHFKUqFBJYCFEGaTJEYtLqL7EpKqXfOA+RmYs6G3BLI9LAYuBhpCCNP7cZwkSZKk4XbQCfDc+mR7wwMmgEmSJEmSJKWldQfcMBc6WgG4u6OBF738IykHJUmSJHWjdQdX136RqVVPJ+1R+8DbfsQTX12fblwaqMFUlxrosaWas1LHgaQIw4DXD0tSFhwXHueDo27gdd0kfjH15XDGhzmx4e8hhN2e6i6ZbO0VZxU1ZzHJapJGhsFWAJuXe1xdRN/OClyzGdwF3KDnDCFMJ0nm2gycH2Psq6pX4VwzARPAJEmSpKyadAKs/l2yveFBOOGcdOORJEmSJEkaqX77KXjmQQC2xdF8uPVf+X11TcpBSZIkSXvo6ICfXMDMqoeTZgxcsO393GTyVzkbSBWvutzjppTnrMhxcut2WyzAICltxSRdddtn/b3whwXw4M/3fu7Y18HLPgKHdVuEUJJKZrAJYDNzj0299tq9T8MAysCWes6G3GMdcCnQVwLYXQXb04qKUpIkSVI6Jh2f397wQHpxSJIkSZIkjWRN/we3X9nV/EzbO1gTJ6cXjyRJktST3/0n3H9DV/MzbW/npo5TUgxIJVC4PrWB/t30vxQVwAYzZ6WOsyDGOKsfx0pSNjx9P/z+s/DQL/Z+7tiz4BUXwyEv6vHw7pLJiq3oVWyFMEkjx4ATwEIIDeSz9PtMxooxNoV8KcOZwPIU5yy8AL2LvjUUbA/07g6SJEmShsOkE/LbJoBJkiRJkiQNv+2b4Sf/km8f/Wp+cO+Z6cUjSZIk9WTFd+GPX8y3T3kfH3/dF/h4ft2hylPhutD6vjrn1qZ2d2wac1bcOLnqX40hhNjX8QWWhN3/Hc6JMfZV7EGSSqd5Dfzf5+Ce64A93r6OOztJ/Jp8ciqhSRq5BlMBrPAirb8lXhv67jJ0c+YSwyYADUWWky2c1/KzkiRJUpYdeCwdMVAVImxaDa07oGZM2lFJkiRJkiSNHDd+BLb+LdnedyKc81W4d6BrKCVJkqShcUbVvfCLhfkdR78aXrsATP4qezHGlhBCC0nBgWLWq9YVbPdZnGAo56zEcWKMK0MI04o4FmB17nEeBYUmYowD+rlIUr89+zTc/HlY8R3oaN39uePOhlfMh8kvTCU0SRpMAlhd311KfmzJ5owxtlB8MldXPecYY78rl0mSJEkaRrVjeTxOYkp4GmI7bHzYD14kSZIkSZKGy71L4b6Cm7K//kuw30HpxSNJkiR145iwjq/V/E/y90SAg0+C2d+G6sEsqVTGXAfMpbh1p52JTStza0vTnrPixik2gaug6lezSV+SAKZccmOPz6294qzSTbS9BW79Mtz+dWjdtvtzR78GXvUx1x9JSl3VMM/XeTE3sVzmDCHUAbNzzYW99ZUkSZKUDQ/FI/KN9femF4gkSZIkSdJIsuUJuPH/5dsv+kc4/vXpxSNJkiR159n1fLt2IePD9qS93yHw9utg9Lh041KpLck9ziqi73m5xx9lZM5KHUeSsqd1B/zpS/Clk+GW/9o9+euIl8K7fw3vuM7kL0mZMJjbVdR3bgzgjgcDreSVxpxzC7Y/N8AxJEmSJA2j+zuO5LXVdyYNE8AkSZIkSZKGXkcH/OQC2LEFgMc7DuQfbv97nr+957s0S5IkScNu1/NwzXkcGjYl7dpxyaLu8YekG5dKLsa4PITQBDSGEOr6WHM6G2iJMfZYJCCEsARoBBbHGOcP5ZyVOo4kDUZhta/eqoIVLUa473pY/knY8vjuzx10Ipx5GRw9C/KVCSUpdYOpADbQhCooSOTK8py56l8Lcs05/U06CyGs6O4LOK6/sUiSJEkq3gPxyHxj/T3pBSJJkiRJkjRS3HEVrLkZgPYY+HDrv/A8+6QclCRJklSgox2ufx88dTcAbbEK5nwXDj4p5cA0hOblHi/tqUMIobNIwPl99JlNsob14hDC9KGes4LHkaT0rfszfHMWXP/e3ZO/JkyFN38T5t0Cx7za5C9JmTOYCmAjwdW5x4UxxqWpRiJJkiSpaPd3TMk31t+b3IG6ajD3v5AkSZIkSVKPnn4All/e1byq/fWsiMfudmdmSZIkKXU3/Qes+mVX8xNt7+azRzemGJCGWq5y1XxgQQhhWYxxeeHzIYQGYBFJVa+SrBEt1ZyVOk5PcgUb5hbsmhdCWBljbOrvWJLUo82PJZ9h3X/D7vv3nQivvBRm/DNU16QRmSQVpSQJYEWUdN1Tc9bnLLhjQ4/levsSY5zRw9grgN7uACFJkiRpENZTT3McR314DnZuhZbHoH5q2mFJkiRJkiRVntYdSRWF9p1Je/LJ/M+a2enGJEmSJO3pjkVwx9e7mle1nc017Wfy2RRD0vCIMS4MIawEFoUQlgLLSNaTNpJUs5oXY1zcxxiLQwhzcscsjjGuHOo5K3mcQiGEReye+NWpEVgdctV3YoyW4ZE0cDu2wC1fhNu/nv8MC6C6Fl5yAbzsIhizf3rxSVKRBpMA1p/kq1IdOyxz5srzdt6JYF5f/SVJkiRlTeD+jim8rPq+pLn+HhPAJEmSJEmShsLyy2HD/cn2qDHwxsW0fnF1qiFJkiRJu1n1K/j1Jfn28eew4C9vSS8eDbtctappIYRG8jfvb4oxTujHGLOGe85KHqdgvHmA63QlDYlAB2+q+iN85d/g+Wd2f/IFb4TGy2HClBQiS0y55MbU5pZUngaTADaQKl51ucdNWZ0zV0b2t8BSk78kSZKk8nV/nMLL6EwAuxdOODfdgCRJkiRJkirNI8t3q6LAaz4Dk44DTACTJElSRjz5F1j6HogdSfvQmfCmxcS//C7duJSKXPLS8nKcs1LHkaQh89Q9LKn9FDOrHobnC/YfOgNe81k44iWphSZJA1WqCmANQK8lbXs5NmtzrgCWxxjn9GNsSZIkSRnzQMeR+cZT96QXiCRJkiRJUiV67hn4yQX59rGvg5nvTS8eSZIkid0raRzKM/x49GVMCtuSHXVHwtt+CDX7pBSdJEkacts3w+8+A3d9k5lVHfn9+x0Csz4JJ86Gqqr04gPWXnFWqvNLKl+DSQC7q2C7vq/OIYSGHo7NzJwhhGUkpWhN/pIkSZLK3P1xSr6x/t7U4pAkSZIkSao4McJP/wWe35C0xx0E53wFQkg3LkmSJClnPM/x7dqFTArJfeO3xH3Z/x1LYNyBKUcmSZKGREcH3P0DWH45bNvYtXtXrKb2jA/Ayz8Ko8elF58klcCA01djjC3kq2o19NY3p65guylrc4YQFuXmmNVLn7o9ksokSZIkZdSaOBlG5e7e9+yT8PzG3g+QJEmSJElScf58NTzym3z7jVfB2APSi0eSJEkqUEsr9xz3PY6p+huQLPye1/r/4MBjU45MkiQNiafugW+9Gn524W7JXze3n8Rrdy1IKn+Z/CWpAgy2fuF1uce6XnslOhOnVuYSuTIzZwjhYqCht+SvnMbclyRJkqSM66AKDnpBfsf6e9ILRpIkSZIkqVI8/QD85mP59ksvhGmvSi8eSZIkqUCgg4U1i2DtLV37PtL6fm7vOCHFqCRJ0pDY9Tz85uOw+JXwxJ35/eMPg7d8j3e1XkJTPCS18CSp1EYN8vglwFxgFrCwj77n5R5/lKU5QwizgfNijDOKmPsUYFkxQUqSJEnKgINPgr/dlWw/dY+LkSRJkiRJkgajdQdc/15o35m0DzoJzvxEujFJkiRJBT4y6jreUH1rfseZl/GzG638JUlSFk255MYen1t7xVm9Hvvyqr/C1y6BlsfzO6tr4fQPwMsugtqxQM/j/3/27jzMyrJ+/Pj7PrOg4jKQVCoqDpZYqTmomVppgab4c2XJNZcEl8q0Amz5ZqUJpGWaC2hlriG4ZKIVuORWmpBL7jJi7gs4KorMdv/+eM7MGZDZz8xz5sz7dV1znedzn/vc90e7umZ8zvO5P5LUF3WrACzGuCCEUA2MCiFUtNPZayxQE2NstWgrhDCHpMPWrBjjlJ7eM4RQBUzqYPEXQBVwVgfnSpIkSUrbRtvmru0AJkmSJEmS1D0LfgKvP55cl64FB1/KsB8tSDcnSZIkqcmDv+ek0pty8cijYbdTYN4t6eUkSZLya/kbnFv226Tgu2UVwbAvwL7nwoZbppaaJPW07nYAA5hE0hXrNGCNRVshhInZy+NaWyQ7Z2w2nBxCmB1jXNRTe4YQKkm6iU3PdgFrzWCgAhgOjGqn4EySJElSATngune5cUBy/ewj/2TUg/PaPSFIkiRJkiRJa/DMfLj/4ly815nw0RHA4tRSkiRJkpo9/TeY991c/Im9YJ+zIYT0cpIkSR3S8lmeVruCxQgPXQV/+yEHlLR4nH/tQbDnmfDZQ/29L6nodbsALNuRawpJIdX8GOMqR7xlC61mknT1mtvd/fKxZwihgqSArGleR7VWkCZJkiSpAD0ZN6UhBkpCpDK8wtp8kHZKkiRJkiRJfc/y1+HGE3LxVvvADseuMsVDdyRJkpSGYVPnsU2oZnb5z1knNALwSOMWbDv291CSj/PxJUlS2jbmTbjyIFh8+6pvbDMe9voFrDskncQkqZfl5b9wYowzQgiLgJkhhLkkxVXLgFEkXbomxRhntbPGrBDCuOxnZrXR/Ssfe44nKf7qrOoufEaSJElSL1vlgaMLZsAbT5AJkU+HJanlJEmSJEmS1CfFCH8+Cd57A4DXYwVffXg/lj18S8qJSZIkSTA0vM7vy3/JOmElAC80DuHY2u/z7wHrppyZJEnqthiZUHIHPyq9EhavaB5+oXEIP6w/hssP/kGKyUlS78vbERfZLlzDQwijgKrscHWMcVAn1hjdG3tmC8PaLEiTJEmSVCQ23h7eeAKA7TKe6SBJkiRJktQpD8yCZ/7eHJ5adwLLWD/FhCRJkqSs95dxWdkMhoS3k3itCjY9dh7/HrLVGqcPmzqvF5OTJEnd8vaLcNO3mV52W4vBAJ8/iT3vqGIFa6WWmiSlJe89jrNFWQvyvW6h7SlJkiSpj9ikCh6+GoBtLQCTJEmSJEnqsL1Ou4ibyn/MgJDEl9Tvwz2N26zafV2SJElKQ/1KmH04W2ZeTuKScvja1dBK8ZckSeorIuNL7uSdXx3L+iHX9YvBw+GAC2GznVlxh0XdkvqnvBeASZIkSVJB2biq+XLbsDjFRCRJkiRJkvqQug/4TdkFDAh1ADzWuDm/rJ+QclKSJEkS0NgINxwPz9+bGzvgIhi26xqne4CBJEl9xDsvc1nZDHYvebh5qDEGftewN8cd/zsoXyfF5CQpfRaASZIkSSpuH/8MZMqgsY4tMq/Birdg7UFpZyVJkiRJklTYFvyEEZkXkuvStfn0pDk8bTcFSZIkFYLbTofHrm8Of1F3CD/YZmx6+UiSpO577Eb4y8nsXlKTGxs8nMwBF3LcZjunl5ckFZBM2glIkiRJUo8qHQAf+3Qufvk/6eUiSZIkSZLUFzx1K9x/cS7e60yw+EuSJEmF4IFL4N7fNIeX149mVsO+KSYkSZK6YyAr4MYTYc7X4YOm4q8AO58Ex98DFn9JUjM7gEmSJEkqfptUwSsPJdcvLYLhX043H0mSJEmSpEL1zsvJQzdZf28YyZ47HBANvuQAACAASURBVJNiQurPQghVwCRgcHZoGTAnxrig0PfMxzohhMrsGqOAyuwa1cAc4NoYY00bH5ckqfg8eQvcOjkXf3JvTn/kMCCklpIkSeq6qvA0vy67EB56PTe4wWZw4MUwbNf0EpOkAmUHMEmSJEnFb+Oq3LUdwCRJkiRJktassQGuOw5WLAPg5TiYyXUTIfhArXpfCGEmcAkwM8Y4LsY4DpgOTAkhzA8hVBTqnvlYJ4QwGZgPLAaOA0YCU4AaYCbwVghhYuf/KSVJ6qNeWghzj4HYmMQbV8HY39HoI5CSJPU9DfVwx1lcW/4zNs+0KP7aZjyccI/FX5LUCjuASZIkSSp+m7QoAHtpUXp5SJIkSZIkFahhU+fx7ZLrObXsHgAaYuA7tSdRw3opZ6b+KIQwn6Tj1ciWXa5ijNXA6Oz7C4HhhbZnPtYJIUwHKmOMq8+pBuaGEMaSdAGbGUIYHmOc0ol/VEmS+p5lz8HVE6B+BQD/axzCQdXH8eb/3ZluXpIkiWFT57X63pJpYz40b7PwGueWXUBV5llKm84cGrAB7Psr2GZst/duuackFRuPv5AkSZJU/DbcivfjgOT63Zfh3VfTzUeSJEmSJKnA7Bie5OTS65rj8+oP4oG4dYoZqb/KdrUaBYxrWUC1mnFAZbbTVsHsmY91QghVwKhs17A1ijHOJekGBjA5WxAmSVJxen8ZXDUW3nsDgLfiuhxVN4U32SDlxCRJUmeNyfyLeeU/oCrzbPPY/Y0jkq5fnSz+kqT+yA5gkiRJkopfSSmPxc3ZMTydxC8tghH7pJuTJEmSJElSSlY/HXkDlnPrgN9SEmIysPmunPL1SzglU5JCdhLTgeoY46LWJsQYa0IIC4CJIYTp2e5ahbBnPtaZDhzXXsIxxhkhhNOAiuxn5rb3GUmSClVrnUMGUMtTn7gYliYPia+MZRxXeyq3n9Xur0pJktTL1tTtq1ndB/y89PccUbogN5YphT1+yOd2PRk6eQ9qTV2+mvZsqyOZJPV1FoBJkiRJ6hceaRzOjplsAdjLFoBJkiRJkiQlIr8sm8nGYVkSrj0IDrqk0w/eSPmQ7WRVAczqwPQ5JN22JpHrhpXannnMvbKtArLVzAImk3QUq+rE5yRJ6jWtPYS9pge3Wwo08quyC+GFB5pHTqk7gQfjiDxnKEmSetTSxTDn6xxR+mhubNAwGPsH2KQqtbQkqS+yAEySJElSv/BwY2Xz9T/u+Btf//v2zXF7XzBJkiRJkiQVoyXTxsADl8AtC3OD+18IG2ySXlLq7yZlXxd3YG5T56yxdKMALI97dnudEEIVSTHXW8BxMcb2unq13GsHwAIwSVKf1vI7u1k/OpQxJQ/k3tzzDG65aYsUspIkSV323+vgppOh9t3c2KcOgP3Og7U2yOtWPvsjqT/IpJ2AJEmSJPWGR2KuAGzbTDUQ00tGkiRJkiSpELz6KPzth7n4c8fbNV1p2yH7Wt3mrFXnVIYQKgpgz3ys03QTswI4rQPrPNjiengH5kuSlJol08Z0/MHsf13MxNIWncN2mgSfP6lnEpMkSXk3gFrOKP0dzD2mufhrZSzlR3VHw7jL8l78JUn9hQVgkiRJkvqFO39xLKw9CIBBYTlLvjci5YwkSZIkSZLSszYfwJyjoWFlMvDxbWD0z9JNSv1aCKGSpPAJOlBEFWNsOWeHVif2wp55zL1lB6+WxV2tqWxxvbQD8yVJKnyP3QB/nZqLR+wLXz0LQkgvJ0mS1HHLnuP68p9weOltubFBW3BQ7U+5smG0v9MlqRssAJMkSZLUP4QAQ3fMxS8+kF4ukiRJkiRJKftp6R9h6TNJUDYQxv4BSgekm5T6u5bFTMu68dk09szLOtnCsEHAyBjjpE7msKjVWZIk9RVL7oHrJwIRgEWNW8JBl0CmJN28JElSxzyzAGbtzqczzzcP3dywM5955Yc8FrdIMTFJKg4WgEmSJEnqPzbdKXf9wv3p5SFJkiRJkpSi/TL3Mb70H7mBMWfDhp9ILyEpUdH+lLx/Nl975i33GGNNjLGjxVzNJ17FGBd0IwdJklL3yfACXHMoNNQCsLhxI46p/T6Ur5NyZpIkqT2BRrjrbLhqLHxQA8DKWMqP6o7mm3XfYjn+PpekfChNOwFJkiRJ6jVDWxaA/RvYM7VUJEmSJEmSesOwqfNWiTcLrzGv/He5gW3Gw3aH9HJWUt7UkBRQfaQP7tmtdUIIFcDYbDijm7lIkpSqjVjKH8unw8q3k4F1P8bXl06lhvU+9PesJEkqLOvyPueUXQy3P5gbXG9jBky4gjOG7sAZ6aUmSUXHDmCSJEmS+o9NRkLI/mfQ64+zHu+nm48kSZIkSVIvKqOe88vOZ72wIhkYXAn7/gpCSDcxKTG46SLGWNPJz3a1A1e+9kwj94ktrs/q4hqSJKVvRQ2XlU9no7AsicvXhcPm8GIckm5ekiSpfW88xZ/Lf8xeJS2KvzbfFSb9A4bukF5eklSk7AAmSZIkqf8YsC587NPw6qNAZLvMYu5p3CbtrCRJkiRJknrckmlj4O8/gvuqk4FMGYz9PQxYL93EpJyuFkJBiwKslPbs1dyz3b+mZ8NxnS06CyEsbOWtEZ3NRZKkbqn7AP50GFtlXkziTClMuAI22o4l07ZLNzdJktS2J26GGyYxPLM8N7bziTD6Z1BSll5eklTE7AAmSZIkqX/Z9HPNlyPD0ykmIkmSJEmS1IuemQ/3nZ+LR/8UNt4+vXwkdccl2dcZMca5qWYiSVJXNTbCDZPg+XtyY/tfCMO/nF5OkiSpfTHCXb+E2YdBbVL8tSKWw0GXwlfPsvhLknqQBWCSJEmS+pehOzVfVmWeSTERSZIkSZKk3vFxliYP1zb5xJ7JicxSgcp2uOqMZYWyZ0/nHkKYCIwFZsUYp3RyLwBijCPX9AM82ZX1JEnqvAh/Ow0ev7F55Ky6Q2C7CSnmJEmS2lW3Aq4/Dm4/o3no+caPcmDtz2DbcSkmJkn9Q2naCUiSJElSr9o0VwC2feZZAo0pJiNJkiRJktSzSmjgvPLfwvtLk4H1NoIDLoIQ0k1M+rCaFD6brz17JfcQQhUwk6T4a1J78yVJKlTHlcyD+69ujv9QvxczG/bltBRzkiSpWA2bOq/V95ZMG9Pxhd59Df50KLz0YIvFv8D+Tx5ODet1I0NJUkfZAUySJElS/zJoGAwcAsD64X22DC+nm48kSZIkSVIPOrV0DjtlnkqCkIGDfwcDN0w3KWnNutLFq6nb1tKU9+zx3LOdxW4D5lr8JUnqy/bL3MsPy3LFX3xqf35efwTgAQWSJBWsVx6GS/ZYtfhr5NFwxA0Wf0lSL7IDmCRJkqT+JQTY9HPw5M0AjMw8nXJCkiRJkiRJPeSZBZxUelMu3uOHMGzX9PKR2tayE1YlsKiLn01jz97IfSGwIMY4rhNrS5LUY7rUTaT6Ts4uuzgXb7YLHDiLxkW35Tk7SZK0upa/n9v6Pf4hj98EN0yCuveTOGTgq9Ngp4l2mJekXmYBmCRJkqT+Z+iOzQVgVeGZlJORJEmSJEnqAW+/BNcfl4uHfxl2OzW9fKT2tThGnMHtTQ4hVLby2TT27NHcQwjzgWqLvyRJfdorj8CfDqc8NCTxkBFwyNVQtla6eUmSpDWLkWk/Op6pZX9qHnonrsM3a7/FXTcMhRtuSTE5SeqfLACTJEmS1P9s+rnmSzuASZIkSZKkotNQD3OPgRXLAHg1DuLjB86CTCblxKTWxRhrQgg1QAVJF632VLS4rk5zz57MPYQwM7vH6DbmVACDY4xd+vcgSVJ3dKSbyNDwBlx1CtS+C8ArcTAbHX4drD2oV3KUJKlYdakjZ0c01MOtk1cp/lrS+DGOrfsei+MmXV9XktQtFoBJkiRJ6n823h5KyqGhluGZV+Dd12C9j6WdlSRJkiRJUqe09pDPklH/hhf+BUBDDHy79ptcu+6Q3kxN6qprgYmsWiDVmqZCq0UxxpoC2DPvuYcQJgOVbRV/ZY0i6Tw2qwN7S5LUqyp4lz+WTYPlrwFJ55Cjaifztw2GppyZJElao9r3koOFnv5rbmzz3Rg24QpuW6fdpteSpB7kEW+SJEmS+p+ytWCTHXLx/+5LLxdJkiRJkqQ82j3zENzz6+b4nPpxPBC3TjEjqVPmZF/bK3gCmJB9nV0ge+Y19xDCWGBCB4q/AHaki13QJEnqUXUruLT8nORARoCScibWncpTcTOGTZ3X/CNJkrpnybQxzT/dsvx1uGzMKsVff27YBY64Hiz+kqTUWQAmSZIkqX/afJfc9fMWgEmSJEmSpL6r6QGfj7OUX5VdmHtj+Je5qGG/9BKTOinGuICkkGlUCKG9TlpjgZoY44zWJoQQ5oQQ3gohTO/pPfOZewihCpgUYxzZzjpNqoAHOzhXkqTe0dgAc49lh8zTubEDZ/Kvxk+ll5MkSWrdG0/DpV+Bl//TPHRh/X58p+5EKB2QYmKSpCalaScgSZIkSakYtivcfXZyveTedHORJEmSJEnqroZ6zi8/n8FheRKvtxEcOIv42APp5iV13iRgPnAaMGVNE0IIE7OXx7W2SHbO2Gw4OYQwO8a4qCf3zMc6IYRKkm5i07NdwFozGKgAhgOjYow1bcyVJKl3xQi3fB+eatHda6+z4DMHsWRaemlJkqRWPP9Pan5/MBXhPQAaYuD/6o/mqoZRKScmSWrJAjBJkiRJ/dPQnaiPGUpDI7z+GLy/zHb1kiRJkiSp77rjDHZs6q4QMnDw72DdIenmJHVBjHFBCGEKSQHU/GxnrWbZAqmZwKwY49xC2rO762Q7h80HmuZ1VGuFbZIkpePuc+DB3zWHM+vHMOnzJ6aYkCRJatVTt8Kco6gIHwDwfhzAN+u+xe2NVSknJklanQVgkiRJkvqnAevy37gFnw2Lk/h//4IR+6SbkyRJkiRJUlc8Mx/u+XUu3uOHSfdzqY+KMc4IISwCZoYQ5pIURS0DRpF015oUY5zVzhqzQgjjsp+Z1Ub3r7ztmYd1xpMUf3VWdRc+I0lSjxhb8g+4PVfH/OeGXZhWfwiTUsxJkiS14qFr4M8nQWwA4I24PkMm/pnfb2LxlyQVIgvAJEmSpA4KIVQBk4CmNlHLgDmrn+JayHuGEMZm16vMrlkNzI4xzshDun3Ovxq35rOZbAHY8/daACZJkiRJkvqcj7MUrv9Jc3xXwzZ8cbdTU8xIyo/sPdDhIYRRQNOTZ9UxxkGdWGN0b+/ZnXWyhWHtFplJklSovpR5mGmll+QGtvgi33/iWCKZ9JKSJElrdEzJrXDjFc3x840f5Yi607jL4i9JKlgWgEmSJEkdEEKYCewAHNd0UmwIoZLkFNcpwLgYY02h7pktJJtDUvA1vamALDs+IYSwMMY4Mp/59wUPNI7geG5OgufvTTcZSZIkSZKkTiqhgfPLz4cVywB4NQ7ilLoTWZjxAVsVj+y9zB47hKsn90wjd0mSUvPig1xUdi6loTGJP/YZmHAltaffk25ekiRpVTFyaum1fLv0xuahJxo35cjaqbxBp84/kST1MgvAJEmSpHaEEOaTdMwa2bLgKsZYDYzOvr8QGF6Ie2a7fs0Bpqze6StbWLYohDA5hDA9xjglX/8MfcGDjVvRGAOZEGl46SG2nTqX91gbgCXTxqScnSRJkiRJUtu+X3otO2aeToKQ4dsrv8lSNkg3KUmSJPU/bzwNV41jnbASgBfjhhz0/Am8bvGXJEmFpbEBbvneKsVfbLozWx/6J/69tsVfklToPPpNkiRJakMIYSIwira7bY0DKrMduwpqzxDCKJLirxmrF3+1mDMdmJ7ds195h4E8ETcDoCRERjY9MCVJkiRJklTonpzH8aV/ycV7/JAH4tbp5SNJkqT+6Z2X4cqDmrvSLovr8vXaKbxuBxFJkgpLfS1cdyw8+Pvc2Jaj4YgbwOIvSeoT7AAmSZIktW06UJ3tlLVGMcaaEMICYGK2i1Z1Ae05J7tWW529JmZfK7qWbt+1ZNoYuPUuuP9iAC7/ch3DFqSclCRJkiRJ6veGTZ3X6ntLpo2BZdVwwwm5wS1Hw26nwi239kJ2kiRJKmbt/i3awvoshysPhrdfSAbK1mHw12/itqEjezJFSZLUSQOohdmHwTN/zw1uMx4OuBBKytJLTJLUKXYAkyRJkloRQhhLUhQ1twPT52RfJxXKntnuYBUkBWVtmQIsyr72P5vvmrteck96eUiSJEmSJHVE3Qq49khY+TYAL8YN4aBZkMl99Tts6rzmH0mSJKknDKCWS8vPgdcfTwYypTD+CrD4S5KkgrIWK7m07OxVi792mgQHzrT4S5L6GDuASZIkSa1rKqxa3IG5TR24xtK9Qqq87BlCqCDb2SvGOKutRbLvtzmnqG2+KxCACC8tZF3eZznrpJ2VJEmSJEnSKh0Wmou5bvk+vPooALWxhBNrT+amdQankZ4kSZKK2Br/Fm3SUM9vy85np8xTubH9L4RPjOql7CRJUoesXM5l5TPYOfNEbuwL34Mv/whCSC8vSVKXWAAmSZIktW6H7Gt1m7NWnVMZQqiIMdakvOf47OuiLubRfwz8CHx8G3j1EYgNfC7zBLc1ejKhJEmSJEkqPONK7oT/XNEc/6z+SB6Jw5vjlg/pSpIkST0iRrj5O4wuWZgb2/NM2G5CejlJkqQP++BtuGrcqsVfe/wIvvT99HKSJHVLJu0EJEmSpEIUQqgEKrJhu8VYMcaWc3ZodWLv7dnUSWxBV3Lpdyq/1Hy5a+axFBORJEmSJElas63D8/y89A+5gW3GcWWDHRYkSZLUy24/Y5VDCdj1ZNjlm+nlI0mSPmR9lsPlB8AL9+cGR//c4i9J6uMsAJMkSZLWrLLF9bJufDatPauyr4ubBkII00MIM0MIc0II87PXXc21uFTu3ny5iwVgkiRJkiSp0HzwNheWnctaoS6Jh4yA//cbIKSaliRJkvqZ+2fC3Wc3h3MbvgijfppiQpIkaXWDeIdrys+Elxc1j/2k7uuw67dTzEqSlA8WgEmSJElrVtH+lLx/Ni97hhCqWowvCyFUhBDmADNjjJNijONijKOBhcDiEMLEbuxbHDb7PGTKABiReYEh1KSckCRJkiRJUlaMcOOJbJF5LYnLBsL4K6B8YLp5SZIkqV/5f5n74NYpzfHtDZ9lat03IHgogSRJBeO9pVxdfiafzjzfPHRa3bH8sWGvFJOSJOVLadoJSJIkSUWkhqQQ6yMp71m52vvTY4zjVv9gjHFWCKECmBlCIMY4q2dTLWDlA2HTneD5ewH4vF3AJEmSJElSobjvfHjy5ubwm+8dw83nPAM8k15OkiRJ6ld2zTzKOWUXATEZGLojJz17AvU+fihJUuF4fxlcsT9bZ17IDgTY/wKumd2d86glSYXEDmCSJEnSmg1uuogxdrYdVFfvnORrz8EtrquA+a19KMY4A6gmKQKrbG1ev7DFl5ovd7UATJIk9REhhKoQwswQwpzsz8wQwqi+sGc+1gkhVIYQpocQFoYQ3gohLA4hzA8hTMwediBJUt+25F5YcHpz+If6vbi58fPp5SNJkqT+5+X/MLPs15SHhiTecCs49FpWsFa6eUmSpJwVNXDFgfDqowA0xgAHzoTtD0s5MUlSPnkEhyRJkrRm3XlYdHD7U3p0z5brTIoxDm/ns3OBycB04EOdwloTQljYylsjOrpGQancHe78BQC7lvwXYoQQUk1JkiSpLSGEmcAOwHExxkXZsUqS4v4pwLguHCzQK3vmY50QwmRgEsnfsbNJut9WAROAmdm1JvXrTreSpD5tCDUw9xSI2Qdth+7I0UddydGl5ekmJkmSpP5j6WK4cizrhg+SeP1N4IjrYZ2ufh0qSZLybT3ehysPglceApLir8n1Ezl7uwkpZyZJyjc7gEmSJEnFbUEH5jR1CBvbr7skbFIF5esCMDS8CcuqU05IkiSpdSGE+cAo4CtNBVQAMcbqGOPobNhawX6qe+ZjnRDCdGDHGOPwGOOsGOOi7OfnxhjHkTvYYGZ2riRJfUoJDZxX9ltY/loysM5HYNxlYPGXJEmSesu7ryadRN5/E4CaOBAOvw42GJpyYpIkqclAVnBZ+XR4Kfe1ymn132Buw5dSzEqS1FMsAJMkSZLa0YWiqGUp79myU8LiDny2ZaXTqI5uGGMcuaYf4MmOrlFQSspg811z8XP/SC8XSZKkNoQQJpL83dZWl6xxQGW201bB7JmPdUIIVcCobKHXGsUY5wJTsuHkEMLY1uZKklSIvls6h8+XPJ6NAhx0iQ/aSpIkqdcknUTGQs3zAKyI5RxT+3346NYpZyZJkpqtXM4fymcwMvNMbmzMOcxu2CO9nCRJPcoCMEmSJGnNWnsYtSc/2xN7dqSNVcvisR27kUPfV7l77nrx7WllIUmS1J7pQHXL7lmryxZXLQAmhhAqC2jPfKwzHTiuvYRjjDPI/Z1sFzBJUt/x1K2cWHpTLt59Kmz5lfTykSRJUr8ygFouKT8HXns0GQglnFT3bRbFTzJs6rzmH0mSlKK6FXDN19gp81RubO8ZsOM3mkN/Z0tS8bEATJIkSVqzrnTxauratTTlPVvrBtaZ9fqn4V/OXVf/Axrq0stFkiRpDbKdrCqAuR2YPif7OqkQ9sxj7pVtFZCtZlbTZ7KdwyRJKmxLF8P1E3Px8K/AFyenl48kSZL6l8YGzi27gJ0zT+TG9juf2xu9rSJJUsFoqIM5R8GSu3Nje/0CPtetr4MkSX1AadoJSJIkSQWqZeFUJdDRB0xX/2wae7b8XGcLugZ3cn5xGbIVL8YNGRrehJXvwIv/hs13STsrSZKklpq+vVvcgblN3WDHAlMKYM9ur5Mt4qoMIbwFHBdjbK+YrOVeO9C5v7ElSepdK5fDnw5L7klAco/ioEsg45mekiRJ6gUxwrzvsnfJv3Njo06H7Q9jyfZpJSVJklbR2Ag3ngBP/7V5aFrd15j6+ZOa4yXTxqSRmSSpF/htgSRJkrRmD7a4brcoKoRQ2cpne33PGGN1i/HOFnRVtz+liIXAXQ3b5uJn5qeXiyRJ0prtkH3tyN9tTXMqQwjd6fSarz3zsU7T38AVwGkdWKfl39jDOzBfkqR0xAg3fQveSDotrIxlnFD7HRj4kZQTkyRJUr9x5zRY+IdcvPOJsOt30stHkiStKka49fvw6JzmoQvq9+Pihv1STEqS1JvsACZJkiStQYyxJoRQQ/JgaWV781m101aXiqjyvOcioAoY2YF1WhaJdaQbQ1G7s3E7DuV2AP571/XsuyB5TtkTkiRJUtqyBwA0/Q3Y7t+cMcbqEEJTuAOwIK0985h7yw5eHTl4oeXf1Us7MF+SpHT88wJ47Prm8Ef1R/No7MjtIUmSJCkP7p8F/5jWHN7YsAsH7Hkm5O7PSH1eCKEKmETu+/FlwJwYY6fvm/b2nsW4Tvbgr4nAaJL7uINJ7vkuAmaudvCtJOD8Hx/Ft0pvbI6vqB/FL+snpJiRJKm3WQAmSZIkte5akhuOHemW0PREzqIYY00B7LmApACss4VkPXZzu6+4r/HT1MUSykIDn8ksYQg1vNGh/zkkSZJ6XMu/7ZZ147Np7JmXdbKFYYOAyhjjojY+s6Z9OzJfkqTe99zdMP//cvEOxzDnnt1TS0eSJEn9zCNzkm4iWXc1bMP3647ngEwmxaSk/AohzCQ5aOq4pvuK2UOrZoYQpgDjuvk9f4/tWYzrhBAmAxOAmcCkpmKvEMIoYDowOYQwK8Y4qb18pH7jvvNXKf76c8Mu/F/9UYDF2pLUn1gAJkmSJLVuDrkTp2a0M7fpSJ3ZBbLnTGAyyY3X9jTNWeQpWvDfaePgsj/CkrsB+GLmEa5r/GLKWUmSJAEdOyQg35/N1555yz378EBHi7l2bPG5fn/YgSSp9w2bOm+N482dxt9+CeYcBbEhiYfuCF+dBvf4a0uSJEm94Om/w43H5+KhO3L8sydQ52OFKiIhhPkkB0WNbFmYlP1ufHT2/YXA8ELbsxjXCSFMBypijCNXfy97D3dkCGExMDGEUBljHN1WTlK/sOhy+PuPcvEn9mL/r13F/iVl6eUkSUqFx3RIkiRJrcjeXKwGRoUQ2ntgdSxQE2NstWgrhDAnhPBW9oZmj+6ZvcG6AKjInpLVlqZTs85qZ17/seVXmi93L3koxUQkSZK6relL+I/0wT27tU727+mx2bC9wxUkSep99Svh2iPg/TeTeOAQGH85lA5INy9JkiT1D8//E649Ehrrk3jI1nDotbzPWunmJeVRCGEiMIq2u1KNAyqzna0KZs9iXCfbKayqA529mt4fFUIY2+ZMqdg9cTP85eTm8P7GETD+j2DxlyT1SxaASZIkSW1rurF4WmsTsjc6AY5rZ85Yku4Fk0MIVT29Z4t1Wi04y94srQLmxhjntrFW/7Jl7hCxL2QeJUNjislIkiQ1G9x00cYX7K3pageufO2ZRu4TW1x72IEkKVVLpo3Jdf1qcutkeGlhch1KYNxlsP7GvZ6bJEmS+qFX/wtXT4D6FUlcsRkccT2sM7jtz0l9z3SgOsa4qLUJ2fuVC8h2nCqgPYtxnUkkRV0L2zoQN3twbsvPSP3T//4F1x0LMXlm5dHGYRxb+z0oWzvlxCRJabEATJIkSWpD9sbiFJKirQ910sretJwJzMpXAVW+9sx2ARsHVIUQ5qxhnVHAHGBBjHFcPnIvGh/7NKy3EQAV4T0+G55NOSFJkiSg64VQ0KIAK6U9ezX37MMDTQchtHUibWufX7imH2BEZ3ORJGmNFl0OCy/LxXueAcN2Sy0dSZIk9SPLquGKA2Hl20k8cAgccaOHEajoZA9DrQA68j1+0/fp3So2yteexboOufvEVcD4DqwFXb+3LfVtbzyVLdb+IIkHV/L12qksZ51085IkpcoCMEmSJKkdMcYZwGhgZghheghhVAihKoQwGVgITIoxtnkjOMY4E9xUVAAAIABJREFUi+SkK0gKt1o9FStfe2bXmZtdpyqE8FYIoWm9+cB8YEqMcXTbq/RDIcCWX2kO9yh5KMVkJEmS1AWXZF9n2OlWklRotg2LYd73cgOfGQs7n5BeQpIkSeo/3n0VLj8A3ns9iQesD4dfBx8Znm5eUs9o+j59cQfmVmdfxxbInsW6zvzsa1OnsDVarTvYsg7sKRWXd16BKw+GD7Jn2w0cAodfxzLWTzcvSVLqStNOQJIkSeoLsl25hme7ZlVlh6tjjIM6sUanCq3ysedq61QBTR3FZlr41Y5P7An/uRKAUZk26/UkSZJ6XQihopNdrbr9JXm+9uzp3EMIE0keLpgVY5zSmc82iTGObGXtheT+NpckqdMG8w4XlZ8LDSuTgY9+GvY7LzmMRpIkSepJK95KOn/VPJ/EpWvBIX9i2G9eBF5MNTWph+yQfa1uc9aqcyq7cP+yJ/YsynVijHNDCIM68O+3Zdev+a3OkorRB+/AVePg7ReSuGwgHHotDK4Enkg1NUlS+iwAkyRJkjohW0zV6klUhbxntuuYlUwdNfwrUFIODbVsnfkfvLUEBg1LOytJktS/dfWhg+58Nl979kru2UMPZpIUf7XbMVeSpF7VUM95ZeezSViaxAM2gAlXQPnAdPOSJElS8at9D66eAK8/nsShBMZdBsN2BealmZnUI0IIlUBTF6l2i5ZijNUhdzDHDnTh+/l87Vms67R4vyP3e5u6h9UAszowXyoO9bUw+3B47dEkDiUw/nLYxHPpJEkJC8AkSZIkaU0GrAtbfAmezR4o9tRfYefj081JkiT1d13p4tX0xfzSlPfs8dxDCBXAbcBci78kSQXp9p+xW8ljufjgS+Ajw9PLR5IkSUVt2NSksKuMei4pO4fdSx7OvXnARbDV3qvMXzJtTG+mJ/W0yhbXnb03Wdn+lB7ds1jX6Yym+7tTutGNTepThk29mV+XXciBJfc2j32v9huc/YlRKWYlSSo0FoBJkiRJUmu22rtFAdgtFoBJkqS0tfyiu5LOdXfNRwew7uzZG7kvBBbEGMd1Ym1JknrHYzfCvb/JxbufBp/cK718JEmSVFSair1WF2jknLKLVin+Or3uSE7fbkJvpSalpaL9KXn/bL72LNZ1OiSEMJ3kHvKMGKPdv9RvnFJ63SrFX7+sG8/chi9xdoo5SZIKjwVgkiRJktSarfaGeacm18/fCytqYO3u3N+WJEnqlgdbXA9ub3IIoeXpqg+2OrF39uzR3EMI84Fqi78kSYVoq/A/uPHnzfGChu0Z9cXJzXFrD+tKkiRJ3RP5aekf2a/kn80jv6k/kMsavsrp6SUlFbIakoKlj/TBPfv8Otl7wlOA8cC4GOPcbuYg9R0Pz+bk0utz8cijueBeO39Jkj7MAjBJkiRJas36G/NwYyXbZaqhsR6eXQDbjE07K0mS1E/FGGtCCE1fnFe2N59VT1etTnPPnsw9hDAzu8foNuZUAINjjF369yBJ0uraKtpaMm1M83UF73JJ2TlQ9x4AzzV+jFPrTuSdH9za4zlKkiSp/2n5tyi3nwl3zc/FO36DX9+9R+8nJaWj+RCqGGNNJz/b1RNB87Vnsa7zIdmDvQaT3DOuAGYBW3RhH6lPaXlfacfwJFeW/4IBITsw/Muwz9lw79/SSU6SVNAsAJMkSZKkNsxvGJkUgAE8Oc8CMEmSlLZrgYl07CGEpkKrRd38wjxfe+Y99xDCZKCyreKvrFEkDxLM6sDekiTlR0M9vy07j80ybyRx+bpMfPe7vMPANU5f5WFdSZIkqTv+dRHcNSMXf+Zg2PuXcLcHEajf6GoRF7QoeEppz2Jd50NWv68bQhgL3BZCWAZM6sqBXiGEha28NaKza0k9bfPwKjPLf8WAUA/AU41D2WrcZVDi4/2SpDXzN4QkSZIktWFB40i+x5wkeHYB1NdCaXm6SUmSpP5sDkkR1WhgRjtzJ2RfZxfInnnNPfswwIQY48h21gLYEZjf7ixJkjqpZdHWh7qCzf8xu5U8losPmsX8ERZ5SZIkqYc9/Cf469RcvOUoOOBiyGTSy0mSOiDGOBeYmy3iWhxCGJcdk/qEjnaMB1if5fxj4wth6fJkYOAQtvrGLbDWBh1eU5LU/1gAJkmSJElteDJuyotxQ4aGN2HlO/D8vTB8j7TTkiRJ/VSMcUEIoRoYFUKoaKez11igJsbYarFVCGEOSXesWTHGKT25Zz5zDyFUkZwA25HiL4Aq4KwOzpUkqfseugb+dWEu3v00sPhLkiRJedDmg+BP3Qo3npiLN/0cjL/cww3Vr3XgXuTqlhXKnsW6TgeMAxYDczpbBNbaPeNsUVlVF/OR8qqMei4uOxeWPpsMlK4FX7sGBm2ebmKSpIJnAZgkSZIktSkwv2EkR5f+LQmfusUCMEmSlLZJJN2sTgPWWLQVQpiYvTyutUWyc8Zmw8khhNkxxkU9uWc+1gkhVJJ0E5ue7QLWmsFABTAcGNXJBxMkSeq6FxfCX05uDv/WsAN7fXFyiglJkiSpP9gpPAFzfgmxIRn46Kfg0NlQPjDdxKR0dOdeYFc/m689i3WdDosxVocQFpAcXnZJCGGB93fVl7TZMT5Gfl76e3YpeTw3dsBFsOmOra4hSVITC8AkSZIkqR3zG0dyNNkCsCfnwVenQyaTblKSJKnfynbSmkJSADU/xrig5fvZAqmZJF29Onwyam/s2d11QggVJAVkTfM6qrXCNkmS8moINTD7e9CwEoCnGodyat0JPOZ9BEmSJOXZKg+Gv/IwXHY8rPwgiSs2hyNugLUHpZOclL6udJ6qyL4uTXnPYl2ns+aQFIBVABOBGd1YSyocD8zia6V35uIv/xg+c1Bq6UiS+ha/aZAkSZKkdjzQOIKamD0d8Z2XOPCH5334lCZJkqReFGOcAYwGZoYQpocQRoUQqkIIk4GFwKQY46R21pgFNBVgzWqj+1fe9szDOuNJir86q7oLn5EkqVPKqeOi8nPh3ZeTgbU2YGLdqbzH2ukmJkmSpOL2xtNwxYGw8p0kXvdjcOSNsN7H081LSlfLblGdvZ+Yjw5g3dmzWNfprJb3dEd3Yx2pcFT/A/56Wi7e9mvwhe+ml48kqc+xA5gkSZIktaOeUv7esAPjS/8BwD4l9/Of+k+knJUkServst2zhocQRgFV2eHqGGOHj3aOMXbqi/N87NmddbJFa7M6s5ckSb0iRk4vvYwdMk8nccjA2D/w/KUfpJuXJEmSittbz8Pl+8P72SY7a20Ah18Pg9uu0fCgQ/UDD7a4Htze5BBCy//TPNjqxN7ZsyjXCSFUkXT1AhjX3oFkrNp5rCuHgkmF5a0lMOfrEBsAeKixks/+v99ACOnmJUnqUywAkyRJkqQ2LJk2Jrl4phyuSgrA9i55gDPrD0sxK0mSpJxsMdWCdicW4J5p5C5JUo948HccWnpHLh71U9jyK4AP1kqSJKmHvPtqUvzV1IG2bCAcdh18/DPp5iUVgBhjTQihBqigY8VDFS2uq1ud1Qt7Fus6wGktPj8p+9NR3ekkJqVuHT7giV/vy9aZtwB4PVYwqfZU7i9bK+XMJEl9jQVgkiRJktQRW3wpOTXxg7cZGt5ku7A47YwkSZIkSVIhWHIv3DolF28zHnb5Vnr5SJIkqehtwHK44kB467lkoKQcDrkaNt2xzc81H3wo9Q/XAhNZtSCpNU2FSYtijN0pNsrXnsW4TsuOXh35sr1lt7EuFeVJhSDQyNllF7N15gUAVsZSjq/9Dq+131BPkqQPyaSdgCRJkiT1CaXlMGLf5nCfkvtTTEaSJEmSJBWEmhfg2iOhsR6ARxuHwX7nQQjp5iVJkqSiNZAV/LF8Orz+eDIQSmDcZVC5e4pZSQVpTvZ1dAfmTsi+zi6QPYtxnYXAAmBcjHFGB9ZpuVd3/3eRUvPc3k+wT8kDzfGA/c/l+rNOsShbktQldgCTJEmSpI761AHw0FUAjCm5H2L0gS5JkiRJkorcsKnz1ji+Fith9mHw/psAvBnXZ1LtqdxXtnZvpidJkqT+pG4Fl5adw2czTc1zAhx4MYzwIXJpdTHGBSGEamBUCKGinc5eY4GatgqTQghzgFHArBjjlDXNydeeRbrOtcAUkiKwjhibfa2OMc7t4GekwvLkPLjjzFy80ySoOiK9fCRJfZ4dwCRJkiSpoyp3hwEbADA0vAkvL0o1HUmSJEmSlJbI9LJL4JWHkzBTygm13+FlNkw3LUmSJBWvhjqYcxSfL3k8NzbmHNh2fHo5SYVvUvb1tNYmhBAmZi+Pa2fOWKACmBxCqOrpPYttnWzR2HTgthBCRRv7NK1TmQ3HtTVXKlhvPgPXT8rFw74Ae53Z+nxJkjrAAjBJkiRJ6qjSchixTy5+7Mb0cpEkSZIkSb1qybQxuZ99nmD/kvtyb+49nX/HEeklJ0mSpOLW2AA3TIKn/5obG3U67HhsWhlJfUKMcQFJ16nJIYRRq78fQqgEZpJ09cpLl6l87VmM68QYZ2XnPBdCGLumOSGEydk5AKNjjJ7Kqr5n5XKYfTjUvpvEFZvBuD9CSVm6eUmS+jwLwCRJkiSpMz51QO768RshxvRykSRJkiRJve+Jv8DtZ+TikUfDDj54K0mSpB4SI9x8Cvz3uuahC+r3g91OSTEpqe+IMc4ARgMzQwjTQwijQghV2UKjhcCkGOOkdtaYBSzIhrPaK0rKx57Fuk723+VXgEkhhLdCCHOya80MISwm6RK2ABieLTqT+pgIfzkZ3ngyCUvXgglXwcCPpJuWJKkolKadgCRJkiT1KcP34J24NuuHFVDzP3h5EWwyMu2sJEmSJElSb3jlEbh+Yi4e9gXY55cQQno5SZIkqXjFCPN/DIv+2Dz0x/rR/LJ+AielmJbU12QLiYZnO1dVZYerY4yDOrHG6N7es1jXyRbQjQ4hVACjgEpgKTAfWBBjrOlMTlIhObLk7/DfFk3wxvwKNto2vYQkSUXFAjBJkiRJ6ozSAcxv3IGDS+5O4kfmWAAmSZIkSVJ/sPx1uOYQqHs/iQdtAeMvh5KydPOSJElS8brrbLjv/Fy87dc4/YF9AQ8gkLoiW7zUq12l8rVnMa6TLfSa2+5EqY+oCk/zo9IrWwx8HbY/LL2EJElFJ5N2ApIkSZLU19zQsFsu+O9caKhPLxlJkiRJktTjyqmDPx0G77yYDAxYHw6dDesMTjcxSZIkFa9/XQx3nJGLR+wL+19A9JE/SZIKz/I3uKD8PMpDQxJv9FnYe0a6OUmSio7/NShJkiRJnXRf46d5PVYkwXtvwHN3ppqPJEmSJEnqSZGzyi6FFx9IwpCBsb+HIVulm5YkSZKK13+ugr9OycWVuyd/g5aUppWRJElqTWMDXHcMG4VlSbxWRdI1vmytdPOSJBUdC8AkSZIkqZMayXBTw+dzA49cm14ykiRJkiSpR00suZmDS+7ODex5BnxidHoJSZIkqbg9/me46Zu5eOhO8LWroXRAejlJkqTW3XEmPHcXAI0xwMGXwqDNU05KklSMLACTJEmSpC64oWG3XPDEzVD7XnrJSJIkSZKknvHUrUwt/VMu3v5w2PnENj8ybOq85h9JkiSpM478wS+onX00xEYAHm/cnG2fPY5h/3dnuolJkqQ1e3YB3H1Oc3hew4EeHCRJ6jEWgEmSJElSFzwWh8GGn0yCuvfgyVtSzUeSJEmSJOXZa4/Ddd8gE2ISb7YLjPk1hJBuXpIkSSpOz/+TmWW/pjw0ALC4cSOOqJ3KOwxMOTFJkrRG774K109qDu9q2Ibz6g9KMSFJUrErTTsBSZIkSeqbAmw7Hm4/IwkfvRa2HZduSpIkSZIkqVNa69K15Mefg2smQO1yAF5oHMKmE66A0vJW11oybUyP5ChJkqR+4OX/wNXjWTvUJvEGmzL8mL+ycIOhdpaVJKkQNTbAdd+A999M4nU/xilvnkijvVkkST3I3zKSJEmS1FXbtCj4evY2WP5GerlIkiRJkqS8KKMeZh8BNf8DYHlci2/UfRcGbphyZpIkSSpKrz0GVxwIK98B4I24ARz5Z9hgaMqJSZKk1pzz44mw5G4AGmPgkGXfYCkbpJyVJKnYWQAmSZIkSV01aBhsunNyHRvgsetTTUeSJEmSJHXNkmljsh28Ij8v/T38777sO4GT607iqbhZmulJkiSpWL35DFy+P6x4C4C34rocUXsafGR4yolJkqRWLbmH75Re1xye33AA/2z8dIoJSZL6i9K0E5AkSZKkPm3b8fDCv5Lr/1wJn5uUbj6SJEmSJKnLji25la+V3pkbGHU6t938ibTSkSRJUhHb7bQ/MKf8Z2wUlgHwTlybI2un8qSHD0iSVLjeexOu+wYlISbx5rty8pGXcnKJj+RLknqev20kSZIkqTs+czD87QdQ/wG8+ghjTruAx+KwVaYkJ4hLkiRJkqSC9tSt/LD0qly83SGw68lw8y3p5SRJkqTi9PZLXFN2ZnPx1/txAEfXTubRWJlyYpIkqVWNjXDjCfDuKwAsi+sy+OBLweIvSVIv8TeOJEmSJHXRsKnzADi3rIoDSu4DYFzJnTxWf1SKWUmSJEmSpE575WGYeyyZptObh+4E+54LIaSblyRJkorP8tfh8v3YNPNGEpcMYJ3D5nBd5ZfSzUuSJAG5Z0FWd2zJPH5c9vfm+Lt1J/CH9TfurbQkSbIATJIkSZK6a3bDHs0FYEet+wBHffcKKFur1ZuCkiRJkiSpcHyMZXD1d6HuPQD+1ziEA549hmU/vi3lzCRJklR03l8Gl+8PS58FoDaWUD7hSuhA8ZffO0mSlJ6tw/NMLp3dHM+qH8MdjdunmJEkqT+yAEySJEmSOmnJtDGrDjTuDeddCTXPwwc18OTNsM3YdJKTJEmSJEkdtg4f8Lvys+HdVwB4J67D0XWTWcb6KWcmSZKkovPB23DFgfD64wDUxwzfqvsWMz+5Z8qJSZKkNWl+NqRuBU//fCQDQn0Sb/RZfvnchPQSkyT1WxaASZIkSVJ3ZTKw/RFwxxlJvOhyC8AkSZIkSSp0jQ38puy3fCazJIkzpax/+DXcVrl7iklJkiSpKK1cDleNg1ceyg4Evlt3PH9r3Kndj37oYEJJktS75v+ET2ZeSq7L1oGDL6Xu7KfTzUmS1C9l0k5AkiRJkorCZw8BQnL93D/gredTTUeSJEmSJLXj7z9mdMmiXDzmV1C5e1rZSJIkqVjVrYBrvgYv3J8b2+88/ty4W3o5SZKkjnlmATwwszn8wfuHMMziL0lSSiwAk6T/z96dx1lZ1v8ff11nFhTQBnBPYwS3NFMBl9RyA01J7Wsg7qQpqKX21QT0q+XPTAE10zIDzCVzxR3HUMg9MxXcUnFDLEtzQcyVWc71++OcmTMgw2xn5j7nzOv5eMxj7us6931fbx7+4Zlz7s/1kSRJyocvrQ8b7ZEbP31tclkkSZIkSdLKPXE5PHZpbrzTSTB0bHJ5JEmSVJrql8KNh8Oih3Nze0+FIUckl0mSJLXNJ+/BHcc3Dec0DOW6ht0TDCRJ6unKkw4gSZIkSSVjm8Ph1bmZ46euJcWWpN13Q5IkSZKkwvLqXLh7QtPwTw3bsvceZyWXR5IkSSWlelINAGU0cGnFJXy77Imm1ybXHcTvblsfbqtJKp4kSWqTCHeeCB//JzPssxYjjr+JRX3WSDaWJKlHswBMkiRJkvJl032g9xrw6Xvw3zfZPfUUc9NDk04lSZIkSVKP0/jQ7fI2Cf/k3tXOgdgAwDPpQfxv3fHsnXIDF0mSJOVPijQXVly2TPHXxfUH8LuG/RJMJUmS2uqgsvvhpWafL333t2DxlyQpYRaASZIkSVK+lFfCkMPhkYsAOLxsjgVgkiRJkiQViDVZwhWV50PtR5mJ1dfn6HdO4XN6JRtMkiRJJSWQ5tzyy/lu2aO5yR1P4KQRP+ekEJILJkmS2qQ6vMVPy6/JTWw3DjYekVwgSZKyLACTJEmSpHwaeiQ88isgskvZswysfzvpRJIkSZIk9ViLJo/MHNR+ytPn7Mz64T0APo6rMOrdH/Eu/RJMJ0mSpJITIz8tv4aDyh/IzW17NIz4OVj8JUlS4Wuo51cVv6V3WJoZr7EpjDg72UySJGVZACZJkiRJ+dRvIGyyF7w8G4BDy/4M/CDZTJIkSZIk9WTpNNx+LFunXgOgIQZ+VHcCC+JXEg4mSZKkYlM9qabF1xadtw/MPYsjy+/JTW59KOx9vsVfkiQVi0cvbvoMiVQFfO9yqFg12UySJGVZACZJkiRJ+bbt0U0FYAeWPcCmk25jKZXLnNK0A7kkSZIkSepa950NL9zRNCwbeT5XbXdMgoEkSZJUku4/F/7yq9x4iwNgv19DKpVcJkmS1Hb/eR7uPy833u00WPfryeWRJGk5/nUpSZIkSfk2eA+oGghAVfiEfcv+mnAgSZIkSZJ6qCevgEcuyo23PxYs/pIkSVInLZo8sukH4ISyW+GhqU2v39swFA6YDqmypCJKkqT2aKiD246FdB0AT6cHw44nJRxKkqRlWQAmSZIkSfmWSsG2P2gaXjDwiWW+BJQkSZIkSV1v99R8qDklN7HJt2Gvc5MLJEmSpJJ0bNmdnFJxc9P4voat+VHdiVBWkWAqSZLULg9fCG8/C8DSWMEpdcdCWXnCoSRJWpYFYJIkSZLUFbY+DMp6ZY7/PR/enJdsHkmSJEmSepAtw0J+U/FriOnMxHrbwKgr7MAgSZKk/Hr0N0yquCE3Hrw7x9X9mFos/pIkqWj8+2l46Pym4fn1B/Ja/HKCgSRJWjFLkyVJkiSpK/QZAF87AJ65PjN+7Lcw6vfJZpIkSZIkqSf4YBFXVE6ld1iaGVd9BQ65CSr7JJtLkiRJRaV6Us3KT/jbNLj3/3LjDb8FB13H0jPv69pgkiQpf+qXwu3HQ7o+M95gB654Ze9kM0mS1AI7gEmSJElSV9nhuNzx87fBh28ml0WSJEmSpJ7g08Vw7WjWDP/NjFepgkNvgb5rJZtLkiRJpeWJ38OfJjQN/5beDA6+ASpWTTCUJElqtwenwDvPZ47LV4Xv/pa0j9dLkgqUHcAkSZIkqausuxVUfxMWPQyxAR6fDmyfdCpJkiRJkkpT3edww6Hw3ssALI0V9Dr4elhzk4SDSZIkqZgtmjxy2Yl5V8Osk5uGT6Y34ajaU3nejrOSJBWXf82DRy7KjYefBQMGAwsSCiRJ0spZoixJkiRJXWmH43PHT15Fbz5PLoskSZIkSaUqnYbbj4N/PNo0dXLdcTBwxwRDSZIkqeQ8fR3MOik3/vJQvl87gU+w85ckSUWlvhZu/yHEdGY8cGfYblyymSRJaoUFYJIkSZLUlTb5NvQflDle+iGjyh5MNo8kSZIkSaXoz2fB87c2DX9Rdwg16R2SyyNJkqTS8+xMuP14IGbG624Nh93Kx/RONJYkSWqb6kk1TT8X/exYePdFAD6NvWD/30DKx+olSYXN/1NJkiRJUldKpZbpAnZU2WxSpBMMJEmSJElSiXl8Bvzl4tx422OY0TAyuTySJEkqPX+/FW4bR1Px19pbwuG3wapVicaSJEntt3F4kx+W3940Pr/+QOi/YYKJJElqm/KkA0iSJElSydv6ELjvHPh8CdWp/zA8NQ/YN+lUkiRJkiQVlOpJNS2+tmhyCwVdC+6moeZUykJmOKdhKOMf3gUI+Q8oSZKknunFWXDL0RCzG/yttTkccQf07r/MaSt7PytJkgpDijRzBs+ENxsAeCq9EVc37MWV/n9cklQELACTJEmSpK5W2QeGfh/+8isAxpffRfWkYTR/GK3FB9kkSZIkSdKK/Wse3HwUZSHTheHp9GBOqPsRaVIJB5MkSVKp2CM1D2ZeAjHzkDhrbApH3Al9BiQbTJIkdcgRZffCm09kBqkKJiwd52dJkqSiYQGYJEmSJHWH7cfDXy+FdB1DU6+wfVjA3+JXk04lSZIkSVLBab5JSotdFBYvhOvGQP1nALyRXoutJ9zDgr5rdkdESZIk9QC7pp7mtxUXQ7o+MzFgIxh7Jyz3ntNN/iRJKg5f5l1OLb8xN/HNU5iz2/jkAkmS1E6WLEuSJElSd1h9Pdj64KbhjZs/6heCkiRJkiR1xMfvwjUHwCfvAvBB7Mv36yZ+4UFcSZIkqcNeu49pFRfRK2SLv/ptCGNnwWrrJJtLkiR1TIycW/F7+oSlmfGam8E3T042kyRJ7WQBmCRJkiR1l51+DCH7Z9hrf4Z/P51sHkmSJEmSis3Sj+DaUfDB65lx+SocXXsKr8d1k80lSZKk0vH6Q3D9wfQKdZlx1VcyxV+rr5dsLkmS1HHP3sguZc9mBwH2+zWU90o0kiRJ7WUBmCRJkiR1lwGDYfPv5saP/DK5LJIkSZIkFZv6WrjpCHgru6FKSMGoK5gXN002lyRJkkrH6w/DdWOg/nMA/hUHwNi7oGqDhINJkqQO+/hdmD0pN95+PGywXXJ5JEnqoPKkA0iSJElSj7Lz/8Lzt2aOX7iTQeGbLIzuGClJkiRJ0kql03DHD+G1+5qmJtUexQ1XJRdJkiRJxat6Us0X5nZIvcANfX4JdZ8C8Fbsz8G1Z/BQv4HdHU+SJOXTvWfAZx8A8GZcg/V3PzPhQJIkdYwdwCRJkiSpO637ddh4z+wgcmzZrETjSJIkSZJUFOacCc/d1DT8Zd0obmjYPcFAkiRJKiU7pF7giorzm4q/WG1dDqn9P/4R1042mCRJ6pzXH4Jnb2ga/l/dD6BX3wQDSZLUcXYAkyRJkqTutvPJ8Mq9APxP2SNc0vA/CQeSJEmSJKlwHV1WA3+9tml8bf0enHzO5ZwcQoKpJEmSVAoWTR4Jrz/Mp1edT++wNDO52row9i5ev+ClZMNJkqTOqV8Kd53cNLyrYQceTG+VYCBJkjrHDmCSJEmS1N0GfgMG7gRARWjgR2W3JxxIkiRJkqTCtH/qEc6oyBV/3dMwjDPrjwSLvyQM/AfqAAAgAElEQVRJkpQPrz8M1x34heIv1tgo2VySJKnzHr0E3n8lc1y5GmfXHZ5sHkmSOskOYJIkSZKUhN1Oh6tGAjCq7CFYvBD6D0o4lCRJkiRJBeTVP3NBxbTc+Cs7cuLL40i7x6UkSZLaoXpSzQrnd0i9ANf9Euo+BeDt2I91LP6SJKk0LH4dHrogN97jTN65rV9yeSRJygO/HZEkSZKkJFTvDBt+C4DykIYHz084kCRJkiRJBeTfT8FNR1ARGjLjNb8KB1/HUiqTzSVJkqSSsH14kSsqzm8q/vpPrOLg2jMs/pIkqUhVT6pp9nMXD1w0Fuo/z7y47taw7dHJBpQkKQ8sAJMkSZKkpOx6eu742RvgvVeTyyJJkiRJUqF4/zX44yio/RiAf8UBcNgtsKq7NEuSJKnjFk0emfk59kvc2PdCeoelmRf6rsNBtWfyelw32YCSJCkv9k49zq5lz2RHAb5zEaTKEs0kSVI+WAAmSZIkSUkZ+A0eatgycxzT8OCUZPNIkiRJkpSwNfgQ/ngAfPoeAEtiH8bWToQvfTnhZJIkSSoJix6Ba0c3df6i7zrw/RqLvyRJKhGLzvomlw24qWl8df1wqn/9FtWTahJMJUlSflgAJkmSJEkJuqh+VG7w3Ex496XkwkiSJEmSlKC+fMqVlVPgg0WZifJVOKr2VF6N61M9qcYHdSRJktQ5LRR/scZGyeaSJEn5c/+58NFbALwTq7igfkzCgSRJyp/ypANIkiRJUk/2VNyY+xq2Zveyp4GY+TDywKuTjiVJkiRJUveq+4zLKy9ky9SizDikYNSVzL8qJhpLkiRJpWH78CJce6HFX5IklbCvhjfg8WlN47VGXchzW45ayRWSJBUXC8AkSZKkNgohDAHGA/2zU4uBmTHGucW6ZghhDjClK/8Nat1F9aOyBWDAC7ez32mX8GwcvMJzF00e2Y3JJEmSJEnqBg11MPNIdki9mJvb92LYbB8WTU4uliRJkgrbyjrENv8+ZfvwIldWToW6pZkJi78kSSpBkbMqroaYzgwH7Qpf+16SgSRJyrtU0gEkSZKkYhBCmAbMAKbFGEfHGEcDU4CJIYQ5IYSqYlszhDAKGA7kPbva57k4CL66X9P49IrrAHc4lyRJkiT1AOk03PEjePlPubkRZ8OQI5LLJEmSpNKx6BGurJxK79C8+Osui78kSSox+6UeZfvUgswgVQ57nw8hJBtKkqQ8swOYJEmS1Ipsl6xBwNAY45LG+RjjQmBE9vV5wIpbNhXgmtnisRn5yKo82eNn8NLdkK5nh9SL7JZ6mivPPaPp5ZXtYilJkiRJUlGKEe45HZ69oWnqsvp9OW6nkxIMJUmSpGLTvNvXMt+nLHoErh29guKvjVu8l9/HSJJU+Jb//3VvPue+XtflJnY4DtbcpJtTSZLU9SwAkyRJklYihDCOTJesZQqxljMa+CCEMC3GOL5I1pyCnb8KSvUFL3F2+W4cUT4HgEnl10P6NEiVJZxMkiRJkqQu8tD58LfLmobX1e/GlPqDOC7BSJIkSSpM7S3MOvj0qfy+4oKm4q//xCrWbqX4S5IkFacTym9jnfBBZtB3bfjWhGQDSZLURSwAkyRJklZuCrAwxji/pRNijEtCCHOBcSGEKdkuXQW7ZghhCLAEWEimy5gKxCX1B3BA2cP0DZ+zaepNePo6GHJ40rEkSZIkScq/x2fA/b/IjTffnzPmjwZCYpEkSZJUGr6ZepYZFReySqgDMsVfB9eewX0rKf5q3kVMkiQVh0WTR8J7r8JvZ0M6OznibFhl9URzSZLUVSwAkyRJkloQQhhFpkvW9DacPpNM167xwMQCX3NKjHFEdi0l7AtfKD74Zu4BuPt/AV/7HlT27v5gkiRJkiR1leduhrtPzY0H7QYHzCA9f25ymSRJklQUWivUWnRUBdx4ETRkir9YbT3WHjuL+9bYqBvSSZKkbhUjzJ4E6ez/9zfYHr4+JtlMkiR1oVTSASRJkqQCNj77+7U2nNvYgauzRVVdumYIYQIwrb2h1I2+8UPou3bm+KO34LFLk80jSZIkSVI+vXwv3DYeiJnxl4fBmD9Cea9EY0mSJKkELLgbbjgEGpZmxl/aAI6sAYu/JEkqTS/PhlfnZAcB9p4Kwe7ykqTSZQcwSZIkqWXDsr8XrvSsZc8ZFEKoijEuKbQ1QwhVwLYxxqkdzKbuUNkHdj0N7vpxZvzwRbD1oclmkiRJkiSpE6on1QAwLCzgmsrJrBrqAXgpvT6bHjoTevVNMp4kSZJKwQt3wM1HQTrzXpOqr8DYu6DfwGRzSZKkLtGLWph9Vm5i6Pdhva2TiiNJUrewAEySJElagRDCIKAqO2y1GCvGuDDkdhEaBswtwDVnABPbm0sJ2OZweHw6vPMC1H0Cc34GfDfpVJIkSZIkddhXwxtcUXkBq4ZaAP6ZXpPDa0/j8d79E04mSZKkovf3W+CWYyA2ZMb9NoSxs6Bqg2RzSZKkTmvcWGh5R5fdDR8sygxWqYI9ftp9oSRJSkgq6QCSJElSgRrU7HhxJ64tiDVDCMOBJ2KMbekspqSVlcPeU3Lj525iaHgpuTySJEmSJHXCwPA2f6iczOrh08xEn7U4rO403qFfssEkSZJU/J69CW45Olf8NWAjOPJui78kSSpha7OYH5bfkZvY/QxwkyFJUg9gBzBJkiRpxapaPyXv13blmhNjjCM6cX91tw2/BZvvDy9kPrQ8q+Jq9q89J+FQkiRJkiS105J/cm3luawZPsyMe30JDr+VN371D6DlXZwlSZKkVj19Hdx+PBAz4zU2hbF3wmrrJBpLkiTl36LJI3OD24+Hp5dmjtf+Ggw7KplQkiR1MzuASZIkSfmzJPt7QCGtGUKYAkxp6XUVsD3PgfJVANgytYgDyx5INo8kSZIkSe3x0dvwh/1YP7yXGZevCofcCOtsmWwuSZIkFb95Vy9b/LXW5vD9Gou/JEkqdf9+OlME3mivcyFVllweSZK6kR3AJEmSpBVr6g0fY1yyshNXoKOdvPK+ZghhEFAVY5zbwUxKUtVXYKcfw4OTATi1/Eb47ExYtTPN4iRJkiRJ6gafvA9/+C4sXgjA0lhOr4P+CAO/ASy3a7MkSZLUHk9cDjWn5MbrbAmH3wF9unOPRkmS1O1ihHtOp6kAfNN9YNAuiUaSJKk7WQAmSZIkrVhnKmz6t35Kt605DRjdifu2KIQwr4WXNuuK9XqsnU6Cp6+FD//JgPAR3HcOjLwg6VSSJEmSJK1Q9aQaVuNTrqs8hy1TiwCojylOqDuB6RsNTzacJEmSit9jv4PZE3PjdbeGw2+D3h39ek5STxFCGAKMJ/fd+mJgZlduppqvNUvxPtnNbMcDw4FB2XssBGYCN3Vg01z1BAvugjf+kjlOlcOInyebR5KkbmYBmCRJklSiQgjjyHzI6gejxayyN+x5Dswcmxk/cTlsdTCsPzTZXJIkSZIkrcCqfM6VlVObir/SMXBy3XHcm9422WCSJEkqekeX1cDsa3MTXx4Gh90Cq3Zmj0VJPUEIYRowDDgmxjg/OzcImBZCmAiMzvf36vlasxTvE0KYQKb4awpwI7AEGAKMIbPJ7bQQwvgY4/TW8qgHqV8K956ZG297DKyxUXJ5JElKgAVgkiRJUitCCFXt/LB3cdJrhhCqyHywOqKzWVoSY1xhBVK2M9iQrlq3R9p8fx5o2Ipdy54BIsw6CcY9AGX+SSdJkiRJKiB1nzOj4kKGpV5umkrtdzGXDB3LJQnGkiRJUvE7vuwOJlTcmJvYYHs49GZYZfXkQkkqCiGEOWQ6TA1t/h18jHEhMCL7+jxgcKGtWYr3CSFMAQbFGJc/ZyFwcwhhFJkuYNNCCINjjBO/cBP1TI/PgA9ezxyvUgW7TEg2jyRJCUglHUCSJEkqUJ3Z3auj1+ZzzSmAH4SWihA4o/5IPouVmfF/noO/XZZsJkmSJEmSmmuog5lj2bns+dzctyfD0LHJZZIkSVLxixEemLJs8dfAnTKdvyz+ktSKEMI4YDgr70o1GhiU7WxVMGuW4n1CCEOA4THG0S2tE2O8mdyzDhOyBWHq4frxX3hwam5il4nQu39ygSRJSogFYJIkSdKKdaSLV1X29/tJrpn90HRJjHF+B3OoAL0Z1+Li+gNyE/efC0v+kVwgSZIkSZIapRvg1mPg5dm5ud3PhB2OSy6TJEmSil+MMPdn8MC5ubkNvwWHzoReqyWXS1IxmQIsXNl359liprnAuBDCoAJasxTvMwU4pqXrm91nKrlNcKe0dr5K30nlt8LSDzOD/oNh26OTDSRJUkLyWgAWQhgSQpgWQpiZ/ZkWQhiezzW6Y80QwoQQgr1BJUmSerbmO1a190PefHQA68yaU2KMdv8qQZc37MOC9AaZQd2n/PnCI6iedFeyoSRJkiRJPVs6DXeeAM/f1jR1af1+8K2fJBhKkiRJRS+dhj9NgL9c3DT1UMOWcPCNUNknwWCSikW2c1QVcHMbTp+Z/T2+ENYs1fsAg9qxke30xmuym+Cqhxoc/sVhZXNzE3v+HMorkwskSVKC8lYAlm3ZOgOYFmMcnW3ROgWYGEKYE0KoWvkdCmPNbOHXFGBAftNKkiSpyDzZ7LjVvvHL7V71ZIsndvGa2Q8+h4cQYms/5IrMZi732qgO5lcXq6ec0+t+0DTeo+wpRqb+lmAiSZIkSVKPFiPMnghPX9s0dWX9XpxfPybBUJIkSSp66QaYdQI8Pr1pak7DUI6u+wlU9k4wmKQi01iA9Fobzl2Y/d3Z78rztWbJ3Sf7LMOgEMIHbXwmoflaw9pwvkrUaeXXUR7SmUH1N2HTfZINJElSgsrzcZMQwhwyD48OzbZwBSDGuBAYkX19HjA4H+vle83sg7PDgYm0v9OCJEmSSlCMcUkIYQmZXaza8h6x+eYDC1s8q4vXjDHODyG09X134wem44Gm7ZKy76lVYBZNHpk9Ggmz3oB5VwJwdsWV8PGJ0HfN5MJJkiRJknqeGGHuWcs8lMs2h3H2X78NhKRSSZIkqdg11MFtx8LfmzWZ2eIAjpv3Xerz86ibpJ6jsWioLd9/N54zKIRQ1fyZ1ITWLMX7ND4DUQWcRuvdxJpvoJu3Z49VZBb9heFlT2UHAfb6BQQ/d5Ik9Vyd7gAWQhhHpnhq9Ere9I4m82ZuWmfXy+eaIYQJ2c4H87LnT6RtLWolSZLUM9yU/d2WzrKNH1bO78SHwXlZM8a4sC0/ze6zuIV5FaoR/w9W/zIAA8JHcPdPEg4kSZIkSepxHjgP/vKr3HiLA2DfS4id//pRkiRJPUz1pBqqJ9WwyaTbufesvZYp/ppZ/y0GzTvA4i9J7ZJtCtD4nXur34Ev9z15h7pN5WvNUr0PML/ZcfPirpY03zT3/Tacr1ITI8z9WW789TGw7lbJ5ZEkqQDk4xuYKcDCGOP8lk7IPow6FxiXfTNYKGtOjzGGGGO/GOOIGKPFX5IkSWpuZvb3iDacOyb7+8YiXFPFZpUvwb6X5MYv3A7P35ZcHkmSJElSz/LgVHhwSm68yd5wwHRIlSWXSZIkSUVtFZYyo+JC9iyb1zR3df0IJtSPI+0mA5Lar/kzo4s7cW0Sa5bkfbKFYf2AoTHG8e3M0OKzwiphL86CN58AYGksh91OTziQJEnJ69TWKCGEUWQq+6e34fSZZLp2jSfTaSvxNTvZmUGSJEklLsY4N4SwEBgeQqhq5f3jKGBJjHFqSyeEEBrfn06PMa7wPXG+11QJ23g4N9bvypjyBzLjmp9A9TehzxqJxpIkSZIklbiHfwn3/yI33mgEHHg1lFUkl0mSJElFo3pSzRfm+vAZv6+8gB1SL+YmdzyRsSPOZmwI3ZhOUgmpav2UvF+brzVL9T6Nz+y2tZhr22bXze1EBhWjhnr48/9rGv6hYU+O6TcwwUCSJBWGzm6P0liF/1obzm1s6zqqCNeUJElSz9X4/vO0lk4IIYzLHh7TyjmNmxlMCCEM6eo1VfrOqT+Mf8f+mcGn70HNKckGkiRJkiSVtr9csszDNwzaDcb8Ecp7JZdJkiRJRW11PuaayvOWLf7a9TQYcTZY/CWpezVuzjqgCNcsqfuEEKrIPffrhrg90VPXwPuvAvDfuCqX1u+fcCBJkgpDpzqAAcOyvxeu9KxlzxnUhk4GhbamJEmSeqhsR66JwJQQwpzld5YKIQwCppHp6nVzMayZ/bB0XLOp8SGE+THGtrzHVgH5iN6cVncMV1dOyUy8cDs8OxO+PjrZYJIkSZKkord8Z4ajyv7ETyuuyU1s+C04+Hqqz/xzNyeTJElSKVg0eSR88h5c8114+9XcCyPOhp1OSi6YpFLRv/GgA8+NdrTjVb7WLNX7tEfz5xnO6+A9VKxqP4EHcv/Zf1e/H0tYLcFAkiQVjg4XgGUfOm18c9bqg6IxxoUhtyvLMKDdLVmTWFOSJEmKMU4NIcwHpoUQbgbmAIuB4WS6dI2PMU5v5R7TQwijs9dMjzHO7+o1lxdCmMayH5Q2Gg681vjeOcbodopF5MH0VrDN4ZkdsABqToYNtoN+A5MNJkmSJEkqGYeX3bts8dfAneDgG6Bi1eRCSZIkqbh99Db8YX94d0Fubp8LYLtjksskqZR0tPAImhU8JbRmqd6nTbIb2mZ3QGV0e4vOQgjzWnhps/ZmUUIe+y18/J/M8WrrcsW73042jyRJBaQzHcAGNTte3IlrC31NSZIkiWwXrsEhhOHAkOz0whhjv3bcY0R3r7nc/cYD4ztyrQrct8+DRY/AB6/D0v/CrePg+zVQ1tmmz5IkSZKknm7RqP/AXVc1jZ9Ib8LYl37Apz99YNnzJo/s3mCSJEkqWuvxHly5NyzO7v8dUrDfr2Gbw5INJkkqBDOyv6fGGG9ONIm63yfvwyMX58a7nsbnM3sll0eSpALTmacBO1PV39Frk1hTkiRJapItyurWzrJJrKki02s1+N7l8Ps9ITbAPx+DRy6CXU5NOpkkSZIkqYgdWHY/3DWjaTw/vRHfr53Ip6ySYCpJkiQVs4Hhba6tPBcWv5eZCGVwwHTYclSywSSVrBBCVTu7SLW3OUGXrVmq92lJCGEcMAqYHmOc2J5rG8UYh7Zw73nkNt5VoXrofKj9KHO8xiaw9aEw855kM0mSVEC6ezv4JWQKsQaU+JqSJEmS1G2qJ9UA8KOyA/hJxczM5APnweDdYP1hCSaTJEmSJBWr76UeYnL55bmJ9YYw5IjbeX6VLyUXSpIkScXtnRe5qfJs1g7Z2oGyShh9FWxmN1lJedeeIqV8XZuvNUv1PisVQhgCTCNT/DW+E2uqWH2wCJ5o9lnU8LOgrLsfc5ckqbClOnFt/8aDdlb0Q8e7cSWxpiRJkiQVhd827M/j6U0zg9gAtxwNSz9KNpQkSZIkqfg8exPnV0wjFWJmvO5WcPhtYPGXJEmSOurNeXDl3rnir/JV4eAbLP6S1FU60sWr8RnT9xNes1Tv06IQQhXwZ+Bmi796sAcmQ7oOgCfTm1B9VWzaDFeSJGV0pjS6MwVV/Vs/pWDW7LBsy9gV2axbg0iSJEkqSYsmf/FL0Z1Pe5+7KyexevgMPngd7vpfOGAGhJBAQkmSJElS0fn7LXDb+Fzx1zpbwuG3w6rutShJkqQOWvgg3HAI1H4MwEdxVVY77Gao3jnhYJJKWPMGA4OA+R28Nok1S/U+KzMPmBtjHN2Oe6uUvPsSPHtj03By3UGAzzhIkrQ8e2NKkiRJUgl5M67JGXVHcUnlpZmJ52bCwB1h2FHJBpMkSZIkFb5nZ8Jt4yCmAXgxvQFfPfwO6N3t+yxKkiSpVCyogZlHQsNSABbHvoytncQsi78kda0nmx23+kdtCGFQC9cmsWap3qel8+cACy3+6uHuP7fp86gHGrbi5vNOSTiQJEmFKS8FYCGEqhhje3Y96EhL2MTXbK8Y49AVzWc7gw3p5jiSJEmSeog70ztxyZCPYP4fMhN/mgjrDYH1tk42mCRJkiQpcdWTalY4/z+ph7mo17Smh21eTn+Zw2pPZ16fAd0ZT5IkSaXkmRvg9uMhNmTGq63Hge/9mFfj+snmklTyYoxLQghLgCoyXata07zt9cIk1yzV+6xICGFado0RKzmnCugfY+zQfxcVgbeegRdubxpeUD+aXZNLI0lSQUt14tqOtrntzLVJrClJkiRJxWfvqbDOlpnjhlq46Qj4zD+LJEmSJElfNKrsQS6s+F1T8RdrbcHBtWfwPl9KNpikHi+EMCSEMC2EMDP7My2EMLwY1uyK7CGECSGECZ25hyR1m79Nh9vG54q/+m0IR822+EtSd7op+7tqpWdlNBY2zW9nY4KuWrNU79Mk+7520MqKv7KGZ39UYqon1VA9qYa5vz2paW52w7b8PbalzlCSpJ6pMwVgHemo1fjm7/0iWlOSJEmSik/FqjD6aqhcLTNe8gbc8UOIMdlckiRJkqSCsGjyyMzPge8ztXw6qZD9e3Htr8HYWRZ/SUpcthvADGBajHF0jHE0MAWYGEKYk+0EUJBrdkX27AOyUwBbM0oqbDHCg+fDn07Nza21BRw1G/oNTC6XpJ5oZvZ3awVGAGOyv28skDVL9T4AhBBGAWPaUPwFsC0d7MqmwrdNeIXhZU8BkI6BX9aPSjiRJEmFLV8dwNpbbp2PDmDdtaYkSZIkFZ3qSTVUn7+AYz/+QW5ywV3w6K+TCyVJkiRJKixPXgl3npAr/lpnSxg7C/pYWyApWSGEOWR2+d8jxji/cT7GuLDZQ6LzCnHNfGYPIQwKIYwLIbxGpvhLkgpbjHDvGXD/OU1T89MbsdU/TqL6F/OonlSTYDhJPU2McS6ZwqHhbSjAHwUsiTFObemEbFfXD0IILb4vy9eapXofyHTKBcbHGIe2cp9GQ4An23iuiswp5Tc1Hae+Pop7zzuWRZNHJphIkqTCVt6Ja5u/oerf2skhhOYFWx19M5bEmpIkSZJUtGant+OK+m9zVPlsABru/SlH1HzKX9Jb+sGpJEmSJPVkT1wONac0DZ9LV7PlEXdC71a/gpOkLhVCGEemgGpojLGljV5HAx+EEKbFGMcXypp5vE9jt68lZJ51mEimk4Lb4UsqGMsXc6VIc2755RxU/kDT3CMNWzCu7hQ+ZZVuTidJTcYDc4DTyLyn+oLseziAY1q6SfacxvdiE0IINzYv9u+KNUvxPtlnemcCU7JdwFrSH6gCBgPDV/LeWkXsG6nn2bns+cwglMGupyUbSJKkItDhArAY45IQwhIyb7La0o2redV/h9qxJrGmJEmSJBWT5Yu6qifVcF79IWyVeo2hqVcoC5FLKy5hv9pzWriDJEmSJKnUHVF2D9Rc3TR+Jj2Iw2sn8azFX5IKwxRg4UoeqG18dmAuMC6EMCXG2NnnAfK1Zr7uM335jgkhhDFt+6dIUverpI6LKi5lZNnjTXOzG7blxLofUUuFG9JJSkyMcW4IYSKZgqM52U5WTbIFSdPIvP+6uZDWLLX7ZDuHzSHz7O+0ltZZgRbfW6uIxcgp5TNz460PgQGDk8sjSVKRSHXy+sbem621dIVcwdb8TlbjJ7GmJEmSJBWlRZNH8srk/Rl66l2w2roAVIVPmFFxISz9KOF0kiRJkqTudmTZnzi7Ilf8xZeHcXjtafyXvsmFkqSsbBeAKqAtD982Pi3YqQ5g+Vozn9l9vkFSMVl09q68vMXVyxR/3dzwLX5YdyK1VCQXTJKysoX1I4BpIYQpIYThIYQh2a6r84DxrXWVjTFOBxoLnqavrOA/X2uW4H0OpG2NH5Zn84dS9OpchqVezhynKmCXCcnmkSSpSHS4A1jWTGAcmTd0U1s5t3E3qhuLcE1JkiRJKm6rrQNjroUr94aGpWyaehNuHQ9j/gipzu4NIkmSJEkqCo/+hp9VXJMbr78tHHYL/z3rkeQySdKyGh8Wfa0N5zY+CDoKmFgAayaRXZIStTqfwDX/A//8W25y+2MZtdd5jPK7B0kFJNutanAIYTgwJDu9MMbYrx33GNHda5bSfbJFdNPbs5ZKVIxw389z42FHQtVXkssjSVIR6VQBWLal60JgeAihqpVdqEYBS7I7AKxQCGEmMJzMDgkr/JAz32tKkiRJUo+x/lDY92K4/djM+KUaeOA82P3/ks0lSZIkSeoy1ZNqABhXNovTK67PvbDB9nDozbDK6gklk6QVGpb93ZZd/hvPGdSGZwe6Y80ksktS3jW+f1yRRZNHNh2vyRKurpwC/3wjd8Iuk2DXSRBCV0aUpA7LFi/NbfXEAlyzVO+jHujFWfDWMwB8FitZ9ZunJBxIkqTikY+tVhp3sTqtpRNCCOOyh8e0cs4ooAqYEEIY0tK5+VqzBVXL/ZYkSZKk0rH1wcyo3yc3fmgqPDszuTySJEmSpC4WOaHs1mWKvx5PbwqH3fKF4q/qSTVNP5LU3UIIg8h9T99qEVWMsfk5w1o8sRvWTCK7JCVq8UJurjyLzVPNir++PRl2O83iL0mS1LJ0OrNJbdbVDXvCauskGEiSpOLSqQ5g0NSRayIwJYQwJ1vV3yT7Qec0Ml29bu7sel21Zgihikz3seHZqQOzHcmedLctSZIkSaVkcv3BbBr+ybfKnstM3HE8rL4eVO+UbDBJkiRJUn7FyMTyGziufFZubuBObHfITdCrb3K5JGnFBjU7XtyJa5NYM4nsktSlmnf7atwgoHpSDZuHRVxdOYWBqQ8zL4YU7Pcb2ObQJGJKkqRismAWvPMCAJ/EXkyr/w7HJhxJkqRi0ukCMIAY49QQwnxgWgjhZmAOmQ81h5Pp0jU+xji9lXtMDyGMzl4zPcY4v6vXDCGMAlra6r4qe09Cbmeaoa3lkiRJkqRC10AZP6o7kWfXuRDeXQANtXDDIXD0XFhj46TjSZIkSZLyIZ2G2ZOWLf4atBscdC1U9lnm1OYP90pSgqpaPyXv1+ZrzSSyS1K32z68yIzKC1g9fKg3hWQAACAASURBVAbA57GCVQ76A2y2T8LJJElSwUun4cGpTcM/NOzJB6y+kgskSdLy8lIABpmuXMDgEMJwYEh2emGMsV877jGiO9fMdgez77gkSZKkHue/9GHnN4/jtsqfsmb4ED5fwhuX7MPACY9C3zWTjidJkiRJakVjF4YVSZHmvPLLGVP+QG5yk71h9FVQsUqXZ5OkbrSETAHVgCJcM4nsktQhiyaPhBfvgpunQsPSzGSvL7HKITfAwB2TDSdJkorDSzXwn79njit6M+NzNySSJKm98lYA1ihblDU33/cttDUlSZIkqdi9GdfkB7U/4cbKn7NqqGVg6h24/iAYOwsqeycdT5IkSZLUAeXUc2HF79i/7NGmuVkNO7DvmGugrCLBZJLUqv6NBzHGJe28tqNdtPK1ZhLZJan7zLsa7voxxHRm3HdtOOxWWOdryeaSJEkF6YsbF0VqKv+PLVLZ4bZHs/g+u39JktReeS8AkyRJkiQVtkWTl9tJa8Fg0tcfSipE+NeTcPNR4IOBkiRJklQUlvkbr35p5m+6BbniL7Y+lH33+zWkyro/nCS1T2cKofq3fkqXrplE9g4LIcxr4aXNujWIpMIXIzzyS/jz2bm5/oPg8NugX3VisSRJUnEZkZrHFqk3MoOK3rDjiXDf48mGkiSpCFkAJkmSJEk93WYjObv+cM6q+ENm/PKfuOWs7/KTumOJpL5YMCZJkiRJKjy1n8KNh8Frf87NbXs07H0+pFItXydJkiStSDoN9/4fPPbb3Ny6W8Ght0DfNZPLJUmSisaiySMzBeXTJsPb2clhR/leQpKkDrIATJIkSZLEVQ3fZu3wAceVzwLge2WP8GHsy9n1hyecTJIkSZLUqqUfwXUHwRuP5OZ2PAFG/BxCSC6XJHVQCKEqxrikHZcsLpQ1k8jeXjHGoSuaz3YGG9LNcSQVoArq4bbx8NxNuckNvwVjroVVVk8umCRJKj4vz4a3nwXg81jBKjudlHAgSZKKlwVgkiRJkqTszlv7wKwTYX6mE9hR5bNZHFcDvpNsOEmSJElSyz77AK4dDW8+kZvb9TTYZaLFX5KKTXuKpvJ1bb7WTCK7JHWJVfmcyyouhueeyU1uvj8cMAPKeyUXTJIkFZ8Y4YHJTcNrG4bzg75rJRhIkqTilko6gCRJkiSpQIQA3/kVfHXfpqmfVMyEJy5PMJQkSZIkqSUD+BCu3nfZ4q8RZ8Oukyz+klSMOtIJqyr7+/2E10wiuyTl36eLua7yXHYta1b8NewoGHWlxV+SJKn9XpkDbz0NZLp//a7ezWclSeoMC8AkSZIkSTmpMvje72HDXXJzNT+Bp69PLpMkSZIk6QvW4z1uqjwb3n4uN7nPBbDTScmFkqTOad4Ja1Anrk1izSSyS1J+ffgmXPFttkm9mpvbZRKM/GXmuwNJkqR2ifBgrvvX9Q278y79qJ5UQ/WkmgRzSZJUvCwAkyRJkiQtq7wXHHQtT6cbn1WJcPtx8OxNicaSJEmSJGW9+zI39zqLwam3MuOQgv0vhe2OSTaXJHXOk82O+7d2cgiheaHVky2e2D1rJpFdkvLnnQXw+73gvZcASMeQ2Vxgt9PsLCtJkjpkl9Sz8K95mUFZLy6r3y/ZQJIklYDypANIkiRJkgpQr9X4fu1Erq/8BV9N/QOINNwyjh/f8Ayz0juyaPLIpBNKkiQghDAEGE/uIdPFwMwY49xCX7MrsocQJgDEGKd29B6SVPD+NR+uHcV6YXFmXFaZ6eS8uQ/RSCpuMcYlIYQlQBVt66JV1ex4YZJrJpFdkvLmjUfh+oPg8w8BqI1lnFx3PL9xcwFJktQJPyy/PTcYOpbH9zksuTCSJJUIO4BJkiRJklZoCatxaO3pLEhvAEBZiFxU8Vv2ST2WcDJJkgQQQpgGzACmxRhHxxhHA1OAiSGEOSGEqpXfIbk1uyJ7tvhrCjCgvddKUtF4/SG4el/49H0APom94JCbLP6SVEoaW9C35f1gY6HV/BjjkgJYM4nsktQ5z98Of/huU/EXlX05qm4Cd6W/kWwuSZJU1LYNC9guleksSqoCdjop2UCSJJUIO4BJkiRJklaoqcvXx8Ph6u/AuwsoD2kuqfgNvDAMNt8/2YCSJPVgIYQ5ZB4aHdr8gdEY40JgRPb1ecDgQlszn9lDCIOA4cBE2tZpQZKK14IamHkkNCwF4IPYlyNrJ3D74N0SDiZJeTUTGAeMAFrr6jom+/vGAlkzieyS1GbVk2qWGY8tu4eflf+BVIiZib5rw6EzeeTiNxNIJ0mSSskPy+/IDbY6CL60fnJhJEkqIRaASZIkSZJWru+aMHYWXDUS3nuZ8pCm/sbvc3Ld8dyZ3hFoViwmSZK6XAhhHJmip6Er6RYwGvgghDAtxji+UNbM430au30tAZ4kUwA2BhjV1n+TJBWK5R/EbbTM31lPXw93/BBiQ2a82roc+N7/8kr04RlJpSXGODeEsBAYHkKoaqU71ihgSYyxxWKrEMJMMu8/p8cYJ3blmvnOLkldJZBmYvkNHFt+V25ywEZw2C3QrxqwAEySJHXCW8+wa9kz2UGAnX6caBxJkkpJKukAkiRJkqQi0HctGDuL19LrAlAe0vyq4lLGlN2fcDBJknqkKcDCGOP8lk7IPmw6FxiX7ZJVKGvm6z7TY4whxtgvxjgixnhz2/4ZklSEHrsMbj82V/zVb0M46h6LvySVssZNAE5r6YTsxgIAx7RyziigCpgQQhjS1Wvm8T4rUrXcb0laqepJNcv8AFRQz+vb3rFM8de89MZw1L3Z4i9JkqROeviXueMtvgtrbJRcFkmSSowFYJIkSZKktlltHQaf+gCs+VUAUiEypWIGR5X9KdlckiT1ICGExgdY21LwNDP7u1MdwPK1Zj6zt9JNQZKK0qLJI5ft+hUj3PcLmD2paerF9FfY9q1TqZ7y9wQSSlL3iDHOJdPhdUIIYfjyr2c3CZhGZlOAvGwEkK81uyJ7CKEq+1668X4HhhCGhxAsBJPULn35lCsrpsBzM5vm5jQM5dDa06HPgASTSZKkkvHeK/DCHbnxzicnl0WSpBJkAZgkSZIkqe1WWwe+XwPrbt009dOKa+DBqZmHEyVJUldrLIh6rQ3nLsz+HlUgayaRXZKKUiANd58KD01tmnsivQljas/kXRu/SOoBYoxTgRHAtBDClGzB05AQwgRgHjA+xrjSjQ5ijNPJdJaFTMFVi11o87Vmvu4TQhgVQoghhAh8QG6DBMhsqjAH+KDxnFa6m0nq4RZNHsmi04fw94EXs3PZ87kXhh3FsXU/5nN6JRdOkiSVlkd+BWSeG7ivYWtY9+vJ5pEkqcSUJx1AkiRJklRk+gyAsXfCdWPgH3/NzN3/C/j8Qxjxc0i514gkSV1oWPb3wpWetew5g0IIVZ3ompWvNZPILklFp5I6fllxGTzxWNPc/Q1bcVzdj1kw+YAEk0lS98p20xqc7aTVWOC0MMbYrx33GNHda+bjPtnuYKE9a0pSi959Cf74Pfjwn7m53c+Eb55CwyN3J5dLkiSVliX/hGdvaBpeWr8/uycYR5KkUmQBmCRJkiSp/Vb5Ehx2Cw/9fC++VfZcZu6vv4GP34H9L4XyymTzSZJUgkIIg6Cp7UurRVQxxoUhND0zOoxc94NuXzOJ7JJUlD7/kKsqprBj2Qu5ua99j3FP7k+dX+tJ6qGyxVTd+n4wX2smkV2SmhsWFsDvj4fPs/uqhDLY79ewzaHJBpMkSaXn0V9Duh6Av6U3Y17cNOFAkiSVHrdllyRJkiR1TGUfjq77Cfc0DMvNPXcTXDsKPv9vcrkkSSpdg5odL+7EtUmsmUR2SSouH70NV45cpvjrqvo9GfTk/1j8JUmSpHbbK/UEf6w8L1f8VdEHDrnJ4i9JkpR/H78L869uGl5av3+CYSRJKl0WgEmSJEmSOqyWCo6vO4k/1u+Rm3z9QV44d+fMw4uSJCmfqlo/Je/X5mvNJLJLUtEYFP4Nl4+A/zzXNDe1bgxn1Y8l7dd5kiRJaq/HLuOyil+xSqjLjPusCUfWwMbDk80lSZJK098ug/rPM8frbsVD6a8nm0eSpBLldoGSJEmSpE5poIwz6o/irTiAUytuAmDz1Bu8ecFOjK2dyGvxy03nLpo8MqmYkiT1VEvIFFANKMI1k8guSd1u6/AqV1ROhQ8/zkyEMtjv10zY5lAmJBtNkiRJxSbdAPecDn/7HamQnes/GA67BfpvmGg0SZJUoj7/EB6fkRvvfDK8Hlo+X5IkdZgFYJIkSZKkDlu2oOs78NSu1N/+I8pDmvXDe9xSeRbH1f2Yv6a3SCyjJEklpH/jQYxxSTuv7WgXrXytmUR2SSp8L9/DdZW/oHdYmhlX9IbRV8MmeyabS5IkScWn9hO45Wh46e6mqXnpjRn6g9nQZ42VXlo9qaar00mSpFL15BWw9L+Z4wEbw1f3BWYnGkmSpFJlAZgkSZIkKX+2OZTyvmvDTUdA3SdUhU+4fpUpnL50LNc17JF0OkmSil1nCqH6t35Kl66ZRPYOCyHMa+Glzbo1iKTS9tQf4c4T6R0aMuNV+8OhM2H9YcnmkiRJUvH56D9w/Rj491NNUzUN23Fy3fG81ErxlyRJUofVL4XHfpcb73QSpMqSyyNJUomzAEySJEmSlF8bD4cja+C6g+DjtyFdz7kVv2fj8CY07AVl/ikqSZIkqQeLER6+EO77edPUP9NrssEPZsMaGyUYTJIkSUXpnQVw7Wj48B+5uR1P5Ef3bUcktdJLF00e2cXhJElSSXtuZuaZAIC+68DXD0w2jyRJJW7lf+VLkiRJktQR620D4+6Hdbdqmjqy/B64bjR8tiTBYJIklYYQQns7ai0ulDWTyN5eMcahK/oBFnR3FkklJt0Ad5+6TPHXC+mBHFB7lsVfkiRJar+FD8Lv98wVf4UUjLwQ9vx5q8VfkiRJnZJOw6O/zo13OBbKeyWXR5KkHsC/9CVJkiRJXWP19eDI2bD5/rm51+6Dy4fDe68kl0uSpOLVmSrqjl6brzWTyC5JhaX2U+752Z7wxIymqb80bMGY2jN5l34JBpMkSVJRevp6+OP3YOmHmXFFHzj4Rtj26GRzSZKknuHVOfBuds+0yr4w9Mhk80iS1AOUJx1AkiRJklTCKnvDqKu4+Kc/4KTyWzNz778C03f7/+zdaZgU1dXA8f/tnmHYhAEEUVkGcMMlKuK+K0QN7kLcjYoBlyQaF0CjvolLRJJoYqIGEmPUGEUwRhFxQTRuqAhuuICCgCgCsqPAzHTX+6Gb6Rlk2BymZvn/nqeerjp1697T+RDG6jp14KS7oetx8eYnSVLtsimdsFZ321oQ85px5C5JNcfyefDQaRyVnFgWGpXajytKLqKY/BgTkyRJUk1RNGh0pedmDO5VbtyTXJb3KJetvucOfBW1oO/yqxi9ww83a46SJEllXr0jt7/XudCosNKhkiSpalgAJkmSJEnavBIJbi/tzSfpbfl9/l9pGEqgeBkMP4u7S4/jot/8E5L+56kkSRugfCeszsCkTbw2jjXjyF2Saob5U+HB3rB4Zi623yUc98ObOC6RiC8vSZIk1T6lxfwh/25OSb5SFvoo3Z7ziwcwh1YxJiZJkuqV2RNhZvbvkUQe7HdRvPlIklRP+ISdJEmSJKlaPJnen+nFW/PX/NvpkJgPwEV5o3j114fw85Kfs5BmZWPLv81UkiSVeavcfsv1DQ4hdK7k2jjWjCN3SYrfjFfh4TNgZaaWNRUFflN6Djcc/duYE5MkSVJNVbHbV7muYCsWwfCzKxR/0flwuv74fub8+uXvjpckSdpcXvtT2e5/Svbj8lveBd6NLx9JkuoJC8AkSZIkSZtdhYKuFWfAf/rBJ88CcGDyA55MXMMlxZfydrR9TBlKklTzRVG0OISwGCgk00VrfQrL7U+Pc804cpek2L03Ah6/GFLFmeP8xvT75iKeT+/FDfFmJkmSpNpm0Ux4sA98PSUX63YO9LoNkvnx5SVJkuqfhdPho1Flh8NKj40xGUmS6hcLwCRJkiRJ1atRCzh9OLw0BF4cDERsExbyWKMbGbyqN0NT3iCWJGkdHgH6UbFAqjKrC60mRVG0uAasGUfuklT9oghe/gOMu7EsND9qzvnLr+L9aENqYCVJkqScbmEq/O0X8O3XZbEhJacy4Lg7IARgjZewSZIkbU7j74QondnvciQff9AB8O8RSZKqQyLuBCRJkiRJ9VAiAYcNgjMegYbNM7F0KYPyH+a+/Fth+bx485MkqeYakf3suQFjT81+Dq8ha8aRuyRVr1QJjPpFheKvT9LbclLxDRZ/SZIkaaMdn3iVhxrcnCv+SjbgF8U/467UCWXFX5IkSdVlz0EPseLN+8uOz/ho3xizkSSp/rEDmCRJkiQpPjv8EPq/DI/2hdkTADgk+T7cfSCcPBS6HBFzgpIk1SxRFI0NIUwHeoQQCtfTHas3sDiKoiGVDQghjAB6AMOiKBq4Odes6twlqcZZuRRGnAvTni8LvZbamQOuGcMrjTak+aEkSZKUlU7Di7dwR4M7c7HGreDUB3ni7oXx5SVJkuq1c5LP0SgUAzA5XcRr6V1izkiSpPrFDmCSJEmSpHi16AjnjYGDfkk6yr6x9Jt58MBJ8Nz/QWlxvPlJklTz9M9+Xl3ZgBBCv+zuT9czpjdQCAwIIXTb3GtW4TxrU7jGpyRVnyVfwL3HVCj+ejR1ED8pGQQWf0mSJGljlKyAR8+Hl8q9E2XLHeGC56Hj/vHlJUmS6rfibzkn79myw137XMeMwccyY3AvZgzuFWNikiTVHxaASZIkSZLil8yHHr/mnJJBzI+a5+Kv/hHu6QHzPootNUmSapooisYCA8kUbfVY83wIoTMwlExXr5E1ac3NkXsIoTCE0JtMJzOAH4cQeoQQrLiQVD2+mAh/OxzmTs7FDh3EFSUXUUJefHlJkiSp1mnNYvhnL/jgsbLYS6nd4ILnoGWnGDOTJEn13rv/plVYltkv7AA7nxhvPpIk1UMWgEmSJEmSaoxX0rtxzKrB0OWIXHDOuzD0UHjtL5BOx5ecJEk1SBRFQ4CewNAQwq3ZgqduIYQBwESgfxRF/dczxzBgbPZwWBRFkzb3mlU1TwihdwghCiFEwCJgRLnThcBzwKLVY9bT3UySNt3k/8C9P4LlczPHiTw44S44/GogxJqaJEmSapeuYSb/Lbgu84KBrPtKe3JeyQBo2HwdV0qSJG1m6TS8fnfueL9LIOmLjyRJqm7+6ytJkiRJqlG+pjmc+Si8fic8fwOkiiG1Cp79FUwZAyfeBS06xp2mJEmxy3bT6pLtpLW6wGl6FEUtNmKOntW9ZlXMk+0OZmWFpPhEEbz0O3jh5rLQ4qgJF628jPHDC2H46BiTkyRJUq0zZQwjG/yaJmFV5jgk4Ohb+b/Hto03L0mSVG8VDcrd3zo88Tb3NvgUgKVRY5rteVZcaUmSVK9ZACZJkiRJqnGKrhkDdGb7cBO359/FrokZmRMzX4G7D4Cjb4E9z4bgc9+SJGWLqcaud2ANXDOO3CXpeytZCU/8DN7PNR+clt6aviVXMiPaOsbEJEmSVOtEEYy/E569liYhysQKmkHve2H7HvBY5sHr8g9gS5IkVbfzk2PK9h9OHU6/gqYxZiNJUv1lAZgkSZIkqcb6JGrHScU38LO8x7gk+Th5IQ3Fy+GJn8PkR+HYP0LLTnGnKUmSJKm+WD6PSUOOoVvi07LQq6lduKjkUpbSlBmDe8WYnCRJkmqV0mJ46gqYdH9Z6PN0a9r3HQVtusaYmCRJUs6MXxbB3ZMzByFBvysHx5qPJEn1mQVgkiRJkqQaY82HJYsGjaaEPG4v7cO41J7cln83XRJzMienvwh37Q9H/Ar2vQiS/ieuJEmSpM3oq8nw0Gl0S3xeFnqw9Ej+r/QnlPqTmyRJkjbGtwvhkXNgxstlobfSO9Cv+HImlSv+8gUDkiQpdq/fldvvejwUdogvF0mS6jl/jZIkSZIk1Vjf+XG7+KcMu+EC+iafIhkiKF0Bz17Lu0//g4El/Xj6loviSVSSJElSnVU0aDRHJCZxR/5faBpWApCKAsljbuHMfS/kzBBizlCSJEm1yryP4KHTYNGMXOwHp3Lmm8ewigaxpSVJkrSmViyB90bkAvtdHF8ykiSJRNwJSJIkSZK0wRo05relZ3JS8Q18lM69WWz3xHRGNfgVPH8DlKyIMUFJkiRJdUoU0Tc5mr/n/6Gs+GtZ1Ii+JVfBfheBxV+SJEnaGB8/BX/vUaH46/clfSh683iLvyRJUo1zZvJ5SK3KHGy7F7TfJ96EJEmq5+wAJkmSJEmqVcq6gqUuglf/BP+7FVLF5IcUvPwHeH8kHDMEdjw63kQlSZIk1W6lq2D05VyX/2AuVtiBLU4fzj+32jm+vCRJklT7RFHm/vW4m4AIgG+iAi4vuZhn0nvHm5skSdJaNKCEs/OeywX2u9iXIUmSFDMLwCRJkiRJtVMyHw65Eroez5t/Pot9ElMy8cUz4aFTYYdj4JjB0KIo1jQlSZIk1ULLvoLhZ8HsCblY+/3g1H9B09bx5SVJkqTap/hbePwS+OA/uVhhB06eezFTog65l55JkiTVIMclxtM6LMkcNNsWdj4h3oQkSRKJuBOQJEmSJOl7ab0DpxZfx9UlfaFRi1x86hi4c1/43xAoWRlffpIkSZJqjaJBoznx6j/x1e/3q1D89WjqYPjJExZ/SZIkaeMsmQ33Hl2x+KvjQfDTF5kSdYgvL0mSpHWJIvrmjckd7/PTzAtaJUlSrCwAkyRJkiTVehEJHkodCT+bCN1+kjtRuhJeuBnu2g8+fgqiKL4kJUmSJNV4vZP/Y3iDG2gbFgGQigI3lJzNFSUXQl5BzNlJkiSpNigaNJqiQaM5+erbmX/bATDn3bJzD5T2YLsp/Si68fUYM5QkSVqPGS+zc2JmZj+/ccXf4CVJUmzy4k5AkiRJkqQq06QVHH8HdDsHRl+e+2F90Wfw8OnQ6RD44c2w9Q/izVOSJElSzZIqhWev5ff5Q3OxhoUk+/yT67sczvXxZSZJkqRaqE/yRW7K+wcFoRSAkijJr0t/woOpHjFnJkmStAFevzu3v/vp0LhlfLlIkqQyFoBJkiRJkuqedt3p/NlVnJF8nqvyhtM8fJuJf/YS6b8eQqLbWXDEtbBF23jzlCRJkhS/bxfCiJ/AZy/lYm12htMehJad48tLkiRJtU+qlOvyHqBv3phcrFFL8k99gJuLDuLm+DKTJEnaMAumwZRyf8vsd1F8uUiSpAosAJMkSZIk1RlFg0aXO0rwr1RPnkrty6V5j3Jm8nnyQppEiODtB2Dyf+CgX8IBP4P8RrHlLEmSJClGX02Gh8+AxTPLQmNSe3NM3/9CQdMYE5MkSVJNU/H+c0UzBveCFYtgxHn0zXshd6LNLnD6v6FF0eZPUJIkqSq8MRSIABiX2oMjttw+3nwkSVKZRNwJSJIkSZK0OU0afDo/uWkkeZeMZ1xqj9yJkm/ghZv48qadYdIDkCqNL0lJkiRJ1e+D/8I9PSsUf/2hpDcXl1xq8ZckSZI2ztwPYNjhML1c8ddOx0LfZy3+kiRJtceKxfD2v8oO70kdE2MykiRpTXYAkyRJkiTVejMG91r/oDY7cX7JAA5Ovce1ef9ix8RsALYJC+GJn8Grf4IjfgVdT4CE70uRJEmS6qx0Cl64GV7+Q1loedSQy0su4tn03jEmJkmSpNqg/P3ookGj6ZV4Hf5+AZR8Wxb/Y+nJXPbje7zXLEmSao2iQaPpm3yK6/K/AeDjdHteTe8ac1aSJKk8C8AkSZKkDRRC6Ab0B1pmQwuBEVEUja3Ja4YQOmfn6AF0zs4xHRgBPBJF0eIqTVqqwTI/zPeC1FXw9gPMH3U9rcPSzMkFn8CIc2Hr3eGI62G7IyGEONOVJEmSVNW+WQCP9q3QmWFGeit+WnIFn0TtYkxMkiRJtU6qlKvzHqR/3mgoyYS+iQq4ouQink7vw2UWf0mSpFokkObs5HNlx/9MHQX4e7kkSTWJBWCSJEnSBgghDAW6Az+NomhSNtYZGBpCGAj0qepCqqpYM4QwgEzx163AcGAx0A04FRianat/FEXDqjJ3qcZL5kH38zh0ZDPOT46hX96TNAsrMufmvAsPngIdD4Qjr4cO+611iqJBoyudfoM6kkmSJEmqXl9MgkfOgSWfl4VeSu3GIVc/wXONW67jQkmSJGkN3yyAkefRP+9/ZaHp6bb0L7ncFwtIkqRa6dDEuxQl5mYOGjZn8DU3MrhB43iTkiRJFVgAJkmSJK1HCOE5Mp2z9ipfcBVF0XSgZ/b8RKBLTVozhHAr0DmKojXHTAdGhhB6k+kCNjSE0CWKooFVlb9UW3xLQ/6SOokHUj25KG8U5yafpmHIvqp15qvwj6OgyxGc8uHBTIx2jDdZSZIkSZtswK+u5Ma8f1Kw+u994I7SE/ljaW+mW/wlSZKkjfHlOzD8bFgyKxfb4Wg6nzSU5xoVxpeXJEnS93Bu8tncwZ5ng8VfkiTVOBaASZIkSesQQugH9GCNQqw19AEWhRCGRlHUvyasGULoBvSIomivytaJomhktpPYrcCAEMKEKIpGft/8pdqkYqeuU2HpHB4Y8jNOS75AfkhlwtPG8WjBOF5L7cwdqZN5Pd0VCGudY11dwSRJkiTFoGQljLmKIfn3l4WWRo24vORixqYr/U9mSZIkaa1OSrwM/7gXSlfmgocOgkMHQiIRX2KSJEnfx4JpHJZ8N3sQYO8LYk1HkiStnQVgkiRJ0rrdCkyPomhSZQOiKFocQhgL9Ash3Jrt0hX3mrcCP13fQlEUDQkhXA0UZq+xAEz1W7Otua70fP6W6sVleY9yQuJVkiEC4IDkhxyQ/BA6HACHDoDOh0EI65xOkiRJUowWz8p0ZpjzTi7WZheanfoAf29VZU28JUmSVB+ksJK//AAAIABJREFUSvi/vPs4L+8ZKM3GCprBycNgx2NiTU2SJOl7e/Nvuf0djoKWneLLRZIkVcoCMEmSJKkSIYTeZAqjhm3A8BFkunb1BwbWgDU7r6uAbA3DgAFA5xBCt424TqqTch29zocF0+DlP8C7D0OU7Qg26zV44ERotzccfAVsf5RvdpUkSZJqmmnjYGRfWLGwLPTf1AGceMFIaNAkxsQkSZJUWxQNGg3AlizhzgZ/4ry8j3Mnt9wRTvs3bLldTNlJkiRVkVXL4Z0Hc8f79IsvF0mStE4WgEmSJEmV65/9nLYBY1d34OrN9ygAq4o1QwjdyBRzLQJ+GkXR+rp6lV+rO2ABmLRaqy5w4l1wyFXwym3wzr8hnX296+wJ8NBpmR/6D/g5/ODH8eYqSZIkCdJphlzXnyvzRpDIdvMtiZLcVHoW96V+yIkWf0mSJGkj7B4+5a8N/sjWIfdiAboeByfeDQVbxJeYJGmjZX9H7w+0zIYWAiOiKBpb09esq/OsMecAgCiKhmzqHNpE7z0Mq5YCMC29NV06Hx5zQpIkqTIWgEmSJEmV6579nL7OURXHdA4hFEZRtDjGNTtnPwuBq4H1FYC9VW6/ywZlKdU3LTvB8X/OFoL9Ed5+AFLFmXNfT4EnfgbjbuLC5GH8O3Vk2WWr3xC7NrlOY5IkSZKqxLcL4bH+DMh/tiw0Nyrk4uJLmRjtGGNikiRJqnWiiDOTY7k+734KQvalYAQ48jo46HIIIdb0JEkbJ4QwlMxv8T+NomhSNtYZGBpCGAj0+R6/8W/WNevqPGvMOQC4FbD4q5rkfseOeLbBbeyQyBzdn/ohv0kkYstLkiStmwVgkiRJ0lpkb1AWZg/XW4wVRdH0kPuxrzuw0W+2qsI1y3fweov161xuf8EGjJfqr8IOcOxtcPAV8PpdMPE+KF6WObf8KwblP8wleY/DM+/CfhfHm6skSZJUn8x6A0aeB0u/yMU6HshWve/l0S22ii8vSZIk1T7F38Coy7g5/5FcrGEhnHIPbN8jvrwkSZskhPAcmd/E9ypfmBRF0XSgZ/b8RKrwZalVtWZdnSc7V2egBzCQis8sqBrtn/iQHRKZ+2nLo4Y8mjqY38SckyRJqpxl2pIkSdLalb/BuPB7XFvta2ZvrrYgc9O1/0auO6nSUZJymm8LR90Mv5wMPX4DTduWndoirIDxf4E//YA/599BtzCVGbf8iBmDe9n1S5IkSapqUcRNv7qYknuOqVD89dfSY+Gcx8HiL0mSJG2Mrz+Bvx0J75cr/mq7G/R7weIvSaqFQgj9yBQZrasrVR+gc7azVY1Zsw7PMyCEEJEpFOtDpgBsZGXjtXk99IN3y/ab7nM2kwf3iTEbSZK0PhaASZIkSWtXuP4hVX5tla0ZRdHiKIo2tJhr73LXbXTnMqlea1QIB10Gl70HJ9zJ1PS2uXPpUo5Lvs5/Cn4Nww6Ftx+EkpWxpSpJkiTVBUWDRpdtPxg0nOeuP5Jr8x8kP6QAWBw1oW/xFQwuPQOS+TFnK0mSpNqiaNBoLr7mOpb/+SCY/1FZ/OHSw6Dvc9DSxiSSVEvdCkxf12/n2WKmsUC/bFeqmrJmXZ1nWBRFIYqiFlEU9YyiyOKvmGzLfJjyVC6wT7/4kpEkSRvEAjBJkiSp6qx+y1Wr2rJmCKEQ6J09HFIlGUn1UV4B7HkWRxXfyvnFV0LHAyuen/MuPH4x3L4zV+U9zNYsiCdPSZIkqY7YPXzKUwXX0DM5MRfctjuFv3yde357vd13JUmStOFKi7k+737uanAHTUPmJV4ro3yuKunHoNJ+kN8o5gQlSZsihNCbzItUN6TAaET2s39NWLOuzgNlRWKqAc7KGwtROnPQ+TBovUOc6UiSpA1gAZgkSZK0di1X72zCDchN7eQVx5rlX+F0yybOISkrIsG4dDc47ym48BUeLj2MlVG5rgPfLuCSvCd4ueBSRl/Xk9OvGUKnQaPKOhhIkiRJWp+I85JjeLzRjbQLX+fC+10C542Bwg7xpSZJkqTaZ8kX8M9enJ/3dC7WohMNLxzH727+nS8WkKTabXUB0rQNGDs9+9l7naOqb826Oo9qiAKKOS35Qi6wz/eqfZQkSdUkL+4EJEmSpBpqUwuqoFwhV01eM9v969bsYZ+NLToLIUys5NROG5uLVCe13Y1Bpf0YXHo67xw7BybcA0s+ByAvpOmVfJNeyTf5LL0VD6eOYGTqkJgTliRJkmq4FYu5O/+PHJOcANmXE1PQHE68C7oeG2tqkiRJqoWmvQCP9oVvF+RiOx0LJ9wJjb7PTzaSpBqie/Zz+jpHVRzTOYRQ+D26VFXVmnV1HtUQxydfo0VYnjko7AA7HBVvQpIkaYNYACZJkiTVX3/Lfg6JomhkrJlIddhitoCDToP9fw5Tx8AbQ2HGy2XnOyXmcnXiIa7IewQeeQb2Ohc6HQoJm3ZLkiSpfivfJXfP8Al/yv8LxyTn5wZssyf0+Se0KKr23CRJklSLpdPw8u/hhd8CEQClUYIhpadyzal3Qwjx5idJ+t5CCJ3JvYB1vUVLURRND7n//+8OjI1rzbo6j2qQKOInyWdzx3tfAIlkfPlIkqQNZgGYJEmStB6b8FaqhTV9zRBCP6A3MCyKooEblVxWFEV7VTL3RKDbpswp1RXlH1Qtk8yDrsdltrkfwsR74d3hsGoJAA1CCj78b2ZrUQTdzoE9zoQt2lZv8pIkSVINkiDNhclRXJ43gryQzp3Ypz/88EbIK4gvOUmSJNU+3y6E//SDT5/LxZpuxRkL+vFm1JVrLP6SpLqic7n9jf39vvP6h2zWNevqPKopPn+DXRMzMvt5DWHPs2NNR5IkbThfJy5JkiSt3cYUX1XVtdWyZgihGzCUTPFX/++xpqRNtdXO8KPfwRUfw4l381Z6h4rnF82A52+A27rCv06B90dCyYpYUpUkSZLi0oZFPJB/CwPyh+eKvwqaQ5/74EdDLP6SJEnSxpn1Bvz14IrFXx0Pgv4v82bUNb68JEmbQ+H6h1T5tVW1Zl2dRzXFhL/n9nfrA41bxpeLJEnaKHYAkyRJktZuU7p4rb55uaCmrhlCKASeB0Za/CVVvRmDe23cBQ0awx5n0Pvh5mwfZnN6chynJF+iefg2cz5Kw6djM1tBc9jlRNjjDGi/L/gmWkmSJNVlU57m6YKBtAzLc7H2+8Ipf4fCDvHlJUmSpFqlaNBoAmn6J5/kyrxHKnaVPfAyOOI6SPr4lCQJyLx0tRBoVQvXrKvzqKp98zV8+HjueO8L4stFkiRtNO9gSJIkSWtXvqNWZ2DSJl5b09acCIyNoqjPRswtqRp8ErXjhtJzuLX0NH6UeIMfJ//H/skPcwNWLYFJ92W2Fp1g99Nh99OgRcf4kpYkSZKqWslKeO56eHMoLcveeRDgkKvg0IE+nCtJkqSN0ool3JZ/N4cm3yuLLY6acGXJhYx9fi94/pkYs5MkbUZlLY2iKNrY3+83tWtVVa1ZV+dRTIoGjS7b758cxdX5xQC8k+7CHtvsEVdakiRpE/grmSRJkrR2b5XbX2+/+xBC50qurTFrhhCeA6Zb/CXVPN/tHHYSRYNG0650Pq8cPQ/e+Tcs+ix3etFn8OJvM1v7fWHXU2CXk6Bpm2rNW5IkSapS86fAyPNh7uSy0JyoJVufez90OjjGxCRJklQblH+4GWDf8BFPFfyZrUK5Z9Xb7cOPPj2LL9mymrOTJFWz71N4tN7f6jfzmnV1nmoRQphYyamdqjWRGiiQ5ozk82XH/0r1wPIvSZJqFwvAJEmSpLWIomhxCGExmZuZndc3noo3PafXtDVDCEOza/Rcx5hCoGUURZuUv6SqNztqTdGY1sBN7BWmckryJY5Nvk6zsCI36PM3MtvTg6DoYNitN3Q9Dhq1iC1vSZIkaaNEEUy6H8YMhNLc37rPpvZiQEk/3rH4S5Ikqd5bs7irvDVfsJUgzc+S/+XSvEdJhih34sDL4IhreS2Zv7nSlCRJqrE+u6AR/Gte5qBhc35/za9jzUeSJG08C8AkSZKkyj0C9GPD3mi1umBrUhRFi9c5sprXDCEMADqvq/grqweZN3AN25BEJVWnwMRoRyaW7shvSn9Cz8RETkm+xMGJ98kL6cyQKA2f/S+zPXk5bHck7NobdjwGCprGm74kSZJUmW8WwKhfwMdP5mLJAjjqZvr9Z2sgxJaaJEmSap/WLGZC14fhs5dywcat4KRhsH2P+BKTJMUmhFC4kb/hL6wpa9bVeTanKIr2Wls82xmsWzWnU7NM+Eduf48zoUHj+HKRJEmbxAIwSZIkqXIjyBRj9QSGrGfsqdnP4TVpzRBCb+DUym5yrmFv4LkNSVLS5rfmW2sh85bbVTTgyfT+PJnen5Ys5ZjkmxyXHM8+4WMSq99mmy6BqU9ntrxGPL1qV55O7c249J4spcl615EkSZKqxSfPweOXwPK5ZaGp6W35+aqfM+U/28SYmCRJkmqq8vcz1+wKdlDifW7PvxM+W5oLdjwQTvk7NPPvS0mqZ77PS1s39dqqWrOuzqMYtWUBTB2TC3Q/P75kJEnSJrMATJIkSapEFEVjQwjTgR4b8Car3sDiKIoqLdoKIYwg02VrWBRFAzf3miGEbkD/DSz+gszbrm7ZwLGSYrBmsVbRoNE8mOrBg6ketGUBvZJvcFzyNfZITM8NKl3B0ckJHJ2cQHGU5LX0rjyd3pvnUnuxgObV/A0kSZJUH635YG5DVnFN3r85J6/iO0geKO3BzaVnspKC6kxPkiRJtV2qFF68hfvz/5B7SRYBDh0AhwyApI9HSVI9tCmdpwqznwtiXrOuzqMYnZ73AkTpzEHRwbDl9vEmJEmSNol3OCRJkqR160+mK9bVwFqLtkII/bK7P61skuyY3tnDASGE4VEUTdpca4YQOpPpJnZrtgtYZVqSufnaBeixnoIzSTXMd7t3nUPRoNF0CHM5NjGe45Pj2SnxednZBiHFYcl3OSz5Ljfn3cOEaCd4/XPoeiw0b1e9yUuSJKle+kGYxu35d9ElMacsNj9qzlUl/XgxvacdaiVJkrRR2oV5cO8xMPtNEiEbbNIGTvkbdD4sxswkSTEr/7t3Z6Cy3+bXd20ca9bVeRSTPEo5LTkuF9i7b3zJSJKk78UCMEmSJGkdsh25BpIppHouiqKx5c9nC62GkunqNbImrBlCKCRTQLZ63IbamBu1kmqo3AOz52c+5k+Fj0fBh0/AnHfKxiVDxH7hI3h6IDw9kHfTnRmX2pOx6W6M/u0lEMJ3J5ckSZI2UZIU0475GF4cDFGqLP5MqjtXl1zAQprFmJ0kSZJqo+MTr3JT/j9g9oqy2MupXTn4osegaZsYM5Mk1QBvldtvub7B2d/g13ZtHGvW1XkUkyMTk9gqZGvxmrSBHX0BkyRJtZUFYJIkSdJ6RFE0JIQwCRgaQhhJprhqIdCDTJeu/lEUDVvPHMNCCH2y1wxbR/evqljzx2SKvzbW9E24RlJN13oHaH0FHHwFLJ4FHz0JHz1BeubrJEJUNmz3xHR2T0znlzzKV7/+PeNSe/J8ek9eTe/Kx4NPjvELSJIkqaYqGjS60nPlO3l1DF9xe/5d8MKnuQENmsIxt3LUHmdylC8fkCRJ0sZYuRSeupI7GgzPxRJ5DFl1CnenjuMzi78kqd6LomhxCGExUMiG/XZeWG5/k343r6o16+o8is9ZyXLvHO52DuQ1iC8ZSZL0vVgAJkmSJG2AbBeuLiGEHkC3bHh6FEUtNmKOntWxZrYwbJ0FaZLqqcIOsP/FsP/FJJbNhSmj4aNR8NlLkC4tG9Y2LOKMvHGcwThWRvk8f90dPJ/uxrjUHnxFK6DiA72SJEnSWkURTLqPpxpcTZOwKhdvvx+c9Fdo2Sm+3CRJklQ7fT4BHu0Li2fmYi06wSn3cNdfvoovL0lSTfQI0I+KBUmVWV3YNCmKosU1YM26Oo82szVf2FQU5vBiweTMQUjAXudWf1KSJKnKWAAmSZIkbYRsUdbY9Q6s5WtKqge22Aq6n5/ZViyGT8fC1Gfgk2dhZe63mIahhCOTb3Nk8m3Ihw/SHXkp/QOY3hQ67Ad5BTF+CUmSJNUE5V8OUPaQyZLZ8MQvYNrzNFnd4CuRB4dfAwdeBolk9ScqSZKkWmFtnWYTpLko+QT841GIUmXxkalD6H3hv6FgC6DyDrWSpHppBJmipZ7AkPWMPTX7OXydo6pvzbo6j6rZGclxuYPtfwiF7eNLRpIkfW8WgEmSJEmSVN81KoTdeme2VCnMfhOmPg1Tnoavp1QYuktiJrskZsL9oyC/CRQdBNsdCV2OhFZdIIRKFpEkSVL9ENEn+T+W3taXZmFFWfST9LZs3+/fsM0eMeYmSZKk2mhrFvDHBneyb+JjiLLBgmb8fNk5jEofwJX/91Ks+UmSaqYoisaGEKYDPUIIhevpRtUbWBxFUaXFTSGEEUAPYFgURQM355p1dR5VnxmDe0HJSrjtElh9i65731hzkiRJ358FYJIkSZIkKSeZBx0PyGw9b4CF02HqszB1DMx4FdIlubEl38Anz2Q2gMIOmUKw7Y5kt/tWsozGa12ifIcISZIk1SFLv+Qf+b/jiOQ7ZaF0FPhH6mh+V3oqUyz+kiRJ0kaYMbgXfPBfGHUtrFySO9F+Pzh5GKNunRxfcpKk2qI/8BxwNbDWoq0QQr/s7k8rmyQ7pnf2cEAIYXgURZM255p1eJ61KVzjU1Xhw//CikWZ/eYdMi/1lCRJtZoFYJIkSZIkqXItO8N+F2a2lUu54IY/ckjiPc5p/Sks+qzi2MWzYOK9MPFe3i5I8G7UhfHpnXktvQsT0zuwigYVhhcNGl3pshaJSZIk1SJRBO8+BGMGcUSy3IO5LTuTOOEuLui4PxfEl50kSZJqoSasgMcvgbf/lQuGBBw6EA6+EpJ5zBjcMb4EJUm1QrZz1UDg1hDCc1EUjS1/PoTQGRhKpqvXyJq0Zl2dZ41rCsl0VeuRDf0422ntrfV0GdOGmHBPbr/7uZBIxpaKJEmqGhaASZIkSZKkDdOwGWPTezE2vRfXz4EOYS6HJN7j0MR77J/4gKZhZdnQvJBmr/AJeyU+4Wc8DskGjC/ejvHpnWFmS9h2rxi/iCRJkqpKaxbBQ6fB1KfLRQPseyEceT00WHtXWEmSJKkye4eP+UP+3fD2/FyweQc45W/QYb/4EpMk1UpRFA0JIUwChoYQRpLpYrWQTNHR1UD/KIqGrWeOYSGEPtlrhq2j+1eVrVlX5wkh9AZGVHK6MDsnIYTVsb3W97+31uKr92H2m5n9RD7seXa8+UiSpCphAZgkSZIkSdoks6Kt+FeqJ/9K9SSfUj65sBVMGwefPg9z3qk4OFXM/skP2T/5Idw7EvIbc19+piBs0MX9YOs9IJFcZ1cwSZIk1SBRxAmJV/hN/n0w9ZtcvEURnHAXFB0YW2qSJEmqpUpXwQs3M7zBHSRClIvvegr0ug0aFcaXmySpVst2q+oSQugBdMuGp0dR1GIj5uhZ3WvWxXmy3cHCegfq+3nrH7n9rsdB0zbx5SJJkqqMBWCSJEmSJGmDzRjca90Dig7KdHr4ZgHMfAU+ewk+exm+nlJxXMm3HJp8j0OT78HfHoaCZtB+Hy5JtmRCekd2HFTMKhps3NqSJEnabMoX6rdlATfm38ufGqzx8uV9+kGPX0ODJtWamyRJkuqArybDY/1h7mQSqx8Jb9g8U/i1W+9YU5Mk1R3Z4qWxtXHNujqPql4TVsB7j+QCe/eNLxlJklSlLACTJEmSJElVr0kr2PmEzAaw7Ct+ccsdHJD4gNNaz4BFMyqOX7UUPh3LVfnZwyiP96LOTEjvxIT0jkxM71Cd2UuSJGktAmnOTD7PwLyH2SKsyJ0o7AAn3AmdDokvOUmSJNVO6RSM/wuMuwlSxWXhl1O7cvBFj0DzbWNMTpIkqfY5MfkqFC/PHGy5I3Q8MN6EJElSlbEATJIkSZIkbX5btOWJ9IE8kT6Q0y7tBYtmctXv/8L+iQ85uXAaLJtTYXhBKGXvMJW9E1MBSEcB7v4TdNgfOuyX+Vzj4Y/yXSnKs3OYJEnSum3I31Fdwhfckv939kms0dm1e1/oeQMUNN2cKUqSJKkuWjQTHrsQZr2Wi+U15P9WnMr9qZ58ZvGXJEnSRoo4K1muMVv38yGEyodLkqRaxQIwSZIkSZJUrXIPGB/GiNRhnHz5jzIdwWaNh5mvZT4XfFrhmkSIYO7kzDbhb5lgs22hXXdotze025sCillFg2r9LpIkSXVeaTG8+ieeajCYglCai7faHo7/M3TcP77cJEmSVKNV+qKBW34E7zwIYwZB8bKy+HvpTvzym4uZFln4JUmStCm6hU/ompiVOchrBLufFm9CkiSpSlkAJkmSJEmS4hUCtOyU2fY4IxNbPj9TCDZrPO+9NoZdwgySIap43dIv4MMv4MPHAZhckOTDqCO779cD2u3DwQ8t4/OoTTV/GUmSpNprdcevsgd1Z0+EJ34O8z6gYPWLghN5cNAv4eArIb9hPIlKkiSp1mrNYnj4TJiSKw4rjRLcmTqRP5eeSKmPMkmSJG2yM/PKdf/a7RRoVBhfMpIkqcp510SSJEmSJFWL1Q8Ub5CmrWHn42Hn4zn+xYNowgr2THzK3omP2SdMYffENBqHVRUuyQ8pdg/T4c1h8OYwXi6Ar6NmPHfdH3g7vR3vRNsxOV3EUppuXC6SJEn1TCNWckXeCLjnGYjSZfF30p3Z48IHoO2uMWYnSZKk2mbG4F4QRfziV7/iN/n3wZTlZeemp9vyy5KLefyWS7k0xhwlSZJqvW8Xcmzijdxx977x5SJJkjYLC8AkSZIkSVKNtrZirS6DnmCHMJsxpzSE2W/B7Anw9dTvjNsyLKVnchI9k5Ny86W3YtR1d/BeujPvR52ZnC5iOY0tCpMkSQKY+gzPNhhI+8R8WN2ANb8xN357Mvemjma6xV+SJEnaWMvmwujLuaPBkxXC95f25JbS01mBnWUlSZK+t3cepCCUZPa32RO27RZvPpIkqcpZACZJkiRJkmqdFEk+ijpSNBKgF9CLZixnj8Q07u8ZMgVhX7wFK5d859qixFyKmMtxydfLYtPSW8Ojj8HWe8A2e7LLX+fwDY3WuraFYpIkqTYrGjR6rfG2LIDhZ8FHo2ifyMVfSu3GNav6MjtqU00ZSpIkqe6IOD7xGtx1CaxYVBadHW3JgJJ+vJb25QKSJEmbqvx9vkCacQ3+TKfV9/W6nx9PUpIkabOyAEySJEmSJNUJS2nKS+nd4fBsgVY6DQs+zRSDzZ4AX74Ncz+AdMl3ru2SmAPvj8hswPsFgenR1rwXdeaDdEc+ijryYboji9miOr+SJEnSZpckxbnJp7k8byR8tKosvihqyo0lZ/Gf9MFAiC9BSZIk1U7L5jI0/3aOSr4FK8rFu59Pu5438O8C77NJkiRVlQMSH9ApMReApVFjmu16SswZSZKkzcECMEmSJEmSVOtsUBeuRAJa75DZ9jwzEytdlSkC+/JtmPMOfPk2JXM+JD+kKl4aIrYLX7IdX3Jy8pWy+JdRS3jwPmi7G7TdFdr+AFp0yqwlSZJUi8wY3As+fxOe/CXMnVzx5B5n0aLnDdzWpBW3xZOeJEmSaqsogvdHwpirOCqZ6/pF8w5wwp+h82FxZSZJklQnzRjcC4Y/BB9ljpvtezY0aBJvUpIkabOwAEySJEmSJNUfeQWwbbfMlrXroMfoGmaxa+IzfhCms1tiOtuHL8gL6e9cvk1YCJ88k9lWy28CW+0CbXfjmvHwYbojH0ftWUlBhWs3qGhNkiSpGjRnOTzxC5h0X8UTrbvCsbdDx/3jSUySJEm127KvYPQV8PGTFePdz4eeN4BdvyRJkqre0jnw8VO54+7nx5eLJEnarCwAkyRJkiRJ9dqUwSd9N1j8baYTxpfvwNz34av3WfnFZBqGku+OLfkGZr8Js9/kt/mZUCoKzIjaMjVqx9SoPVPT7ehx9WxmRG0pLXc7xqIwSZJUVYoGja70XNnfHFHEKYmXuCb/QZi0LDcgvzEcOhD2vwSS+Zs5U0mSJNU5UQST7odnr4NVS8rCs6MtGVDSj38fOzDG5CRJkuq4SfdDlMrsdzwI2uwUbz6SJGmzsQBMkiRJkiRpTQ0aQ/t9MlvWLoOeoFOYw85hJjsnZrFzmEHXxExah6XfuTwZIrqEOXRhDscwoSxeHCWZFm3DJ1E7pqTbw8dAm65QWASJRDV8MUmSVG/NeQ/GDOAPDcZXjO/YC44ZDIUd4slLkiRJtduCaTDqUpjxcsV49/M56pUD+YZG8eQlSZJUDyRJwcR/5gLdz4stF0mStPlZACZJkiRJkrQBUiT5NGrHp1E7nkgfWBaf8avu8NX7ZZ3C+GoyLPgEovR35mgQUnQNn9OVzyE5Hh5+JHMirxG03hHa7JwpCGvTFbbcAZq3tzBMkiRtlPIdRosGjaaQZfzr2pM5PTmOZIhyA5u3h2OGwE4/iiFLSZIk1XqpEhj/F3hxMJSuzMVbFMFxd0DnQ/nmlcq71EqSJOn7OyLxNiz7MnPQeEvoeny8CUmSpM3KAjBJkiRJkqQNUP5h6u/YYivYvkfuuPhb+HoqzPsI5n0I8z/O7C/5fO3Xl66AOe9ktnJWRvk0bLsTbLl9piBs9Wer7TJdyiRJkiqTKuXs5LNckTeCwvBNWbgkSnJP6kdceMlQaNAkxgQlSZJUa335Njzx88zLkLJKowR/T/Xij3NOZuWw5YDFX5IkSZvbWcmxuYNuZ0Neg/iSkSRJm50FYJIkSZIkSVWtQWPYZo/MVt7KJTB/CgP/+gg7hs85f/sVmeKw5XPXOk3DUJLpLDb3/TXOBChsny0KK1cYtuUO0KQ1hLB5vpckSaodPnsZxgzkxvwPKsa7HEn+0YO5sPUO8eQlSZKk2q34W3jxtzD+TojSuXjbH3DCzFP5IOpr5mWgAAAgAElEQVQUX26SJEn1TPswl0OT72WPAux1Xqz5SJKkzc8CMEmSJEmSpOrSsDm034fhqfkA3PBRJtyCpewQvmCHxOfcuH8S5n/M/Bnv0zosrWSiCBbPymyfjq14qmHzXJewll2gZSdo1YVd7/iU5Xy3a9g6O5tJkqRaZWsWwIhz4YPHKp5oUQRHD4YdjrZQXJIkSZtm2gvw5GWwaEYultcQDr8G9ruED371DOC9JkmSpOpyZnJc7mD7ntCiY3zJSJKkamEBmCRJkiRJUswW0Yw3oma8kerKjcdmHpLZe9BomrOcLuFLuiS+pEuYk9kPX9A5OR+i1NonW7kEZk/IbOVMbgjzo2bMiNoyM2rLZ+m2zIjawpx20LIzFGyxub+mJEnaXEpW8LPkY1yS9zh8UJyL5zeGg6+A/X8G+Q3jy0+SJEm11/L58Oy18N7DFcKvpnbhmlV9mTmqLYx6JqbkJEmS6o+iQaPL9htQwviCF3Mnu59f/QlJkqRqZwGYJEmSJElSNduQNyGvbczqH3Zm3NQDFn4GX09lyIOj2C7xZbY47EuahpWVztk6LKV1WMreTIVkNjj0jsxn060yhWAtu0CrzrnuYS2KMl3FJElSjbH6b4JAmhMSr3FV/nCuzF9QcdCuvaHnDdB82xgylCRJUq2XTsHEf7LkyWtpHr4tCy+JGnNT6VmMSB0K2F1WkiQpDsck3qBVWJY5aNYOtv9hvAlJkqRqYQGYJEmSJElSbZNXAG12gjY7cVcqCalswVgUwbI5nDH4ATqFrygq2+bSIcylIJRWPufyuZlt1vjvnmvUAgo7ZorBWhRBi+x+YUdo3h7yGmymLypJkiqzd/iYa/P/xe6J6RVPbLUb/GgIdDwgnsQkSZJU+335Doy+HL6YSPNyNV5PpvblNyU/YT6FwIa95EiSJElVa8bgXvCPP8OsbGCvcyGRXNclkiSpjrAATJIkSZIkqa4IAZptw2vpXXmNXSucSpBmm7CAVy7oAAum8fcnnqcofEWPNsth0QxIl1Q+74pFmW3OO2tZMwHN2jF+YVNmRW34PGqd/cxsb91yeiYvSZJUNRZM46/5t3N0ckLFeOMt4fCrYa/zfOBDkiRJm2blEhh3M0z4G0TpsvCM9FYUnX0Xx27fg2NjTE+SJEnA3A9yL3RM5EG3c+LNR5IkVRsLwCRJkiRJkuqY9b59ucsR3PSfbTL7X0CSFFuHBWVdw1Z/dgjzaBfm0zCsozgsSsOSWeyfhP358Lvnf3tFplNYYQfu/yjNl1Ervoi2LNvmUUhEokLORYNGb/p3kySprvp2Ibz0O3jzbxydLPdvc7IA9r8YDrocGjaLLz9JkiTVXlEEkx9l3sgraBMWl4VXRXn8NXU8d5Uez5Tte8SYoCRJksq89Y/c/k7HwhZbxZeLJEmqVhaASZIkSZIk1TLrKpDaFCmSzI7aMDtqw8v8oMK5QJrWLKF9mEeH7NY+MZ/2YR77Fi6DpV8CUeWTl3wL8z+C+R9xzlruRBVHSeZEreCfd0Pz9lDYnj7JRWWFYnOiVqyiQZV+X0mSapXS4kwHhv8NgZWLK57brQ8ceT0UdognN0mSJNVqRYNG0ynM4Ya8ezk4OZk25Zq4v5TajetLz2VGtHV8CUqSJKmCxqyEd4fnAnv3jS8ZSZJU7SwAkyRJkiRJqoe+Tyet1QVoMy7vBSUrYcnn/OS2EbQP87jp0KawaAYffPAe7cM8moUV65yrQUjRMcyDGfPKYr/LX2NQkza8s2wLZkdbwjOvZR5yb7ZNdtsWmrSBRGKTv0/577QmO45JkmKTTsH7I+GFm2DxrAqnJqR34KaSs3j8lEtjSk6SJEm1zZr3PhqxkivynqBf8kkKQmlZfG5UyFZ9buOQXU7mxRDWnEaSJEkxOiH5KhQvyxy02h6KDo43IUmSVK0sAJMkSZIkSaolamQxUn5D2HJ7/pfeHYCbfpjJcReAKIIVi2DxTFj8OSz5HJbMzjzEvnr/2wXrX+ObeeyRmMceTIPxb3z3fCIPttiatxY14quoJXOilmt8tmL8zWdA0lthkqTqsa5unev99zyK4JNnYexvYN4HFc+16AQ9f0Of+5OAD+NKkiRpU0QclxjP1fn/ZpuwMBcOCdinP1sdfg00bBZfepIkSapExFnJsbnD7ueDBfuSJNUrPvUiSZIkSZKkzSMEaNwys22z51qHdB30KNuEBbQLX7NN+Jpts9s2YQH7tvgGln4JUWrd66RLYcnndF9XE7CbLoWmW0GzbRgzK1GuQKwVc6KWtAstmR8VMmXwScC6H9yXJGmzmfU6jP01zBpfMd6oJRxyJex9AeQVAP47JUmSpI23c5jBU9s/CbNeq3hi273g2Nth693jSUySJEnrtWf4lF0SMzMHeY1gj9PjTUiSJFU7C8AkSZIkSZIUm48Gn7LuAalSWDaHPrc+ki0M+5p24Wu2CovYOiykbVhAy7B8/QtFaVg2B5bN4ZjkOsYNvgy2aMsD+XnMo5C7r32IeVEhc6MWzIsKmUfmcyUFFS6LuztbZQVrceclSfVd+f8fXmdx8dwP4fkbYOqYCuFvogL+nvoRf1/Ui2WPN4bHx1YygSRJkpSz5t+eLVjKTXkjOD05DmZFuRNNWkOPX8PuZ0BiXW/WkSRJUtzOyit3b3DXU6BRi/iSkSRJsbAATJIkSZIkSZukWrpkJfOgsD0jbrmi0rULKKZtWJgpCGMh/8/evYfbdRZ04v++56QNLaWcpi1YqNCeSqXcCkkrICACCaBc1DEBAXEQhwR1fo46Y9PiZcbRAVIVR0WdtA7DiKNC4p16oSkgV6FJYLiVyzQUsNybpqW0tE3O+/tjr5PsnJzLPufsc/Y6+3w+z7OefVlrvevNWe/a65u917ve//59Z3dGDrv9i/nIDZ/IOeVgzi639ba9bx1KvnUoT5mtk1iS2+upRzuFfSVn5H/80p/mq5OdxJr3vlrHclfuc9x6OmQBcJxbP5e88zXJ//3zJMcuxL2njuZPjzwjrz/8Q/l67j+4+gEAsKKN5kheMronP79md8bKN4/NGFmTPP6VyVMvS+4jbwIAtN6dB/PckX859vrSlw+uLgDAwOgABgAAAMCK02tHqsdMPjl8T2cEsNu/mNx+89EOYsc9v+MrST3SU7mnlztzerkzD8vNsy53ez0lX6tj+Xrun6/X05O/f2dy3wckp53dPD6gc7ft0x6QnHRKT9uezeTfZVk65wGwcIc+n7zrN3Pvvj/JSeXYuWeilvzNxHfndYc3592veXleNrgaAgCwwj1x5OP5s3P/KvnqJ46fccEzkme/Njn7wsFUDACA+fvwn2Ztubfz/JzHJg/eMNj6AAADoQMYAAAAAPOyIkexWnNycsZDO9NMJiaSO2/pdBS74yudx2985cTXd3wlmbi3p82eXu7K6eWuXJAvdd744AdnXPYb9ZR8rd4/4+edf6xT2EydxU6+73z+9QC0xLflluStP5/s/+Nk4t6cVI7Ne/uRx+Y3Dr8wN9RZzlUAADCXr38mV530W3nm6L7kq13vn3F+8uzXJBc+OyllxtUBAGiZiYlk7xuOvb7E6F8AsFrpAAYAAAAASTIy0ulsddrZsy83MZHcdTD5xpc70x1fnqazWPO8x45iSXK/clfuV+5KPv/lOZe9o94np60752insFevuTO35PTkXz6fnHpWnjxyYw7W+3VGNjv1zGTN2p7rAcASuP1L+S9r3pgXjb492Xv4uFkfmHh4Hv/y1+Xp5z0pTx9Q9QAAWBlmG/H7pl9+fPLO1yZ735BnjnaNcH7SfZPv+U/JE3/a9wMAACvRZ/85OXhjkuT2empOf/TmAVcIABgUHcAAAAAAYD5GRpL7ntWZvu1RMy9Xa3LnwU6HsG9+Nbnja83jV5Nvfq157Hp/4vDMZU1xWvlWcutnO1OSF09+y/ePf50k+ZOTm9eve1Xnce3pnY5g9z2r83jqWcl9Jx/POvG1EcYA+uMbX0ne89vJ3jfkZWvuPm7W9RMX5nWHt+T9E4/ITec9aUAVBABgpVube/Ljo/+Y/O4rk7tvP37mY34k2fifk9MfNJjKAQCwIN0d///wpN/O9412nv/Fkafkx/2GAwCrlg5gAAAAALAUSul0qrrvmUkeMfuyExN57KvekrPKbTm73JazclvOKs2U2/PCi9Ye7Sx2921fztrSe2exJJ0LwO6+/WiHsTmtOeVYZ7HJDmKnnpk89ReSU86Y37YBVqEH5mC2rrkm+Z2fSA7fdfzMcy9NnvaqXDr+tPxZKYOpIAAAK9pNr31OZ4Tyj+3Ov/7FFTm3fD3put/A+488Iv/t8Ivz1n/z/w2ukgAALNoDczCbRvYdff1/jjwjPz7A+gAAg6UDGAAAAAAM2shIPvzaH+lp0bW1Jt86dPyIYnfeknzz68mdX0/uvCXv+8insq58I2eW23NGvpE1ZWJ+9Tl8V3LbFzpTt6f+wvzKAVhtDh5I3vs7edfaP+l01u3ur/ug9cnTXpV8x8ZOJ2EAAFiom96TvO2Xki9+KOd2R8szH5Y889fyov91JInMCQCw0n3g2V9M3tn8xvPQJ2XPj28bbIUAgIHSAQwAAAAAVpJSOqNwnXJGcvaF0y7y3Vu6XkxMdDqMdXcSax7f8La9WVduzw8+bG3z/i25+/avTjvC2L11NCfdZ2yJ/lEAK9xXb0je/brkY7uTOpG13dfannNx8r2vSi58lo5fAADM6LzLr5lx3k2vfU6S5DvL5/Of1uxK3rjvuPm31PvlzOf852TDy5LRk5LMXBYAACvDaI4k+//3sTcuefngKgMAtIIOYAAAAAAwzEZGklPXdaazHnbcrP/6950Lwn7wx55z9L3vvPytOS135WOXbUi+eUty59fzC3/89pyau/OrOi4AHO/m/cm7fyv55FtPmLVv4mHZ8KP/LXnYM3X8AgBgcQ5+NnnHq/MPJ+/KSKnH3h9dmz+4+1n5w8PPzzf+8tTkL982uDoCANBXm0b2Jbff3Hlx37OTi54/2AoBAAOnAxgAAAAArHLH32W85I6cmqwb70xJdh2ZSJL86gDqBtA2513+1jy+fDI/veav8z2jHz1xgfOfmhd96sl5/8QjctOFz1r+CgIAsKJNjvaVJJde/if5mTV/lbz+ncnE4Yx031fg0S9InvErufK1H1n2OgIAsPRetuafjr1Y/2+TNScPrjIAQCvoAAYAAAAAADCXI4eTG/4mf3Pyr+fikQMnzL72yIZs2nZlcu4lef9xHWsBAGCe7jyYvPd38q61f5BTyj3JxLFZbz/y2Dz9p34vOecxSZKbXvvtA6okAABL5eHl83nCyA2dF2U0ueTlg60QANAKOoABAAAAwCrVfVdxAGZw9x3Jh96UvP8Pkts+n4tHuuaVkeSRP5Rn77s0n6wPyU3nXjKwagIAsPKdmm8l7/qN5L2/l9x9W07pHvHrId+dzZ/ZmL314bmp6fwFAMBw+rHRrtG/Lnpecv8HD64yAEBr6AAGAAAAAAAw1Te+nN/f8Qv50dE9uX+587hZd9eTsnbDi5In/Wxy5gX55F4jfgEAsAj33JmfGP37vHLN3yVvv+24WR+feGge+dLfSr5jY/Ze8fcDqiAAAMvmzoP5odH3Hnv9+G2DqwsA0Co6gAEAAAAAAEz6yieS9/9+8pE356fX3HvcrIP1tLzpyDPzpsObsvf5Lx5QBQEAWOnOu7xzA4H75O68ZHRPXrnmrfnlk47v+JUzvyM//aXvz99PfFfq/7wnic5fAACrwof+JKeUezrPH/jo5CFPHGx9AIDW0AEMAAAAAABY3SaOJJ/6h+QD/yO56d0nzl83njzxp7Pu4hfnP5x8av7DDMVMXsgLAACzOSXfyktGr8u2NX+Xs8vtx888/cHJU7cnj31JrvnFfxpMBQEAGIyJI8n1Vx97/fitSSmDqw8A0Co6gAEAAAAAAKvTnQeT/X+cXP8/k9s+f8LsvRMX5urDz8nOf//LycjoACoIAMBQueebyfX/M+9e+xs5a2rHr/s9KHnKzyePe2ly0n2SJDe99jkDqCQAAAPz6X9KDnW+p7y1npYzHr1lwBUCANpEBzAAAAAAAGB1+fLHkg/uTD7yluTwt46bdbiO5G0Tl+SPDn9/9tcLO2/O0fnLhbkAACQzjwh7Wu7Mx557c/K+30vu/HrO6h7E4fQHH+v4tWbt8lQUAIB2+uDOo0/ffORpeeVJpwywMgBA2+gABgAAAAAADL8j9yafvCb54FXJ5957wuyD9bT82ZGn508Ob8qXcuYAKggAwLA5M7flZWv+KT82+rZkz53Hzbu5npkHP/cXk8f9qI5fAAAkX/tUcuCdSZIjteRNhzfmlYOtEQDQMjqAAQAAAAAAw+vgZ/MHr/uVbBn955xdbjth9scmzssbjzwrf3fkibk7JxvNCwCARbtp+6M6o3196E0njDj7r/Ws/P7hH8juI0/NZy79gQHVEACA1vngVUef7pnYkJtz9gArAwC0kQ5gAAAAAADAcDlyb/Kpv0/2/q/kwDvyU1N+Dbm3juYfJy7NGw8/K/vqhUnKQKoJAMBwubB8Ia9c83fJ774/qUeOm3fjxDnZeeS5+asjT8m9LtcBAKDbXbcmH/6zoy/feORZA6wMANBWvlECAAAAAABWpPMuv+a4199evpIXjb5jxtG+cr9zkvU/lpM2vCzPO/1Bed4y1RMAgCFWa3LTe5L3vz5vW/uPzXtd8895bPLkn8sFFz0vV46M5sqBVBIAgLY67/Jr8pOjf5vtJ30zSfLJiW/P+yceMeBaAQBtpAMYAAAAAACwYq3NPXnWyN5sHv3nfM/oR0+YP1FL3jlxcf70yDPyRz/7qmTUTyMAAMzf1JsPnJTDed7I+/ITa/4hjxz53IkrnP/U5Mk/l4x/b1KMOAsAwPROyuG8bM0/Hn39R0e+P4n8CACcyK+cAAAAAADAylJr8oUP5tVrrs5zR/8lp5e7Tlzmfuckj3tpRta/NE8fe0ievvy1BABgCJ2R2/Pi0bfn3655Wx5QDh03b6KW/NPEJfm+bTuSczcMqIYAAKwkzx95Xx44mStP+7b85s/+Wn5zzdrBVgoAaCUdwAAAAAAAgJXh0BeSj/x58uE/Sw7emBef8CtHSR62KdnwsuRhzzLaFwAAfXNBuTk/MfoPefF93pcc/tbxM9eckjz2RRl5wk/l+8562GAqCADAylNr/t2arpFmH7810fkLAJiBXz4BAAAAAID2uvuO5JPX5D27fyffPfKJjJR64jJnnJ889iXJxS9Mxh6y/HUEAGA4HTmcfPofkuv/KNetfWfnvcNd8+93TvJdr0g2/Hhy6rpB1BAAgJXsxrfnopEvdJ6fdGonVwIAzEAHMAAAAAAAoFW+8/K/ylNH/m+eP/r+PGNkf04p9+TJo8cv8416St565AnZfeR78hc/83NJKYOpLAAAQ+fSy/8kPzL6jrx4zdtzTjl44gLnXJw88d8nj/jBZM3Jy19BAACGw/tff+z5417qpgIAwKx0AAMAAAAAAAbvyOHks/+cfOwvcv3av8rp5c4TFpmoJSMXfG/y2Jfkfg9/Tl508ql50fLXFACAYVRr8rn3Jtf/Ud639m9zUjly3OwjteS6ifV55k/8WvLQ73YDAgAAFufLH01ufHuSTtYcfcJPDrhCAEDb6QAGAAAAAAAsm/Muv+bo85KJrC+fyfNH35fvH/1Azi63J0lOn3ot7QMekTx6c0Ye8yPJ/R+8jLUFAGDoffOW5KNvSfb97+RrNyRJTurOo/c9O1n/bzO64WV55ti3D6aOAAAMn3f/1tGn/zRxab5/3fkDrAwAsBLoAAYAAAAAACyb0RzJ40duyLNHrs+zRq/PA8uhaZf7/MTZechTfyx51ObkgY9Y5loCADDUJo4kN74j+dCbkk/9fXLknhMW+cDEw/P4Lb+QXPT8ZM3JA6gkAABD62ufTj7+10df/v7hH8j3D7A6AMDKoAMYAAAAAACwJCZH+1qbe/KkkY/l2SPXZ+/afTmj3DHt8l+pY7nmyBPyt0e+Ox+uF+SmZzx3OasLAMCQe8oVb8iW0X/O5tF35UHl4IkLnHxa8pgX5lnvfVg+VR+Smx79nOWvJAAAw+89r0tSkyRvP/LYfLwa/QsAmJsOYAAAAAAAQP996/Y8Z+Rf8uzRD+ZpIx/OaeVb0y93yrrkouclj96cBz70SXn5yGhevrw1BQBgSJ13+TU5LXfmWSN788Oj78q7135i2uU+NPEdefOR781bv/WE3PGeU5e5lgAArCoHP5t85C1HX77+8A8OsDIAwEqiAxgAAAAAALBo513+1oyXL+VpIx/K00c+nO8a+WR+/+Qj0y98vwd1On1d9LzkIU9MRv1cAQBAHx2+J/l/e/L6k343G0f25T7l3hOXOfWs5OIfyaZ3PiSfqecufx0BAFid3vvfk9p8b3r+92T/DRcOtj4AwIrhF1UAAAAAAGBhDt+dfO69yafflnec/Jc5f+QrMy+7bjy56Pmd6UGPS0ZGlq+eAAAMv4mJ5Av/0hlN4RN/ndx1a547OmWZMpJ8x6bkcT+aXPjsZM3JufZZA6ktAACr0JMuf2PesfZNObl0Xr/oU08ZbIUAgBVFBzAAAAAAAGBW511+zdHn55av5ikjH81TRz6SZ59yQ3LPHUmS86frz3XOxcl3Pqcz0tcDLkpKWaYaAwCwKkxMJDfvTT7xN/nX9/15zi1fn365Bz4qefSW5DEvSE5/0PLWEQAAGj+75i9ycumM/rV34sK8f+IRA64RALCS9LUDWCllfZJtSdY1bx1MsqvWuqef21mKbQ6i7gAArCzyLgAAbSOjyrrL4s6D+b6RD+TJIx/Lk0c+moeOfPXYvHuOX/SbdW3ue9Gm5GHP7Eynn7O8dQUAhoq8K+9Oa+JIXviLv53vG/1AnjW6N+eUg0mSc6fca+Bf61n52yPfnb8+8qS87SdfOYCKAgBtIlsObzkrxldvyL8ZfffRl5e8/Ldz03lPHmCFAICVpm8dwEopO5NckuQVtdb9zXvjSXaWUrYn2VJrPdSv7fVzm4OoOwAAK4u8CwBA28iosu6Sufeu5F+vT258R3LgnckXP5Q/PLnOuPjnJh6Qt088Lm+feFw+MHFRPv0jP7h8dQUAhpa8K+8e5/A9yefek3zib5JPXpM3r/3atIvdWk/LGZd0Rvo699ufkJ8aGclPLXNVAYD2kS2Ht5wV5e2/ntHSfM/6HRsTnb8AgHnqSwewUsq1ScaTbOgOXLXWA0k2NfP3JbmgH9vr5zYHUXcAAFYWeRcAgLaRUWXdvrr7G8kXPpDc9N7kc+9Lbt6XTNw78/In3Tc570nJ+Pcm37EpDz3rYfnxUvLjy1VfAGDoyburN++ed/k1R5+fldvytNEP5WkjH85TRj6a+5W7pl/plHXJw5+TPOIHc8b535OsOXmZagsArASy5fCWs6J84frkk2899voZvzK4ugAAK9aiO4CVUrYm2ZgpQWyKLUluLaXsrLVua8s2B1F3AABWFnkXAIC2kVFl3V50Xzg71U2/8sTk8/+SfO69nelL/zepEzMuf6SWfKRekHdPPCo/8+9ekZz7XS6qBQCWjLy7ivPuxEQeXQ7k6SMfytNHP5SLRw7MuOhX61j+6cgleenLfyZ56JOS0b7c/xgAGDKy5fCWs6JMTCT/uP3oy7898sQ8/5yLB1ghAGClGulDGTuSHJgcgnU6TUjbk2RrM0RrW7Y5iLoDALCyyLsAALSNjCrr9mxNDudR5UBeOvq2/NZJf5C3n/zzyZXnJ3/+ouT9r0+++KFpO399ZuLBedPhjdl2z8/lcXdflR+657/mdYdfkJz3ZJ2/AIClJu+uprx7283Jh/80+cttyesenr9b+0v5uZP+YtrOX1+YODtvOPzsbL77V/KEu1+fXz788mT8qTp/AQCzkS2Ht5zWO+/ya3Le5dfkF355e3LzviTJ3XVNfvPwCwZcMwBgpVpUB7BSyuYkY0l297D4ruZxUb3x+7XNQdQdAICVRd4FAKBtZFRZd1a1JrfelHz8r/OqNf8nbzn5V/P/Ttuat679pfzaSW/MD4++J+MjXz5htYlakm97dPL4VyYv+ONs+NYfZtM9v5GX/vpfZOer/0s+8toX5KbXPic3vfY5y/5PAgBWF3l3FeTdOw8mn/ib5K0/n/zehuS3H5H89U8mH/nz5I6vHL9sGU0e+qS8+t4XZePdV+Yp9/z3/NfDP5a99eGZ6Mv9jgGAYSZbDm85K8np+Wa2r/nzo693HnluPl8fOMAaAQAr2WJvgzQZrG7sYdnJ2zNtTrJ9tgWXaZuDqDsAACuLvAsAQNvIqLJuzrv8moxkIuPli3lkuSmPGrkpjyw35ZEjN+X+5c4kydbJb/8Pn7j+PXU0H6/n5wMTD88HJi7KvokLc/tN901umlzi/svwrwAAmJa8O4x598i9yXW/mhz45+TLH01SZ1z0lnq/vHPi4vzwC1+eXPD05JQz8qokr1q2ygIAQ0S2HN5yVoxfXPN/cla5vfPi9HPzM//+D/MzJ5862EoBACvWYjuAXdI8Hph1qeOXGS+ljDVDtA5ym4OoOwAAK4u8CwBA28ioqzHr3vG15Gs3JF/9ZPK1G/KXJ78rF5XP55RyT2/rjz0kOffSzvTgS3Lytz06jzvpPnlcktdefs2SVh0AYJ7k3WHMu6MnJZ/42+TQ506Y9a16Uq6f+M68f+KRee/EI/PROp6JjOSHH2X0WQBg0WTL4S1nRXjayIfywjXvPPbGs1+d6PwFACzCgjuAlVLG0xmKNekhjNVaD5RSJl9ekmTPoLY5iLoDALCyyLsAALSNjLoKsu43b2k6et2QfO2TRzt85c5bjlts/cjMRRyq983HJ87Lh+sF+dDEw/JHr3plctoDZlz+pte6sBYAaAd5d8jz7vhTk/1/nMN1JB+p43nvxKPyvolHZv/Ew3J3Th507XNgB4YAACAASURBVACAISNbDm85K8Y3b8mOk64+9vqR/yZ5xA8Mrj4AwFBYzAhg413PDy5i3UFscxB1BwBgZZF3AQBoGxl1mLPue383ufaX57fO/c5Jzrk4+bbHdB7PeUzG7v/teVIpedLS1BIAYCnJu8Ocdy/5ifzEv5ydD0xclDty4qgHbkwAAPSZbDm85bTfkcPJ7pflAaUZtOy+D0ie81uDrRMAMBQW0wFsbO5F+r5uv7Y5iLoDALCyyLsAALSNjDrMWXfd+TPOurOuzWfqg/OZem4+PfHgfKo+JB+fOC97/8uLl7GCAABLTt4d5rz7oMfmuombk+jsBQAsC9lyeMtprfMuvyZJzX9b84a8ZM27js34gd9PTl03sHoBAMNjMR3AFuJQOkHszBW4zUHUHQCAlUXeBQCgbWTUlZJ1z74od9WTj3b0+szEg/Ppem4+Xc/NzfWsfPa1z8vFg64jAED7yLsrJe8CALSfbDm85SyLkUzkV9e8MS9Zc93R937r3s35jxc+c4C1AgCGyWI6gB3tjl5rPTTPdRfaG79f2xxE3QEAWFnkXQAA2kZGHease+YFecTdb0jNiBERAIDVSt4d5rwLALC8ZMvhLaedvvSR/NnJv57Hj3zy2HuPfkH+4w/tHFydAIChs5gOYIsJVAsdy7Rf21yWupdS9s0w6+IbbrghGzZsWEQ1Zvalm29Lkmy49leWpHwA4ERLff694YYbkuS8JSmcmci7c5B3AWD1kHdbQ0Yd8qz7RVkXAJadrNsq8u6Q513f7QLA8lvFeVe2HN5yZjWQrHvHV5NvfPH49+5zRnLGvuTVl/Z/ewBAktWZdRfTAYyFO3LXXXfdtn///puWciP7v7KUpcOMHt48fnLWpYBeOaZWmCU8/56X5PYlKx36S95lmDk3Q385plYYeRdk3ZZzXmEqbYLpaBdM9fAk2f+VJWsT50XWZeWQd9vNOYyptAmm0iaYjrwLHUuZdaf5/L0l+ewtS7ApOIHzP4OmDTJIqy7r9qUDWCllbJ5Dsh5syzaXsu611qW5LRa02OQdNLR/6A/HFLSDvDs9n02sRs7N0F+OKVg4GVXW5UTOK0ylTTAd7YKptIl2knflXU7k84qptAmm0iaYjnYhWw5zOdMZRFt3nDFI2h+Dpg0ySKux/Y0sYt35hK9+rduvbQ6i7gAArCzyLgAAbSOjyroAAMNM3pV3AQD6RbYc3nIAAFatxXQAW8hdDsaax4WOa9qvbQ6i7gAArCzyLgAAbSOjyroAAMNM3pV3AQD6RbYc3nIAAFatfo0ANr6IdQexzUHUHQCAlUXeBQCgbWRUWRcAYJjJu/IuAEC/yJbDWw4AwKq1mA5ge7uer5tr4VJKd2DbO+OCy7PNQdQdAICVRd4FAKBtZFRZFwBgmMm78i4AQL/IlsNbDgDAqrXgDmC11kM51qu+l974Y13PDwxym4OoOwAAK4u8CwBA28iosi4AwDCTd+VdAIB+kS2HtxwAgNVsMSOAJclbmsexWZfqmAxs+5sgN+htDqLuMPRqrRtqrRsGXQ8YFo4pGDh5FziOczP0l2MKFkRGlXWZgfMKU2kTTEe7YCptonXkXXmXGfi8Yiptgqm0CaazytuFbDm85bTKKj/OGDDtj0HTBhmk1dj+FtsBbFfzuKmHZV/YPL65JdscRN0BAFhZ5F0AANpGRpV1AQCGmbwr7wIA9ItsObzlAACsSqXWurgCSrkxnZ72Z8zWy76UUpMcqrWeMcsyu5JsTHJVrXX7Um+zn3UHAGA4ybsAALSNjCrrAgAMM3lX3gUA6BfZcnjLAQBYjRY7AliSbGser5hpgVLK1ubpK+ZYZnM6Q7teVkpZv9Tb7GM5AAAML3kXAIC2kVFlXQCAYSbvyrsAAP0iWw5vOQAAq86iO4DVWvck2Z5OqN04dX4pZTzJznTuerB7sdvr5zYHUXcAAFYWeRcAgLaRUWVdAIBhJu/KuwAA/SJbDm85AACrUam19qegThDbmWR3kmuTHExnuNsrkmyvtV7VQxnX5tgQudt6WH7R2+xnOQAADC95FwCAtpFRZV0AgGEm78q7AAD9IlsObzkAAKtJ3zqAHS2wE8omh7c9sBw98Pu1zUHUHQCAlUXeBQCgbWRUWRcAYJjJu/IuAEC/yJbDWw4AwGrQ9w5gwPBohlPels6dNcbTucvGgSS7kryl1npoHmWtb8pa17x1MMmuZkhnIEfvFLSj1+PCcQUACyfrwvKTdwGYtNgs1nV34D3p3B14f5KDtdZDpZSxpszxJJuSjNdaN/VQJ+edAWjzvtQmll+zz29NclWSG5u3D6Xzt59T9wVibW5bzK6UclmS1FqvXMC6rTr+tRlYnWRdurV5f2oXy0/eRdaF4eI4WH18ji9dOcysjde2DGs5TK/5/8XWNP+3SOfvvDed/4PsrLUemEdZrdrnbSun5+3pAAZMpwmr25LsSOeD+lA6d9p4YZLNzWLbehz+emeSS5K8ota6v3lvPJ0vo5Jky3xCCAyjUsrmdEL5ll7uZOO4AoCFk3Vh+cm7AEzqRxbrOq/MZU96OGc47wxOW/elNjEYzUWs1y5w9QO11gu6ympl22J2zTliR5Ira63b57luq45/bQZWJ1mXqdq6P7WLwZB3VzdZF4aL42D18Tm+dOUwszZe2zKs5TC9pg2+MM3NJyY7ezX/t9mRTnu8qta6rYeyWrXP21bOfOgABpyglLIjnTsAbZlhfvcXSbMG2tK5w/t4kg3TfYBNzu/+ogpWm6aH/GeTjKWHC2IdVwCwcLIuLD95F4BJ/cpiPVzodiCdUSd7+dHTeWeA2rgvtYnB6bqQZiE2dd9Ns41ti+k1P4ZvTLI9nb9zMs+Lqdp2/GszsDrJukynjftTuxgceXf1kXVhODkOVg+f40tfDjNr47Utw1oO02va4NhsnbtKKTemsw/21FlGHW7bPm9bOfM10s/CgJWvdIYh3DhTaEiODis/GRYua4LEdGVtTScAz9Z7dUuS8aYHLKxWO9K5GHZOjisAWDhZFwZG3gWgr1mscWWSM5JsSucOmNvTOUdcUGu9oMeL3Jx32qE1+1KbGLgL0mkPF9RaSy9TOvvjqu6LYbu0pm1xolLKZaWUmmRfOn/D7UnmHC14mnJadfxrM7A6ybrMoTX7U7sYOHl3lZB1tReGl+NgdfA57nwwaG28tmVYy2F6TQfY9bN1/mpMzt+oDS6snIUwAhhwnKa36fbaDEM4x7K3pnMR33FDzU+Zf7DHHrAb0/kS6sDCag4rUxPWJ4fkHc8cIyI4rgBg4WRdWH7yLgCT+pzFNie5dD53Wp1lO847A9S2falNDFYpZV+SZ8zyY+nU5ceSXFdr3TDNvFa1LU5UShmbuq9LKbvS+b9Dz3fTbtvxr83A6iTrMpO27U/tYrDk3dVD1tVeGF6Og9XB57jzwaC18dqWYS2H6ZXO6F+XJdmfOf4P03SYTWYYBaxt+7xt5SyEEcCAqcZ7CQ2NybsFjTcX9R3VfNk0lt7ufDA5DOlcPYVhGO2Yx38KHVcAsDiyLiw/eReASX3JYv3ivDM8+rUvtYlWONjrxbCNq3PsLrd9p00srXnu62m17fjXZmBVk3VZMs5TQ0XeXSVkXe2F4eQ4WD18jjsftECrrm0Z1nKY1VjzuD7JC3pcZ93UN9q2z9tWzkLpAAYc1Zz8x0spt5YZhmKc4sau55dMmbdtmmVmMtmjtZdtwtAopVyWZD5DezquAGCBZF1YfvIuAJP6nMX6xXlnePRrX2oTA9SMbtDz3S+bz5KDtdY9S1crbWIFaNvxr83AKiTrsgycp4aAvMsCtO3Y117AccD8tO3zt23lMIOWXtsyrOUws2ubx0NJZvw/SfP/nEkHp1mkbfu8beUsiA5gQLfx5nEsyRU9LL+36/nUIQwng0QvX2BNLjM+5WQAQ6tp65fWWnvpAT7JcQUACyfrwjKSdwGYop9ZrF+cd4ZHv/alNjFAtdZDtdae7oDZ/M2vyBKOhtDQJtqvbce/NgOrk6zLUnOeGgLyLgvQtmNfewHHAfPTts/ftpXDzNp4bcuwlsMMmus8zqi1nlFrne3v3D3q17XTzG/bPm9bOQuiAxjQrXvI0L0zLnXMeNfzWyaflFLGc2z4xzk/3KacHJbqLmfQNldnHl/YOq4AYNFkXVhe8i4A3fqSxfrFeWd49GtfahMrztVJttdaDy3VBrSJ9mvb8a/NwKom67JknKdWLXl3lWvbsa+9gOOA+Wnb52/bymFOrbq2ZVjLYW49/n9kclSrQ0mu6p7Rtn3etnIWY00/CgGGQ631QCnljCTjtdb9c65wfHDYP8P70w3p2GuZMJRKKRuTXD9Hz/ipHFcAsAiyLiwfeReAqfqYxfrFeWd49GtfahMrRJM1U2vds8Sb0ibar23HvzYDq5SsyxJznlpl5F0abTv2tRdwHDA/bfv8bVs5zKKF17YMazn0x+Qox9PdwKJt+7xt5SyYDmDAcZoP4F6/aL60a73uL58WM0ShITZZDbbXWjfNcx3HFQAskqwLy0beBeAEfcpiJ2jutLe5e50k1ye5apa7EzrvtNCA96U2sXLsTLJhPiv4nBhabTv+tRlYxWRdeiHv0iN5l6R9x772Ao4D5qdtn79tK4c5tOzalmEth0UqpexIp0PTlbXWq6ZZpG37vG3lLNhIPwoBVp9SyliODd14ZR+KnPzS6cw+lAWt1YSeHcu0OccVACyArAsLJ+8CsFjzyWLNeWd7kt211i2TUzP7s6WUzbOsPl/OO0tohe5LbWKZlVK2Jtkzy0Ws062zEtsWS6dtx782A6uMrLt6rdD9qV0sM3mXRWrbsa+9gOOA+Wnb52/bymEaLb62ZVjLIZ0bUJRSdibZmmRLrXV7H4tv2z5vWzlJjAAGLNzWruevmTJv3eST+Xwx1dDDmqHV3HlrbK67+c3AcQUAy0fWhQWQdwHok9my2NTltkx33qm1XllKOTPJrlLKllrr7imLOO+0Sxv2pTaxMuzI/EZDaEPbYum07fjXZoBeyLqrUxv2p3axMsi7TGrbsa+9gOOA+Wnb52/byqF/luPalmEth3kopVybzt9+PJ2/41VJzp9jH7Rtn7etnAUzAhgwb02v8ck7um+Z5gNsMR9Q6+ZeBFasnencfWshHFcAsAxkXVgUeReARekhi03anxkucpvU3HHwUDoXu009zzjvtEdb9qU20XKllMuSHKy1Huhxlba0LZZO245/bQaYlay7arVlf2oXLSfvMkXbjn3tBRwHzE/bPn/bVg59sIzXtgxrOcxDrXVTrXVDrfWMWmtJcm2S60op1zY3Cp5O2/Z528pZMB3AgIW4unm8cpq7BAHTKKVsTbJrAT2+AYDlJevCAsi7APRJT1ms1nqgxxEn39I87ph1KQbGvmQerkjS8//RtC0AWkjWXYXsT+ZB3gUAYD5c28LA1Fp311o3pNOh6cZSyuZB12k10QEMmJfmor7NSa5q7hY01/Lz7el6cEEVgxZrjoMttdar+ljefDiuAKAHsi4sjLwLQD/MN4v16Nrmcess23XeWRmWbV9qE+1TStmYzl01r51r2QXwOTEE2nb8azPAVLIuPZB3VzF5l9m07djXXsBxwPy07fO3beWwMIO6tmVYy2FRtjSPu2brBNa2fd62cuZLBzCgZ6WU9Ul2phMats2y6GLu+O5u8QyjHUkW+2OO4woAlpCsC4si7wKwKPPIYvN1oGsbG7ved95ZeZZ6X2oT7Tb5ubB3Ccr2ObFyte3412aAacm69EjeXd3kXaZq27GvvYDjgPlp2+dv28phEQZwbcuwlkMf1FoPJJkcmfjqKR2i2rbP21bOgukABvSk+VC+LsnuHr6YXkgP1ckP/VsWsC60VhO4D9Va9y+yKMcVACwRWRcWTt4FYLHmmcXmq/uHlPGu5847K89S70ttot02p5M5l+IHep8TK1fbjn9tBjiBrMs8yLurm7zLVG079rUXcBwwP237/G1bOSzQgK5tGdZy6J9dzeNYjh95uG37vG3lLJgOYECv9iXZU2vdMueSM3+B1As9rBk2O3oZZrcHjisAWDqyLiycvAvAYs0ni81X948wF3Q9d95ZeZZ6X2oTLdU1SsGBWRdcOJ8TK1fbjn9tBpiOrEuv5N1VSt5lBm079rUXcBwwP237/G1bOSzcIK5tGdZy6J/u/8ts6nretn3etnIWTAcwYE6llGuTHJjHF9Pdw9Kv66H87g/ApRjSHgaiGQ1hYymlzjXlWBDYNWXe5uZ9xxUALAFZFxZO3gVgseabxUopY6WUW5tzyMa51zjunNJ9Vz3nnQFr4b7UJtpr8gfjni6IbWHbYum07fjXZoDjyLqrWwv3p3bRXvIu02nbsa+9gOOA+Wnb52/bymEBBnhty7CWwwxKKetLKTc20/oeVum+6cRMf+827PO2lbNgOoABsyql7EySWuumWZYZ6/6Aaoaln+yl2kvv1rGu50t1VyNYdrXW/encRauXadK27vdrrbubshxXANBnsi4sjrwLwGIsJIsl2Zhj54BefuSc9nzhvNMKrdqX2kSr9XJR69TlW9O2WDptO/61GaCbrEtatj+1i1aTdzlB24597QUcB8xP2z5/21YO8zfIa1uGtRxmdUU6f9vxdK7vmI+jI1y1bZ+3rZzF0AEMmFEp5bIk47OFhsbGnPil1Fuax7HMbfIDcH/zwQhDo9Z6oJepa5WDM7yfOK4AoG9kXegPeReAhVhEFjvU9birh011//CyZ8o8553BauO+1CbaafIOowdnXeqYNrYtlk7bjn9tBpB1mdTG/aldtJO8y0zaduxrL+A4YH7a9vnbtnLoUUuubRnWcphe9/9Nbuxh+e5RsJbqGpBhLWdBdAADplVK2ZzkhT2EhiS5NCd+aE9+0dTL+i9sHt/cY/VgtXJcAUAfyLrQWo4tgFVgkVlsbzo/kJxRa5164dp0JrexZ5ofVZx3BquN+1KbaJlSSvePp73+MNrGtsXSadvxr83AKifr0qWN+1O7aBl5lzm07djXXsBxwPy07fO3beXQgxZd2zKs5TC9fencPGJLrfXKHpbv3g9T/85t2+dtK2dBSq21X2UBQ6KUsj7Jjh5DQ0op16bzQX9oyvs3ptNz9YzZeq2WUmqSQ7XWMxZRbVjRmuMg6RxLu2dZznEFAIsg68JgyLsAJP3JYqWUXUleU2vdP8e6Y0lubV5umG55553BauO+1CbapfnM2Ne83N7jj82tbFv0ptl3m5NcWWvd3uM6rTr+tRlYvWRdpmrj/tQu2kXeXV1kXRgOjoPVy+d4/8thdm27tmVYy+FEzf8j9qXzf4g5b1TRtS8O1FovmGV+K/Z528pZCCOAAccppYyn0zN1Vyll8yzT1lLKZaWUnUk2zvDhta15vGKW7W1tnr6iv/8SGFqOKwBYIFkXVgTHFsCQ6mMW296UMT7HJq9uHq+c5aI4553BauO+1CbaZd0C12tj26I3Y1Mee9G241+bgVVI1mUGbdyf2kW7yLuri6wLw8FxsHr5HO9/Ocygpde2DGs5TNG0ox1JrivHj1p8guZvPPn/ki0zLNa2fd62cuav1moymUyptSadcHpjkjrPad8sZV7WLLNxmnnjzbydg/63m0yDmprj7rKu4+naJONzrOO4MplMJpNpnpOsazINZpJ3TSaTyVRr/7NYko1NeZtnmL+z1/OF887A20br9qU20Z4pnbsqT34eXDbPdVvXtkyz/o3HpuzvW5t9ONbj+q06/rUZk2l1TbKuaY590Lr9qV20Z5J3V8ck65pMwzc5DlbX5HN8acsxzdjmWnlty7CWY5rx77u1+cyb6f8c3deBnLAP2rzP21bOfKfSbABgsqfpzgWsurvWOlPP3ZRSNjbl7k7nYr+D6YTgK9IZxv6qBWwTVrTmrgtb51qu1lpmWN9xBQDzIOvC8pJ3Aei2FFmslLI+nbuZjyXZn+RAOj+mbEznvLG91rq7x/o57wxQG/elNtEOTdvY17zc0ms7mLJ+q9oWx5RSNqdzJ+Nebagzj1zRuuNfm4HVQ9ZlLm3cn9pFO8i7w0vW1V4Yfo6D4eZz3PlgkNp+bcuwlsP0mv9z7EhySZI96fyfYyydv/F48962WuuBHspq1T5vWznzoQMYsGyaD7n1zcsD8/3yCjiR4woA2sE5GZaGYwuAuZRSJi9uG0tyKMne2X5sn6Ms550BauO+1CYGr7ngJov527exbbF02nb8azPAYjiHDZc27k/tYvDkXeajbce+9gKOA+anbZ+/bSuH5dG2/d62cpheKaW701fS6Qi2p9Z6aAFltWqft62cnralAxgAAAAAAAAAAAAAAABAO40MugIAAAAAAAAAAAAAAAAATE8HMAAAAAAAAAAAAAAAAICW0gEMAAAAAAAAAAAAAAAAoKV0AAMAAAAAAAAAAAAAAABoKR3AAAAAAAAAAAAAAAAAAFpKBzAAAAAAAAAAAAAAAACAltIBDAAAAAAAAAAAAAAAAKCldAADAAAAAAAAAAAAAAAAaCkdwAAAAAAAAAAAAAAAAABaSgcwAAAAAAAAAAAAAAAAgJbSAQwAAAAAAAAAAAAAAACgpXQAAwAAAAAAAAAAAAAAAGgpHcAAAAAAAAAAAAAAAAAAWkoHMAAAAAAAAAAAgFWslDJWSlk/6HoAAMBSkHeBYVBqrYOuAwAAAAAAAAAAwNArpYwl2ZhkXZILkowlGU+yvda6fxnrsTXJ9qYeY12zLqi1HliuevSqLX83AABm15bcJu8Cw2jNoCsA0E+llJ1Jts4we3etdcs8y5url+y8ywQAgIWQdQEAAAAAhsILkuyc5v3xJMt5YeeBJLuTrE/nQtO2a8vfDQCA2bUlt8m7wNAZGXQFAPpsR5JNzbQtnQA3aXPTo38+NqVzB4Cp4Wl3U/72BdYTAADmS9YFAAAAAFjhaq1X1VpLOnf13zPAeuyptW6vtW5KcuWg6tGrtvzdAACYXVtym7wLDKNS61w3/AZYuUop1zZPJ3vvH0pyfq310ALL2phkW631qj5VEQAAFkTWBQAAAABY2Uop65Psa15uqbXuHlA9NifZ1by8oNZ6YLblB60tfzcAAGbXltwm7wLDwghgwGrQParBWJKrF1jOjiSHXBALAECLyLoAAAAAACvXvG/otUTaUo9erbT6AgCsVm3JbW2pR69WWn2BZaIDGLBavKLr+eZSysYZl5zZgSQH+1QfAADoF1kXAAAAAAAAAABgiOkABqwKtdb9Sa7semvnoOoCAAD9JOsCAAAAAAAAAAAMNx3AgFWj1ro9x4ZFHS+lXDbI+gAAQL/IugAAAAAAAAAAAMNLBzBgtXlF1/MdpZTxgdUEAAD6S9YFAAAAAAAAAAAYQjqAAatKrXV3kj1db+0cVF0AAKCfZF0AAAAAAAAAAIDhpAMYsBpt6Xq+sZSyeWA1AQCA/pJ1AQAAAAAAAAAAhowOYMCqU2s9lGR711tXl1LGBlUfAADoF1kXAAAAAAAAAABg+KwZdAUABqHWemUp5YVJ1icZS7Ijybal3GZz4e3GJOPNWweS7Gku0u11/XXN+pPP39K9/pRtHEpysNa6e5H1nixvrClzb611/2LKBABg6ci686q3rAsA0AKDyIOllPGmvAVnwaWqdyllfZJLFlO3acqUfQEAhkw/Mu08trM+xzLtgVrrnj6UK6MCADAjeRfgREYAA1azV3Q939r8qN53pZSNpZR9SfalE+YONNOlSfaVUq6da9ullK1Jbk1yY5Jrk+xKsjPHLrBNKWVHkqubl5MhcUcppTbz5lvvy0opt+bYxcL70wmiV5dSbi2lXDbfMgEAWDay7uzblHUBAFpiufNgKWW8lLIrnRsldJd3RVPezl5G0e1DvXdOU+bmUsq16VzUMJmtN6STrW9cSK6XfQEAhk+/Mm0P29nY5NPtU7azvcmS8/5utilXRgUAYEbyLsDMSq110HUAWDKT4WymXvPNj+xbm5cHaq0XzFLWeJJrZ1tmmnV2JdmcZFut9aoZlrksnaB6Za11+wzLjKVzx9fxdMLm5EUEG9K5CGBXZvh3dl0wsLvWuqWHOo+nc8HCuiTPmKHMHUkuS7K/1rphrjIBAOg/WVfWBQAYBsucB9cnuSLJK6YbrbaZf13zctq82Od676m1bmreuyzJmdPl5uZOsdc2Ly+otR7o4d8q+wIArABNbruxebmlx9Fi+5Jpp6x3XOZM52LVsXQy7XTb2ZhO5j2YZNNyZ9T5/t0AABgMefeEZeRdYFGMAAasarXWbekMrZok4/3sWd+MhLA5nfA37QWxTR2uTCdMXtZcRDvdModqrXuacqZeALArnYtuZwqyk8tvbkLhbHUez7HRG2YMx81FCLuTrG8uVgAAoGVk3RPqLOsCALTQMubBsSQ7aq1bpvtBv6nL/iRb0vnh/7rZyuxTvTc2d5ndmBk6fzXb2pOuEcRmqtMk2RcAYDj1O9POYmeSsVrrtlm2s6fZzng6I9b6fhYAgEWRdwHmpgMYQPKKruc7FhgIj9OMtrA+yVVNEJxVc5HAnnQuVJjrwtzuOwlsS7JrtrsLNEHyUNfys9mVTjC+soc7I7ymedxYStk8x7IAAAyGrHuMrAsA0H5LmQdfkE6+u7G5S+xMZe5J5wf4sfTQ2aqxmHpvSaez2LSdv7q8uXnsJZ/KvgAAw2kpM223dc0NxmbVbOeqZjtzXbwqowIAMBd5F2AOOoABq14zNGr3has7F1Nec7fWrc3LuX607za57FwX5nbfceAFs4240GXyYoMZQ3EpZWvX/NfMtNykJqROBtUreqgDAADLTNbtkHUBAFaMJcmDjU3N43jmzniTP+b3+uP7Yuq9NXNfPNC9fGa7+EH2BQAYakuZabvNmSO7TH73Oz7TDcBkVAAAeiTvAsxBBzCAju7e/IvtVT95R4H9Mw0PO50pd33t9a4Ec4640DjYPK6bZZnJw6QgIgAAIABJREFUoDqfek9uf66LKwAAGBxZV9YFAFiJ+pkHk+NH6Zqrw9VkmSmljPVYj0nzrXev63TnWNkXAGB1Wq5MO5/vfg911Wumi1dlVAAAeiHvAsxBBzCAJLXWAzl+BIOrF1JOM5rBZCDr9Yf+bnubx14vyr1+nuVPG3SbO8ZOjsSwd7plZnBjVxkb51kXAACWgawr6wIArFB9yYOTaq3b07mD7IYeR+iaNFfHsqnmW+9DTWafy8G5FpB9AQCG2zJm2vma/L54bGqelFEBAOiVvAswtzWDrgBAW9RaryylbEsnjI2VUnbWWrfNtd4U3UHslgVU4+gP/aWUjbXWuS6s7flOBHPorveNMy51ou4LE+Z7FwUAAJaJrHuUrAsAsHL0Kw8eNTWDNneGvSSdiwrG0rlQYCzHfrBP5p8F51vvOTt2zYPsCwAw5JYp087Xvq7nm3L8DcRkVAAAeibvAsxOBzCA423JsbC2tbkwdv881t/Q9XwhFyh0r7M+c4+s0K+LAy7oer6tlLKpx/XW5VgQ7fsFGQAA9JWsK+sCAKwk/ewYdZzmjqrb0/lxfn+SNzfTgVrroVLK5iS7Flj8ktW7B7IvAMAqscSZdr66M/D4lHkyKgAA8ybvAkxPBzCALrXW/aWUq5Jsbd66Osdf6DqX7qFkF/JDf/dICmcuYP2F6q73jnkOnwsAwAog6yaRdQEAVrXmbrHXpXNDgkNJNvUwMu1KIvsCAAy5lmba7gtWp14QK6MCANAzeRdgdiODrgBAC23PscC2vpRy2QLLWTf3IidYzgthAQBYfWRdAABWpVLKeJLPpnPhwP4k57fgwgEAAOhZizPtWNfzQY6ICwDACibvAsxNBzCAKWqth5K8ouutHc1dBXpxoOt5r+t0617nlhmX6r/F1hsAgBVA1pV1AQBWsWvTyYOHkjyjycbDRvYFABhubc203TcMOzBlnowKAECv5F2AOegABjCNWuvuJN13DtjV46rXdz1fyAgH3UFxOe9ccG3X8wuWcbsAACwzWRcAgNWmGfl2vHm5fTEXDpRStvanVktC9gUAGFItz7Td2XPflHkyKgAAc5J3AXqjAxjAzLZ1Pd+YZHMP63RfyLp+AducXOdQrXX/AtZfkCnD5F6yXNsFAGBgZF0AAFaT7vz7lh6WXzfLvO2LrMuSkX0BAIZamzPtxq7nx9VNRgUAoEfyLkAPdAADmEGt9UCOD4I7eljnUJKrmpcbZ1t2qlLKeI7dweA181m3Tybrvb6UMq+haEspu0opC7kIGACAAZB1eyfrAgAMhckseqjHO8eu5Du1yr4AAMOpzZl2MkPunqFuMioAAHORdwF6oAMYwCxqrVcmOTDP1Y5eSDvPoWQn72BwqNnuctueZDKcznkB8KTmYt71yzmKAwAAiyfrzk3WBQBYtXoZIbetZF8AAJLFZdpNvS5YSrms6+VMIy3IqAAA9Ju8C6xKOoABw657pIGF2jKfhZse/pPr7OilR38T5CaD4jPmV73+mFLvrfO4q8DOHD/8LgAAy0PW7ZGsCwCw6k3e+GCsyaczKqVsTLK76611S1arJSD7AgAMreXKtIeSbJ5rG812xnLsAtcttdZpbzgmowIA0AN5F6AHOoABQ6sJUeNZZEBqetdfNeeCx6+zu9nuWJLrZrswtgmS1zYvN/XQm7+7rF6D67opj9Oqte7JsSB63VxBtJSyK8n+Zj0AAJaJrHscWRcAYHgsVR7svjPrjHdgbfLrjlrr9iST2XVT1/yNSabLh0uWY2cod9YbMci+AABDaakz7aSrmuV3zfHd71iSfc3Lbc33xjOSUQEAmIO8C9ADHcCAoVJKGSulbC6l7Mix8LWxlLKvlDKfnvVTdQ/R2pNa61VJNqTzY/xnm+0fDYxNXS9LcmNT9gUzhblm2fEmnHaH2+2llI3NvLEp64yXUtaXUrYmmfx3j5VSLmven/YOBk1Q3ZDOHRX2lVJ2TF22+RvvS3J9E6QBAFhisu5x68i6AABDYjnyYJMDJ39831xKOeHH/Sa/7sqxUWtf0Txe1tRjfTrZefty1XuWbVwx0zam/JtlXwCAlurKeTu73p4x5y1Fpp3BzmZkg1ekc+Hq5mnqvjXJZ5uXm5rvi+fUj4w6378bAACDIe/Ku8DSKLXWQdcBoG9KKTuTbJ1tmVprWWDZm9Ppyb9pzoWnX/eFOfaj/qQ9SXbN1Yu/CZQ7Z1smyVW11qMjQJRSevmAP6MZfnam7W5MZ3SH9encYfZgM2t3jgVhAACWgawr6wIADKPlzoPN9rakM6Ju0vkxPulkwN1Tlp3seLU+nXy7bTInLke9mwsaZrzbbePKuTpvyb4AAO2ykCw5zfqLzrTTLVdr3TDDtpJOlhxLZ6SFN881CsJsFpJRF/t3AwBgeci78i6wdHQAA4ZOKWVshh/2x5JktotA22ymf9dM82b79670vwUAwGol6x57L5F1AQCGxUrNg8tR7/luAwCAlUHOWxh/NwCAlUFuWxh/N2AuOoABAAAAAAAAAAAAAAAAtNTIoCsAAAAAAAAAAP8/e/cdLVV1NmD82XMLIoKAPTa8EIWoSQRijyWARsEOliSWmE9IjCUmUTSWJEajGDXNxIC9R1BssUI09gaoscUICIIBlab0W2Z/f5zhzgW5l9vPXHh+a82as/fss88LruUczux3v5IkSZIkSZIkafVMAJMkSZIkSZIkSZIkSZIkSZIkSZKkAmUCmCRJkiRJkiRJkiRJkiRJkiRJkiQVKBPAJEmSJEmSJEmSJEmSJEmSJEmSJKlAmQAmSZIkSZIkSZIkSZIkSZIkSZIkSQXKBDBJkiRJkiRJkiRJkiRJkiRJkiRJKlAmgEmSJEmSJEmSJEmSJEmSJEmSJElSgTIBTJIkSZIkSZIkSZIkSZIkSZIkSZIKlAlgkiRJkiRJkiRJkiRJkiRJkiRJklSgTACTJEmSJEmSJEmSJEmSJEmSJEmSpAJlApgkSZIkSZIkSZIkSZIkSZIkSZIkFSgTwCRJkiRJkiRJkiRJkiRJkiRJkiSpQJkAJkmSJEmSJEmSJEmSJEmSJEmSJEkFygQwSZIkSZIkSZIkSZIkSZIkSZIkSSpQJoBJkiRJkiRJkiRJkiRJkiRJkiRJUoEyAUySJEmSJEmSJEmSJEmSJEmSJEmSCpQJYJIkSZIkSZIkSZIkSZIkSZIkSZJUoEwAkyRJkiRJkiRJkiRJkiRJkiRJkqQCZQKYJEmSJEmSJEmSJEmSJEmSJEmSJBUoE8AkSZIkSZIkSZIkSZIkSZIkSZIkqUCZACZJkiRJkiRJkiRJkiRJkiRJkiRJBcoEMEmSJEmSJEmSJEmSJEmSJEmSJEkqUCaASZIkSZIkSZIkSZIkSZIkSZIkSVKBMgFMkiRJkiRJkiRJkiRJkiRJkiRJkgqUCWCSJEmSJEmSJEmSJEmSJEmSJEmSVKBMAJMkSZIkSZIkSZIkSZIkSZIkSZKkAmUCmCRJkiRJkiRJkiRJkiRJkiRJkiQVKBPAJEmSJEmSJEmSJEmSJEmSJEmSJKlAmQAmSZIkSZIkSZIkSZIkSZIkSZIkSQXKBDBJkiRJkiRJkiRJkiRJkiRJkiRJKlAmgEmSJEmSJEmSJEmSJEmSJEmSJElSgTIBTJIkSZIkSZIkSZIkSZIkSZIkSZIKlAlgkiRJkiRJkiRJkiRJkiRJkiRJklSgTACTJEmSJEmSJEmSJEmSJEmSJEmSpAJlApgkSZIkSZIkSZIkSZIkSZIkSZIkFSgTwCRJkiRJkiRJkiRJkiRJkiRJkiSpQBWnHcC6KITwAdAJmJZyKJIkqe3oBnweY9wu7UCkNfF+V5IkNUI3vN9VG+C9riRJaoRueK+rNsL7XUmS1Ajd8H5XbYD3upIkqRG6UWD3uiaApaNT+/btu/bq1atr2oFIkqS24d1332Xp0qVphyHVl/e7kiSpQbzfVRviva4kSWoQ73XVxni/K0mSGsT7XbUh3utKkqQGKcR7XRPA0jGtV69eXSdOnJh2HJIkqY3o06cPkyZNmpZ2HFI9eb8rSZIaxPtdtSHe60qSpAbxXldtjPe7kiSpQbzfVRviva4kSWqQQrzXzaQdgCRJkiRJkiRJkiRJkiRJkiRJkiRp9UwAkyRJkiRJkiRJkiRJkiRJkiRJkqQCZQKYJEmSJEmSJEmSJEmSJEmSJEmSJBUoE8AkSZIkSZIkSZIkSZIkSZIkSZIkqUCZACZJkiRJkiRJkiRJkiRJkiRJkiRJBcoEMEmSJEmSJEmSJEmSJEmSJEmSJEkqUCaASZIkSZIkSZIkSZIkSZIkSZIkSVKBMgFMkiRJkiRJkiRJkiRJkiRJkiRJkgpUcdoB1CaE0BsYBnTNdc0DxsQYx6cQyzhgRBrXliRJkiRJkiRJkiRJkiRJkiRJkrTuKsgEsBDCSKAvcEqMcVKurwwYGUIYDgyJMS5opVgGA/2Bka1xPUmSJEmSJEmSJEmSJEmSJEmSJElaIZN2AKvKVdvqD/RbkfwFEGOcGmMckGtObKVYOgPXtca1JEmSJEmSJEmSJEmSJEmSJEmSJGlVBZUAFkIYSpL8VVeFryFAWa5KWEsbAXRuhetIkiRJkiRJkiRJkiRJkiRJkiRJ0hcUVAIYScLV1JqVv1aVSwwbDwwNIZS1VCAhhN7AAmBqS11DkiRJkiRJkiRJkiRJkiRJkiRJkupSMAlgIYTBJNW27qnH8DG592EtFxEjYozDW3B+SZIkSZIkSZIkSZIkSZIkSZIkSapTwSSAkU/mmlKPsSuqcg1uiUBCCOcAI1tibkmSJEmSJEmSJEmSJEmSJEmSJEmqr+K0A6ihb+59ap2jVh5TFkLoHGNc0FxBhBA6A9+IMV7RXHNKkiRJK4QQykg2P+gPlAHzSO5vxwCjm/PedpXr9s5dt2uuax4wJsY4viWuJ0mSJEmSJEmSJEmSJEmSpOZREBXAcotgO+eaa0wAizHWHNO31oGNcx0wvJnnlCRJklZUmh1HUvX2FKAPyb3nApIKtPNDCENb4LojSe5zR8YYh8QYhwAjgOEhhHG5TRAkSZIkSZIkSZIkSZIkSZJUgAqlAlhZjeN5TTi3SUII/YFXV0kwkyRJkposhDACKIsxdl/lo6nAPSGEwSRVwEaGELrHGJtlU4IQwjiSe+Y+NauL5e55B+Q+nwisGpckSZIkSZIkSZIkSZIkSZIKQKEkgDWl4kBzVisYHmMc0IzzSVKdup378Gr7p10+sJUjkSS1pBBCb6B/jLFPbWNijPeEEIaTVOY6J4TwaozxniZedyjQn1WSv1YxhKTy2MgY47CmXE+SJLVN/ttUkqTWU5/v3drGrDpOkiRJagnej0qSJEmS0uY6htUrlASwxlhAkvy1UXNMlqvIMKI55pIkSZJWMQI4ZU2DYoxXhBDOI7nPHQE0KQEsN8fUGOOkOq65IIQwHhgaQhhhNVxJkiRJkiRJkiQ1B5PJJEmSJElqPoWSANZ1xUEdlQlq0+QKYCGEMqBzjHF8U+eSpMZY8WCzroefkqQ2rayuJKxVjALOAcpCCL0bcN5KQgiDSe6VR9Vj+BiSSmHDgOGNuZ4kSWr7/LepJEmtpz7fu/WtCiZJkiS1hIbej3rPKkmSJElqbq5jWFmhJIA1JYmr65qHrNFIYEgzzLOSEMLEWj7q2dzXkrR2aEd52iFIkppZCKE3STLXfOCUGOOaqnpNqXHcF2hUAhhJMteq89VmRdWvwZgAJkmSJEmSJEmSpGbk5gaSJEmSJDVdoSSApSaEMBQY04jKY5JUp9oeWtZ8sAnQI8yEf/wU/vs47603M+m88lz4cn8GvvQV3o7d1jiHJKmgleXeOwPnAWtKAJtQ47h7E67bN/c+tc5RK48pCyF09t5YkiRJkiRJkiRJjeF6BkmSJEmSWkbBJYA1YsHpvKZcCxgSYxzQ2DnqEmPsU8t1JwK9W+KakgrfisSwdpRzUfHfOanocZgQVx60aDa8djsPt4PbKvvz28rvsJT1UohWktQMalbwmlDrqLyyGsdzG3PBEEIZ+Sq7a0wAizFODSGsaPYFxjfmupIkSZIkSZIkSVJ9rG5TXZPHJEmSJEmqXaEkgDWlwkBTzh0BDG/C+ZK0RiseUNZ8eLkxn3FL6eXsmJm+0tiKWARASaiq7ju+eDzHb/ERHH8f3X47CUlS25JLruoClMUY6/M/8poJYI39H3/NORq6YULZmodIkiRJkiRJkiRJkiRJkiSptRRKAlhjqnitqGjQ2KoIvYEF9VyEK0lNVr1T1eez4JZBMLdG8lfZ/vDNn9Jz5AIigamnbgrPXgXvP558/um7cOOBfImf8T82bv3gJUlNkqtwW9/7zm/UOK+xlbg6r3lIi5wrSZIkSZIkSZIk1Wp1Vb5WVw1MkiRJkqQ6LfwYikuhfZe0I2k1mbQDyKlZxauhFQcaWwFsRIzR6l+SWlf5ErjrWJg7OWmHDAy8Co6/D7bbhyqKyJKh21/n0O3NEzi7Ymh1VTAWTOeG0ivpwNL04pcktagQQmdgcK55RStffsV99UatfF1JkiRJkiRJkiRJkiRJkqT6qaqEe74PI/eBmRPTjqbVFEoFsAk1jruuaXAIoWaS2IRaB9Z+fm+gfwghNuC0MSGEmu0hMcZ7GnptSeuwGOHB02DW60k7FMGQm+Erh9ZyQmBM1X7MiRty03p/gGwFvTIfcnXJtRCPgpX/nyRJWjsMrXF8WRPmqb6nzlUfawgrgEmSJEmSJEmSJLWyuqpgra5qliRJkiRJ66ynR8D055Pjmw6Cn/wbOm6ebkytoCASwGKMC0IIC0gWm9anAljNRalTG3G9SSGE7vUcPiX3PgwYX2OOBl9X0jru33fDW/fm2wf/7gvJX6t/aDsQXusGD/wYgAOLJsCkW6HPiS0XqySp1eWqf43INYc0InGrpqYkca1xQ4YVQgi1bZ3RswnXlyRJqYtsxnyY9hwsmAHLF0LFYqgsh/2Gpx2cJEmSJEnSOs1EMUmSJEnSOm3KU/DM7/Ltb/50nUj+ggJJAMsZTVLxoD6LVVckiU1q7MLY+iZw1aj6Nc+kL0mN9tlH8MjZ+XbvE+AbP6j/+bt8D2b9G14ZmbQfOw+22we6bte8cUqS0nRd7v0KK81KkqTWtgVz4aVrYdpzTGr3L7qGRXDzagbu83PIFLV2eJIkNUihLIitKw5JkiSpNjXvWb2nlCRJkiSphoUfw9ihQEza2+0D+5xd5ylrk0JKABtDkgA2ALhiDWOPyb3f3aIRSVJzGXchLP88Oe6yHRx4WcPnGPBrJr/0ED0y/0t2Xn/8F3DcXc0bpyQpFSGEocBgYFSMsVnLaoQQOjdw04R59R0YY+xTyzUnAr0bcE1JkpSGyuXw5j2MLv0ju2beg8eS7q6hjnMqlkC7jq0SniRJkiRJkmpnopgkSZIkaV2SIQtj/w8Wf5J0dNgEjrx+ndrEtmASwGKM40MIU4H+9VikOhhYEGOsNVEshDAG6E8LLKKVpAaZ/gK8dW++fdg10G6Dhs9T0p6fV/yQ+9tdlLTfewT++wRsf0DzxClJSkUIoTcwkuS+dVgzTduoKrnNcK4kSUpZbYt9Vqp2Ur4YXh4JL/8NFn3Mrpkvjv8srs+GW/WCLt1gvc5Quj6UdICwmsGSJBWo1lwQWyhVxyRJkiRJkiRJktZGpxXdDx88A0A2Bo6f/388f+mEdep3mIJJAMsZBowDzgNWm7SVq44AcEptk9SooABwTgjh7hjjpOYMVJLqI0MWHq3xv7Mdj4Buezd6vtdjD/5euR/HFv8r6XjifOjRb53KXJaktUkIoTPwT+CeZkz+ggZU8aqhc+59bjPGIUmSCkm2Cl6/E568BBbNXumjqhgo6rE/9BxIv7FZpsQvMe2UQSkFKkmSJEmS1DY0dKOBgluUtnwRfPIuzJ0Mn38En3/E9SWv0TUshL9eAuWLoHwJr7VbRiVFcHVHKCqG9TZMdlrvsAl02Bg6b8uemXlMzW4BMUKoq8S8JEmSJEkNs3vmHc4szhdkuabqMJ7P7pxiROkoqASwXBWw4cCIEMK4GOP4mp+HEMrIV0e4pyVjyS3GHVqja1gIYVKMcWpLXlfS2mVQ5iWY/e+kUdweBvymyXNeUXksx3aYBMs/hzn/hTfHwNeObfK8kqRUTATGxxiHNPO8Nat4lQEN2QzBCmCSJK0FViwmql6E9Mm78MCP4aOJKw/suAUj5u3LmKp9mXD8dwCYcm/LVkiRJKnNqiyHhbOShbELZyWLZSuWQPkiflr8FlWxiLMO/AoUlSTPgztsBB02hU/+Ax03h/ad13wNSZIkqaVUlsOs12H68zBzAnz8Fsyf9oVh/VfsP/tJvq/Linyuzz+rdfo7S3MHl50HW3wNtuoLW30jeXXcvDn+BJIkSZKkddGiT/l71+thUUza2+7FGSfcwNXnP55uXCkoqAQwgBjjFSGEScDIEMI9JBXB5gH9SSqDDYsxjlrDHKNCCENy54xqSPWvEMJIVk78WqE/MCXkdqiJMbpVjaQ6BbKcXnxfvmPP06Dz1k2edx6d+MPi/vykeCwA0+69iH53rc+Uyw9t8tySpNYTQhgHTG2B5C+ACTWOu9YjlrJazpUkSW1chiw/KnoQ/nYfZCvyH2ywOez/C/jacVx7wbj0ApQkqRBlq+Djt2H2m/DJO8nxp/+BhbOBuNpTzljxi9uT9672cyCpjrBRj+S16Vdgq29QSgXllDT7H0GSJEmta02VvVZs0rNqxbAWrwg2dwq89wi8Pw5mvAKVS1v2epBUDZv+fPJaYZNe0KMffHkAbLMHFLdb7amt/vcjSZIkSSps2SzcNxQWzU7a628ER12fVKdeBxXknzpX+at7CKE/0DvXPTXG2KUBcwxo5LWHAcMac64k1XRQ5hW+nPkoaZR2hD1+3Gxz31B5MN8veowNwxK6ZT7myKJnARPAJKmtyG06UOc9a64ibdfGVKCNMS4IISwAOpNUAFuTmluQW/FWkqS1xaJPuLXkMvYuehuyub6iUtj7p7DXGVDaIdXwJEkqGNlsUgnhg2dg+gvw4UuwvPbKBo22+NPk9eGL1V1vtivm3bgtPPEi9OifLIaVJEmSmuKTd7nmT5dxQGYC269Ys1CbUAQbfxk26ZlsaNtpS4Y9OJs5cUPuPfOA5PlRaQd2ueSfFFPFq+fuC1XlHHblP9gofM6Ng7sli/DmToW578Oc92HZgi9e59N3k9eL10DpBtBzIOw8BMr2SyroSpIkSZK0Os//HqY8mW8fMQo6fSm9eFJWkAlgK+QSwcanHYckNVg2y+nF9+fbu54C7eudw1qrlXa3emYaPHkJQLKbe3YEZDJNvoYkqWWFEM4ByuqxYUF/kupddVa/rcNoksq2ndc0kHyS2KQY42p+lZMkSW3OjFfg7uPZu2h2vm/LvnDYX2DTnvWaYtUdl8FdlyVJa5GKZUnC13uPwHuP5neOrEM2Bj6hM7NjV2bFrhzUdwcoSRbEXv3UhxSFKs7crxtUVUD5YlgyBxbPgUWfwGczoWr5F+ZsFyr5epgCL/w5eZV04LqSHXgi2xeW7gXt6/PPekmSJBW6VZ+prO65S1NsyCIOKXqR1y+6gK9npnJaLSvCpmc35ZVsT16JPXk7243JcUvKZ5Qw7cf5+B6/Pxfb5jtV982nU3LQeWsA3og9kuK4vVd5VhRjUjn3owkw81WY8Sp8NHHle+HyRfDvu5PX+hvBjkcy7ayTYbOvVA9p7r8fSZIkSVLb0zf8B568NN+x91nw5f7pBVQACjoBTJLarClP0ivzYXJc0gH2OK35r7HbD+H5P8PyzyjLzIb3n4Advt3815EkNZsQwmDgmBhjn3oM/wYwrgmXG0OSADYAuGINY4/Jvd/dhOtJkqQCcXDmJbh5ZPXCmmwMZPY9G/Y7FzJFKUcnSVKaYrIA9fU74O2xsKz2Kl+fxM68lu3Bf+I2vJvdhvfi1syIm1BZ46e1aYflF7v+aXyyQPXM/rUkS2er4LMZMHdyUhXhf68lC2LnrVKIu2IxA4omMaBoElx5M/QYADsPph2B5ZQ2+k8uSZKktdTHb8NL1/JKu7/TLlR88fPi9aD7t2CHg9l9dGQ2G7VsPCFApy2g0yHQ65Ckr3wxTHsO3h+XrGtYMD0/fslcePW65LXNnrDr/0HPQ1o2RkmSJElSwevC5/y59BqIVUnH1rvD/hekG1QBMAFMklrCy3/LH/c+ATq0wEPUdh2h9/Hw4jVJ+6W/mAAmSQUshNAbGFbP5C+A3sBltcw1hqRC2KgY4/DVjYkxjg8hTAX6hxA6r6Gy12BgQYxxTYlikiSpkMXIsKKHOK/kLsg9A50bO/KTih9z27fOq/c0q6vy5a7LkqQ2bel8Tin6B8cWPQU3zFr9mPU3gh4DOHtiJ17J9uTp357MgSFw4GqGNup7MVMEXbolrx753Sl3Ofcuemfe54a9PofJ42D+tPw5VeXw3sPw3sO82G4DRlftB/N6QdcyJEmStC6L7Jd5A24dBVP/BUC7UOPjolLY/tvw1aOT5K/SDgC81PuLM7XKM5/SDrD9gckrRpj1Brw5Bt4aCwv/lx/34QvJq+MW/KDoW9xZ1a9JsVrJXpIkSZLaqGyWK0tGskWYl7Tbd4HBN0CR6U/+DUhSc5s7Jfmhntwu67ue0nLX2m0YVS/8haIQ4YNnYPZbsPlOLXc9SVKjhBDKSCpyjchVAatNV6Az0B3ov7qkrRDCUJKELYBzQgh3xxgn1TLfMJIqYucBq00Uy80H0IJfWJIkqcXFCOMuTJK/Vtjoyxz+v1OZETf7wgIZF8BIktYJcyYnm3W9fifnlyz+4uedt02qEvQcCFvvBpkixryS+84M4YvjW8B8OvHPbB8YmPtunjuFS66+ikOLXuCrmQ+qx3UNi/hh8T/gTw9Dj36w5+mw3b6tFqckSZIKQIzw/jjuL72Qr2emwirFZNnia7DL8bC/eNpiAAAgAElEQVTTUbB+11RCXKMQ4EtfT14DfgPTnoWJN8G7D0G2MhmzcBYXltzBj4sfgKenwq6nQPvO6cYtSZIkSWo9L/yJfkWv5dtHjIQNt0ovngJiApgkNbdXrqs+fCr7dfpt1L3lrtV5Gx7N7sqgopeT9st/g8OuabnrSZIaLITQmSQJqwwY2YBTa0vqqrdcFbDhJIln42KM41eJbUVMo2KM9zT1epIkKSUxwuO/gJf+mu/bdi845nZmXPziak+xopckaW3WM3zIT4rvhWte/eKHpR1hx8Pg69+FbfYovASqjbpzfdVArq8ayLSf7wBv3QOv3QGffZgbEGHy+OS1ZV/45s+S6g6ZTKphS5IkqYVNeQqevAQ+msDXa976hUyyqcHupyabGhTa/W1dMhko2zd5fT4LJt0KE26ERbOBZBMEnroEXrwGvvkz2rE1yyld48ZGPveSJEmSpDZs2vPwz4vz7T1PTypKCzABTJKaV/lieP2O6uYtVQfQr4UveWPlQfkEsLfGwrcvg3YdW/iqkqQGOJok+auhVt23EYAY46gQwhCgP0niVp2JYjHGK0IIk4CRIYR7SJLR5uXOPw8YFmMc1Yj4JElSIYgRHj0HXsl/nT9e1ZcDj78Pitt9YUGMC2AkSW1JXd9bK77jao7ZIXzImcVjeazdK18Y/252a26q+jZX/OLXUNqh+YNtotX+WTfuAfudC/uczfcvuIzji8bxraI3gJh8/tEE+PtxvJvdmqsqj2Z8tjeQLPi12qckSdLaoXv4iPOL74DbXl+pf3ksod3uP0gSv7psm1J0zajTFrDfcNjrTHj9DmY8dBlbZz5NPlu2AMZdyD/bbcxVFUMge5AbIEiSJEnS2mjRJ3DPyRCrAJiQ3Z6+/X6ZclCFxQQwSWpO7zwAyz8HYEp2C57N7tzil5wUv8x/s1uyfeYjqFicJIH1ObHFrytJqp9cclWzJljFGAc0cPx4oHsIoT/QO9c9NcbYpTnjkiRJKRh30UrJX49U7coZFacxubjdaoe7GFyStDbanLmcU3I3RxY998UPv3wg7HEqB41aBASuqJH81WYSozNFPJXdhaeyuzDtrF7wwjXw2u1QtRyAXpkZXF96Fa9kd+DyiuOYFLdPOWBJkiQ12ZJ58PQIHi8dRXHI5vuLSrlp+f5cW3korxz0vfTiaykl68E3fsD+927MoZkXOKP4PrplPgZgqzCH35deC9e9CIOuhi37pBysJEmSJKnZZKuS5K9cVei5sSOnlZ/OS0UlKQdWWEwAk6Tm9Fq++tfoqv2ItMauU4G7q/bnwsztuRhuMwFMkrRauUSw8WnHIUmSmskLf4YX/pRv73gkZ0w8nEof+UmS1jI1E5hXStoqX8xZxfcwtOgftA/lK5/UcxDsOxy2+Gquo/mTvZojgazBydldy5LFrvuew8gRP+V7RePpEJJEsF0z7zG23a94tOobMH+ntaMShCRJ0jonwht3w+PnwZK5FIcV/QF2+S7s9wt+fdnrdU3QolprE4VKihmb3YeHyvfkuKJ/cmbxWDYKC5MPZ70O1/WDvidDvwuhvfsdSpIkSVKb99RvYdqzuUbgzIrTmM1GqYZUiFwNIknN5Jvn3ciz7ZIdZqtiYGzV3q127bFVezO8+C5KQxXMfJUDzvsbT1z2w1a7viRJkiSplb1+FzxxQb69w8Fw5HVUTnw8vZgkSWo1Ed6+Dx47jzOLZ6380Q4Hw37nwhZfq/dsbbJCZsfNuazyu4ysPIRJ+74Or94A2QoADip6Ff6yG+zzc9jzdKilMqgkSZIKy9bhYy4tvhHue3Ol/peyvdj9RyNr3OOmlwDWWla+Rz8Mll0Cz/8x2RCpajkQYcIN8M4DcNAI2OkoCKG26SRJkiRJhez9cfDslfn2fufy3GM7pxdPATMBTJKayeCiZ6uPn85+jU9pvV2m5tOJJ7J9GVT0MgBDip4GTACTJEmSpLaqrt2Upw3tAA+elu/YZk8YfCMU+ahPkrT2+xJzuLjkJhjz2sofbP5VOPC3sN03WzyGQkoYm0enZMHrbsPgyUvgrXuTDyqXwpO/gTfugoFXQdl+aYYpSZKkumSz8PK1PFH6q5Ur23baimFzBvN49htMa8AGBy0h9Xvg9Tol1b52+S48cg5MHpf0L5kD9/4A3rkfBv4eNtgk3TglKUUhhHMAYoxXtPB1egPDgK65rnnAmBjj+DTmkSRJbdyCGTD2lHy7bH/Y52x47LH0YipgrgqRpOaQzXJU0TPVzW8dexbTdmydB6DVD1rfbwd3HAXAIUUvQrYKMkWtEoMkSZIkqXVsG2bD6IshW5l0bLYTHHcXlLRPNzBJklpatgpeHsm4dr+iQ1he3f1J7MzvKo/md0MvX7efh3Ytg8E3cuTEnflNyU3smJme9M+dDLceBr1PhAMuSRbOSpIkqXB89hHc/0P44BnaryhgFTKw2w9h//N5/JdPpxpewelaBt8dA//5Bzx6Lnw+M+l/9yGY/gIMvBooSTVESUpDLvlrBNDSyV8jgb7AKTHGSbm+MmBkCGE4MCTGuKC15pEkSW1cZTmMOQmWzk/aHb8ER12/bv/eswYmgElSc5j5CluFOclx+y6ww0GtH0PZfrD+xrBkDpuH+TD9edhun9aPQ5IkSZLUbGrurrzzuWO4oeRKWJb85jk7duGw6T/k418/n1Z4kqR1XJ0VK+uoENDg8+ZPh/t/BNOfp8OKRbEE6Hsy/Z7bg4Wsz+/WkR8D6/q7A5gUt+fQ8kuYcsSspCLY8s9zH9wCU56Ew66xGpgkSVKBGJh5Ca79ESz7rLrvney2fGXYTbBlnxQjK3AhQK9DkvvaJy6EiTcl/UvmwpgTuapkby6sODnNCCWpVeQSpvoDw4GyVrjeuNx1+tRMzooxTgUG5D6fCHRvjXkkSdJaYNyF8NGE5DhTDENugg4bpxtTgcukHYAkrRXevi9/3OtQKG7X+jEUFcOOR+Tbb97T+jFIkiRJklpGtoo/llxDj8z/knbxegwt/ykf0zXduCRJalGRIzPPwLV7JRte5byX3QpOfhwGXc1C1k8xvsJURRHsNgxOe5VHqnbNf/DZDLj1MG69YDA7nHtf7RNIkiSpZS1fxFUlf+UvpX/KJ3+FDNdUHsZh5b8x+au+2nWEQ/4A3xsLnbas7j6q6DkeKj0fZv07xeAkqeWEEM4JIUSSJKkhJAlgLbpQLIQwlCTZrK7KXEOAslx1rxadR5IkrQXevg9e/lu+3f/XsM3u6cXTRlgBTJKaKlsFb9+fb+90ZHqx7DwEXr0uOX7nATj4d+kko0mSJEmSmtczV/Ktotfz7UOv4d93Jgve66qwIklSa6j5XbSmClX1Pm/JPP5S8kcGFr0C5bm+UMQfKw7jmsrDeX+b3ZoScpvTqO/7jptzasWZHFL1IheX3EyXsAiAE4rHsWvmP/BJL9i0Z/MGKkmSpLp9+l8YfTxHFf2numtGdhPOqvgRE2Lt92YNuc9e5/ToB6e+CI8OhzfuAqB7ZhZc3w8OuBR2PYVu5z2y2lN9riapjRoVY7yiZkcI4ZgWvuYIYGqMcVJtA2KMC0II44GhIYQRuYpeLTWPJElqy+ZMhgdOz7d7DoI9fpxePG2IFcAkqZG6nfsw3c59mKPP/z0smg3AnNgJtt07vaC23pWZMVf6ctkCmPzP9GKRJEmSJDWPqU/Dvy7Lt/f6CXx1SHrxSJLU0j6aCCP3SZK/VuhaBic/zu8rB1Ph/oYNEHgouyddfj4Jdsgvbu2ZmQGj9oNJt0KM6YUnSZK0Lnn7Prhuf/g0n/x1b9XeHFx+WZ3JX6qH9TaEI/4GR4xiccxtkltVDo+eDWNPYT2WpxufJDWjOipntYgQwmCgM/WrMjYm9z6speaRJEltXPkSGH0ClC9M2l22Y+fXD6fbeY9Ur813E5Ta+QuZJDXRwKKXqo8fq/oG3ytK8X+tIfBg1Z6cWvxg0n7nAeh5cHrxSJIkSZKaZuHHcO//AcnC7Jeyvdj9WxemG5MkSS0mwqvXw2PnJYs1V+hzUrJzf7sNAH/0a5SOm8Gxd8DEm1n20NmsFyqgcik8eDp88Cwc8kcoXT/tKCVJktZOVRUw7iJ46a/5vuL1YODVHLXLdzmqjlOtUNVAXzuGQX9fyDUlf2LHzPSk780x3FP6KsPKz+L5y08CrKgmSQ20IglrSj3GrqjWNRgY3kLzSJKktipGxlx8DEOK3wZgeSzhiNmnsBB/n6gvE8AkqQkyZDlxwzdgcdL+3g/OSjcg4JGqXfMJYP99NHmYXFSSblCSJEmSpAbLkIV7fwCLPwHg09iJ08tP49PzH085MkmSml97lnFpyY3w8HPVfZ/H9fl5xTBGHfKr9AJbm4QAfb/Pofcu55qSP7F95qOk/83R8Om7cMwd0GXbJl+mrsW0LmCWJEnrnKXzk53NP3gm39dlOzjmNth85/TiWsXalBD1QdyCI8t/zXt7/Qsm3gzATplpPNjuAvigO2z3zVTjk6Q2qG/ufWqdo1YeUxZC6LxKtbLmmkeSJLVVE29mSHH+38cXVZ7EO7FbddvfENbMBDBJaoLdMu9WL8Sjw6aw7Z7pBgS8FbdjZtyYrcIcWPYZ373wKp7P7uyXoiRJkiS1MT8uuh+mPZtrBc6sOI1P6ZJqTJIktYj50xlb+kt6ZWbk+zbfmUHTT+bDuNlqT1mbFqi2hLr+fv4bt+bQ8kv4zx5Pwmu3JZ2z34RR+8GQm6Bsv9YIUZIkae03dwrceTTMnZzv22EgHP5XaN85vbjWAcspTarcbvE1eOQcyFawUVgItx4GB40AvpR2iJLUJoQQyoAVX1prTNyKMU4NIaxo9gXGN+c8kiSpDZs5ER49J9/+2ncYcfjvGJH/zlc9mAAmSU1wQGZCvvGVQyFTlF4w1QLjqvrw/eJkR/gDMxN4Pls4O4dJkiRJktZs5zCVM4vH5jv2Hc6d+w9PLyBJklrKhy/D379Dr8ycfN8ux8PBv+PDC59ML6613DLawWHXwJZ94JGzIVsBS+fBbUfAAZfA7qcmFcOaoOamZCbsSZKkdc605+Du7yUVwFbY/3zY5+wm32c1p7V+I9m+J8OmX+HTG45mk/AZxCp45Of8onggl1Uel3Z0ktQWlNU4nteEc5trHkmS1BYtnpNUx64qB+Dt7LbsOOjqgvr3cVthApgkNVpkQNHEfLPXIemFUsO0ywfCBx3hliQB7ICiCfyy8sSUo5IkSZIk1VvFUn5f8leKQzZpb7077HtO3edIktQW/Xs0PPDj6h/8ymMRpYf9AXqfUOspa/0C1SZqyN9PkpS1Kb3D+fyt9A9sGhZAzMLjv4A578PBV0KRPyVKkiQ12Ot3woNnJEn2AMXrweHXwk5HphvXumqb3Rm0/FJGlv6er2emADC0+GG+FOZAxQAoWS/lACWpoDWlZGXnWo5bMwZJkpS2qkq45/vw+UwAPovr88OKn/BsSfuUA2ubMmkHIEltVc8wg61Cblfadp1gmz3TDaimbfaE9l0B2DzM52thjZWzJUmSJEmFYvyv6ZH5X3Jc0gGOuLZAKk5LktQ8All+Wjwaxp5Snfw1N3bkO+Xn15n81Ry6nftw9UuJSXF7Bi2/lEnZHvnOiTfB34+D5YvSC0ySJKmtiRGe+wPc/6N88leHTeGkR0z+StnHdOXY8gug56DqvkFFL8Oth8GShhaikSStwYLc+0YFMo8kSUrTU5fAB89UN8+s+DEz4mYpBtS2mQAmSY3ULzMp3+jRH4pL0wtmVUXFsMNB1c0DiiakGIwkSZIkqd6m/gtevjbfPvBS6FqWWjiSJDW7qgquLPkbZxTfn+/bpCeHl1/MhNgzvbjWIdMuH/iF1yd04djyC2HnIfmB7z8BNx8MC2enF6wkSVJbkc3CExfA+F/m+zbbCU55Erbqk15cqraMdnD0rbDbD/OdM16CGwbAghnpBSZJha3rioMY44K6Bq5GzcpdzTWPJElqS959CJ77fb6977n8K7tLevGsBYrTDkCS2qoBRRPzjR0OTi+Q2vQcBK/fAcCBmVdTDkaSJEmStEbLF8IDp1U3/1m1C/36nJRePJIkNbfyxTD6RI4qei7f16M/DL6RGb9K+lqqMte0ywe2yLxrk3JK6Pbq4fysuILTVyTozXqDmVfuxUnl5zA5bgX4dylJkrSqYirhgVPhjbvyndvuDcfdCettmF5g+qJMERw0goufW8wFxbeTCRHmToYbvw0nPggbdU87QkkqNE1Jvupa47i55lmjEMLEWj5y5yFJklrTnPfhvh/l2z0GwL7D4fFH04tpLWACmCQ1xsLZfD0zJTkORfDl/unGszrd94fi9lC5lO6ZWTBvqrvGS5IkSVIhe/IS+CzZbXhe3IBzK07h1RBSDkqSpGayZB7ceTTMrLFZVe8TYeDVUOTPVYUjcFXl0cyMm3Bp8Q0UhyxbhTmMLr2YE8rP5a3oM2ZJkqSa2lHOX0v+CG+8lu/sOQiOugFK1ksvMNXpxqqDmBW7cm37a6GqHD6fmSSBHX8fbL5T9bi6NqhwYwRJkiRJqsXyRXD396B8YdLuvC0cOQoymXTjWgv4i5ok1cOqD/WOKXqKESW5xrZ7QvsurR/UmpS0h+32gfcfT9rvj4fdhqYbkyRJkiRp9WZOgJdHVjcvrjiBT5u0IaYkSQXks5lw25Ew573qrj9VHs4Zh/wRcsnOLp5M1xf//gfC5G/D6BOhfBFdwyLuKr2UH5T/PPlMkiRJUL6E60quYp+iN/N9vU+EQb9PKk2poD2a3Q2O2xf+/l2oXAqLP4GbB8L37oWt+qYdniQVnBBC5xjjggacMq8l56lNjLFPLdedCPRuyFySJKkRYoQHT4dP/5O0i9eDY26D9RtU1FO1MAFMkhqhf6ZGpegdDkovkDX58oB8AtjkcSaASZIkSVIhqixPHoASk3b3ftz/9l6phiRJUrOZPx1uGQQLPsx1BH5ZcQK3VB3IGVa6LGw9+sMJD8IdR8HS+XQMS7m19HJ4/2vJs2dJkqR1WfliuOvYlZO/9v4p9LuoepMDpauu6l3VevRLqn7deTQs/xyWLYBbD4PvjIZu+edzNTdMqNe8krT2aEiiVl3nNtc8kiSp0L10Lbw9trr5syUnce8fZwIz04tpLWINNUlqgGmXD2TaJf0ZsN5/8p3bfzu9gNakR//88QfPQsXS9GKRJEmSJK3eC3+ET94BYElsx97vHAq4UEiStBaYNxVuOjif/JUpgaOu55aqA9ONS/W3VR846RHYYDMA1gsVcNdx8Pb9KQcmSZKUouWL4I4h8MEz+b79z4f+vzT5qy3adg848SHmxo5Ju3wRi286gqPOuzrduCSpMDSo+lZO59z73BaYR5IkFbJpz8MTF1Q3b6/sx73ZfVIMaO1jBTBJaqgPX4SKJclxl+1go+7pxlOXrtsxJbsF3TOzoHJp8sX65f5rPk+SJEmS1DrmToGnr6huXlU5hJlxkxQDkiSpmcyZDLccAgv/l7SL2sExt8P2BwDumN+mbPYVOPkxZvzhALbOfArZCrjnZCDCjkekHZ0kSVLrWr4Qbh8MM16q7hpRcSzD9z0nxaBUU81qXfX2pa9zdPlF3FV6KZuGBXQIy7mldAQnlJ/LpLh98wcpSW1HzepbZcCkRp7bXPNIkqRC9fksGHMSxKqkvWVfLp5yAtDIf6dptawAJkkNNfmf+eMe/dKLo56eyn4935g8Lr1AJEmSJEkrixEePQeqygF4I1vGhb/5U1J9OveSJKkt6h4+gpsPrk7+WhZLOH7pWXS7sYJu55r81SZ1LWNI+UVMzn4paccquOcH8M4D6cYlSZLUmsqXwJ3HrpT8dWnFd7i26tAUg1JzmRK35Ljy86HDpgBsEJYxtuNVTDtts5Qjk6RUTahx3HVNg0MIZbWc21zzSJKkQlS5HEafAIs/SdrrbwxH30o5JenGtRYyAUySGmrKU/nj7oWfAPavmglg75sAJkmSJEkF471HYfJ4ALIxcH7FyZApSjkoSZKaZrswi7+XXgKLPk46Stbn+xXn8Gz2q+kGpiabzUYcV34BbJyrgBCrkkpg7z6UbmCSJEmtobI8Wcw2/bl834GXcV3VoPRiUrObEreEEx9KFisClC+E246EjyamG5gkpSTGuIB8Ba6yusbmdK5xPLW555EkSQXqkbNh5ivJccjA4Bthwy3TjWktVZx2AJLUpiz8GD5+MznOFMN230w3nnp4JduTJbEd64flMG8KzJ0CG3VPOyxJkiRJWrdVLIXHzq1u3ln1Ld6K9fnNU5KklldXla46K1Qu+JDbS3/LJuGzpF3SAb47hhf/tmDN56pN+JTOyYLYmwfB3PchWwljToKjb4We/veVJEltQ4Pvd6sq4d4fwOQaG64O+A3scSo8YIXbtc6mPZN73lsGwZK5sPwzuP0o+P5jyWeStO4ZDQxl5aSs2qz4oWNSLumrJeaRJEmFZMKNMOmWfHvAb6Bs3/TiWctZAUySGmLKk/njrXeHdh3Ti6Weyinh+eyO+Y6afwZJkiRJUjpe+DMsmJ4ct+/ClZVHpxuPJElNtXA23HIoW4a5SbtkffjevdBtr3TjUvPruHmyILZrbqOxbCWMPrG6smldup378BdekiRJBS2bhQdPh3cfzPftcw7sdUZ6ManlbfYVOOFBaN8laS+dD7cdAQs+TDcuSUrHmNz7gHqMPSb3fncLziNJkgrFhy/BI+dUN++r2otuD3bz+X8LMgFMkhpiyj/zxz2+lV4cDfRcdud844On0wtEkiRJkgTzp8OzV+Xb37qQBRT+BiOSpHXPtMsHVr9WWG3izuK5cOvhMP8DAJbHYjj2Tth2j9YOWa2l0xZw0j+ga25D7mwF3H08fPhyunFJkiQ1wOrud1cSIzw2HN64M9+3+6mw/y9aJ0Cla/Odkk0tSjdI2gv/B7cezkZ8lm5cktSMQghjQgjzQwgjahsTYxwPTAX6hxDWVL1rMLAgxnhFS80jSZIKxOezYPQJye8DwNvZbTmv4v+AkG5ca7nitAOQpLYikF25elb3fukF00ArVQD74FnIVkGmKL2AJEmSJGld9sT5ULksOd78q9DnJLj3sVRDkiSpsTqyBG4/Aj59F4DKmOHHFWdyfff9U45MLa7Tl+DEf8CNB8JnM6BiCdw5hJ7hPP4Tt1lp6OoWVbv7pyRJKnjP/A5eGZVv73I8HPhbCC5mW2ds2QeOvQPuGAJV5TBvCreUjuC48gvSjkySVtV5lfc1CiEMJUm0AjgnhHB3jHFSLcOHAeOA84DhdcwHcEodl22ueSRJUpoql/PalYPYJfMxAPPiBgyr+CnLaFf7JitqFiaASVI9fSVMhyVzk8b6GyeL9NqIyXFL2GBzWDQbli2AWW/Alr3TDkuSJEmS1j0fPAPvPlTdPHL6kUz6hclfkqTCt9of7CqWwW1HwIdv5DoCZ1Wcyvhsn1aNTSnacEs4/v4kCWzJHFj2GbeWXs7g8l+mHZkkSVLTvHYHPHVpvr3jkXDIH03+WheV7QeDb0x2to9ZdspM47rSq6DiEChZL+3oJK3jcpW0+udeAEeHEMYAE2KMC5rrOjHG8SGE4cCIEMK4XDWvmnGUASOBUTHGe1p6HkmSlKIY4eGfsUtmMpDfGHBm3CTlwNYNJoBJUj3tlXkr3+i+P2Qy6QXTYAHK9oV/3500P3jaBDBJkiRJam3ZLDyR3x343qq9mRS3TzEgSZKaIFsF9w2FD1/I9x36Zx4a3TW9mJSOjXvA8WPh5kGw/HM2DQu4veS38PlB0GmLtKOTJElquMnj4aEz8u2y/eCIkZApSisitZB6V6XtdQgc8id48DQAds+8Cw+cCkde38bWjkhaG4QQBgNjavm4M0mFLUI+abnP6ip7xRhHhRCGkCSPjaqj+teK8VeEECYBI0MI9+SuMy93/nnAsBjjqLrmaM55JElSSibcAK/dVt0s/val3LXHqSkGtG4xAUyS6mmPzDv5xnb7pBdIY21XIwFs6tOw91npxiNJkiRJ65o3xyQVmYFlsYTfVRyz+moqkiQVuhjh8V/AOw/k+w64BHofD6PruYBSbdbqFslOu3wgHPd3uP1IqFzGNplP4c4h8P1HoV3HFKKUJElqpP+9DqNPhGxl0t5sZzj6NiguTTcupa/38bB0Hoy7KGm/dS906Qb9Lko1LEnrnlxlrGYpSRljHNDA8eOB7iGE/sCK3cenxhi7pDGPJElqZdNfhEeHVzfHVu3Nkbv/KMWA1j0mgElSPRRTyTcy7+U7un0zvWAaq2zf/PGHL0Hlcihul148kiRJkrSO6Hbuw7SjnCfbnceWuZ9kr6sayGw2SjcwSZIa64U/w8t/y7d3PxX2PD29eFQYuu0FR99K5R3HUhyyMPtNGPP9JDGsyJ8kJUlS4dsqfAp3ngXli5KODbeG746B9TqlG5j+n737DpOyuvs//j6zuyCoiNhQLAi2aLAA1tiioDHYkoA9zQKaxOSXxAhquiXAo0/KY2LAmJgYjQqWqFgCGhNNbBS7xoIEEBsCYqHs7pzfH/fszoCUBXb3zOy+X9c115zvvffMfGJQ7r3nnPNtdmu9KdMB3+RP9zzEl6onZvVDV0DX7aDfl5svnCRVgMICrknl8j6SJKkVvPc63Pylxg1Tnsn35ILaM/l8aJZ16Woiv22RpCbYPUxng7A4KzbaJtvFqdJstDV06w3zXoW6RTDrcdi+AheySZIkSVIFOr3qXnqEdwGYG7swpu7oxIkkSVpLz4yHiT8o1rseD0dcmi6PWs2KJsl+rBvYTkdyYd0ZjK65OqtfmQh3nwdH/xxW8iXw8u9hh1RJkpRCFz7k2ppR8MFb2YH1NoJTx0OXLdMGU3kJgZ/UfYkeYS6HV03Ljt317Ww+xg6Hp80mSZIkSS2ldjHcdBp8+HZWd96UYfO+wxLslt3aXAAmSU2wX+75YrH9wSv9orrs9To0WwAGMDyLnX0AACAASURBVP1BF4BJkiRJUivoxkK+Vv3XxnrTo3/Es3sPSZhIkqS19No/4bazi/V2n4LPjYFcLl0mlZ2b6z/NNuEdzq2+PTsw5Q+w8XZw4LfTBpMkSVqZ+jqurPkVO+TmZHVVBzjpL7D5Lsuc9rHF72qX6qni3NpzeX7rX8IbT0Gsh5u/DKffC90/mTqeJEmSJDWvGGHCd2HO1KwOVTDkWuaMWZg2VzvlN3KS1AT7ly4A61mZi6Z6jpjA2f/esHjgtX+kCyNJkiRJ7ci3qm9hw7AoKzbdCfp+OW0gSZLWxruvwk1fhHxtVm+2C5x0PdSslzaXytIVdUOgT8mC90k/zrrHlZgxctAyD0mSpGT+dhEHVz1TrD/3W+j5qXR5VPY+Yj045WbosnV2YOn7cMMJ8MHbaYNJkiRJUnN7bAw8+edifeRlNiBJyA5gkrQ6dUvYO/efYl3Bf2k9kt+VfAzkQoTXp8LihbBel9SxJEmSJKntmvcap1Q9UKwH/hSqatLlkSRpbSxaADecCIsXZPUG3eHU8dBp47S5VDY+3g0jwHG/hoVvwH8fzg7dfg5stA1su2+r55MkSVqpyX+Ax35brA8ZDp/8wipf4uJ1AbBhdzh1HPz+SFiyEBa+nm2a8eU7obpD6nSSJEmStO5efQDuu6BY73EK7DssXR65AEySVmv2ZNYLhV1tu/WCjbZOm2cNLX/z+ZkfXkafMANiPcx8BHY6Mk0wSZIkSWoPHhxJTajPxtt9Cnb6TNo8kiStqfo6GPcVePflrK5eD06+AbpukzSWKkB1Rzjpz3DNETD3JahfCjedBkP/XnH32SVJUmX4+KL0ohUu2nrtIbj7vMZyQv0+DDpkREtEUxvU8Oft4Nw5/KFmNFUhwqxHsz9Tx/wSQkicUJIkSZLWwbuvZt8PxXxW9+gPR//c33UScwGYJK3OjIeK456V2/2rwaP5XemTmwHAVX+6jlF1dY0/c6cySZIkSWpGb78AT99UrA//oTdDJUmV574LYPrfi/XxV0GPfunyqKys9p5yp42zrghXHwYfvQsfvg03ngJfvRc6dG6dkJIkSSuwbXgLbv465LPvy5/J9+S7tecwKJdLnEyV5p/5PRhZdzIX1dyQHZj6R+jeB/Y5K20wSZIkSVpbi9+Dv5yUPQNsuCWcdD3UrJc2l1wAJkmr9do/i+PtD06Xo5k8nt+Fs7gbgH1yLyZOI0mSJElt2N8vBWI2rN+DT2+7X9o8kiStqSd+B4+PLdaHjIBPfj5dHlWmjXvCCX+CPx2XTbB+4yn469dh8O9dHC9JklpE6SL1FXUF68xirq65AhbNzw5ssAVnzf0ui+nYWhFVwVa0CULPEZFP5Gby+aqHswP3DIfNdm4Tc0wkSZIktTP5ehh/Bsx9Kaur1+OYuV/nmUunpM0lANy2RpJWpXYRzH6iWPc8MF2WZnL1989tHPerfo0ZP/10wjSSJEmS1EbNmQYv3NlYXl53QsIwkiStuf1zz8Hd5xcP7Ho8HDI8XSBVtp4HwlGji/Vzt8LD/5sujyRJar9iZHTNWHbOzc7qqo5w0g28ySZpc6nCBS6oPZOn8r2yMtYz79qTYf6MpKkkSZIkaY1N+jG8MrFYH/drnom9ksXRsuwAJkmrMnsy1C8F4JX8VuywYffEgZpB526w+a7w9vPZbquzH0+dSJIkSZLangcuaRzeXb8Pz8XtE4aRJGnNbMm7XFnzK4j1hQN7wvFXQc59BbUO9j4D3noOJl+T1fdfnN2r3vmotLkkSVL78sivObrq0WJ9zC9g6/7Asp3CVtQ5TFqVJXRg6NLvcGfH77N5WEC38AHceBqcORFqOqWOJ0mSJEmr9+Rf4N+/KtYHfgf6DKbhd+YVdURW6/KbOklalZnFG7+P53dJGKSZbXdAcfzff6fLIUmSJElt0X8fgVcmFYrA/9YNThpHkqQ1UreEqzr8gk3C+1m9/uZw8l+gQ+e0udQ2HDUKtjuwUES45Ux456WkkSRJUjsy42GY+MNi3f8M2POUdHnUZswYOYgZIwfx2MgvsvmZ41gSC3uyv/UM3H1e2nCSJEmS1BSznoA7v1msdzoKDvtBujxaIReASdKqzHykcfhEfueEQZqZC8AkSZIkqWXECA9cXKx3P5FX4tbp8kiStKbuOZ89c69m41w1nPBH6LJV2kxqO6pqsj9TXbfN6qUfwM1fhCUfpM0lSZLavoVzYNxXGrvcTsvvAJ/52Wpf1rCwp/QhrdI2+/DTui8V62l/hqnXpcsjSZIkSavz3utw06lQvzSrN/sEfH4s5FxuVG6qUweQpLKVr4dZjzeWT8Q2tABs25IFYLOfoANnspSadHkkSZIkqa2Y/iD891/ZOFcNh46Ax59PGkmSpCabeh1MubZYH3HJsptJrYGeIyY0Tya1PetvCifdAL8bAHWL4Z0X4c5vAZ8DQup0kiSpDaqhDm7+Mnz4DgBzYxfOWfotHq3umDiZ2qrr6w+nX+4lPl/1cHbg7vNgyz1gy93TBpMkSZKk5dUughtPgQ/eAmB+3IBjZw9l1o8fShxMK+KSPElambeehaXvA/Bm3JjZcbPEgZpRly2hW69sXLeYPmF62jySJEmS1BbECP8YVaz3+iJ02z5dHkmS1sTrU2HCdxvL2+sPgH3PThhIbVr3PjDof4v1s+P5YtXEdHkkSVKbdmH19TC7sPlryHFu7bm8ySZpQ6mNC1xUezpsvmtW1i3OOt8uWpA2liRJkiSVihH++g1448msDlV8rfZbzIpbpM2llbIDmCStzMxHG4dP5Hemze08ut0BMC9b+LVv7kWm1LehDmeSJEmS1EpKu5vsl3ueGzs8AkBtrKLmoO+kiiVJ0kqtqDNXV97nro4XsXVYAsAL+W24oPZMjg9rfk90xshB65xR7cRep8Ksx2DqHwH4QfV1PJt38bwkSWpeR+ae4KvV9xUPDPgJj9zZO10gtRuLWA9OuA7GHpptPjx/BhMv+zxDa79NXG7Pdn+PkiRJkpTEw/8Lz44v1keN4pFbtwL8PaVc2QFMklZm5iONw2wBWBuz3acah/vkXkwYRJIkSZLahnOrbmscj68/GLpumzCNJElNFbm85rdsHeZmZceNOLv229lkRamlHTUattwDgA6hnl93+CV8ODdxKEmS1GYsmMnomjHFepej4YBz0+VR+7PpDnDclY3lwKopnFX18U05JEmSJKnVPX8H3P/TYt3vq7D3menyqElcACZJKxLjMh3AJrfFBWDb7t847Jd7iSrqE4aRJEmSpMo245xufKrqOQDqYo7f1B+bOJEkSas2Y+Sg7HHcfxlQNa34g8/9lv/G7umCqX2pWQ9O+BOs1xWArcI8uOVMyOcTB5MkSRWvvhbGn85G4aOs3mibbCHOWnS5ldbJbsfD/t9oLC/sOI4Z3+jubvqSJEmS0pkzDW4dWqy3OzDbsM3fmcueC8AkaUXmz4D338jGHbvwYmyDu7Zv3BM2zNp0bhgWsUuYlTaPJEmSJFWyf45uHN6eP5BZcQt6jphAzxHu6CtJKmOzp8DEHxXr/b8Bu3w2XR61Txv3hM9fXayn/x3+9YtkcSRJUhvxwCUw+wkg26yHL1wDnTZOHErt1oAfMzW/QzbO18Etp8PihUkjSZIkSWqnFs6Bv5wMdYsAeC2/BXv+54v0/P5E5zdUABeASdKKlHT/Ypt9yLfF/1yGANvu21julXs5YRhJkiRJqlx7hlfg1QeyIuT4dd1xaQNJktQUixbA+K9AvhaAJ/O94PAfrfo1UkvZ6QiuLL2GeuASmPV4ujySJKmyvTJpmQXll9edsMx341Krq6rhm7XfYGHslNXzZ8Bd3wZiylSSJEmS2pulH8INJzY2SXkvduaM2u+xgA0TB1NTVacOIEllaeYjxfG2+8Gz6aK0qG32heduA6Bf7qXEYSRJkiSpMp1bfVux+ORg/v6FM9OFkSSpSSLccS4smAnAwtiZb9R+k4erOyTOpfbs53WD2S/3Av1zL0Gsh/FnwNkPQaeuqaNJkqQKsjnz4dbixgb/qN+dMfVHMyJhJglgdtycC2vP5MoO/5cdeHY8Q6q6Ma7+0KS5JEmSJLUT+TzcOhTefDqrc9Wcs/j/MT1uxYyRg9JmU5O5AEySVqS0A9i2+wPvJYvSorbep3HYL7gATJIkSZLW1G7hNQ6vmlaoAhx8XtI8kiQ1xWlVk+CFOxrr4bVnMTtunjCRBPVU8a2lX+dfXX8Ii9+D92ZmCxVP+BOEkDqeJEmqAIE8P6/5DXw0NzuwwRZ8Z+45RHJpg0kFd+X358q9FsC06wD4SfUfmZrfkZ4jJnzsXCdgSpIkSWpOV/3wS5xTfVdjPWLJV/h3/pMJE2lteIdDkpb34bsw9z/ZOFcDPfqlzdOSuveB6vUA2Db3Drz/ZuJAkiRJklRZvlF9e7HY7XjYbOd0YSRJaoJdwwx+UH1d8cDeZ3JPft90gaQSr7MZHHtl8cALd8CUP6QLJEmSKsqZVXfzqarnClWAz1/Nu2yUNJP0MUeNgk13AqBzWML/1VxJR5YmDiVJkiSpTZv2Z86pvrOxvLrus9xYf1jCQFpbdgCTJFhmN6WBuclc3aFQbLUX1HRKE6o1VHeArfrCzH9n9azHYddj02aSJEmSpEox92WOzE0u1gfZ/UuSVOZqF/HLml/TMdRl9RZ94IhL4aH70+aSSu16LPQ/AyZfk9X3XgDb7Adb7Jo2lyRJKm9vPst51TcX64O+A70OAT7eWWlVVtSJSWpWHdaHwX+Aqw+D+iXsmvsv//n0ZDjyUsA/g5IkSZKa2YyH4c7/V6x3+gxnnfRnzspVpcuktWYHMElaTr/cS8Vi23aw8+02+xTHsx5Ll0OSJEmSKs2/f0UuxGy84xHQ/ZNp80iStDoTf8SOudezcU1nGPIHqFkvbSZpRY68FDbfLRvXLYbxp0Pt4rSZJElS+apdDLeeVdzoYMs94dAL0maSVqX7JxsXfAHwyK/htYfS5ZEkSZLUNr37Ktx0GuRrAXghvy184Xfg4q+KZQcwSSoxY+Qg+P2VMDOrhz1YzX0PtPHdlbYpWeQ2+4l0OSRJkiSpAjTswLs583mo4w10DIUfHPjtdKEkSWqKlyfB42OK9Wd+BpvumC6PtCo1nbIFimMOgbpF8M4L8MDFy06SlSRJ7V7DfZqLqv/MWdXPA7AodqDT56+Gqpo1eq8ZIwc1ez5plfY+E166F16ZBES4/Rw451+pU0mSJElqI3YfcRO3dfgRvXPzAXgnbsQZS8/j3x03TJxM68IFYJJUqr4W5kxrLKfmd0gYppWUdgCbMw3qlkB1x3R5JEmSJKmMNEwkWt7p1fc07io9Jb8j/bbdvzVjSZL0MSv7Owtgxg/2g79+rbGeWN+PgX2/3BqxpLW32c5w5CUw4btZ/ciVWdfVXoekzSVJksrKAblnOav67sb60rpTuWSznRImkpooBDj2Srhqf1g0H96bBfeMAI5OnUySJElSpauv5Tc1v6R37g0AFscazlr6XeawaeJgWlcuAJOkUm89l+0mCrDRtjzx49PS5mkN62/K9Hx3euXehPql8MZTyy4KkyRJkiQtowsfcnbnf8DSrO53yk+yCRuSJJWlyD0jT+SoqreAbIfH4bVnMdC/u1QJ+p8B/7mn0BUBuP1rWVeETl3T5pIkSWWhCx9wRc1viwd2GMglp/48XSBpTXXZEo7+OYz7SlY/dQNH5jbnvrxzNiRJkiStpRjh7vM4sOq5xkPrDRnL7Z/8fMJQai4uAJOkUrOfKI637p8uRyubFnekF29mxazHXAAmSZIkScuZMXJQsXjoCrj//Wy86c6w01FpQkmStAKlf2f1HDGBIVX/4Kiq4n3P79UOZR5dUkST1lwIcNyv4Tf7ZV0RFs6Ge86Hz49NnUxSOxVC6AsMA7oVDs0DxsUYJyXIMhEYleKzpXJxSc0f2DLMy4pO3eC4K92kR2VlVZ2aG+32uWzTg6dvAuBnNb9j6hK72EmSJElaS49cCVOuLdafvghc/NVm5FIHkKSyMntycbz13ulytLIp+ZKbh7MeSxdEkiRJkspd7WJ4tGRn6U99C3LeYpNKhRD6hhDGhBDGFR5jQggDEmWZmOqzpXIw4/xd+Z/1byge2PtMrr3s+8subJbK3Ybd4ZhfFuunb4Jnb02XR1K7FUIYA1wNjIkxDokxDgFGAcML152t1p4whDAYGADYElHt17O3cmzVI8X62F9l1w1SJTpqNHTpAUC38AGjasZmu/ZLkiRJ0pp47nb42/cby9vrD4CDv5cwkJqbHcAkqdQyHcDa0wKwHYvFrMezG4nujCZJkiRJH/fUDfDh29m4Sw/oMyRtHqnMFCbF9gfOijFOLRzrBYwJIQwHhsQYF7RSloZJsWNa4/OkspOvh9vOhqUfZPUmO8LAi9NmkppgRV0SZow8DvY4GZ76S3bgrm/DtvtBl61aOZ2k9qrQbasX0K/0ejbGOB0YWPj5FKB3K2TpSrYQTWq/PngH7j6vWO95GnzimHR5pOWs8aYbnbrC8VfBn44F4LCqJ7Md+/t/tfnDSZIkSWqbZj0Otw1rLB/P78zw2qEc73zwNsXtiSWpoCvvw7xXs6KqA2y5e9pArejluDULY6es+OAtWDAzbSBJkiRJKkf5evjXr4r1/l+H6g7p8khlpjDpdQBweMPiL8gmxcYYBxbKKa2UxUmx0qNXwaxHs3GuGr5wNXTonDaTtC6OGgUbbZONFy+Av37drgiSWkUIYSjZde6qNjMYAvQqbIjQ0kZh5y+1d3d/Fz56F4DX4ybwmZ8lDiQ1g16HwH5fK9Z/+wEsmJUujyRJkqTKMW86/OUkqFuc1d16M3Tpd1iC8xnaGheASVLBnrlXikX33aG6Y7owrSxPjifzOxQPzHosXRhJkiRJKlcv3AHzX8vG63WFvl9Om0cqI06KlcrM3JfhgZJuXwd/D7baK10eqQlmjBz0sccy1tsIPvdboLBb6asPwNQ/tnpOSe3SKGB66SYHyytcA08ChhY64LaIEEJfYAEwvaU+Qyp7z90Gz/+1sbyg9kxYr0vCQFIzOvyHvJrfMhsvfR/u/JabHkiSJElatY/mwfVDGjdKofMmcOo4FrBh2lxqES4Ak6SCvUoXgG29d7ogiUyNOxaL2ZPTBZEkSZKkcvXIr4vjfc6CjhukyyKVHyfFSuUiX591RmrY5bF7Hzjou016ac8RE+g5YkILhpPWUc8Dsy6sDe77Prw3O10eSW1eCGEw2cYC45tw+rjC87CWS8SoGOPwFnx/qbx9OBcmFK9tb6w7lH/m90gYSGpmNZ34Xu0w8rFh04P74cnr02aSJEmSVL5qF8ONp8C7hTnwVR3h5Bthk95pc6nFVKcOIEnlYq9QugCsf7ogiSzTAez1KemCSJIkSVI5mvU4zH4iG1d1gH2Gps0jlZGSSbFjm3D6OLJOYcOAlpq4OirGOLCQS2p/Hr0KZj2WjXPVcPxVUFWTNpPUnA77Prx0b/aFdkNXhFPHQwipk0lqmxoWc73ahHMbNiAYTAtc64YQzgdao5uuVL7uPq+4o3mXHlz69mlNfqkbHahSTI078fv6z3Bm9T3ZgXsvhN6HQZet0gaTJEmS1OpW9bvsjMuOgr9+DWY+Ujz4+bGwzT6tkEypuABMkoBAnj3beQewp/IlG2+/+TTULYXqDukCSZIkSVI5Ke3+1ecE2GDzdFmk8uOkWKlM9Apz4IGLiwcOPj/rALYaM0YOasFUUjOr6QTH/Rp+/xkgwiuT4MkbYK9TUyeT1DY17BrZlO6yDef0CiF0LXTAbRYhhK7A3jHG0c31nlLFee52eO62Yn3Mr3j/miXp8kgt6PK6Ezhzsxdh/muw5D2469vZLv5ueiBJkiSpwd8vgWdvKdYDL4bdjk+XR63CBWCSBPQOc+gSFmXF+ptD123TBkpgPl1g454wfwbUL4W3noEe/VLHkiRJkqTktg7vwAt3FA/s/7V0YaTy5KRYqQzkyPM/NWOgbnF2oHsfOOg7aUNJLWXb/WDfs+Gxq7L63gug96ftiiCpWYUQepF1uoUmXOvGGKeH4sT8/sCkZoxzNS3XQVcqfx/OhQnfLdZ7nQY7DgBW39XLzQ5UiRbTEY67Eq4t/Pl96V54ZhzsfkLaYJIkSZKSKP3dtueICZxY9Xd46OriCf3PgAPOTZBMrS2XOoAklYO9lu/+1V53TerRvzh+fWq6HJIkSZJURr5SdS/EfFb0OhS22C1lHKmsrM2k2JKy/0pPXDtOilW7dnrVPfTLvZwVuWo4/iqoqkkbSmpJh/8g29QMil0RYkwaSVKb06tkPG8dXrtOQggDgCeWu5aW2pd7R8BHc7PxhlvBEZemzSO1hp4Hwt5nFet7zocP3k6XR5IkSVJZOCj3NJdWX1M8sOMRcNTo9jv3vZ1xAZgkAXuFl4vF1s0996iClHb8mj05XQ5JkiRJKhMb8BEnVj1YPLD/N5JlkcqUk2KlcvDuq5xXfXOxPvj8rAOY1JZ1WB+O+3WxfuleePrmlZ8vSWuu6+pPaZHXLm+4XW7Vrr08Ket81OCYX0Kn5vxXTCpjA34MG22bjRfNX7YTniRJkqT2581n+U3NL6kOhQ1su+8Og/8AVdVpc6nVlO3/0yGEvsAwoFvh0DxgXIxxUgt9XldgKDCQbOJBN2AyMBUY48QBqW37WAew9qp0AdjrU9LlkCRJkqQycWLVg2wYFmXFpjtB78PTBpLKTzlNih3YjO8nVY4Y4c5vsV6ozerufeCg76TNJLWgniMmLFP/pHogX66emBX3nJ91bN1wi1bPJUkFC8iuczdpjjcLIYwCRjXHe0kVaemHMOHbxbrPCbDTEenySK2t4wZw7K/guuOz+oU74MW7YZfPps0lSZIkqfUtnAM3nFCcv9ClB5xyc/Z7g9qNslwAFkIYA/QHzooxTi0c6wWMCSEMB4bEGBc04+edD5wIjAGGNSz2KuwaOwo4P4QwNsY4rLk+U1IZWfI+O4fZ2TjkYKu90uZJaOffzOHZjlXUhHp492VYtMDd0yRJkiS1X/V1fLX63mK939cgl0uXR2o7nBQrraPSBTCDq/7B5TUPAVAXc1QfeyVU1aSKJrW6UXUnc1juSbbJvQOLF8C9w2HItaljSWobGjarZS3mJ6zzF2yFORJdW2qTXKkiPDgSFszMxp02hiMvS5tHSqH3p2Gv02Dan7P67vNg+4Og44Zpc0mSJElqVstvfraMxQvh+hNg4esAvB87seGp46DLlq2UTuWi7GashBAmAgOAwxsWfwHEGKeX7ODabG1pCpMDescY+8UYx5Z2+ooxToox9gOmA0ML2SS1Na9PJRdiNt58t3a9EnoJHXgxblM8MGfqyk+WJEmSpLbuxbvYOszNxp26wR4npc0jlScnxUoJbcJ7XFR9fWN9Tf1RsNWeCRNJrWfGyEHMGDmI50d+gRF1ZxZ/8Nxt8NLf0gWT1Jasy/Vqt9WfslpjgOHN8D4fE0KYsqIHsEtLfJ60Vt54Ch75dbE+4hLYYLN0eaSUBl4MnTfNxgtfhwcuTZtHkiRJUqupoQ5uOg3eegaA2ljFObX/D7bYLXEypVBWHcBCCEPJFn/1W8VkgSHA/BDCmHXtyFWYHNC3ZGHZygwDJgIDQgiDY4zj1+VzJZWZ10vWlG7dL12OhGaMHFQs7poEk3+fjV+fAr0PSxNKkiRJklIrnWS09xlQ0yldFql8lcOk2CHN8D7LKEx+XREnxKqsTNn7AXjmg6zoui3DvnZ12kBSC1nlzqfAv/J9uKX+IL5QlXXDm339ORyxZDQfsd6y978lqUIU5k6MW4tNFqS2IV8Pd3wTYn1W9zwI9jw1bSYppc7d4DM/g1vPyurHx8DuJ0CPvmlzSZIkSWp2y9zTzufhtqHwzD8aD11YdwYP5/skSKZyUFYLwIBRwPTSzl/LizEuCCFMIuvINaq0Y9daGEa2qGsKWcexFd48jTFOCiGUvsYFYFJbUtrlaitvjtGjX8kCMDuASZIkSWqnZj0Bsx8HYEmspuPeZyUOJGl5TopVe3do7kl4ZlzxwNE/hw7rpwskJXZJ7al8OjeNbuEDtg5z+Xb1eC6tOy11LEltRAih6xped85bl88ChjRhI9u1FmNc4a6YhbkTfmGq9B4bA288mY2rOsLRv6DnBXenzSSl1mcIPPUXePUBiHm485tw1oNQVW7T/yRJkiQ1m0k/XPa7oE9/n3H37Jouj5Irm98AQwiDyXaLHduE08eRdQobBgxfh49t2J22L3BCEz+7OXallVROXp9WHLs7EvToXxzPngwxQnERrCSpmYQQzgeIMY5ugfceQNYJYRJZJ9upwLzCZgpdgV6Fx0CgV0tOJJAkqWI9Wuz+dWf+AAZvuEXCMFJlaEuTYp0Qq3LXicVcUvP74oE+J8AOA9IFklpIU7t3NZ73JHD72QCcXnUPt9d/qoWSSWon1mWjgXV57SjWbR6EVNkWzIQHLinWh3wPNt0B+E+ySFJZCAEGXQG/2R/qFsObz8BjV8EB56ZOJkmSJKklPPIb+Pf/Fev+p8PB58E9bpDSnpXNAjCyxVwArzbh3IauX4NZtxufE4GhZDdfJ63spMJkggZrPSlBUhn64G1YOBuARbEDnTb7ROJAZWDTHXk/dmLDsAg+fBvemw1dt0mdSpLalMLir1FAsy/+KmhY5DW08Gj43OXPmwQMaaEMkiRVroVz4Pk7Gstr6o5icMI4UplzUqyUwHeqx7N1mJsVnbrBZ36WNpBULvY4KeuK8No/qAqRkTVXQ/3ZdkWQtLbWZm5Aw9yCd9fmA0MIfYEFMcapa/N6qeLFCBPOg9oPs3qzT8AB31rmlKYuEJfapG694JDhcP9Psvrvl8Gux0HXbdPmkiRJktS8nr0F7rugWO88CD57uQ09RC51gBINLWemr/KsZc/ptdzirDUSYxwPbBxj3DjGuKrPLe36zRxmZQAAIABJREFUNXFtP09SGXq9+N3Jc7GnXwID5Kp4Jr99sX59SrosktSGhBB6hRCGhhBeJZusmtJ0YFiMceAadmiQJKl9mPx7iPUAPJbfhRfidokDSWXNSbFSa5szjdOr7inWR14G62+aLo9UTkKAo38O1esB0Cc3Ax4fkzaTpEpWeu+01zq8dk2MijG60YHar+f/Ci/fV6yP+SVUd0iXRypHB5zLC/nCJr61H3H/FV+i54i76DliAj1HTEibTZIkSdK6e+2fcNvZxXqbfWHwNZCrSpdJZaMsVjqEEHpR/NJ/tQvAYozTS7oX9GcV3bua8F5NufHasMnzAmDs2n6WpDI0Z1rj8Ol8r8aVqO3dk3EHDuD5rHh9Mux2fNpAklTBSrp9LQAmk3UpOBFavJHIaOBnZNfLDdfb04Gpq9n8QJKk9q1uCUy5trG8tu7IdFmkyrD8pNg1WZS1LpNiB67la6WK1DCJL0eev3b4Pn1yMftBr0OzjkeSijbpDYecD/f/NKsfuAQ+cYxdESStjckl424rPaugMO9hRa9tksJGBwNCCHENXjYuLLvz85DCRrhSxWi41u3MYu7veB5bFv5I/7nucL7/m7mAC1qkZVTVcGHtmdzS4cfkQuTwqmkcWf8E9+X3SZ1MkiRJ0jraOcyEGy+D+qXZgU13gpNvhJpOq3ydm0G0H+XSAaz0Ruia7hi7pjttrY1hhefhdkiQ2pg5xTlJT+db4z8nleGpfO9i8bqbaUvSOhobYwyFrrMDW/PL9xjjghjjpBjj2Bjj6BjjeBd/SZK0Gs/dDh++k4279OBvebcKkVYj2aTY1T0o3jset9zPWnozBqnFnFY1MetoBCyONVmno2UnfUsCOOCbvFjSFYG7z0+bR1JFKswNaJgf0JQvEruWjNf4Pmyhw23vJj4aDCs97uIvVbJvVt/GliGbMjQ3dmF0nRsdSCszLe7I9fWHN9ZjNruFTixOmEiSJEnSutqKufyxwyhYsjA7sEF3OO0W6Lzar2DVjpRFBzCWvRHamq9drRDCKLKbuaNjjHb/ktqSGJdZ3PR0dAFYgydLF4DNmQb1dVBVLn9lSFJlcQMBSZIqzONjiuP+X6X+7qp0WaQKEGNcEEJYQHaftlUmxYYQeq/+TABeLTwPAyaVvIebIqgibcp7/HSD22FJVq93+HDo5j1NaYWqariw9gzGd/gJuRDhpXvgP/fAzkelTiap8twMDKVp8xIa/mKeurb3hZt6rVrS9Wue17dqC3qH1zm7wz2Qz+pNPzeKp/c8IW0oKbHld/CfMXLQMvX/1J3AF7s8CR/Nhfdm8fXqv3J53YmtGVGSJElSE62qQ9eMkYPgo3n8scMouof52cEOG8Jp46Hrtmv0nsv/3qC2p1w6gK2Nhhumm7TEm4cQeoUQxpDdzB0SYxzeEp8jKaH3ZmU3woCFsROvxe6JA5WPt+jGm3HjrKj9CN55MW0gSZIkSWoNs6fA61OycVUH6PuVpHGkCnJz4bnVJsU25VHyknkrOS5VlAtqrocl72VFt95wwDfTBpLK3NS4EzfWH1o8cM9wqF2ULI+kijWu8DywCec2zLq/qYWySG1U5OLqP0C+Liu33R/2ODltJKkCLGQDGPiTxnpo1V1sH95ImEiSJEnSWqldBDeewo6517M6VwMnXQ/d+6TNpbJULu1cGvvSrcWX/s3WASyEMLGQpVfhfccC29u1QWp7eo6YwFG5x7iqQ1Y/k+9FrOg1sc3vqXxvuldNzoo5U6H7J9MGkiRJkqQWduuYH/L5QsOvW5buy3cveTxtIKlyjCPbSGsgMHo15zopVloL+4QX+ELVw8UDn/0fqO6YLpBUIf6n7kRO2fBJWDQfFvwXHv45fPrC1LEkVZAY46QQwnRgQAih62rmDgwGFsQYV3pNHEIYBwwAxroJrZQ5JvcIB1Q9nxWhCj57ORS73EntzvI79q+qUwB7nAJT/gizH6dDqOcn1ddCPMN/hyRJkqQyVXq933PEBHLk4ZYzYeYjxZM+91vodUiT3kPtT7msdliXRVzdVn9K08QYB8YY+8UYN44xBmAicH8IYWIIodfqXr+8EMKUFT2AXZors6S1t3uuuOHz03GN/xVv857OF/+ZXHfrX1d9U1GSJEmSKt0HbzMo92hjeW3dkQnDSJUlxjgJaJwUu5rTmzQpNoQwP4QwqjlzShWrvpaLa/5QrHc9DnY4PF0eqYLMpwsc/qPigYd/Ae++mi6QpEo1rPB8wcpOCCEMLQzPWs05g8nmR5wfQujbbAmlSrXkfb5f8+dive8wNyaV1kQuB4Muh5BNATy46hl44c7EoSRJkiQ1TeTH1X+EF+9qPHJx7anQZ3DCTCp35dIBrCzFGMcD4wuLtl4NIQwpHJPUBuweigvAzjllCOfs6oroUs/E7RvHfUoWy0mSJElSmzTlj3QMddl4672588xz0+aRKs8wsg21LgBW2MlgDSfFQjYp9qYY49TmDCpVnMfGsHNudjauWR+O/FnaPFKl6fslmPonmDMV6pfAPcPh1HF2RZDUZIUuYMOBUSGEiYUNEBoVNpMdQ9bVq0XnExQ2XBhacmhYCGFqjNEv81QRlt909KLqP3NWdaGx3gZbwKEjEqSSKtyWe0D/M+CJq7P63guyTUM6rJ82lyRJkqRV+lbVrXypemJj/bu6o7imfhA/SJhJ5a9cOoA1asIOscub1yJBljWk8DwuhNDkJZWFbmIfewAvtkxMSU0VyC+7qGmrvdKFKUMzRg7iTxcNa6w/EWZRQ13CRJKktRVC6BVCOL/QRaHhcf5aXHdLktR21dfC5GuK9T5DV36upBUqTIIdTrZoa8DyP2/tSbEhhPNLDg0rfL5UeRbOgQdLFnwdOhw26pEuj1SJclUw6AqgsODrlYnwn7uTRpJUeQodbAcCY0IIo0IIA0IIfQvXnVOAYTHGYat5j7FAw+KxsWuy0UEIYUwIIQLzgdJOuQPINrONhZ9LFWOnMIuvVt1bPHDEJbDeRukCSZXssIuYG7tk44Wz4Z+Xp80jSZIkadUev5pv19zSWN5Rvz+X1p2aMJAqRbksAFuQ6LVNUtgtq+FG7NVOlpUq3/bhTbqERVnReVPYaJu0gcrR+pvARtsC0DHUslOYnTiQJGlNhRBGkU3CHR9jHNLwKPz4tTXZ3ECSpDbthTvh/TcAeCduBLsenziQVJmcFCu1gPsugqUfAPBSvgfs97XEgaQK1aMv9P9qsb5nBCz9KF0eSRUpxjgpxtibrPNtX7LrzOkxxo0L17FNeY+BMcawuuviFbxuWOF1q3ys+f8qKY0ZP/ssf9vpDqpDPjuw3YHQZ8iqXyRp5TptzMi6k4v1v/8P5r6SLo8kSZKklXtmPNz9vWLd+zCO/dEdvDbyGGaMHJQulypCuSwAW5suXg2LsN5tziCrMK7kc90GWqpwu4eS7l89+kLw+5AV2mrPxuEnc68lDCJJWgtDgYmFiQHTS39QmJg7ljXscCtJUlvTc8QEeo6YwOM3j2w8dkP94VDdIWEqqbI5KVZqRtMfhOdubSx/WPdVqKpJl0eqdIf9ADp1y8bvzYSHrkibR1LFKlzzji48WrS7rdRmPXcr/Pdf2ThUwaDL/c5eWke31B/ElPyOWZGvhXu+B9F9cCRJkqSy8sokuO1soHCt3qM/nHCdcxTUZNWpAxSUdvHqBTR5V1daoQNYQemk2YHA6Fb6XEktYPdcyb/SW/VNF6TcbbUXvHAHsNyiOUlSuZsKDIkxTlrZCTHG4SGEoWSLwDaOMa7xdXUIYcpKfrTLmr6XJEktreeICSs8vmuYwT65/wBQG6u4vu5wvtWawaQ2qnAtutLrUUmrUV8Ld5/fWN5efwCP5ndNGEhqAzp3g4E/gTvOzep//wr2OBk23SFtLkmS2pn1WAJ/+2HxwH7nwOafSBdIaiMiOX5Y+1Xu6HARVSHCqw9w5kUXMynfzy4CkiRJUhnYK7wMN43KNmwA2HRnOHUcdNwgbTBVlHLpADa5ZNxtdSeHEHqt5LVNFkLoG0J4tfBoyuqP0i5lvVZ6lqSKsMwCsB4uAFupkg5gfXIuAJOkShFjnL6qxV8lbi48j2rJPJIklbMvVf2tcVzzyeN4fORpCdNIklTwxDUwN1ugTIcNuLT21LR5pLZiz9Ng672zcf1SuO/CtHkkSWrjGrqvNzwAhlZNgIWzsxM6bwqHnL+Kd5C0Jp6LPbmh/vDG+qLqP9OB2oSJJEmSJAHsEGbz+w7/A7UfZQc22ga+eFu2cZm0BsqiA1iMcUEIYQHQlaYtrupaMl7bFQkXlHzWsMKjqVqr65ikllBfx25hRrHeaq9kUcrelsUFYLuEmVC3BKo7JgwkSWpmE4GhhceaXA8DEGPst6Ljhc5grrCWJJWlZXa7XTQfrjgD6gr1vmv816EkSc3vw3fhwcuK9cHf4527Nk6XR2pLcjn47OUw9lAgwsv3wcuTYMcBqZNJktQubMm7nFN9R/HA4T+A9TZKF0hqQxrve364H/zfXrD4PbbPvcWXq+4Djk+aTZIkSWrXFszkug4j2Th8kNWdN8kWf23UI20uVaSyWABWcDPZxNOuqzuR4sKtqTHGtV2MVdrR69UmnF+6vNI2OFIle+cFOoWl2bjL1rDB5mnzlLPO3aDrdrDgv3QI9fD28y6Yk6S2pfG6NoQwoIldwyRJajue/AvULcrG3fvANvumzSNJEsDfL4XF72XjjbeH/c6Bu/x1TWo2W+0Je50G067L6vsugF6HQFVN2lySJLVhjQtTbjkTnil8V79FH9jri+lCSW3V+pvAISOy61zg3Orb4IOfwgabJQ4mSZIktT0N3a5XphsLGdfhJ/TOFZaudNgATh0Pm+7YCunUFuVSBygxrvA8sAnnnlh4vmkdPm8KMAkYEmMc3YTzS3Oty+dKSu31qcVxDxczrVbpgq85T6bLIUlqCaWbKTSlE68kSW1HjDD598W6/xkQQro8kiQBvPksTPlDsT7yMqjumC6P1FYd/kPosGE2nvsSPHFN2jySJLUHMx+FZ8YV66NGQq4qXR6pLdvnLNh0JwC6hEXwwMWJA0mSJEntz/os4toOo+idewOAJbEaTroeevRNnEyVrGw6gMUYJ4UQpgMDQghdV9PZazCwYFULt0II44ABwNgY4/AVnHIzMJxsEVhTDC48T48xjm/iaySVoznTiuOt/Et0tbbaC56/PRvPmQZ8NWkcSVKzKu2K2ztZCkmSUpjxELz7cjbusCH0GZI2jyRJMcK9IyDms7r3YbDzUWkzSW3A8juwzhg5CDbYHA75Hkz8YXbwwcuy68H1N0mQUJKkdiCfh3tKpu7sehz0PDBdHqmtq6rJNhS5vjDdbeqfYO8zYcvd0+aSJEmS2qjGztcNahfDDUPgtdeyOuToeMLvodehrR1NbUw5dQADGFZ4vmBlJ4QQhhaGZ63mnMFAV+D8EMLHVngUFpiNAu4PIXRdVajC+zV0RHA2kFTp3ijpYrWVHcBWa6s9i+M37AAmSeUshNA1hDA/hBBDCAOa8JJuJeN3WyqXJEllqbTLwx4nQscN0mWRJAnghTuyBcoAoQqO/JndKaWWtO/Z0K3w9d/i97JFYJIkqWU89Zfid81VHWGg3YikFrfjQP5ev0ehiHDvBdnGI5IkSZJaVr4ebj0TXvtn8djRP882Q5HWUdl0AIPGLmDDgVEhhIkxxmW6c4UQegFjyLp6rXMXrhjj2JB9efpaCOGsFb1nCOF8soViAANjjFPX9XMlJVRfC289V6y33GPl5ypT+s/oreehbglUd0yXR5K0KgPINkGAbOOC1XW7Ld0IYXqLJJIkqRy9/xa8eFex7n9GuiySJAHULoK/fb9Y73MWbL5LujxSG7D8jqsNncBKO4INyH2O33W4Iism/x76nw5b7NZqGSVJag/WZxHc/5PigQPOhY23SxdIakcuqTuNA3PPUhPq4b8Pw/N/hd2OTx1LkiRJarvyebjzW/DCncVjh/0A+n0lWSS1LeXWAYwY42hgIDAmhDAqhDAghNC3sBBrCjAsxjhsNe8xluJk17GrWrRVOPdwYFihW8K4wueOCSG8Srb4axLQe/kFaZIq0Dv/gfqlAMyOm0Lnbqt5gei0MTPyW2Tj/HIL6CRJ5WZByfO4Jpzfq2Tsta4kqf2Y9ifI12XjbfeHLXZNm0eSpEeuhAUzs3GnbnDoiLR5pHZiUr4v/6zvkxUxD/eOsCuCJEnN7OvVf4UP3sqKDbeEA7+dNpDUjrwae3Bd/cDigYk/gNrF6QJJkiRJbVmMcN+FMO264rH9vgYHfTddJrU5ZdUBrEFhoVXvEMIAoG/h8PQY48Zr8B4DV39W47lTgYEhhK5kXRN6Ae8CE4FJMcYFq3q9pPJWupvn4Kp/cHlNNn42vz1bJ8pUaZ6J29OTwk35OdOgR99Vv0CSlMpkYGqMsV8Tz2+4ZvaaV5LUfuTrYcofi3X/09NlkSQJYOEceOh/i/VhF0GnJn8dIqmJlu8IBtn3BxfXfZGJ1RdArIfX/gkvToBPHJ0goSRJbU8P3uGMqnuKBwb8GDpukCqOVNFK576siV/UfZ7TN3wcFs3LNh555Eo4+LxmTidJkiSJB38Gj11VrPc4BY64FEJIl0ltTlkuAGtQWAjWap0ICpNex7fW50lqfbuFGY3jZ/M9+Uy6KBXl6Xwvjql6NCvmTEsbRpLasRDCOLINC8bGGIcv//MY44IQwvQQQt9VdcEtvFdXYGih/Nh7SZLUZr08Ed6blY07bwK7Hpc2jyRJD1wCtR9l4813g75fSRpHam9ejlvD3mfA42OzA3+7CHYcCNUd0waTJKkNOK/mZjqG2qzYqi/0OSFtIKkdWsgG8OkL4e7Coq+HfwF9vwwbbJY2mKRmFULoCwwDuhUOzQPGFebgNtdndAXmA2OBVwuHFxQ+a7VijI1zcwvNIcaQzQ+eCEwF5hXmPHQla+LQi2xT215r0hBCkqQk/vUr+MeoYv2JY+HY/4NcLl0mtUllvQBMkprTjJGD4JpfQWGe33lfHpI2UAV5Nm5fLN54Ml0QSWo7ui73vFohhKHA4EJ5fgjhppUs8hoOTAwhDIwxTl/FW15deB69usVikiS1KZOvKY73Os2JvZKktN54Gp68oVh/5jKo8qsbqdUdegE8Mw4WzYf5M+Dxq+GAb6ROJUlSZXt9Kp+r+lexPvJSJ75Ja2FFnWzXWL+vwhO/g3dehKXvwz9GwqAr1v19JZWFEMIYoD9wVsN3/yGEXsCYEMJwYEihOcK66l94HrrKs1ZsOss2Z2hY5DW09P3CxzukTAKc5CdJKmsnV90PE0vmIewwAL5wjd/3qEV4Z0VS+5GvhzefKdZb7pEuS4V5Nl+yAOztF6B2cbowklTBQghdQwiDybp4AZwQQhhQ2MGqWRQWfQ0jWwQ2eEXnFG4AD2YlncQkSWqrtg5vZx3AGvT7SrIskqT2p+eICcs97uLh35wNxOyEnT4DvQ5NmFBqxzp3yxaBNfjnaPioSRuYS5KkFYkRJv6wWO9yNGx3QLo8UntXVQ0DflKsJ/8B5r6cLo+kZhNCmEg2/+Dw0o1fY4zTS7pmTWmmj+u7Dq8dtobnTweGxRgHNtPiNUmSWsRxuYe5tPr3xQPbfQpOuA6qO6QLpTbNBWCS2o93X4XaD7PxBlvAht3T5qkg79OZ6fnCP698Hbz1XNpAklRBQgiDQwgxhBCB+cC4kh93BSYC8xvOCSGs8KZpjHEs2e5WkC3cWmnXrhhjwy5YF4QQXg0hjAshjCo8zye7ATwkxrimN1klSapoJ1c9QOMk+96HQ7deSfNIktq3Q3NPcWBV4T5bqIKBP00bSGrv+n21eH24+D14yI4IkiSttZfuhRkPAVAXczDgx0njSAJ2OhJ6HpSNYz33/fLsZTYpkVR5QghDKX73v7JFUkOAXoVNYtdVb2A00DvGGJryKHz+2MIchuWNBjYGBpItEBteOL93jLF3YY6EJEnl68UJXFHzW3KhMAdhq73g5BuhQ+e0udSmuQBMUvvx5tPFsd2/1tgzsWRi5JyVrjmQJC0nxji+qTc/C49VLewaWDhntQu3YoxTY4z9yG6WTgTeLTwfXrhZOr7Z/kdKklQBaqjjhKoHiwf2PiNZFklS+zZj5CBmXHok1/a4o3iw35dhs53ThZKU7cha2hXhsTEw77V0eSRJqlT1dct0/7q+/nDYdMeEgSQBEAIccXFjeWTVZPYOLyYMJKkZjAKmr2aOwQKyjWaHhhDWdVe8/sDPYozTm3JyCKErcMGq5jfEGBfEGCfFGMfGGEcX5lc06f0lSUrq1b/DuK9QHfJZvfmucNqtsF6XtLnU5rkATFL78caTxbELwNbY0/nti0XpP0tJUlmLMU4vuVm6ys5hkiS1ZZ/JPc5mYWFWdOkBOx6ZNpAkqX178s/wTjbR7oO4Hhx6QeJAkgD4xDGwzX7ZOF8L99uZT5KkNTbtTzD3JQDej534Zd0XEgeS1Girvbi9/oDGclyvu4GsW0FpNzC7gknlL4QwGOgKNGXj13GF59VuNLsa81bRaWxFribr6iVJUtsy8zG48RSoXwrAa/kt4Iu3QeduiYOpPXABmKT2442nimMXgK2xZ/OlHcBcACZJkiSpspxafX+x6PtlqKpOF0aS1L4t+QAeuLSx/G3dMbDB5gkDSWoUAp975ahi/dytHH/BL50AK0lSUy15H/5+WWN5Vd2xzMPdz6VycnndiSyJhXujr09mUO6xtIEkra2GxVyvNuHcho5ag9f2wwrdvJrcmauwQG1ejHHS2n6mJEll6Y2n4PohUPsRAHNiN05beiFs2D1xMLUXLgCT1E7EZReAdd89XZQK9VzcjnwMANS9+Tw7j7jNL7wlSZIkVYa3X2S/3AvZOFRB3y+lzSNJat/+/Sv48G0A3owb87v6zyYOJKnUtLgjd9Xv21hfWHM9DV0RJEnSavzrV/DhO9m4Sw+uqT9q1edLanWz42ZcW39kY/3rLe5gxiUDmDFyUONDUkXoX3huyqKshnN6FRZyrbEY44IYY5M6iBU+4wLs/iVJamve+Q9c9zlY8l5Wr78Zpy69iNfZLG0utSsuAJPULmwd3oHFhb9w1+sKXbdNG6gCfUBnXovZCvXqkOcTYWbiRJIkSZLURJN/Xxzv8lnosmW6LJKkdm0L5mWTYgsurzuBxXRMmEjSioyuOwlyNQDsk/sPR+QmJ04kSVIFWDgH/v1/xfqw77OEDunySFqpX9cdl82dAZg/A564JmkeSWsmhNALaFjItdoFYDHG0nP6r/TE5nM1MDzGuKAVPkuSpNYxfwb86Tj46N2sXm8j+OJtvBade6DW5QIwSe3CbmFGsdhyDwghWZZK1LDLU+/dP9V4bLfcjHSBJEmSJKmpln4ET91YrPufkS6LJKnd+071eKhblBVb9OHW+oPSBpK0QjPjFrDPWY31iOq/UE1dwkSSJFWAv19avNbt3gd2PzFtHkkrtZAN4JDziwf+ORoWuU5DqiC9Ssbz1uG1zS6EMAAgxjipJT9HkqRWtWAWXHsMvP9GVtesD6fekv3uK7UyF4BJahc+WbpYacs9kuWoeCX/7HYLryUMIkmSJElN9NxtsCTrCD093x22PyRxIElSe7VLmMmQqn8UDxxxMXm/ppHK18Hfg44bAdAr9yYnVz2QOJAkSWXs7Reon3p9Y3nqzKPpeeG9CQNJKtVzxITGR6O9z4Su22XjRfPhoSvShJO0Nrqu/pQWeW1TjAHOWu1ZJUIIvUII54cQxpU8zg8htHRWSZJWb+Ec+OMx8N7MrK7qCKfcCNvsnTaX2i2/WZTULnyydLGSC8DW3pa7Nw4/aQcwSZIkSZVgyrWNw7/UHwY5b4dJktIYUf0XciFmxQ4Dofen0waStGqdu8HB320s/1/1LbD4vYSBJEkqY/dfTFXhWvfB+j34V95d0KWyV90RBvyoWD82Bt6bnS6PpJbW0OZvk5b6gBDCUGBSjLHJLQVDCKOA4cD4GOOQhkfhx6+FEAa3RFZJkprk/beyxV/zC3PQqzrASTfA9genzaV2rTp1AP1/9u48TKrqzOP491R1NwguiBsYlxZiXEBQcN83zILGJIJGTTQmio4mJpOJiiaZzCSTBI0ao9GIURO3RMU9wQ2M+xYFBQF3bNxAkUVl766688ctqgoVaKC7T3fV9/M89fR5T9/q+oV+JJeq+95XUutL6JuxAaxF9Cg1gG0T3qKGpohhJEmSJGkl3psCb/8bgCVJlltz+/LTyJEkSVXqjUfZPzshXYcMDPrlcg9d5o7skuLa9WT495Xw4ZtsED6Gxy+Gg34eO5UkSdGVn7MOCK9wW6dSvf+pf6Sh7MaikuJpGDF4xQf0+QY88Ud4dzzkFsPD58JXL2mbcJLWRPeli1Vptipozala5wIDV+H4YcDQJEnGfvIbSZKcF0LYABgVQhiaJMktLRVSkqRmmf8BXPtVmPVaWmdq4MhrYeuD4+ZS1bMBTFLF25i5bBQ+Sou6taF777iBOrIu3aHbFjD3TTqFJrYO78ROJEmSJEnLN/6a4vL+/C7MZt2IYSRJ1WTZJq6E2+p+wYClQyj7Hw2bbB8jlqRVVdsZDvpvuO1EABY8cgn7junNB6xXPGSlF9VKklTREs6svalY3Znbk8Nt/pI6jhDSKWDXHp7Wz10Pe54eN5Ok5liTJq7uKz9k1YUQzgRmJ0kytZlPGc9ymr+WSpLkrMJUsVEhhPWb2+wWQhi3nG9t28xskqRqt2B2eo4886W0DlkYcjVs8+W4uSRsAJNUBZaZ/tVjB8hkln+wVq5HP5j7JvCJP1tJkiRJak8aF8KEG4vl33MHRAwjSapmgzLjGJBJ7xC5OKmh0/7Dm/U8m0qktrPCyXt9j2DKLb9i+8w0uoTFfL/mdv6n6Tttlk2SpPas4cTOcP2LaZGp4fAf/DFuIEmrrtf+sNV+8MbDkOQqngoZAAAgAElEQVThX/8HHBk5lKQO6GzgiuYeXGgUa06z2M2kk8LOBU5evWiSJK2ChXPhuq/Be5PSOmTgG1fA9ofHzSUV2AAmqeL1CQ2lomf/aDkqRs8d4aV/ArB9mBY5jCRJkiQtx5S7YFHhZpDr1/PE9D5x80iSqlLDb74Ef/olzEzrTnsMg25bxA0ladVkMmz/rfPhb0MB+E7dg3znx+dRf96UyMEkSYorkIex/1vaGHAcbNA7XiBJq++gX8CVB6brKXfQJ+zC5GSruJkkNUsIoVtzJ2MVzG6FDAeTTiUb09I/u/AzhxUezWoAS5Jk4GftFyaDDWi5aJKkjmBFN//61I34Fn0E1x8B0ycUNgIcfhnsMGSlP0tqKzaASap4fTMNpcIGsDVX9mfoBDBJkiRJ7db4a0rrAceRjHYatCQpgok3wcyX0nXd2rDPf33mYX5oKMXR7El7Ww+CLfaEN5+AfCM89FvAO75Kkqrb4MzTMGNiWtSsBfueGTeQpNW32UDY7jB48R8AnFlzE8c3Nm96taQoVqXhqyWfuzxLG7OebYWfXZwSFkI4OEmSsa3wGpIkweJ5cMNQeKf0f2dnNp7IzTeuCzf6GY7aDxvAJFW8PjaAtaye/YrL7cM0yOcgk40YSJIkSZI+YeYrMO3xdB2ysOOxMHpc3EySpKpTRyM8+JvSxp4/gK4bxgskafWFAAf/Aq7+YlpPvJltwk68nDjRT5JUnWpo4sc1o0obu50M6/aMF0jSmjvw5/DSaEjy7JedyG5NLwLNvGGCpLa2OlO8uhW+zmrJIAVDgLmrOImsucp/Zq9W+PmSpCpRfjOwT92Ub8kC+Ps34a2nSnuDL+DmWz/737nNvrGY1ApsAJNU2ebPYrPwQbrOdoINvxA3TyVYpwesvQnMe4+uYTHMngobbh07lSRJkiSVlE//2ubL6b9jJElqY8dmx8KHb6VFlw1gj9M+dYwfEkodyBa7wxe+BK/cCyT8pOZmTmr8SexUkiRFMTT7ML0yM9Ki83qw94/iBpK05jbaBvofDc/fAMCZtTdC8l/pzRAktTefbIoav5rPXWMhhIMLy6krPHD1lTe79W6l15AkVbPGRXDjMdDwaHHrfxu/zV/Kmr/8LEftiQ1gkirbjAml9SZ9IFsbL0sl6dkfXr0/XU+fYAOYJEmSpOiW3qWrjkae6vRXui+9LmHgd6JlkiRVr64s5Ps1d5Q29j0DOq0TL5CklnHgz+GV+4CEQdnxDGx6maVTET5119gyXiAgSaoojQv5Yc1tpXqvH8Fa68fLI6nl7D8cXhgFuSUMzLwKL98D234ldipJn/Zs2br7yg4OIZRPznp2uQeunkGFr81qAAshdAPeIJ1INihJkrEreUr5/77WmF4mSapmTYvh5m/D1AeLW79tPJq/5L4cMZS0YpnYASSpVU0vawDr2T9ejkrTo19pPf35eDkkSZIk6RMOyTxL9zAPgLeTDaH3gZETSZKq0YnZu9kgfJwW620BO383biBJLaNHX+h3ZLE8q/ZGSJKIgSRJiuDfV9AjzEnXa28Cu50SN4+kltNtC9j5e6X6X7+CfC5eHkmfKUmSuZQmefVa0bEF3crWLT2p6+CVH/Kp45fmGdqM41szuySpinViCdz0rdIwDOD8xqGc/evLaRgxeJmH1J44AUxSZZs+sbS2AazllP9Zlv8ZS5IkSVJkf9xmQnrvSODmpv35cSYbN5AkqfrMm8lJNWWTgA44B2o6xcsjqWXtfzZMug3yjeyaeRleHQNfOKT47fILAlY0FUySpA5p4Vx49MJSvd+ZUNclXh5JLW+f/2L+U1fTNSyG96fAC7dA/6Nip5L0aTcDw1i2QWp5ljaJjS80j7WkAYWvs5t5/Nyyr6OacXx5g9vKpoVJkirYit5rXdUmrU4s4fLa38OrpSEjFzd9jT/mvs5PVjuh1DacACapsjkBrHUs0wA2wTucSpIkSWoXtgwz4I1HAMglgZtz+0VOJEmqSo9ewNphUbreaLtlpgVJqgDdt4KB3ynVD/wS8vlocSRJalNPXgqL0uu2p+U3hp2OixxIUotbeyOuzH2lVD/4a2haEi+PpOVZ2jw1qBnHLu3ivKklA4QQypvPmttY9ixpI9r6SZI0p6Fr6f++sa3QvCZJqkaNixhZ+3sOyJZdX77vmVzY1JzBlFJ8TgCTVLkWfQSzXwegKclQs/H2kQNVkG5bMDfpSrcwP32Df+6bsP6WsVNJkiRJqnLfzD5YXD+Y35EZbBAxjSSpUq3wLpNn94dnryptHPTf4DRKqfLsewYL/n0tXcJieO8FmHQr4PQTSVKFWzAbnvpTsfx90xAuqqmLGEhSa7myaTDHZcewfpgHc6fB89fDzt+NHUtSmSRJxoYQpgIHhxC6raQ5aggwN0mS85Z3QAhhFHAwcEWSJGc1M0b5dK5ZzXlCkiRzQwhTQwgDkiQZv6JjCw1mwwplczNJkipc+bSvFX1e85kaF8FNx7J/efPXfmfB/mfD/Xe3UEKpdTkBTFLlmvFCcflqshnUdo4YpsKEwOR8fameMTFaFEmSJEkCqKWJIdmHi/XfcwcC6Zu+q/zGryRJq+uR8yGX3hl9fP7zsM2XIweS1CrW2YSrcmX/fT/0G7Lk4uWRJKktPHExLPkYgFfzn+Ou/J6RA0lqLR/ThT81HVbaeOR8aFocL5Ck5Tm58PXs5R0QQljaQHXSSo4ZAnQDzgwhDGjm63dv5nGfdBYwKoTQayXH/bnw9byVNYtJkrRSjYvgxmPgtbIBlPsNhwPOgRDi5ZJWkQ1gkirX9FKH9qTyZiW1iElJfako+7OWJEmSpBgOyoxno/BRWqzTk4fyO8YNJEmqeA0jBhcfAJuF9+G564rfv6BpqB8aShXsz02D+TApTP2aPZVvZB+NG0iSpNY0byY8fUWxvKjpCPJeciRVtGtzh0DXjdPio3dg/LVxA0n6lCRJxpI2U50ZQjj4k98vNFiNJJ3qdUsrROi2Ok9KkmQqafPamBDCkM86JoQwkrQpbVUmkkmSKsTSm7yWP9ZEJ5bAjUfD6w8U9y5q+gYcsNweaqndqokdQJJaTdlUqknJVgyNGKUSLTMBzAYwSZIkSZEdnf1Xqdjp27x+4FfjhZEkVaXTs7dDvgmAp/Pb8ni+b+REklrTR3TliqZDOaP2ZiD9O+D23N6RU0mS1Eoevwga56frjftw95u7xs0jqdUtohPs/Z9wX+Gi2EfOh52+BbVrxQ0maRlJkpwXQhgPjAwh3AKMAWYDB5NOBjs5SZIrVvIzrgghDC0854pVmLY1dTnr5uQeW3jNP4cQzgXGF35Gr0KO2cDQVmpckyRVkU4s4c+1F8DrLxT3ft94BH/IHcGPIuaSVpcNYJIqlxPAWtXkZSaATVzucZIkSZLU6uZMY5/M0jdsAwz4dtQ4kqTqUx+mLzP954LGoYDTv6RK99fcFzlj3bGwcDabZ2YyNPswcHjsWJIktayPZ8AzV5bqA84mucbpX1JV2PkEePwPMG9G+nj2L7DHqbFTSfqEwiSw3oUpYAMK21OTJFl/FX7GoNV43fGFJi5Wp1Gr0Gg2sDCp7GDSiWKvA79dhSY0SVIFaxgxeM1+QONC/lx7AftmS81f7H8Of7jXG/ip4/IdGUkVp374aLYdfhu5914EIJ8EXky2jJyq8ryR9GR+0ikt5s1gl+HXr/GYVUmSJElaLc9dRyYk6frzB0G3LeLmkSRVnR/W3EZNyKdFr/35d7Jd1DyS2sZ81oK9flisv19zBzQtjphIkqSW95dzT4emRUB649X6a7zRgVQ1ateCff6rVD92ISyZHy+PpBVKkmRskiTnFR5tMjkrSZJb1vS1kiSZmiTJFYXcqzKBTJKk5VuyAP7+zWWbvw74Kex/VrxMUguwAUxSRdo2vEW2cPHfG0kPFtA5cqLKkyezTGNdn0xDvDCSJEmSqkr98NHFR+/hdzHj4bK7UA84Pl4wSVJ1ev8lDs88UaoP+Gm8LJLa3q4nQdeNAPhcmAXjr40cSJKkFvThOxyT/VexvLBpCE66lapH/fDRbHP7RrybdE835s+EZ66KG0qSJElamULzF1MfKu0d8DPY78xokaSWYgOYpIrUN/NGcd27315rPgZUn9IwYjA7775/se4TpsULI0mSJKlqHZB5nh5hDgAzk/Vgmy9HTiRJqjoP/bZsEuUg2HzXuHkkta26rrD3f5bqR86HxoXx8kiS1JIeu5BOoTFdf24gV//6ZzSMGFx8SKp8i6nj0qavlTYevwgWz4sXSJIkSVqRJfPT5q83Hi5undd4JOx3RsRQUsupiR1AklpDn9BQKnr2j5aj4pX92fbNvAG5iFkkSZIkVZ2GEYPhhmvg1bTeaJ/vQrY2bihJUnWZ8QJMuaNYHjZ5P14YPjpiIElR7Pxd3rv3PDYJc2HeDHj2L7DHqbFTSZK0Zua+CeOuKdUHnAPB6V9SNfhUg2fTIN7+1V1sFj6ABbPg31fAPj+OE06SJElansUfww1HwptPFLfOazyKy3KH4+wvVQongEmqSH0yDaXCBrDW06Nfcdm3vOlOkiRJktrCh2/Da2NK9YDj4mWRJFWnB39bXN6fG8gLSa+IYSRFU7sWlzYdXqofuzC906wkSR3ZI+dDPp3+9Wz+C9D7oMiBJEVTU8clTV8v1U9cDIs+ipdHkiRJ+qSFc+G6ry/T/MVBv+Cy3OHLf47UATkBTFLFqaWJbcJbpY2e/ZZ/sNbMRttCtg5yS9g8M5P1mBc7kSRJkqRq8tz1kOTT9Vb7QXcvupcktaz6FU3zemc8vFz6/iGnXUxDj75tkEpSe3Rj7kBOqfkHm4bZMH8mPHMl8PnYsSRJWj2z34DnbyiWFzQN5e9O/5Kq2q25fTgtewdbZGbCwjnw9EjY74zYsSRJkiRYMBuu+xpMn1Da++JvYI/TYPTyP+dZ4WdAUjvlBDBJFWfr8DadQlNadNsC1lo/bqBKVlMHG29fLLfPTIsYRpIkSVI1yZCH8deVNgYeHy+MJKk6Pfib0nr7r4HNX1JVW0ItfyyfivDYRXRlIZBeSPDJhyRJ7dojv4N8+pn7U/nteDK//UqeIKnSNVHDxblvlDaevCSdsiBJkiRFtCEfwl8HL9v8NfiCtPlLqkBOAJNUcfpkGkpFz/7RclSNnv1g+vMA9A1vRA4jSZIkqVrsm5kAH72dFl02gG0PjRtIklTRGkYMXnbjrX/DVWMKRYD9z27zTJLan1G5/fjNRmNg7puwcDbfyd7HpbmvxY4lSdKqmfU6TLixWF7YOARw+pckuD23N+dvMgZmT4VFH8JTl8EB58SOJUmSpCq1CbP5W92v4f3pAOSTwFlNJzHq1p5w6/JvwvWpz3ykDsQJYJIqzjJNSDaAtb6yP+O+5c13kiRJktSKjs4+WCr6Hw01neKFkSRVn4d+W1rvMBQ23jZeFkntRiM1sO+ZxfqMde6j4X/2pmHE4OJDkqR279ELIcml663249/JdnHzSGo3cmRhv+GljScvg4Vz4gWSJElS9Zr7JjfX/ZLembT5qynJ8KPGUxmV2z9uLqmVOQFMUsXpk5lWKnruGC9ItSj7M+4TGuLlkCRJklQ1NmIOB2XGlzYGHB8vjCSp+rz1DLz+r3QdMrDfWXHzSIqqfvgn7iTb/2h49AKY80ZhKsKfYP/hn/1kSZIi++T/j20W3ufBur9Tu3Tg1/7D4UWbOySV2WEIPPI7mPUqLPkYnh7p+a4kSZLa1qzX4drD2TLzflpnaqgZcjUXb384F8dNJrU6J4BJqiz5HNuH8gYwJ4C1uo23Ty90AXqF6bB4XuRAkiRJkirdkOyj1IR8WmyxJ2z0hbiBJEnV5eFzS+sdhsKGn4+XRVL7k61Z9gLYpy6DRR/FyyNJ0io4NXsXtSGd/vVkbnvq/2Tzl6RPyGRh3zNKtee7kiRJakszX4G/fAU+fCuts3Vw1PWw/eFxc0ltxAlgkirLrNfoEhan67V7wNobx81TDeq6wIbbwMwXyYQE3psEW+weO5UkSZKkSpUkHJV9sFQPdPqXJKkNvTMOXhtTKALs85OocSTF0zBi8PK/2XcIPDSiNAXsmT/DPv/VduEkSVpFDSMGw9y3WPL7h4t7F+e+HjGRpHat7xHw0G8935UkSVLbem8yXHs4zJ+Z1jVrwTdvgM8fFDeX1IacACapskyfUFo7/avtlP9ZT58YL4ckSZKkytfwKPWZ99J1p/Vgu6/GzSNJqi4P/6607vsNp1BK+mzZGti3rEH0iT/C4nnx8kiS1ByP/4G6wvQvNt+dv//6DBpGDC4+JKkoW7Nsw5fnu5IkSWpt7z4Hfx1cav6q7QrfusXmL1UdG8AkVRYbwOLo2a+0Lv8dSJIkSVJLG39tad3vyHQqsSRJbWH6BHjlnkIRYN8zosaR1M71Owq6bZGuF86GZ6+Km0eSpBX5aPqy77nsdyaEEC+PpPav/zdhvfLz3avj5pEkSVLlmvYEXPNVWDgnrTutC9++Her3jptLisAGMEmVxQawOJaZAGYDmCRJkqRWsmA2TLmrVA84Ll4WSVL1efi80nr7w2Hj7eJlkdT+ZWth7x+X6icugSUL4uWRJGlFnrgYcovT9ed2ht4Hxs0jqd2qHz46ffz0fs75YFDpG57vSpIkqTW8Ogau+zos/iitO3eD4+6ELXaLm0uKpCZ2AElqMUkC0yeWahvA2k6PHYrLxhlT6DP8DpZQC0DDiMGxUkmSJEmqNBNvLl6MNDG/Ff3KpxFLktSaZkyCl/5Zqp3+Jak5djwGHjkfPnob5s+EcX8FtoydSpKkZWzE3GUn9zj9S1Iz3ZLbl+/X3M6mYTbMfx/GX0P9HVt85rFeOyJJkqRVNuk2uO0kyDel9dqbpJO/NukTN5cUkRPAJFWOOQ2w+EMAZidrw3qbxc1TTTqvR0N+EwBqQ45twluRA0mSJEmqOEkC468pljfmvBO1JKkNPfK70nrbQ6FH33hZJHUcNZ1g7x+V6scvohNL4uWRJOkznFgzGpoWpUXP/rD1IXEDSWqXGkYM/tRjCbVc3nRY6aDH/+D5riRJklrEUdkH4Zbvlpq/1tsCTrjH5i9VPRvAJFWO6ROKy8n5eu9K1sbq++5RXP9jyDoRk0iSJEmqSO+Mg/enALAg6cRduT1W8gRJklrG1uFtmHJnaWO/M+OFkdTx7PRtWLtHup73XnrhgiRJ7UR3PuLb2bGljf3O8nN2SavkptwB6SQGgI+nMzT7MFBqGJMkSZJW1YnZ0Zxb+2cgSTc2/AJ8917YoHfUXFJ7UBM7gCS1mPIGsGQr9okYpSr17A9T7kjX0ycCB0WNI0mSJKnClE3/+mdud+bRJWIYSVI1+X7NHRQ/ZPzCl9P3wSSpuWo7p1PA7h0OwCk1/3CarSSp3fhezd10CYvTYpMdYJuvxA0kqcNZTB2/mjOIn9deD8B/1NyVNoVJkiRJn1A/fPRyv9cwYjAkCTz4a35We0PpGz37w7dug64btkFCqf1zApikylHWADYpXx8vR7Uqv/Cl7HchSZIkSWts8cfwwq3F8kYvIJAktZHe4R0OyzxZ2tjvjHhhJHVcA46HrhsDsGmYzZDsI5EDSZIELJjN8dn7S/W+P3H6l6TVckPuID5I1gXgc2EW38g+GjmRJEmSOpx8Hu45Ex75XWlviz3h+H/Y/CWVcQKYpMqQJMs2gCX18bJUq/IGsPcmkSVHjmy8PJIkSZIqx6TboHF+ut5wG8a/vXXcPJKkqnFazZ1kQmH61+cHwecGxg0kqWOq6wJ7nQ73/wyAU2vuhKYRUFMXOZgkqao9fTlrh0XpeqNtYbuvxs0jqcNpGDG4VDw2Dcb+DwDnbnQ/5BohWxsnmCRJktq18vPI+uGjyZKDO06BiTcV9x/M9eeAb92avrcqqcgJYJIqw8fTYcEH6TJZi2nJJpEDVaGuG8K6n0vXTYvoHd6Nm0eSJElS5Rh/bWk98HjAu1FLktrArNc5PPN4qd7vrHhZJHV8O38XumwAwGbhA5h4Y+RAkqSqtugjeOryUr3vGZDxEiJJa2CXE2Gt9dP13Gnwwqi4eSRJktQhdGIJf6q9aJnmr3/kdmdY43/Z/CV9Bt+9kVQZyqZ/TUm2JPGvtzjKpoD1DW9EDCJJkiSpYrw3Gd55Nl1n66DfN+PmkSRVrPrho5d53Pj7H5NdOv2r94Gw+S5xA0rq2Oq6wh7fL9WPXgC5pnh5JEnV7dmrYfGHAEzN94A+X48cSFKH12kd2P20Uv3ohZDPxcsjSZKk9m/xPK6u/R2HZMeV9gYczw8bv08jNfFySe2YHRKSKkNZA9jkfH28HNWurAGsT2ZaxCCSJEmSKkb59K9tD4WuG8TLIkmqGj2YxTeyj5Y29vlJvDCSKseuJzEnWTtdz2mAybdFjSNJqlKNi+DJS4vl5bnDIJONGEhSxdhtGHRaN13PehVe+mfcPJIkSWq/5s+Ca7/KXtnJpb09fwCH/YG8LS7Scvlfh6TKUNYANskGsHjKJ4BlnAAmSZIkaQ01LoIJN5bqAcfFyyJJqhoNIwbz1P4vUhcKdyrfYg+o3ytuKEmVodM6/KXpS6X60Qshn4+XR5JUnZ6/Hua/D8C7SXduz+0TOZCkitF5Pdjle6X60QuBJFocSZIktVNz34SrvwjvlE3+OvDnMOhXEEK8XFIHYAOYpMpQ3gCWbBUxSJXr0a+43D5MI+AH15IkSZLWwIv/gEVzAXgzvxFb/Xke9cNHRw4lSap48z+AcX8t1Xv/OFoUSZXnmtwhzEs6p8XMF+GVe+MGkiRVl1wTPH5xsbyyaTCN1EQMJKni7H4q1BTOd6c/z96ZSXHzSJIkqV35QngLrvpiOjEWyCeBnzWeQP3d21F/9t1eDyCthA1gkjq++R/AR++k65rOvJ5sGjdPNVt3U+iyIQDrhIVsGd6LHEiSJElSR1M/fHTx8cSoC4v7N+UOIPGtLElSW3j6cmhckK432QG2HhQ3j6SK8iFrc0PuoNLGoxdA4lQESVIbmXwbzJ2Wrtfqzt9zB8TNI6nyrL0x7PStYnlq9s6IYSRJktSeDAwvM6ruf+Hjd9ONbB3fb/wB1+f8HEZqLm/jI6nD+/av/8x1den6uSWbkSMbN1A1CwF69ofXHwCgT5gWOZAkSZKkjmrLMIM9s1MAyCWBW3L70jBicORUkqRKtzYL4N9XlDb2+XH6npcktaCrmr7CyZ3GQG4JvPMsNDwKW+0bO5YkqdLl8/DY70v1bqew8N7O8fJIqlx7ng7P/gWSHHtmp7Bj02uxE0mSJCm2l+/hhrrf0Dk0pnXd2vDNv3FZr/3i5pI6GG+bLKnD6xsaiuvJ+S3jBVGqZ//ism/mjYhBJEmSJHVkDx/0VnGd3eZLPD3i2xHTSJKqxbHZB2DRh2nRvTdsf3jcQJIq0vusDzseW9p49MLlHyxJUkt55V54P73ZDnVrw64nxc0jqXKtvyXsMKRYnlrjFDBJkqSq9tz1cOOxpeavrhvBd0aDzV/SKrMBTFKH16esyehbX/8qDSMGe1f4mMoawPqUNedJkiRJUnPV0ATP/620MeC4eGEkSVWjE0s4sebu0sbeP4JMNl4gSZVtr9MhFD6qnfogvDM+bh5JUmVLEnisrOF45xOgS/d4eSRVvr3/s7g8JDsO3n8xYhhJkiTFUD/8n4z46clw52mQ5ACYlt8YvnsfbLpj5HRSx2QDmKQOr3wCWHnzkSLp2a+47Jt5I/0wQZIkSZJWwYGZ52Dee2mxdg/Y+pC4gSRJVWFo9mE2CoXpX+t+Dvp9M24gSRWt/rwXuaNp92J9z+VnRkwjSap4DY/B28+k62wd7H5a3DySKt/G28E2XynVj10UL4skSZLaXj7Pz2quZ3jtjcWtKfktGbLkf2CD3vFySR2cDWCSOrZFH1KfKVwUmKmBjbePm0ew/lbQaT0Auod58OHbkQNJkiRJ6miOyj5UKnY6FrI10bJIkqpErpGTs/8s1Xv+AGrq4uWRVBX+1PTV4vrL2Wdg5ssR00iSKlr59K8dj4F1e8bLIql67P3j0vqFUTBnWrwskiRJajtNS+D2kzmx5p7S3pZ7s/05j/LMiGPj5ZIqgFfPSOrYZrxQWm+8HdR0ipdFqRDSKWANj6b1jInQbfO4mSRJkiR1GD2Yxf6Z50sbO30rXhhJUvWYdCubZ2am67W6w4Dj4uaRVLEaRgxeduNvD8Mr6YUQt1z8E37SeMryj5UkaXW8+xy8/q90HTKw1w/j5pFUPTbfhSdz27NHdgokOXjiEhh8fuxUkiRJak2L58Go4+G1saW97Q6Db1wJtZ3j5ZIqhBPAJHVs0yeU1j36x8uhZfUs+12U/44kSZIkaSWGZh8mG5K02Go/6N4rbiBJUuXL5+HRsokIu58KdV3j5ZFUXfYpTUU4PPM4n2NmxDCSpIpUfq7b5xu+1yKpTV2WK0295bnrYN778cJIkiSp1dQPH80uw29g4q/3Xqb5629NB8LQa2z+klqIE8AkdWzlzUU9+8XLoWX1KPtd2AAmSZIkqbnyeY6qeahUO31FktQWXr4bPngZgI+TtVhn1xMjB5JUVTbfFer3gYZHqQ05Ht93MvWP7B87lSSpUsx8BV78R6ne+z/jZZFUlR7N78AL+Xp2yDRA0yJ46k9w8C9ix5IkSdIaqB8++lN7vcK7XFN7LptnSje4+kPT1/l90xCOyWTbMp5U0WwAk9SxLdMAtmO8HFqWE8AkSZIkrY6pD7JZ+CBdr7U+bHto3DySpMqXJPDoBcXyhtzBnLLW+hEDSapKe/8nNDyarsdfywbsxCzWi5tJklQZHr8ISCetP5Dbie9dNA2YFjWSpGoTuKzpcP5U94e0fOZK2PtH0NnzXUmSpEoxMLzMlXUXsH6Yl26EDAy+kB/ufAI/jBtNqjiZ2AEkabUtmQ8fvAJALgnQo2/kQCracGsWJnXp+uPpMO/9uHkkSZIkdWEE400AACAASURBVAzjry2t+x8NtZ3jZZEkVYepD8G74wFYnNRyVdOX4+aRVJ16H1i6yV3TIr5bc0/cPJKkyvDhOzDxpmJ5adPhEcNIqmb35XeBDT6fFos/gmeuihtIkiRJLaJhxGAajmvi1i4jSs1ftV3gm3+HnU+IG06qUE4Ak9RxvTcZkjwAryeb8oW6rpEDqSiTZUqyJQPDq2k9fSJsfXDcTJIkSZLat/kfwEujS/WA4+JlkSRVj8d+X1zelNufmXSLGEZS1QoB9vkx3JyeA387O4bLm74aOZQkqSOrHz6ac2puYFhNEwBP57dlfPIFIL1AT5LaUp4M7PUjuOv76cZTl8Hup3oDMEmSpI7uycvgvnNYOnmarhvBMTfB5wZGjSVVMieASeq43n2+uJyUbBUxiD7LpHx9qZj+/HKPkyRJkiQAJvwd8o0AjMtvDRtvFzmQJKnivfs8vPFwug4Zrsh5IaykiLY9DDbYGoB1w0KOzY6NHEiS1JGtwwKOzv6rWI9sOjRiGkkC+h0F62yarufPhIk3xs0jSZKk1RbI87Oa6+C+syk2f3XvDd8bY/OX1MpsAJPUcU2fUFxOLm82UrswOakvFWW/K0mSJEn6lCSB8dcWyxtzB0QMI0mqGk9cXFr3+TpvJxvHyyJJmQzs/aNieULNvdC0OGIgSVJHdkz2AdYJC9Niw224+v9+SsOIwU7/khRPTR3s/h+l+ok/Qj4fL48kSZJWT+MiLqm9hBNr7intbbZr2vzV3WEeUmuzAUxSx1XWVDQp70lDezO5/HdiA5gkSZKkFXnzKfjgFQDmJZ0Znds9ciBJUsWb0wCT7yjVe54eLYokFe0wFNbpCcAmYS5MvDlyIElSh9S0mO+WX4i35w/SRmNJim3gd6DTuul61qvwyj0rPFySJEntzILZcN3XODT7dGlv20Ph+Lug6wbxcklVxHd4JHVMjYtg5ovFckqyZcQw+iyvJJuxJMmmxdxpsHBO3ECSJEmS2q+y6V935fZkAZ0jhpEkVYUnL4Mkl6632g823TFuHkkCqOkEu51Sqp+4xKkIkqRV98KotJEYYO0e0O/IuHkkaanO66ZNYEs9fvFyD5UkSVI7M2caXP1FePPJ0t5up8CR10LtWvFySVXGBjBJHdP7UyDfBMAb+U34mC6RA+mTGqnh5WTz0saMF+KFkSRJktR+LZwLk28vljfmDogYRpJUFRbMhueuK9V7/TBeFkn6pJ1P4OOkcMHEBy/Dq/fFzSNJ6ljy+bSBeKndT0kbjCWpvdj9PyBTm67fegre+nfcPJIkSVq5d8bDVYPgg1eKW79qPBa+NAIy2YjBpOpjA5ikjmn6hOJycrJVxCBakUn5st9N2e9MkiRJkpb62f/9DzQtBGBKfksmJr2i5pEkVYFnroTGBel6kx2g94Fx80hSuc7r8bdc2d9LTkWQJK2K18bAzJcAmJd0hoEnRA4kSan64aPTx2+e45bGPUrfePwP8UJJkiRppYad8z8svOKLMO89ABYnNZy25HSuyg2GECKnk6qPDWCSOqayZqIX8jaAtVeTk/pSYQOYJEmSpM9wVPbB4vrG3P6AbxJLklpR40J4+vJSvdfpfkApqd35S9OXaEwKd8598wl465m4gSRJHUdZ4/DfcwfCWt0ihpGkz3ZF0+BS8dJo+OC1eGEkSZL02ZIEHr+Yy2svYq2wBIC5SVe+veRsRud3jxxOql41sQNI0mopayaaVN5kpHZlcr6+VNgAJkmSJOmT3n2eHTIN6bqmM78863/55VrrR40kSapwz98AC2al6/U2hz5fj5tHkj7DDDbgzvxeDMk+km488Qc46vq4oSRJ7d/b42DaYwA0JlmubvoyJ0WOJEkNIwZ/aq9++GgezPXngOwEIIEn/wiHXdT24SRJkqpc/fDRn7nf8OtD4O4zYNxfyCy9h976W9Ht2FHcvOHWbRdQ0qfYACap48k1wnuTi+UyTUZqV15MtoCQgSQPH7wKS+ZDXdfYsSRJkiS1F+OvLa23Pxxs/pIktaZ8Dp74Y7H85Qf7c/VP748YSJKW74qmwaUGsBf/mU5F2PDzcUNJktq3J/5QXN6V34PpbBAxjCSt2MjcYYUGMFj87PXs+fiuzGK9z2wYkyRJUttZhwVww1CY+mBx79/5bdj1xHugq//OlGLLxA6wPCGEASGEkSGEUYXHyBDCwa34er1CCOeGEMaFEOaEEF4PIYwJIQwLIXRrrdeVtBpmvgS5xel6vS2Yyzpx82i5FtEJNtymUCUwY1LUPJIkSZLakSUL4IVRpXrAcfGySJKqw4v/gDlvpOvO3bgxd0DcPJK0Aq8km8PnBxWqwlQESZKWZ/bU9Hy34M9Nh0YMI0kr91R+OybkewHQKTRyXI03aJEkSYqlYcRgGkYMZrMwk1vrfrFM89dtub351pJzbP6S2ol2OQEshDAS2Bk4KUmS8YW9XsDIEMJZwNAkSea24OudCZwMnAvcBMwFBgBHASMLr3tykiRXtNRrSlp9Z1xyLb+rTdf3zt4kbhitXM/+MPPFdD19AmyxW9w8kiRJkqKqHz4agKHZh/hd7UcATM33oNeWe8WMJUmqdEkCj5cmIrDLiSwY0xnAu4tLar/2+iG8NiZdP/83OOAcWHvjuJkkSe3Tk5dCkk/XvQ/ipclbxM0jSStQ/Hf4pCVwywkAHJcdw+VNh0VMJUmSVOXefpbb637ORuGj0t7+Z/Pje/sCIVosSctqdw1gIYQxQC9gYHmTV5IkU4FBhe+PA3q30OudC/RKkuSTP28qcEsIYQgwirQJrHeSJGe1xOtKWn19QkNxPSlfHy2HmqlnP5h4Y7qePiFuFkmSJEntxtHZfxXXf88dyE+DbxpLklrRtMfh3fHpOtsJdjsZxjwTN5MkrUT9yA+5s64X/TNTIbeYi0ecwen/d03sWJKkiJbeWKdcdz7iiU7X0HnpWyt7nQ6T57dtMElaHdt9FbptCXOnsX6Yx9Dsw8ARsVNJkiRVn8l3wO0ns1FYlNbZOjj8Uuh3JNz76X+HSoonEztAuRDCMOBgVjzhayjQqzAlbE1fbwBwcJIkQ5d3TJIktwBLm77OLDSESYqob6ahuP7J8UcWR4+qfTrqroXF9ZTxj0ZMIkmSJKm92Da8yYDMa2mRqeWn5/wqbiBJUuUrn/6149FO0JHUQQRGNh1arI7LjoHF8yLmkSS1R8fV3E/n0JgWPfrBVvvFDSRJzZWtgT2+XyxPzN4NuaaIgSRJkqpNwn9k74JRx0NT2vw1O1kbjrsrbf6S1O60twlg5wJTkyQZv7wDkiSZG0IYCwwLIZxbmAy2Jq930soOSpLkvBDC2UC3wnNuWYPXlLQm8jm2D9NK9aY7xsuiZpmSbFlcbx3ehqbFUNMpYiJJah9CCGdCeq7Zyq8zADgZ6F7Ymg2MSpJkbGu+riRJK3J09oFSsd1h0HXDeGEkSZXvvSnw6v2FIsAeP4gaR5JWZpmb3uW/BJfcBXMa6Bbmw3PXw+6nxAsnSWoXiv9fsWQBs389rPSNvX4ITlmX1JHsdCw89BtYOIctMjPhxbug7zdip5IkSap8TYs5r+YKjqx5uLj1er4n3208g4e33CNiMEkr0m4awAqTtboBVzTj8FGkk8JOpjSda3X0WlGz2SdcAZxJOn1swCo8T1JLmvUaXcLidL1OT+/U244t8wH1xb+B2VOpDTl4fwpsulO8YJLUDhSav84FWrv5aySwM3DS0vPXEEIvYGQI4SxWPHlXkqRW0ZnFfD37WGlj5xPihZEkVYcnLimttx0MG34+XhZJWlWZbDoV4e6fpPWTl8IuJ6bTEiRJev4GuofCdMhuW8D2X4ubR5JWVV1X2OUkeKTwsenjf4A+X7eZVZIkaQ3UDx+9wu9vwIf8qe4ijqx5uexJ+/CNl77Nh6zdyukkrYlM7ABlTi58fb0Zxy6d+jVkdV+sMAmhVwhhTqH5bGXKc+28uq8raQ1Nn1Ba9+wfL4dWTY9+pXX571CSqkgIoVcIYVgI4XXS5q/Wfr0xpDdNOKj85gVJkkxNkmRQoRzX2jkkSfqkQ7NPsW5YmBbde0P9PnEDSZIq24fvwAs3l+q9fhQviyStrh2PZVayTrr+8E2YckfcPJKk9iGfg6cuK9W7n2aDsKSOaddhLEpq0/X052Ha43HzSJIkVbBtw5vc2enn7Jopa/7a8Vj41m02f0kdQHt652dpU9XUFR617DG9QgjdVnNqQa/C127A2cAtKzn+2bJ179V4PUkt4d3nS2sbwDqOnv1LH0jbACapypRN+5pLek55FnAUa3Azg2a85jDS5q+BKzhXHgrMCSGMTJLk5OUcI0lSizsm+0CpGPgd7+QqSWpd/x4J+aZ0md+GIy99H1jxnS8lqd2p68J1uUH8qOa2tH7iEuh7hOfSklTtXrkXZqeXz3yYdGG9nb4VOZAkraa1N+K23D4cU/OvtH7yMqjfO24mSZKkCtAwYvCyGy/+E277FTTOL2wEOORXsMf3fa9R6iDaxQSwEEIv0kYsaEYDWJIk5ces7jSu8WXrZ5d7VEmvsvWs1XxNSWvKCWAdU/nvavrEeDkkKY4rkiQJSZKsnyTJoCRJVnbjgZZwLjC1fPLXJxUaw8YCwwrn45Iktb4ZkxiQeS1dZ2phx2Pi5pEkVbbF82DcX4vln5sGL/9YSWrnrm06hMVlUxGGnnMh9cNHUz/cplZJqlpPlqZ//S13EHTyTu2SOq6rcl8uFS/fDbNejxdGkiSp0iQJPHI+3HRsqfmrbh045mbY8wc2f0kdSHuZAFZ+wensNXhusyVJMjWEsD7Qa0UXxi7ndZpzvKSWls/DjLLmIRvAOo7y39V7kyDXBNn28n9BktS6VnNa7WoLIQwhvbnCFc04fBTppLCTSSeTSZLUusouwme7w6DrhtGiSJKqwPN/g0UfAvBGfhMeyA/49N0uJamDmM263Jrbm2NqHgTgxJq7eaZx28ipJEnRvPs8THsMgMYkyzVNh/AfkSNJ0pp4PfkcD+b6c0B2ApDA05fDV34XO5YkSVLH17gQ7voBvDCqtLd+PRx9E2zs+4tSR9MuJoBRmv7Vps9NkmRuM5u/AHYpe97Y1X1NSWtgzhuw+CMAZiXrwLqfixxIzdZ1Q95JNkjXTYvgg1fi5pGkynZy4Wtzbou3dLLukFbKIklSyZIFMPGmUr3zCfGySJIqWv3w0fQa/g8aRp9f3Ls692Xy7eYjEUladQ0jBnPM6SOK9Rez49gyzIiYSJIU1VOl6V+j87sxgw0ihpGklnFl7iul4rnrYeGceGEkSZIqwccz4K+Dl23+qt8HTnrQ5i+pg+rIn3YunaTQ6u9ihRC6Uboo9rzWfj1JyzF9QnE5Kb+VI0c7mCn5+lJR9ruUJLW4nQtfp67wqGWP6VU455UkqfVMvr14U4+p+R7pG8uSJLWSgzPjqM+8B8DcpCu35PaNnEiSWsDG28LnBxWKhBOy90aNI0mKYxNmw6Rbi/VVTV9ZwdGS1HE8nu8LG/dJi8YFMO6auIEkSZI6sB3CVLjiAHhnXGlz4Anw7duhS/d4wSStkfbSAFb8WyRJkrkrOvAztMWFqsPK1r9tg9eT9FnKG8CS+ng5tFom2QAmSa0uhNCL0vnxShvAkiQpP2bn5R4oSVJLGPeX4vLvuQO9qYckqVV9r+ae4rrbPsN4ccQRNIwYHDGRJLWQPU4rLo/MPsy6zIsYRpIUw3E190O+KS222JMXkl5xA0lSiwmwx6ml8umRkGuMF0eSJKmDOjTzJKPq/hc+fjfdCFn4yvlw6O8hWxs3nKQ10l4awNakiatVW1ALkxDOLZRDV6NBTVJL+eQEMHUoyzTtzZgYLYckVbjyT3lnr8FzJUlqWTMmwdvPALAkyXKrU1gkSa1ohzCV3TIvpUWmBnYdtuInSFJH0mv/4lSELmExx2T/FTWOJKltrcUijs0+UNoob5SQpEqww1DounG6/vhdmHJn3DySJEkdST4HD/ySP9ZdQudQaKTvvB5861bY9SRv0ipVgJrYATqAPxe+npckyS2r8sQQwrjlfGvbNYskVaEkgenPF0sngHU8yzTtTZ8I+Txk2ksfsiRVjDW5sUJbTNaVJFWr8dcUl/fld2E260YMI0mqJPXDR39q76Lau0tFn2/Aupu2YSJJamUhpFPA7kwv+P9OzX3QtARq6iIHkyS1hSOyj9ItzE+L9ethm68A9wKffW4sSR1OTSfY5UR46Ddp/eQfoe8RXqwsSZK0Mgvnwq0nwmtjSnsbbA3H3AQb9I6XS1KLandX3hcmbq2KVZ1s0GwhhGHAEOCKJEnOaq3XkdQMH74FC+cA8FHShbeSjSMH0qp6j/WZmRQu8lzyMcx5I24gSdJSSyfcbhA1hSSpci1ZABNuKpZ/yx0UMYwkqdL1ZBaDM0+XNpyIIKkS7TCkOBWhR5gDU+6IHEiS1Cbyeb6bvadU7/YfkMnGyyNJrWWX70G2U7p+9zl488m4eSRJktq791+CPx+4TPPXQ7n+cOJYm7+kCtNeJoDNXfkhrfLc5QohDABGkjZ/nbw6PyNJkoHL+dnjgAFrEE+qPtMnFJeT8vWAd/bpeAJT8vXsl52Ylu8+54mlJLW87ksXSZKs6nmyE8AkSa1j8u2w+MN03b03T767fdw8kqSK1DBicLoY89/weC5db7k3bLpTvFCS1FpqOsGuw+DB/0vrJ/8IOwx1KoIkVbpX76dXZka67rQu7HQsUHYuLEmVouuG0P8oGH9tWj95KWy5Z9xMkiRJ7dWL/4DbT4El84pblzV9lfObjmTqWl4OJlWa9tIAtjpTvJb+jTSrJYNAcQrZA8Atq9v8JamFlTeAJVtFDKI1MSmpZz/SBrDLb7qdETesBfihhCS1oDX5V3v3lR+yrMKNDT7LtmuQQ5JUacb9tbQe+B1414tSJUmtZPE8ePavpXqP06JFkaRWt/N3WfSvc+kcGmH6BI465wKeTrYrftv33SWpAj11aWk98HjotE68LJLU2nY/tdQA9tJomD0VuveKm0mSJKk9yefhod/CI+eV9mq7wNcu47zr6tboR9cPH72G4SS1lkzsAAXl0wlW9V9qrTEBbBwwNkmSoa3wsyWtgvrho6kfPpp/PVgaS5pOAFNHNDFf+iu+X5gaMYkkSZKkNvHeZHj73+k6Uws7HhM3jySpsj3/t7Kpk73gC1+Km0eSWlPXDbg1t2+xPLHm7ohhJEmtbvpEeOMRAJqSDOzqvYwlVbiNt4PeBxWKBJ4eGTWOJElSe7D0muodho9i7C8OXKb56838Rnxp3n9Tv4bNX5Lat/YyAezZsvVKJw+EEMqbxJ5d7oGrIYQwBphq85fUniTskHmjWE1O6uNF0WprGDEY5vaDiy4CYM8ubxM+zJO0m15kSaosIYRuSZKsys0SVnkqb5IkA5fz2uOAAav68yRJFah8+td2h0HXDaNFkSRVuHwOnrqsVO9+KmR830lSZTv2hyPg0l0AGJQdT8MPt6H+/Jcjp5IktYqn/lRc3pPflcO6bR4xjCS1kT1Og9cfSNfjr4P9z4a1usXNJLVTIYQBwMmUrr+dDYxKkmRsC7/OwcBIYCwwBhgPzE6SZG4IoRvpAIhewCCgV5Ikg9pLdkmqFL3DO1xReyG9M9OLe4/kduAHjT/gQ9Zeo5/dMGLwmsaT1MraRQNY4eRvLrD0BHBlyv8l12IjZEIIIwt5lnvSWThJ7Z4kiaNrpDbSg9lsFAp37q1bmwf++0Qv3uio1tsMumwICz6AxR9RH97jjaRn7FSSVEnWZDpua0zWlSRVsyUL+Ojp61k3pOXRz23Hk+NGx80kSapcL98Dcwo3kerczamTkqrDRl+Arb8Ir95HOhXhT8CBsVNJklraxzPghVHF8qqmr3BYxDiS1Jrqh5e/h5xwX91mbJN5Gxrnw/hrYa/To2WT2qvCda87AyclSTK+sNcLGBlCOAsYuoo3j12Rpdf4Dis8lmb45HFjgZUOYWjj7JLU4R2cGcfvay9jnbCwtLnn6ex70C+YkG0XbSGSWll76qC4ufC1ObfpWNokNr6lTu5CCGfSvDsOHFx4SGoj/TJl/ZY9d7T5qyMLATbdqVjuEOyllaQWtspTvCidf89qySCSJDH5dtYNCwCYmu/Bk/ntIweSJFW0Jy8trXc+Aeq6xssiSW1pj9NK6+duYD3mxcsiSWodz1wJ+UYAns1/geeTz0cOJEltJXBV7sul8umRkGuKF0dqh0IIY0ivZz1oaQMVQJIkU8uuhR3XhpGmAicnSTJoZdf2tsPsktR+5fPw4G+5su6CUvNXzVpwxFVwyK/A5i+parSn/9pHkd4RYBBw3kqOParw9aaWeOEQwhDgqCRJBjbj8F1IR9dKaiM7ZN4oFZvuGC+IWsamO8Fr6V+j/TJTuSu/V+RAklRRyt9A7QWMX96BK3muJElrbtxfisteXzyNhr0OjRhGklTJdghT4c0n0iJTA7sOW/ETJKmSbLUvbLIDvPcCNC3k2OwDXJY7PHYqSVJLaVwIz1xVLK9q+vIKDpakjqthxOBP7dUPH82dub04b73bYcEH8NHb8OKd0PeICAml9ieEMIy0gWrgCpqthgJzQggjkyQ5uYVe+jzgt6STu3qR3nR2KulAh2bdDTxidknqeBbOgdtPgVfuLe112wKOugF69ouXS1IU7WaMTpIkY0lPAg8OIaxsCtgQYG6SJMttFAshjAohzAkhnLuiHxRCGEB6x4HmNH8BDACebeaxklpAv/IpUWXTo9RBlU8AK2/ukyS1hPLz1O4rOziE0Kus9BxXkrTG6oePpn74aAaffSm8/QwAi5Ma2PGYyMkkSZXsezV3l4q+R8C6m8YLI0ltLYRlpoAdX3MftTgVQZIqxoQbYeHsdL3eFtyf3zluHklqY4up46KP9i3Wz9/8a+qHj46YSGpXzgWmlk/P+qRCc9VYYNgnrg9YI0mSzE2SZGySJFckSXJekiS3NLf5qyBadknqUKZPgJH7LdP89ViuDwx72OYvqUq1mwawgqVd+mcv74BC5z/ASSs5ZgjpnQXOLDR5fdZxvUgnj40KIQxZwWNYCOHMEMJI4OCVjaaV1JISdsiU/dvwc5/5n7M6krIGsL7hDTLkI4aRpMpSOE9deq7anDdAy2+8sCpvxkqStELHZkvD0+/O7wZdN4yYRpJUyXoyi8GZp0sbu58aL4wkxdL3CFh7EwA2CXMZnHkqciBJUotIEnjqT6V691PIkY2XR5Iiub5pUHqjMWDHzOvsGF4r3oxs6UOqNiGEpdfH3tKMw0cVvraLKVodObsktannroerDoG504pbI5sGc3zjcOjy/+zdeZhU1bnv8e+qamjmSXFWWnCemMF5BI2SGGMkGucJiUlOknNzo5iTk0kT0eSce5Nz7kkgjjFqjMZMkqjgHAeGRpxHsFFwQAVUFKG7a98/dnVVtTLT3au6+vt5nn56rV27av986KfdXbXe9a53X3BJFaoqdoBSSZLMCCFcDFwRQpie7wpWkC/YmgJMTZJkQ27+1irfZWw66cLYKRvx1LXuOCCp5e0Q3qFfWJFOuvSGvjvHDaTN12tb6LktfPAG3cMqBobXYyeSpErzB+ACmhd3rU1TkdhcNzmQJLWUnnzEqV1nQn06/8KE78cNJEmqaGdW3U2n0JhOag6B7YbEDSRJMVR1hpET4L7LADi76k5Ifpp2B5MktV8L7oN3XkjHnXvC0DPgLw/FzSRJbahu8rji5E8PwRM3Aen97rfqvx4plVQ2mgqi5m/AuU2bwZ4EXNw6cTZKe84uSa2v/mP4x3dg7m+Lxzr3hBP+h8t/66YgUkdXbh3ASJLkSmAsMCWEcEUIYUwIYVgI4SKgFpiYJMk6q/mTJJlK2voV0mKxNRVtfYkN64rwSXZGkNrQfqHk77zthvphZaUo6QK2X/DXqiS1sKYdsMZuwLkn57/f0kpZJEkd0InZh6D+o3Sy1d6w4+i4gSRJlWv1R5ySva843//CeFkkKbYR50C2GoAhmQWwaHbkQJKkjfXJbjYzrvtx4bFrPzqQmh9a/CWpAxtdXC54QqdZ1H13WPMCManjGZH/viELr5rOGZhvnBBbe84uSa1rWR1cc3Tz4q/+e8IF98Fex0eLJal8lFUHsCb5zl+DQghjgGH5wwuSJOm7Ea+xzgWv+SKxqZueUlJb2C/zSnFSUjSkdm67ofDC3wHYt/TfWJK0TiGEW4ExpJscrHF3q3xX3QXAmBBCn/V09joJWJ7fhEGSpBaQcHq2pKH7yPPcyEOS1GJqJk1rNj85ex9XdFqRTvoMgN0+EyGVJJWJ7lvCvuNh3u8A+OvU7/ON+n9pdooLZCWp/RgQ3uTIzLzC/PrGoyOmkaQysN0Q2OkAePVRyDVA7bVwxHdjp5KiCCEMBJqKodZbRJUkyYJQ/KxmBMXmCm2uPWeXpE31yc821ubwzDz+b6f/R5/wYeHYnxsP5JLXzue5LXdtrXiS2pmyLABrki8E84ZN6sD2Le0OZQFY5SjtAJaxA5ikDqnPJ76vVwjhAtKCLYCLQgi3rKXTLcBEYDpwCbDGQrH86wFM2NAMkiStz/6Z59g1sziddO4B+30pbiBJUgVLOCd7Z3E6eiJksvHiSFI5GD2xUAB2bGYWW7OUt+gXOZQkaWPVTR4Hd14CjyXpgV2P5v7Tzo8bSpLKweiJaQEYwJxr4JBvx80jxTOwZLx0M54bQ3vOLkmtIkOOb1bdzr9k/0QmpH8Hrk6yXNpwBjc0jgXccFVSUVkXgEnq4HK55t2hLACrHNsOKQz3DnXQ2ABZ/5ckqfKFEPqQdvAakz/0pXxXrznr6dS1UfJdwC4GrgghTM9vrFCaYyAwhbST2G0tdV1Jkpp1/xp8ClT3jBdGklSx6iaPg1cehOtfSw906g5DTosbSpLKwbb7wYCDYOHDdAqNzBz7Chx1xgbvMixJKhOrPoDHf1ecjmMxAAAAIABJREFUj54YL4sklZM9Pgu9tof3F8OHb8PTtwO9YqeSYtjgjWZb+LnN5NcdnASMLDk8m3QdwtrWP5RFdkmKoW7yuE8f/PBduH0CzL+neKzX9nQefz2X7jiSG3xfT9InZGIHkKS1WvYKvcJH6bjbFtB7x7h51HJ69C/8e3YJ9fD285EDSVLrCSGcFEJIQggJsAy4teThPqSdupY1nRNCGLam10mSZCrF7rhT19H9q+n8K4GxwJQQwhUhhDEhhGEhhIuAWmBikiR+aixJajkfvMUxmdnF+Yjz4mWRJFW+x35dHA85Fbq6/kOSABj9leJ4zrVQv7IwrZk0rdmXJKlMPfF7WPV+Ot5iVxh4ZNw8klQusp1gZMn7zjN/DSTR4kjtTFNB1hYt8WIhhCuAi4HbkiQZ3/SVf/iVEMJJLXGdvBbNLkllY3EtTD2sefHXzofBxAdhx5Frf56kDs12K5LK1+uPF8fbDYVgG9OKst0QeC+/S/Prj8M2+8TNI0mtJN9hq0X+J5YkydiNPH8GMCiEMAZoKixbkCRJ35bII0lSM3N/S6fQmI53OgC23ituHklS5VpWBy/8vTgfdUG0KJJUdnY/Lt2A7b3XYOVSeOo2oF/sVJKkDRTIwcwpxQOjJ0LGvZ0lqWDY2fDAldDwMbwxj+HhRWqT3WOnktpa4Y+8dXTaWpuW2EXpAmB8fj1CM0mSXBlC2AK4NYQwPr9eolTs7JIUX5LArKlw179Brr54/JBvwxH/BplsvGySyp4FYJLKV7MCsDU2Q1F7tt1QeO5v6fj1x2HYGXHzSFIFy7/x+qk3XyVJajGNDVB7XXE+8vxoUSRJHcCs31DY4XvQUdB/t6hxJKmsZKtg1ASY/v10PvPX1F3+z2ab7Nn9S5LK1yGZp+Ddl9JJdS8YfErcQJJUbrpvAfuOh8dvAOCcqruorbcATB3O5hRCbe4OIXNZS/FXkyRJLg4hXEBaBNb3E4VerZ49hFC7lof22IxrS1LLWLkc/vr14tpZgOrecOIU2P3YeLkktRsWgEkqX4vnFsfbDY2XQ62j9N+0tNhPkiRJUvvz0l3w/iIA3kl6seWen4scSJJUqbrxMcy9oXhg/wvjhZGkcjX0DLjvcmhYCW89DQsfhpqDY6eSJG2As7N3FSdDT4fqnvHCSFK5Gj2xUAD2mcwstuHdyIGkjiNJkgXAgg049Q+kncKuACa2aihJKiPr3HhpcS3ceg4sX1g8tu1gGH8d9BvY6tkkVQYLwCSVp1wjvPFEcW4BWOXZdkhx/NbT0LAaqjrHyyNJkiRp082+ujD8Q+PhfLWqOmIYSVIlOzH7EKx6L530G5R2AJMkNdetX9oxpvbadP7YrywAk6R2oCa8wZHZeflZsMO6JK3NNvvCgINh4T+pCjlOr5pBzaQtPnVa3eRxEcJJbSuE0OcTHbbWZ2mrhWluOmkB2AWspQCstbInSTJ8LderBYZtxPUkqZl1FXet+74j4ZzsnXD17yFXXzw86gI4+jLws3VJG8ECMEnl6Z2XoP5DAN5K+rB1r20jB1KL69aPhbmtGJBZAo2rYckzFvpJkiRJ7dHSBTD/HgBySeCmxqP4auRIkqRKlTTviDB6ImQy8eJIUjkb/ZViAdgLf4dlC6HvgLiZJEkFa1o4+IOqu4uT3Y6BLQa1YSJJamf2/wos/CcAp2bv4b8avsAq3HRYHcbGFE215HM3RqFLWAhhTJIkM1rg+m2VXZI2W6EgbOUy+MvX4fk7IJd/sLoXfP6/Ya/PR8snqf2yAExSeXr98cLwydxAxkaMotbzVDKQASxJJ68/bgGYJEmS1B7NuaYwvC83hEVJ/4hhJEmV7JDMU+ySeT2ddO4JQ06NG0iSytlWe8DAw2HB/ZDkYPZv0h2FJUllqQcfcVL2weKB0WtslCFJarLbsdB7J3jvVfqFFbzwpRUw7Axg3d05pAqxKV28+uS/v9uSQdahtFhrYMm4PWSXpHUq7fa1zvuORbVw69nw3qvFY9sNhZOuhX47b9Q1vb+R1MStMSWVp5ICsKdyA9dxotqzJ3MlN7El/+aSJEmS2on6lfD47wrTGxrHRAwjSap0zbp/DT0dqnvGCyNJ7cHoC4vjub+F1R/GyyJJWqO6yeOomzyOp7+wlJ5hZXpwy91h4BFxg0lSuctWwajzi/OZUyBJ4uWR2tbaiqs29rmtqbTQq7StaXvILkmbKYFH/huuObp58dfor8C5d2108ZcklbIDmKTyVNoBLPFmp1I9lZT8HW8BmCRJktT+PPNnWLksHffZiQffHBw3jySpcr07n6OyTe8fBRg1IWocSWoXdj0a+u4My16Bj9+DJ26Gkeev/3mSpLaVy6WFC01GXwAhxMsjSe3F0DPgvsuhYSW89RQsfARqDoqdSmoLc0rG/dZ3cgihtNBqzlpPXPdr9AFeIe3GNTZJkhnreUpprtLOXW2eXZLaUm9W8PNOU+Du2uLB6t7w+f+GvY7f6Ncr7TYmSWAHMEnlqLEB3nyyMH3aDmAV6+mSDmD1bzzL7pP+ZKtaSZIkqT2Zc3VxPPwccr7VJElqLbOmFse7HQNbDFr7uZKkVCYDoycW53ZFkKTyNP8eWDo/HVf3hv1OiZtHktqLbv1gcMnvzJm/ipdFakNJkiyn2A1rQxbW9SkZL9jEy44peZ3xm3rNSNklqW28Nptp1d9lbLak+Gu7YfCVBzep+EuS1sRVOZLKz9vPQcPHACxOtuAdekcOpNbyAd2Yn9sWgE6hkT3Dq+t5hiRJkqSy8frjsGh2Os50SndblSSpNXz8Pjx+Y3FeWswgSVq3IadB557p+J0XYf69cfNIkj5t5q+L42FnQHWPeFkkqb0pfY/g+Wmw3HUn6jD+kP/eZ51npZoKrebmC7A2xfKS77duxDUBPtktrK2zS1KrypCDB38O1xzDDuGd4gP7fxXOvQv61kTLJqnyWAAmqfy8/nhh+KTdvypa3eRxDBp8cGG+b8aNWiRJkqR2Y2axE8vt9aOpuWxWxDCSpIo27yZY/QEAL+W2h4FHRA4kSe1Il14w9LTifOaUeFkkSZ/2zkvwctOa6AAjz48aR5Lana32hJ0PS8dJDmZfFTeP1HaairDGbsC5J+e/37IZ15tDWoTVN0mSTxZ0rUlTrhlrKNxq6+yS1Gq24V1u7PRTuPdSSBoBeC/pBiffCJ+5HKo6R04oqdJYACap/JQUgD1lAVjl225oYTjYAjBJkiSpffjwHXj6j4Xp9Q1HRwwjSapouRzMKhYrXNd4DIQQMZAktUOjLgDyvztfuoua8EbUOJKkErOKG+yw+7HQb+d4WSSpvdr/wuK49nq6sCpeFqmN5IuwFgBjQgjr66R1ErA8SZIr13ZCCOHWEMKyEMIVa7necmBBCGHY+rLl81yQn17c2tklKZrn7uAf1ZdwQPbZwqHa3K6MW3057PnZiMEkVTILwCSVn8W1heFTiW9wV7ySArD9wvyIQSRJkiRtsNrroDH9EH1ebhB/ufyb1E0eV/iSJKnFvDwDlqabBr2XdOP2xoPX8wRJ0qdsMQh2LW7acGZ2esQwkqQmPfko7XbbZPTEeGEkqT3b9WjoW5OOP17O57KPRo0jtaGmm4dL1nZCCKGpEGvCes45CegDXLSOIq+LgVtDCOvb0f03+e9XJkkydy3ntEh2SYpi9Ufwt2/BLafRN6xIj4UMHHoRw3/wGP+8/Oyo8SRVNgvAJJWX+pXw1jOF6RO5QRHDqE1sOxhCFoBdwuv04KPIgSRJkiStU2MDzLmmML2u4ZiIYSRJFW/mrwrD3zcewUq6RAwjSe1YSVHBSdkH6MbHEcNIkiD9fczq/GLB/nvAzofFDSRJ7VUmCyPOK0zPyt4NJPHySG0k30nrYtKirTGffDxfqDUFmJokyW0tcL0FpIVb00MIJ63pnBDCFNJisqlJknyq+1es7JLUUvYIr8JvjoDaa4sHe+0AZ90BR/4bZKvihZPUIVgAJqm8vPEE5BrS8Ra78j7d4+ZR6+vcHbbaC4BMSNgvsyByIEmSJEnr9Pwd8P5iAN5OevH33OjIgSRJleqoS6bC/HsBaEwCNzQevZ5nSJLWauARsMUuAPQKKzkh+3DkQJLUsQVynFHakXHUBRBCvECS1N4NPR2q0k1j9snUMSy8FDmQ1DaSJLkSGAtMCSFcEUIYE0IYFkK4CKgFJiZJss42o0mSTAVm5KdT19G1q6lwazxwSQhhfgjh1vx1bw0hLAPGAOPXd82Wyi5JbSZJODt7J3/p/O/w9vPF43seDxf+E2oOipdNUodimamk8rK4tjjeYQQsjhdFbWiH4fDWUwAMCfMjh5EkSZK0TrOmFoY3NR7FajpFDCNJqmSnZ2cUxjNyw1mU9I+YRpLauUwGRp4Pd04C4Mzs3ZAkFhtIGymEMIy060G//KGlwK35hbCtcb2B+euNAQbmr7cAuBX4Q5Iky1vjump9B2eeZmDmzXRS3Qv2OzluIElq77r1g31Pgsd/B8AZVdOBf42bSWoj+XvRQflOWsPyhxckSdJ3I15j7EacOxcYnr9XHQP0AeYDl6+reGwtr7XZ2SWp1X34Dvz5q/yw013FY526wWcmw7AzfX9NUpuyAExSeVk0pzjefni8HGpb24+A2usAGJJ5OW4WSZIkSWv35tOwMN8pIFPFjQ1j4uaRVJZcFKsWsWoFX8w+WJgec/b3qBt0RMRAklQBBn8Z7rkU6j9kj8xr6b19zcGxU0ntRghhCjACmNC0sDV/LzolhHAxaaeDFrv3zHc+mAhcAdwCLCddFHsyMCV/3Yn5jg1qZ84s7f415FSo7hEvjCRVipETCgVg4zKPwYol0GOryKGktpN//7VV3oNdy/UWAC1yL9rW2SVpg718D/z5QljxVvHYNvvCF6+B/rvFyyWpw8rEDiBJzSwuKQDbYUS8HGpbJf/WQzLz011HJUmSJJWVmknTuPm/v1eY/61+BEtwA0ZJzeUXxf4GmJIkyfgkScaTLli9OIQwPYTQp4WvdxEwnXSH2QnAcOBi0sWxU4BlIYQLWvKaaiNP3kKvsDIdb7ErDDw8ZhpJqgxd+8Dgkg4zs34TL4vUzoQQppNuOHBUaVeDJEkWlHRLqG3B610BjEySZFCSJFOTJJmbv9Zt+Xvs8flTp+TPVXuy/FWOzJQ0xxh5frwsklRJthsCO4wEoHNohLnXRw4kSZLarYZVcPf34HcnNiv+uqrhWDj/Hou/JEVjBzBJ5WPF27D8VQBWJZ3Y55ev4q+pDmLL3aBzD1i9gq3CcnhvEfTZMXYqSZIkSSV6s4ITsg8X5tc1HBMxjaRylF8UOxAYXtr5IL8T7Nj847XAoBa63hXAwCRJPvl6C4DbQggnkXYBmxJCGJQkycUtcV21gSRpXpQwagKEEC+PJFWSkRNgzjXp+Lm/wfuvQ6/t4maSylx+Q4ExfOI+9xPGk24+MCVJkombeb1hwJgkSYav7ZwkSW7Ldx27ArgohDA7SZLbNue6aj01k6Y1m3+n6vd8rSq/IebAw2HLXds8kyRVrJETYNHsdDznWjjoXyHr2iNJkrQR3nwabr8AljxTPNa9P2ctO5cHcoM5v6o6XjZJHZ4dwCSVj8XFTfGeTmqot/ir48hkYbuhxfniFtsgUZIkSVILOTl7H13D6nSyzX788af/St3kcdRNHhc3mKSyULIodvx6FsUOzHcJ29zrNS2KHb+2c/ILYJuKvi7KF4SpPVj4MLz9HAAfJtUw+JTIgSSpgmy9F4/l9kzHSSO/uPK71EyaVviStEZXAAtKO399Uv4eeAZwQQhhYAtcb8L6TkqS5ErSzrdNz1E70Jl6Ts7eXzwwcr3/1JKkjbH3CbyT9ErH7y+GF/4eN48kSWo/co3w8C/gN0c0L/7aZQxc+AgP5AbHyyZJeRaASSofi+cUhsMPHFtYSOhiwg5ihxHFccnPgiRJkqQykGvkjOyM4nz0RDuxSPokF8Wq5ZR0/7q98RDo0jtiGEmqPNc3HF0Yn5q9l040REwjlbf8JgJ9gA3prnVr/vtmdQAj7XK71vvqT5ja9Jz8JgkqY3WTx/Hil1exZXg/PdBrB9jtM3FDSVKlqarm941HFOezf7P2cyVJkposWwjXfw6mfx8a85uiVnWBY38Gp94KPbaKm0+S8iwAk1Q+FpUU/Ww/PF4OxbF9SQHYIjuASZIkSWXlxTvZMfN2Ou7aD/b5Ytw8ksqKi2LVot5/HZ77W2H628aj13GyJGlT/OrSf4ee2wHQP7zHS6fVR04klbWm+9b5G3Dugvz3Te48m79fHRhCWLaBHWxLc41Y61kqH6WFCCPOgWxVvCySVKFuajiKxiS/gdkrD8LbL8QNJEmSyleSwLyb4FcHwcKHi8e3GwoTH4LRF0DGcgtJ5cPfSJLKQy4Hi0vW7Ozg5xMdTum/+RvzoNEdRyVJkqSyMXNKcTz8LOjUNV4WSeXIRbFqObXXQdIIwGO5PXkp2SFuHkmqRNlOadFBk1lT136upKb7xwXrPKv5OQNDCH028XpNnXL7AJdswPklO2wyaBOvqbby+jxYNDsdZzvDsLPi5pGkCvU6WzI9V/IW0Cy7gEmSpFTNpGmFr6GTbuYf3x8Lf74QVn8AQEOS4RcNJ7LLgn+l5j9eipxWkj7NAjBJ5eHdl2HVe+kw6Ql9BkQOpDbXcxteT/ql4/qPYMmzcfNIkiRJSi15Dl55ACDdNXXEeZEDSSpDLopVy2hYDXOuLUyvb7D7lyS1mmFnQaZTOn5tJnuHuqhxpHIUQhhIes8JG3CvmyRJ6TmbuvFAaZfbOWs9q2hgyfjdTbym2kpp96+9ToAe/eNlkaQK99vGscXJE7+HVR/ECyNJksrO4ZnHubv6Yo7Nzi4ceyW3NeNX/4D/03ASDaTdmksLxiSpHNhLXlJ5WFxbGM7L7cJRIUQMo1jm5XZhu+ysdLK4FrbdL24gSZIkSfDY/xSGd+dGcGyfHSOGkVRuNmVRbCi+7zMCmLEJl3VRbKV67q/w4ZJ03HNbpr89PG4eSapkPbeGvU+Ap24F4Izs3UxquCByKKnslN5HLt2M526w/P1yX2BgkiRz1/uE5tfZkPMVSW9WwFO3FQ+MmhAvjCR1AI/k9oYtd4N3Xkw7ejzxe3/3SpJU4dZVpFU3eRwAXfmYf6u6kdOr7ml+wohz2fnoy/hT5+7rfS1JiskCMEnlYXFxrc683CCOihhF8czLDeK4QgHYHBhxTtxAkiRJUkf34TvwxC2F6dUNx3JsxDiSypKLYtVyZl9VHA8/h4Y7/QhDklrVqAsKBWAnZB/m8oZTIweSys6mdqzdrOcmSbKcDb9vHVnyvE3ZXEFtZHz2AWj4OJ1ssx/sMHLdT5AkbaYAIyfAP76TTmf9BkaeD25ILUlSh1QzaRpDw0v8vfP/sHPmreID3beCz/8/2O3oZuc3FYxJUrnJxA4gSQAsKikAS3aJGEQxzcuV/Nsvql37iZIkSZJaXc2kafzHTy+GxlUAPJEbyJxk98ipJJWhaItiN7D4C1wU2z68+RS8+mg6zlTB8LPi5pGkjmCHkWkRAtAl1POl7P1x80iVYXn++xatfaEQQh/gpPz0yta+njZdIMfp2ZI/RUZNsABBktrC4FOgc490/M4LUPdQ3DySJKlN1E0eV/gCqGY1F1fdzG2df9i8+GvPz8FXH/tU8ZcklTMLwCTFV78S3nq6MH0it0mbP6sCPJXsTGOSftiRW/I8+0y61Va6kiRJUiSdqefMqumF+dUNxwIuTpLUIlwUq0+b9ZvieK/PQ89t4mWRpI4ihLQLWN7p2RmQa4wYSCo7/ZoG+a5cG2NzNkrYUBeUjC9vg+tpEx2WeZKapkWGXfrAPiet+wmSpJbRpRfsd3JxXvregyRJ6hDq/mUbXthxMhdW/Y1sSNKDnXvCCb+GL90A3Vv9oypJalEWgEmK740nIdcAwPzctrxPj8iBFMtKuvBisiMAmZCwb+aVyIkkSZKkjutzmUfpH95LJz2345eX/qiwS5oklXBRrDbfymXw1K3F+cgJ8bJIUkez70nQtS8AAzJL4GWbZUolNud+td/6T9l0+Y0OrshPx2/svXgIoXZNX8AeLR5WnJEtbrDD0NOhc7d4YSSpoxlV8h7D89PgvcXxskiSpLbTsApm/BCuGgNvP188XnMIXPgwDPmynZkltUsWgEmKb3FtYTgvGRQxiGKrmzyOPUccUZgPCfMjppEkSZI6sCThvKp/FOejJkC2U7w8kspZRS6KdUFsG5t3E9R/lI633gd22j9uHknqSDp1haFnFOezpsbLImljNLUwuTJJktuiJtG6LavjiMy84nzEufGySFJHtNWe6UJvgKQRaq+Nm0eSJLW+xXNhymHwz/8DSS491qk7HPdzOPOv0HdA3HyStBmqYgeQJBbPKQzn5XaJGERlYYcRMPd6AIZkXobGyHkkSZKkjqjuIfbKLEzHnbrB8LOjxpGkTeSi2PYgl4PZVxXnoya466YktbWR55F7+L/IhARensHhl1xFXbJt4WE7AUvp5gIb2WVraStmuQA4CZiaJMnFm/IaSZIMX8tr1wLDNiOePmnONenvV4BBR8EWbogqSW1u5PlQ91A6rr0eDr0IqjrHzSRJklpcZ+r5RtXtcNUdaeF3k5pD4Pj/gn47xwsnSS3EDmCS4ltkAZhKbD+iMBySeRlI4mWRJEmSOqpH/6c4Hvxl6NaqTXokVYh8x62NUbaLYpMkGb6mL+D5Fg/b0c2/F5YuSMfVvWHf8XHzSFJH1LeGe3NDCtPTszMihpHKysYUfLXkc9cqhDAMmEJ6nzuxNa6hFlT/Mcy9oTgfNSFeFknqyPYYBz3zGxx8uASe/UvcPJIkqeW9Po+/dv4eX6/6S7H4q1M3OPZnadcvi78kVQgLwCTFtWIJLM/vKp+t5vlkp7h5FF//3aFzDwC2DsvZnnciB5IkSZI6mHdehhfvLM73vzBeFkntgYtitXlm/6Y4HnoadO4eL4skdWBjzvpeYXx+90eo+/Hh0bJIZWRTNixo2hTh3ZYMAoUNF+4BbvM+t5145nZYmf4YLUq2hF2PjhxIkjqobCcYcW5xPufqeFkkSVKLqJk0jZpJ09h10l/45ffOomHKEeyRea14woCD4MKHYfQFkLFcQlLlqIodQFIH99qs4ni7odS/5K+lDi+The2HwysPADAs81LkQJIkSVIHM/NXNHXivadxKEdtuWvcPJLKnYtitemW1cGLdxXnI8+PFkWSOryBR0K/QbB0Pqx6D57+I7BF7FRSbKUbFgwE5m7ic1tKLTAjSRJbprYXs4qbHfyuYQyTMtmIYSSp46mZNK0w7s/2PFKdpVNohFcfhbeega33jphOkiRtrr1DHT/v9Gv2zLxaOLYy6UzX4y6DkRMs/JJUkfzNJimu12YWxzuOipdD5WXH0YWhBWCSJElSG/poKcy7qTC9qvG4iGEktROfXBS7qc9tKS6KbU9mX01T0TGDjoItBkWNI0kdWibTvCvCbLsiSMCcknG/9Z0cQii9H56z1hM3QQhhOrDA+9zy17QL/fGX/BJeT2sGVyWduKXx8LjBJKmDe5s+3JUbUTww59p4YSRJ0uapX8lFVb/nL52/16z4i50OpOs3HoPREy3+klSxbLUjKa7SDmAlRT/q4Ep+FoZnXowYRJIkSepg5l4P9R8B8FxuJx7N7RU5kKR2wEWx2jT1K+HxGwrT854bwj0lO3NLkiIYcirceyk0fAxvzGO/MJ8nE4tz1XElSbI8hLCctIPthmx20KdkvKClcoQQpuTzjF3HOX2AfkmStNh1tXnOyE4vjO/I7c8yekVMI0kdS93kcZ86VjNpGjc2juGz2fxG1U/8Hsb8EKp7tGk2SZK0meoehr/+C1+tml88VtUVxvwARln4Jany+VtOUjwNq1j1am1hOuL69yOGUVnZobjr0l5hIaz+MGIYSZIkqYNoWA2zflOYXt14LBDi5ZHULiRJspxiJ6+yXxT7iQI0xfTMn2DlsnTceyfuyw2Nm0eSBN36wd4nFqanZ2dEDCOVjT/kv/dZ51mppnvNufn75M0WQrgIGLiu+9y8MfkvlYHerGB8l+JGqF+c+KM1FiNIktrWo7m9YItd08nqD+CpW+MGkiRJG6Rm0jT2nXQrN37vRLjuOFhaUvw14CC48GHY/0KLvyR1CP6mkxTPG09SHeoBqMttzTv0jhxIZaNrH+i/JwBVIQeL50YOJEmSJHUAT/8R3l+cjrtvxV8bD4ybR1J74qJYbbw51xTHI84hl/+4om7yuE99SZLa0MjzCsPPZR+lFysihpHKQtPK8PXdawKcnP9+S0tcOIRwEnDyBtznAoykBTdY0Ob5YvahtJsiwLaDYfthcQNJkvICjDi3OJ1zDSRJvDiSJGmDjMnUMr36O5xWdU/h2PtJVy6pPw/OugO2sIO9pI6jKnYASR3YazMLw5ohR1B3oos5VGLHUfD2c+n4tZmw8yFx80iSJEmVLEngkV8W56MnsvrvneLlkdTe3ApcQLoo9sr1nNtai2KHb8DpI4HpLXFdbZ7jLvl//L16NgCrkywHTNsmciJJUsH2w2Gb/eDNJ+kaVnNS9iGK//uWOp4kSWaEEBYAY0IIfdazicFJwPIkSdZ6TxxCuJV0U4KpSZJcvI7zhgETN/A+F2AYcPkGnqtWlXBaaQfFEedCsMO6JJWNwafAPT9KC3XffJITvvtL5iW7fOo0N6SRJCmOmknTCuMteY8fdrqeqzo/1vyk3cfRa9zPubzXdm2cTpLiswBMUjyLZhXHO46Kl0PlacfRMPf6dLxodtwskiRJUqV7eQYseTYdd+qe7vr/90fiZpLUbrgoVutS+mFtk5+U7NL5j9xo3qV3W0aSJK1LCOnfA3/7JkBaxJAkFi+oo5tIupHAJcAa709DCBfkhxPW9iL5c07KTy8KIdySJMncNZw3kHSThSvyGx6sTT/vYHuBAAAgAElEQVTSLryDgDEt1WFXm2f/zHMMyryRTjr3hH3W9U8oSWprNT9+lJ9VjWJ81YMAnF41g3n1ny4AkyRJMSWclH2Q71X9jj7hw+Lh7v3huJ/BXif4XpWkDssCMElxJAm8VloANjpeFpWn0p+J12b6AbMkSZLUih797fc5IJuOr1p5KJf9yOIvSRvNRbHaID34iBOy/yzMP3/e9/h8zUERE0mSPmXf8XD3v8Oq99MihlcegIGHx04lRZPf8OBi0nvP6UmSzCh9PH9vOoV0A4PbNudaIYQ+pPfVTa+5oT51z6w4Ti/t/jX4ZKjuES+MJGmNftc4plAA9tnMo5z0/euhWz9gzRvZSJKktrNDWMJPq67m0OxTzR8YchocfVnh/9mS1FFZACYpjvdegw/Snc8+SLrSc6s9IwdS2dliEEuTHvQLK2DlMnj3Zdhy19ipJEmSpMqzuJYDsmn3r4YkwzUNx0YOJKk9clGs1qdu8rh0MPsqmLYqHfffEwYcGC+UJGnNOneHwafArKnpfPbVFoCpw0uS5MoQwlxgSgjhNtL70aWknWsvIe1MO3U9rzE1hDCeYrfbNd2ffon0PndjLdiE56ilrVjCMZnZxfmIc+NlkSQ1U3hfAtINiKfcBm8+SZdQD0/cDAd8LV44SZIEjQ0w89fc3fnHdAurisf7DIDP/QIGHREvmySVEQvAJMVR0v3r8dwuHJrJRgyjshQCtbndGJvNf/b12kwLwCRJkqTW8PAvC8OqweN55MSzIoaR1J65KFbrlSQw+5rifMS5dnyXpHI14txiAdjz0+D9N6DXtnEzSZHlNzkYFEIYAwzLH16QJEnfjXiNset5fCqwzntmlbHHb6BTaEzHO+4PW+8dN48kac1CgJHnwd++mc7nXAP7f9X3KCRJimVRLdzxTXjzKbo1/e84ZNL/Px/x3XSzIkkSAJnYASR1UK/NLAznJhb1aM3m5nYrTkp+ZiRJkiS1kHfnw3N/Lc4P/Ea8LJIqQpIkM5IkGURa/DWMtJBrQZIkfddX/FXyGmOTJAlJkkxcy+NT849v7Nf4lvsv1SZ5bSYseSYdd+oGg0+Om0eStHZb7cnM3B7pOGmEub+Nm0cqI/l73ivzX5vV3VYVJNcItdcV53b/kqTyts9JUN0rHb/7MrzyYNw8kiR1RCuXw7Rvw1VHwZtPFQ4/l9sRzpsBx/zE4i9J+gQ7gEmKo6SYp7a0yEcqUZsrKQ4s6RonSZIkafPUTJoGwKVV13BGVQ6A+xsHc/g2+8SMJamC5LsjzIidQ2VmTkn3r31Pgi6942WRJK3X7xrGMLrz8+mk9jo45NuQ9eNlSVqj+ffC8lcBWJb0oO9en48cSJK0TtU9YL+TYfZv0vmcq2HgYXEzSZLUTjV99rwmdZPHffpgksDTf4S7vgsr3ioer+rKFSs/z1WNx/HSDsNbIakktX92AJPU9latgDefBiCXBObldokcSOXqyWQg9Uk2nbz9PKxcFjeQJEmSVEG24D3GZx8ozKc0fjZiGklSxfvwXXjmT8W5HREkqezdmRvF20m+K8IHr8OLd8YNJEnlbPbVheGtjYdBpy4Rw0iSNsjI84rj56fBB2/GyyJJUkfx7nz43Ynwx/OaF3/tMha+9hi/ajyeevvbSNJaWQAmqe29PheSRgBeSHbgA7pFDqRy9THVPJMMKB5YNCdeGEmSJKnCnFk1nS6hPp1sO4Sbf/KduIEkSZVt3o3QuDodbzcMthsaN48kab3qqeIPjYcX5g/eNJmaSdPWuauzJHVIy1+Dl+4qTG9qPDJiGEnSBttqT9jpwHSca4C5N8TNI0lSO1c3eVzh61MaVsEDP4P/OSDtoJz3ZtKXC1d/k5qnz6bmimfaMK0ktU8WgElqe6/NLAwfz+0aMYjag2Y/IyU/O5IkSZI2XVc+5szs3cUDB30TQogXSJJU0QI5mHNN8YDdvySp3bi58ShySfq3wqHZpxgQ7IogSZ8y97eQ5AB4qHEf6pJtIweSJG2w0vcoaq8jQy5eFkmSKtUrD8GvD4b7LoPGVemxkIHRX2HMqp/xj9xowM+qJWlD2CNRUptp2hHymk53cGQ2PVab2y1iIrUHtbndOIf8jnkWgEmSJEkt4kvZB+gbVqSTPgNgz+PjBpIkVbSDMs/AslfSSZfesM8X4waSJG2Qwm7NN06Dl9INJE7N3sPlDadFTCVJZaaxPi0Ay7uxcUzEMJKkjbbX8XDnlvDRO/D+Io7IPM49ueGxU0mSVBH68T786SvwxM3Njj+Z25nv1p/H0w8MLBxbY9cwSdKn2AFMUpsK5BieebEwr03sAKZ1a1YkuGhO+iGKJEmSpE3XWM+EqmnF+YH/Aln3CJIktZ7TszOKk8GnQudu8cJIkjbeiPMKw/HZB6hmdcQwklRmXvgHrMh3R+yxNTNyw+LmkSRtnKpqGHp6YdrsPQxJkrRpco2cnp3OvdXfblb89UHSlR/Un8UJqy/l6WTgOl5AkrQ2ru6R1KZ2D4voHT5KJ9234v4fnAfB1q1auzfYAnrvBO+9CvUfwRtPwA4jYseSJEmS2q8nb2GH8E467rYlDHH3fklS69mapYzJ1BYPjDgnXhhJ0qbZdWzhffp+YQXHZWYCX4idSpLKw5yri+NhZ9Jwt8twJKndGX42PPwLIOGwzJPsEJbETiRJUvv12iyY9m0u6/Rks8N3NI7mx/VnsoS+dvuSpM1gBzBJbWpU5rniZMABFn9pwww4sDhe+Ei8HJIkSVJ7l2uEh/6zOD/gq3ZhkSS1qlOy91EVcumk5hDov3vcQJKkjZfJwvCzCtPTq+yKIEkAvDsfFtyfjkMGhp21ztMlSWWq386wy1EAZELCqdl7IweSJKn92ZL34E8XwtVj4c2S4q++NXDabXz20ruZNfl0i78kaTNZACapTY3KvFCcDDgoXhC1LxaASZIkSS3j2T/D0vkAvJ90g5HnRw4kSapojQ2cUnVfcW73L0lqv4adCZlOAAzPvARvPhU5kCSVgdpri+Ndj4E+O8bLIknaPCPOKwy/lL0fGlbFyyJJUnvS2MA52X9wb/X/giduKh6v6gJH/Bt8dWbaXV6S1CIsAJPUhhJGZZ4vTnc6IF4UtS+lBWCvPgq5XLwskiRJUjtUM2kaO0/6G8/94QeFY9c1Hg1dekdMJUmqeC/eybZhaTru3h/2+FzcPJKkTddjK9iz5Pf47KvjZZGkclD/MTx+Y3E+4tx4WSRJm2+3Y6DXDgBsGd6H5/4WOZAkSe1A3cMw5VB+0OkGeoWVxeN7fBa+NgsOuwg6dYmXT5IqUFXsAJI6jgHhLbYKy9NJdW/Yeu+4gdRu1Pz8BWZX96J/eB8+Xg5vP+fPjyRJkrSRjso8zp6Z1wD4MKnm2obP8I3ImSRJFW7ONcXx0DOgqnO8LJKkzTfyPHjm9nT85B9g7I+hS6+4mSQpluf+Civzmx303gl2OSpuHknS5slkYfhZcN9P0vmca2Dfk+JmkiSpDNRMmvapY1uxjFkj74enbm3+wBa7wLFXwC5j2iacJHVAdgCT1Gaad/8anb55Im2QwKzcHsXpwkfiRZEkSZLapYSvV/25MOt+4AQen/zliHkkSRVv6QKYfw8AuSTA8LPj5pEkbb4BB/Fibvt0XP8hPHlL3DyS1MZqJk0rfM2+7WeF41e+sz81371zjQsjJUntyLAzqU/ya5kWPgxLnoubR5KkMtOJBiZk7+De6m83K/76MKlmcv0pcOEjFn9JUiuzAExSmxkVSgvADogXRO1G3eRxha9x475YfGDhw/FCSZIkSe3QQZmnGZKZn06y1XDgv8QNJEmqfLXXFYb35wZD3wHxskiSWkYI3NhYsohnzrWQJPHySFIku4dXGZl5EYD6JMutjYfHDSRJahk9t+Hu3PDivPb6eFkkSSorCXXnVvHS9j/m3zrdRI/wceGROxr356hVP+fXjcdDVXXEjJLUMVTFDiCp42jWAWzAQfGCqH0acGBxvPDR9EPlEOLlkSRJktqRr2f/UpwMPR16bhMvjCSp8jWsgsd/V5j+rnEMR0aMI0lqObc3HsKkqpvpGlbDkmdg0RzYcWTsWJLUpu46eD7MTsed9jme2eNPixtIktRibm48inHZWQAsf+y3jH5gNKvoTN3kcZGTSZIUxy5hEd+vugFueqr5A/33gGOv5LMDD+OzcaJJUodkBzBJbeP91xmQWZKOq7rAdkPj5lH7s/XevJ90S8cr3oSlC+LmkSRJktqLV2dyQPbZdByycNA34+aRJFW+Z/8KH70LwKJkS+7PDYkcSJLUUj6gG39rPKB4oKTjoyR1BN34GJ74ffHAiHPjhZEktbiHc3uzMLcVAH3ChxybmRU5kSRJkXy0FP7+He7sPIlDsyXFX9W94OifwFf+CQMPi5dPkjooO4BJahsLHymOdxgJVZ3jZVH7lMkyJ7cbR2bnpfOFj8AWg+JmkiRJktqDh35eHO93MvQdEC+LJKljmHN1YXhzw5Hk3ItOkirKTY1H8aWqB9LJ03+EY34CXfvEDSVJbeRz2Udh9QfpZItdoOaQuIEkSS3qlcmfg4degnt+BMCXq+7lz6sPjpxKkqSWVzNp2hqPV9HA6dkZfKvqj/QJH1IV8g+EDAw7C478HnTfsu2CSpKa8VNXSW3j1UeL450OWPt50jrMyu1RnJT+TEmSJElas8W18NLdAOSSAIf8r8iBJEkV761ni+/bZKr4Q+PhUeNIklrevGQQbL1POmlYCU/+IW4gSWpDp2VnFCcjzoUQ1n6yJKl9GnIaZNJ99UdnnmeXsChyIEmS2sZhmSf4R+dL+GGn39InfFg4/kjjXjDxIfjc/7X4S5IiswBMUtso7QA24MB4OdSuNSsAW/hwvCCSJElSe3H/5MJwWm40bLlrxDCSpEpXM2ka1/7XDwvzO+qH8zZ2hJGkyhNg+NnFae11kCSxwkhSm9knLGC/zCvpJFsNg78cN5AkqXX03Bp2P64w/XL2vohhJElqXXWTx1H37V2p2+daru98BbtmFhcf7FsDJ9/IgT9+BLbZJ1pGSVKRBWCSWt9HS2HJswA0JBnYYWTkQGqvnkoGsjLpnE6W1cH7r0fNI0mSJJW1Rc27f/2i4cTIgSRJla4Lqzgx+1BhflPjURHTSJJa1X5fgk7d0vGSZ2DR7Lh5JKkNNCsA2PsE6NYvXhhJUusq2fDgi9kHof7jeFkkSWolvVkB/5gEvzoAXp5efKBzTxjzI/jaLNjzs3Y+lqQyYgGYpNb36qOF4dNJDVT3iJdF7Vo9VTye26V4oLSznCRJkqTm7r+8MPxb7gBeTnaIGEaS1BEcl5lJ7/BROuk3kJsu+066e+jkcXGDSZJaXpfesE/JJhO110WLIkltYtUKjs+WfDZZ2glRklR5Bh4BfQYA0Cd8CM/9NXIgSZJaUMMqzs9O44Hqf4WZv4JcQ/6BAMPOhG/MhYO/BVXVUWNKkj7NAjBJre+VBwvDx3J7RwyiSjAr2aM4WfhwvCCSJElSOXttdnGXtpDhlw1fiJtHktQhnFp1b3Ey7CzI+BGEJFWqmknT+PxjuxXmKx+/FVYuj5hIklrZM7fTM6xMx1vuBjsdEDePJKl1ZTIw/KzifM618bJIktRScjl46jb47xF8r9ONaZFzkwEHwcQH4Pj/gh5bxcsoSVonP32V1GpqJk2jZtI0nnt0WuHYo7m9IiZSJZiZ27MwfmnWXYWfM0mSJEmpmknTeGDq/yrM/9RwAPOT7SMmkiR1CG89y4jMi+k40wmGnBY3jySp1T2RDOLZXNoVoWtYDU/+IXIiSWpFpZ0Oh50FIUSLIklqI0NOpz7JpuNXH4G3X4ibR5KkzVH3T7jqSPjjebD81eLxvjvD+Ovh7Gmw7eB4+SRJG6QqdgBJla0f77Nn5jUA6pMss3O7R06k9m5ubldWJVVUhwZ2zSymP8t4m76xY0mSJEllY1h4kcOyTwLQmAR+2XBi5ESSpA5h7vXF8R7joEf/eFkkSa2mbvK45gdmvwnTvp2Oa6+FURMsipBUEUo3oNwzLOQf1bUA6eeUg78cK5YkqS313JoZuWEcm50NwFW/+AGXNZxRePhT98aSJJWjt1+A6T+AF//R7PDSpAe/bDiRH37tP6Cqc6RwkqSNZQcwSa1q/8yzhXGnnUbw7OQvRkyj9q5u8jhemPwFqnc+oHDsgJKfMUmSJEnwrao/FsbZwSdz3+XnUzd5nB9GS5JaT/1KeOLm4nz42dGiSJLa2L7j+SipTsdLnoXXZsXNI0mt4JTsvYXxnblR0H2LiGkkSW3p5sYjC+MvZh+imtUR00iStBE+eAv+9i34nwOaFX+tSjrxq4bPcfiq/8N1jZ+x+EuS2hkLwCS1qmbFOTWHxAuiyrLzoYXhgZlnIgaRJEmSysyrj3Fo9ql0HLJw2EVx80iSOoZn/wIfvwfAwtxWsPNhkQNJktpMl978tbG4aRu110WLIkmtoe7HR3BW95mF+efP/W7ENJKktvbbyyZBn50A6BtW8MKpDZETSZK0bntO+iP/+W/n8eHP9027tSeNAOSSwB8bD+aIVf/BFQ1f5n26R04qSdoUVbEDSKpszQrASop2pM2y86Fw308AC8AkSZKkZu77aXG838mwxaB4WSRJHUfJYv+bG49kUsa95ySpI7m58UhOqbo/nTxzO3zmp9C1b9RMktRinvkTrHo/HfcbBDUHx80jSWpbmQwMOwvuvTSd114LfC1qJEmS1qixHh6/gfurf8TWYXmzh/7ZuDeXN5zGtMu/xhcjxZMktQwLwCS1mq1Yxi6Z19NJtjPsOCpuIFWO7YZBp+5Q/yE7Zd5mh7AkdiJJkiQpvrqH4ZUHAGhIMlQd9p3IgSRJHcKS5+DVRwGoT7Lc1ngYkyJHkiS1rSeSQTyTG8DemYXQ8DE/uOwHXN94zBrPrZs8ro3TSdJmKu1sOPwsCCFaFElSJENPTzdfSxph4cMMCicwP9k+dipJklK5XLohz30/gaUL2Lr0T5at9oKxP+bgXcYwzb9lJKkiWAAmqdXsX9r9a4dR0KlrvDCqLFWdYcAB8PIM4BOd5iRJkqQOpmbSNCDhts4/YkS+4crtjYfwpX4Do+aSJHUQtdcXhnfnhvMOvSOGkSTFEbip8Sh+krkGgFOz93B949GAC4sktW+7hddg0ax0kukEg0+NG0iSFEfPbWD3Y+H5OwA4JXsfP2k4PXIoSVJHlH4u3CTh8MwTfKfqlnRTnhJvJX3Y+vOXwpDTIJNt25CSpFaViR1AUuVqVpSz86HxgqgylfxMHZh5JmIQSZIkKb6jMnMZkXkRgFVJFb9sPDFyIklSh1C/Ep64uTC9ufGoiGEkSTH9pfFA6NQdgN0zixgWXqJu8rjClyS1R1/O3luc7PlZ6NE/XhhJUlwjzikMv5h9kGpWRwwjSerohocXuKXzpVzX+cpmxV/vJd24ov4UDl/1nzDsTIu/JKkClW0HsBDCMGAi0C9/aClwa5IkM9ro+hcBJElyZVtcT6pEzYpydj4kXhBVpk8WgCUJ2KZYkiRJHVAgx/+u+kNhXr3/+fzz2LPjBZIkdRjf+sGP+b+dlwPwaq4/D+f2jpxIkhTLCrrBvl+Eub8F4LSqe4B/jRtKkjZDNas5MftQ8cDws6NlkSSVgYFHQu+d4L1X6RdWcExmNvCF2KkkSR3MHuFV/nfVLYzJPt78gaqusP+F9D7oG1zctS8Xx4knSWoDZVkAFkKYAowAJiRJMjd/bCAwJYRwMTA+SZLlrXj9i4ArAIu/pE21/DUGZJak46qusP3wuHlUebbZD7r0ho/fY+uwHN55CfrvFjuVJG2QttrsIIQwBpgCzACmA3OBpUmSLA8h9AEG5r/GAgOTJBnbkteXJLWN4zOPsGfmtXTSqTsc8r/jBpIkdRhfrip2RPh945EkZCKmkSTFdvyju/LX6nQ8LvMYrFwGXfvGDSVJm+i4zEx6h4/SSd8aqDl0nedLkipcJgPDz4R7LwPg1JL3RCRJanVLF8B9P+XvnW8jE5Li8UxVulnFod+BnttEiydJajtlVwAWQphOugh1eGmRV5IkC4Cx+cdrgUEtfN2BwBjg4vz1JW2OupLd0HbaH6qq42VRZcpkoeYQeP6OdP7KAxaASWoX2nizg6YirwvyX00ZPnneDGB8C11TktSWGlbz7apbi/MDvgY9+sfLI0nqON5+gdGZ59NxpoqLJl3KRT23jptJkhTVk8lAns7VsE+mji6hHp64Bfb/SuxYkrRJSjc7YNhZ6cJ/SVLHNuR0uO9ySBrZP/NculHxlrvGTiVJqgA1k6at8fhWLGPWwXNh7vWQayBTWO4TYL8vweGXQL+d2yynJCm+snqHKoRwAWkR1roWvY4HBuYXzrbENS8KISSkRWXjSQvAbmuJ15Y6tAUPFMc7HxIvhyrbziU77b3yYLwckrSB8psZjAGOair+gnSzg5LuW7VtGGkBMDFJkrGt2WFXktSK5l7PTpm303HXvnDg1+PmkSR1HLXXFce7HwcWf0lSh1U3eVz+67Psc/w3iw/UXgtJsvYnSlK5evsFRmVeSMeZKhhyWtw8kqTy0Gtb2P3Y4rz0vRFJklpQf5bz71U38GD1t2DO1ZBrKDw2vXEYXPgwnDjV4i9J6oDKqgAMuAJYULoY9pPyC1NnABfkOyVsrqlJkoQkSfrmF75a/CVtriSB+SU7og08Il4WVbbSArC6hyCXi5dFktYjxmYHeVcC/5+9Ow+Psrz3P/5+ZpIgimyKK2oEF1BRCCrugIIbamsFtSp0VXq6Hn+2il082uWI9rS1tee00tVdFmtdcAPFXVEIIiCKgihuuAAiIpDMPL8/nmEm7AGS3JPM+3VduXJ/Z57JfLwugcnM/b2/HYCBwHCSAw+GAF3jOO4ax/GoBnwuSVJTWvUZPH5toT72EtimXbg8kqTSUbMCXrytUPf+arAokqQic9BgKN8uWX/4CiyYHDaPJG2JqTcW1h52IEmqq/fXCusXb4PaleGySJJanPk/68P845/lhTaX8I2yB5IJ66vtdTRfWnklF9b8EHY+MFxISVJQRdMAFkXRYKA99Zu+NTb3ffjWPq+TDqRGsHAWfPYBAIviNrDrIYEDqcXq1I0P49wG188Xw/vTw+aRpI0LcdhB/ufGcTwxjuNRcRxfG8fxuDiO5zXUz5ckNZ3KEePzX9dedXH+d6/34o5w2DcDp5MklYzZ98CK5K31BdlOHgAlSSrYpi30GFyop/wjXBZJ2hI1K2C6hx1Ikjaga3/ejndM1p8vgtn3hs0jSWoR2vMpl5bdAdcdDM9cD7WfF+7crRecfyd8dTzV8X7hQkqSikLRNIBRaOaaW49rV29WHbzRqySFUWf619PZgyCVDhhGLVoU8WS2R6F+/ZFwWSRpI0IddiBJarna8ynDywofLP++9ktQ3jpgIklSSZn6z/zy9kx/SBXTRw2SpODqNkvMuguWLwoWRZI22+x7k4Mn8bADSdJ6pNLcUVvn34Y675FIkrTZli+CR37BU61+wLfL7oGaz/J3zcxW8vVVP4QLJ8G+AyCKAgaVJBWLstAB6jg0970+kwhWX9MliqL2TvGSikPliPEA3FQ+huNyPV9PZA/m9ICZ1PI9menBl9JPJcXcR+G4H4YNJEnrt6WHHVzWOHEkSc3di/2mw3PLk6JjV0Z+55qwgSRJpePDOfDm0wDUxGnGZvpyaeBIkqQis3sV7HoIvDcdMivhpdHAnqFTSVL91NnIf0emPz/ysANJ0lrGZvryn2V3UhZlYf6T9L/8r7wR7wrA/JGDAqeTJDULny+B5/4Ez/0frFxKm7q9XTsfBP0u57QbASIqL78/UEhJUjEqineqoijqQjIRAerRABbHcd1rDt3ghZKaXCtW0Sf1Sr5+KtNjI1dLW+/J7MGFYsFkWLE0XBhJ2rAtPuygkfJIkpqxvaL34fm/FG4YeBWki+mMH0lSi1Z9Y345MVvFh3QIGEaSVLTqTgGb+k8gDhREkjbDR6/Dm8nBk7VxirGZvoEDSZKK0UI68mi2V77+cvrRgGkkSc3Kik/g8V/D7w+Gx0fCysJexznZ3WHIjTD8Seh+GuDEL0nSuopld1CXOutFW/FYSYEdnnqFVlFNUuy4P89+d1jYQGrxPqIds7J7cWDqTcjWwvynoNupoWNJUt6WHHYQFca2HwpMbKRokqRm6rKyOyCb+71rzyOh22lhA0mSSkfNCnjx1nx5e+b4gGEkSUWtxxB4+Gewahl8+AqHRq8yJe4WOpUkUTli/Abvm3/8s/n1I9kqPvCwA0nSeswfOQheq4BbBwNwUdvn+PWic6gpmq2YKkVRFFUBw4GOuZsWAWPjOG6U/Qa5fRDDgQEke3gXkeyHGAuMieN4ySYePwC4gWQ/xASgGlgUx/GS3EG5XXJfA4EucRwPbIz/DqnJLF+UTPuaPApWfrLmfTvsy/feO4nx2SOYd+Dp+ZudKilJWp+imABGYUNsUz9WUgM7NjWjUHR1A4iaxhN1p4DNfSRcEElaPw87kCQ1mN7Rq5yafr5ww4m/gsjT3yRJTWT2vfD54mTdbk+ezPYIm0eSVLxabQ8HnZUvzy17LFwWSaqHCmrgxdvytYcdSJI2quvx0LZzsl7+MQNTU8LmUUmLougG4C/ADXEcD4njeAhwDXBZFEUTcg1VDfl8l5I0bc0FLgR6A5cBS0iauhZHUXTRJn7M6iavi0iaxubmHhcDi4Gpudu7AEMaMr/UpJZ9CBOugOt6wBO/XrP5q2MXOHMUfGcy92aPIls0W/olScWsOf9rsfqEgB2CppC0hmNTLxUKG8DURNZoAHvdBjBJRacoDjuIoqhLFEWXRlE0ts7XpQ39Zq8kqRHFMT8tL0xd4aDB0Ll3uDySpNIz9Z+Fde9hxM36IwZJUqPr/ZX8clDqOdryWcAwkrSm+SMH5b8ATkxNgeUfJ3e222PNzx8lSVVYP4EAACAASURBVFpbKg29LsiX56YnBQyjUhZF0QSSKVwnxHFcvfr2OI7n1ZmaNbUBn+8a4LA4jrvGcTwqjuPq3HONyzWerW7WuiF37ZaaBwyP43jgpqaJSUVp6bvwwIik8evp3ycT0nPmZnflklXfouu7V1F5exsqf/xgwKCSpOamWOYOrx47yxa8WHPDqlQkOrGY7qkFSZEqh8qjwwZSyZia3Q/Kt4Wa5bD4DVg0LzkhQ5KaryUkr3Mb5LCD3Bur7YFr4ji+ts7tlwJvRFF0YRzH4xriuSRJjWjWv+iVej1ZpyvghCvC5pEklZaPXoM3n0rWURp6XgD3V2/8MZKk0rZbFezcAxbOoHW0ijPSzwBnh04lSet1bvrR/Pq3H/Xx9H1J0qb1Oh8evwaIOSY1k87Rh6ETqcTkpmwNAHpvZN/tEJLJWjfEcTx8K5+vChgQx/EGTyeM43hcFEWXkUwguzSKohc2shfhWuBq4FCSSV/tSRq/quM4nrc1WaXNUTli/AbvW31gRL0teQueug6m3QyZVWvc9Wq2M3+s/SLjs0f4+4YkaYsVSwPY1jRxddz0JWFEUbShkxO6NWkQqYkcm5pRKPY8Aiq2CxdGJWUV5TyyYn9OSE8D4Ke/+QO//NV1gVNJUl7oww4uAobEcTxx7TviOL42iqIdgLFRFA2xCUySiljtSph4ZaHu8y3osFewOJKkElR3+tf+p0DbXYNFkSQ1E1EEVcPggR8BTkWQVLz2it7nmPQsADJxxJhM38CJJEnNQvs9YZ8T4PWJpKKYIenHga+GTqXScg0wr+7kr7XFcbwkiqKJwEVRFF2zlY1V1wAXbuqi3D6Ey8kdUgtscB9Cbg/FOnsZpGbn47nw1G9h+h2QrV3jrpnZSq6vPZMbfnkF16dSXB8ooiSpZSiWBjBJLcBx6ZcKRdfjwwVRSXoie3C+Aey41EubuFqSmlTIww6q2UDz12pxHF+WOxlsbBRFHTanSc0DDySpCU2+ITkxDlgUt6HjsZcEDiRJKim1K+HF2wp176+FyyJJal4OHgITfga1KzgoNZ/TLr+emXGXNS7Z7NO0JamBPX78W/B0sk7vfzLPnTcsbCBJUvNRNQxeTz6KHZJ+DLIZSKXDZlJJiKJoMMlehFH1uHwsyaSw4cBlW/G0XTbWbLaWUcClQJcoiqo243FSMHXfn1g9FWzt6WDrvIexcFYy8WvmOIiza963+6HQ91JO+3sNEEHKqV+SpK1XdP+aRFG0uRtkFzVKkAYQx3Hv9X0Br4TOJjW4bJZjUjMLtQ1gaiLzRw5i/shBXHXx9/O3HZl6GTI1AVNJUnGI43jexpq/6hiT+35NY+aRJG2hZR/CE/+TL39fexa0boghkZIk1dPse+Hz3Fvx7faErv3D5pEkNR+tO8ABX8iXTgGTVHQyNWsddvDVYFEkSc3QfqfAtjsCsFu0CF5/JHAglZDhue9z63Ht6qlfg7f0yaIoqiJp5lqcaz7blLq5Dt3S55WKUhzDm8/ArWfDn46CGWPWaP6anO3G+asup3LuxVT+vRaIwmWVJLU4xTIBrN5TBhr4sZIayrvV7BgtTdbb7gi7HBw2j0rPDl2TDUifvMX20eew4HmoPDp0KklaQxRF7TdnwhZNd9jBBOCi3NfwTVyblzvcYB25yWBVDRNNksQjV8HKTwCYm92V2zIncFXgSJKkElN9U375m48O5/ofPxgwjCSp2an6Crw0GoALtn2eC354M1Rst84p2pIUxJwH4bMPkvX2u8I+A8LmkSQ1L2UV0PPL8Mz1SV19I+x3YthMKhWrm6rmbfSqNa/psgV7FlZbPcq5PXA5MG4T10+ps+66Bc8nBbX2pK/KEeOJyMIr98NTv4O3n1/3QV36c/bsY3g+7t5EKSVJpahYGsC2ZGPr6qOuP27IIJK20JyHCut9T3RcrZpeFME+x8PUfyb16xNsAJNULJrDYQf5N4WjKBpQz6lhkqSm8M5UmHZLvvxF7VBqiubtHElSSVj0BrzxOACZOGJspm/gQJKkZmevo2CHfeDj12HVpzDr39Dr/NCpJClRfXNh3esCSPu+iyRpM/UaVmgAm/MgfLoQtt85bCa1aFEUdaGwf3aTDWBxHM+LovwEokOBLdkPUF1nPWWDVxV0qbN2j6+at9pVnJV6guFl98Id76x1ZwTdT4OjL4bOvXk+d9jN2g1kkiQ1lGJ556ruxtYurPlicXMeKymU1+o0gHmSjULZ98RCA9ich2DAlQHDSFJeczjsYO3X45KkQOqegB+R5c6KK6lKxckN+53MYy/1DJRMklSyphU2xD6W7clzI4cFDCNJapaiCKqGwYQrkrr6RhvAJBWHT95JDpVcrad/N0mStkCn/Zic7Uaf1CuQrYXpt8Mx/xk6lVq2up/pb+5+hC3aD5BrIusAdInjuD77e+s+z+bsB5aKx8plUH0TPPtHflOxVuNXqhwOOReO/gHsuG+YfJKkklQsDWB1TwTouKmLcycYrO+xkkL49H14bzoANXGa8q7HBw6kktWlHyvjclpFNfDBy7D4TeiwV+hUktQcDjuo+6Zw1yZ6TknSJpyZeoqq1OsArIzLOHGGh21IkppYpham3ZovR2f6cULAOJKkZuyQ8+CRnycbYhdMhg9eCZ1IkuDF2yDOJuu9+0LHvcPmkSQ1W6Nr+9GnIvcat/qmpCGgMHFJamjtN31Jwz82juMl1H+/w2F1HrfRiWO5/cCD6z4GeAEYlXtOqWl99jE8fwNMvgFWrPW/YEUbOPRrcMS3oe1uYfJJkkpaUTSAxXG8JIqiJSQvLutzwkDdF6GbHGErqZG99nB+OSW7P0du0y5gGJW0iu14JnsA/dNJQyJzHoI+F4XNJEkBDjuIoqg98AbJ6+aBm3pDda1cTTV1TJK0EfOvPBb+eDEsS+q/Zk7lzXiXsKEkSaXn9Qmw7H0APozb8Wi2V+BAkqRmq00n2P9UmH1PUlffBBwdNJKkEpfNwrSbCnWVk24lSVvu/mwfroxvpG30OSyaC28+DZXHhI4l1bV6f+4Ojf1Euf0Kg3PltZu49ppcrmviOL62zu2XAm9EUXRhHMfjGi2sVNdHr8Fz/wcv3g61n69x14dxW/5RezK3rBjA0kfbwKPTgGlhckqSSlpRNIDljAEuon4nDKzeFFtth79UBOY8lF8+ku3FkQGjSI9kq+o0gD1oA5ik4AIddjCgzs8ZAmyqAcwDFiSp2Dzxa1i2MFlvvyvf+e6f+E6rNmEzSZJKT3VhQ+y4zHHUFtVHCpKkZqf3VwoNYNNvp4LDWUV52EySStf8J2DJW8l6m/bQ7bSweSRJzdoKWnF35miGluU+lq2+yQYwNab8Aa9bsH92a6aH1VfdzVpXb+K6Ies70DaO42ujKNoBGBtF0RCbwNRo4pgjUi/zjfT98Mf1DLjrUAlHfY9j7tyBlVQ0eTxJktZWTJ/WjiV5QTeQTXT9A+fkvo9u1ESSNq12Jcx7LF9Oyvbkp+HSSDya6QXl/0iK+U/CymXgRllJ4TX1YQdL6nwfuxnPCZtuFpMkNbIu0bvw3J8KNwz8ha9pJUlNb+l7axz8NDrTL1wWSVLL0KU/tNsDPlkAny/ixNQU7st6rKCkQOocdsAh50L5NuGySJJahDsy/QsNYC/fDadcA607hA2llmprmrg6bvqSLZeb/nVNrhyykT0P1Wyg+Wu1OI4vi6LoIpImsA713T8RRdHUDdzVrT6PV4nI1MCsu+DZP3JHxfR179/lYDj6B3DAFyFdxquHNX1ESZLWJxU6wGq5F3LzgAG5F4EbMxhYUnfk69qiKBobRdHi3IhYSY3lzWdg1bJkmd2JufFugQOp1L3LjszO7pkUmVUwb1LYQJKUWN2ENbAe1zbEYQdTSBrIOmzsDdM6Vuea6IRdSQot5sqyGyFbk5R7Hgk9BoeNJEkqTdNvgziTrCuPZX68a9g8kqTmL5WGXkPz5bnpRwOGkVTK2vMpzL63cEOdv5skSdpSs+K9YddDkqJ2BcxwYJFK0l9y36/d2NSuOI7n1XMvw5jcd/cBq2F8vhieug6uOxj+dSG8t1bz134nw1fug+FPJJ/RpotpzookSUXUAJYzPPf98g1dkOvoB7hwE9cMJjnp4NIoiqo2M0f7tb5L2pDXHs4vH832AqJwWaScidk6f+3PeTBcEEnKaerDDnJNXPPq8zo4l2f1a+zLNnW9JKlxnZF6luPSM5IiSiUnhEb+niVJamLZLFTfXKirhoXLIklqWXqdn/yuAxyTnsUe0cLAgSSVojPTTyUHSQLs3ht2OShsIElSi/HTtwofz7583/VUjrgvYBqVgnrsP1jbokYJwhr7dkfFcdxQew8m5L5ftNGr6ojjuPf6voBXGiiTmqNFb8ADl8FvD4SJ/wWfvpu/a0Vczq21J8B3p8B5o2HvY/18VpJUtIqqASy3MfYykqatAWvfH0VRF+AGkheIDX5ERhRF7aMoGgysfu6zoyiqzyZdqTTFMbz6QL6clO0ZMIxU8GimV6GY83CyaUmSwmvqww4uA8bmXkNvTN0TuKo3ca0kqTF9voSfldfZbH/4RYXTQiVJakpvPgWL30jW27SD7qeHzSNJajnadYZ9Ch8Dn5N+LFwWSSUqXvPvHqd/SZIa0D2Zo/g8rgDggNSb9IjeCJxILdSSQI/doNy+hdV7e4dv6vrNMK/Oc6yzp1jaqDiG+U/B6Avg+iqY/Geo+axw/3adoP9POHLl9fyk9huw477hskqSVE9FN5syjuNroyiqBm6IomgcSQf/IpKmrMuB4XEcj9rEzxgVRdGQ3GNGbWwja67ha+wG7m6fe36iQjd3bzfGSjkfzC5sBKlow+QV3cPmkXKmx11h2x1h+Ufw2Qfw7jTo3Dt0LEklLo7jiVEUXQZcE0XRhNzhB3kNfdhBHMfzoigaDkyIouiy9f3MKIpuoOFP4JIk1VPliPFr1L8o+ztDyz5Jiu13hf4/CZBKkiT499+v5ovpZP3PZX248mePhg0kSWpZqobBaw8DMCT9OGRqIV10H1tLaqEOiebSLbUgKcq3hYPOChtIktQizB85qFDc9ShMvx2Ac9OTgO+FCaWWbEumeK0egvBxQwaB/BSyR4BxDdz8BWs2rG3q8FspUfM5zBgLk2+AhTPXufvVbGf+mjmVez4+ipUPVAQIKEnSlivKd9Jzm2G75jr2V080mBfHcYfN+BkD63ndOMBZndKWeKXOmPJ9B7Jyqi+GVRyypBi79ACGlD0BwO//fD0/+OU/w4aSJJr+sINc09kQ4C9RFF0DVJOckNUl9/hFwJDGmK4rSdo8PaPXOT/9SOGGU66BbdqGCyRJKl3LF3FK6oV8OTrTP2AYSVKLtN/JsN1O8NkH7BwtSZrBup0aOpWkEnFOelKhOPBLvv8iSWp4VcPyDWBnpJ+BVZ9BxXaBQ6mFWbspanMGGjTGBLCpwMQ4joc0ws+u2+zWtRF+vlqSJQvghb9C9Y3w+eJ17+96PENnH86T2R64bVyS1FwVZQPYarlGsImbvFBSGHUbwLqdlvwqJxWJR7JVDCFpADsx5f+ckopHUx52kLu2GuidmzA2gORkr7nA1U62laTiMP9XJ8Goq2FhnNyw70nQ/YywoSRJpWvGWFpFNcl6t148cNG3w+aRJLU86XLoeR48fV1SV99kA5ikprFyGWekny3UVUPDZZEktVx7Hgk77Asfv8b20ecw69/Q6/zQqdSyTKmz7ripi3N7Bdb32K0WRdEEkv0O9Wr+yk0Le4Nk38LA3P6Jjan739fg08vUAsQxvPk0TP4zvDIe4uya95e1hkPOhcMvgp0P4MkR44G1JjdKktSMFHUDmKQituQteG86AKviNL1vjQMHkhL5X85WHgfX/gkyK+meegsWzYOOTgKXVDya+rCDOI7nARudLiZJCmTyn2DhjGRd1hpO/TVEnjonSQogjmHqjYW6ali4LJKklq1qWKEB7LWHYOm70Ha3sJkktXwv/5s20YpkveN+sEefsHkkSS1TFCWvdyf8LKmrb7QBTA0qjuMlURQtIWmiqs9mqPZ11vMaKkcURTfk8mzwANtcw1fH3H4FKBxaCzCETe+ZaJTsagFWLYcZY+H5UbBw5rr3t98zafrqdQG0rvd5zJIkFT0bwCRtmVfuzy+fyR7Ep2wbMIy0Hq22h67Hw5wHknr2vXD0D8JmkiRJktayGx/BpP8u3NDvMuiwV7hAkqTS9m41fDALgOVxK7Y9aHDgQJKkFmuHrjyTOYCj0i8np3NPuxX6/ih0KkktXfVNhXXVMA/gkSQ1nkO+TM3DV1IeZWDBZPjgFdipW+hUalnGABexZoPUhqxuEquO43hJQzx5FEWXAl021vyVM4Bkitfqw2qX1Pk+th5PVbfBrckO2FUR+3guTP0HTLsFPl+87v1794U+34L9TqLyxw/CPc80fUZJkhqRDWCStswr9+WX/b7wVeYf6khcFaHup9sAJkmSpCIW89/lf4Oa5Um50wFw5HfDRpIklbY607/GZ/owZJu2AcNIklq6OzL9kwYwgGk3wbGXQCoVNpSkluuDV5IN+MCqOE3FwecGDiRJatHadGJCtjenpp9P6mk3w0m/CptJLc1YkgawgcC1m7j2nNz30Q3xxFEUDQbOieO4dz0uPwyYUKeeQtKIVp/HQvLfBzCxoZrXVNwqR4xf57Y0GU5IVTOq+3SY++g69y+PW/GvzDHcmDmJCV8Z3hQxJUkKxgYwSZtv+SJ482kAsnFEan+bv1Sk9j+F2jhFWZSFt1+AT96BdruHTiVJkiQBcFbqSfqlp+eqCE77HaTLg2aSJJWwlctg5p358o5Mf4YEjCNJavkeyh7Gkng72kefwZK34I3HoOvxoWNJaqmm3ZxfTsz25tQ2nQKGkSSVgtGZ/oUGsOm3wwlXQFmrsKHUYsRxPDGKonnAgCiK2m+iOWowsCSO4w02ikVRNJZkWteoOI4v28h1VcDwzWjgqgKurpN7SRRF86IoqorjuHpjD4yiqD1JkxvABjOp5dqJxZybnsS5ZY+yW7QI5q55/1vZTtyYOZGxmb4spQ2w/gay+SPd3ypJajlsAJNUL3VfGA9OP87/lGcBmBbvQ+/tdw4VS9q4bTvybPYAjk3PTOpXxkOfizb+GEmSJKkpfPo+V5TfVKj7DIc9jwiXR5KkWXfBqmUAvJ7djanxfoEDSZJaupVUcFfmGL5W9lByQ/VNNoBJahy1q5KN9zmjM/05NWAcSVJpeDLbg7fjHekcfQTLP4ZX74cDzwwdSy3LcJLpWpezgQapKIpWb5S6cEM/JHfN4Fx5aRRFo9fXnBVFUReSyWPX5KaAbUhHoD3QFRiwnua0y4AJURQNjON43kZ+zl9y36/dVLOYis/6GrGgPs1YMUelZnHbITOTvX5xZo17s3HEpGxPbskM4PHsIcwbeTo/28jzSZLU0tgAJmmznZSakl8/lDmU+h7nIYXwYPbwQgPY7HtsAJMkSVJ4cQz3/T/aRcuTuv1eycmfkiSFVF1oTL4j0x+IwmWRJJWMOzL9Cw1gs++Dzz6C7XYMG0pSy/Pq/cnGe+CdeAeezPYIHEiSVAqypBhb25eLy3MT16feaAOYGlRuCthlJA1ZE+I4nlj3/lzD1g0kU73Gbc1z5aZxTQBW/8z6WqdxK47jeVEUDSdpArtsfdmiKLqBpCltoxPJ1IIsXwQv3sYjFX+ka+o9mL3W/dt1gl5DSfX+Kid02IsT1rrbKV+SpFKRCh1AUvMy/7+OZmDFjHz94//3o4BppE17ONObbJxsWMq88RRVI273xA9JkiSFNfNOeLXOa9IzroeK7cLlkSTpg9nw9vPJOlXOvzLHhs0jSSoZr8Z7wu6HJkW2BqbfETaQpJapzmEHYzN9ybpVRpLURMZm+pI/ZGfeJFg8P2QctUBxHF8LDARuiKLomiiKBkRRVBVF0aXAVGB4HMfDN/EzRgGrm8dGbWDa1tkkzV+ba70TvnLNakOAy6MomhtF0dhc/rFRFC0GBgBDNpVdxW/+yEEbbs6KY3jzGbjrW/Db7vDwT5Lmr7r2OhrO+htc/DIM+C/osFfjh5YkqYg5AUzS5nn1fsisSta7HgI7dA2bR9qED+nA1HhfDovmkI5iBqanMjrTP3QsSZIklaDKEePpyFImtPoRO+Q+77219gTO79I3bDBJUkmrHDGen5bdzDdznxbcV1PFItqGDSVJKi29vwLvTEnW1TfCkd+ByEmUkhrIkrdg7qO5ImJsre/DSJKazrvsCPucAK/nemum3QrH/yRsKLU4uWaqrlEUDQCqcjfPi+O4w2b8jIGbuH8UMGrLU673Z1YDvXOTygYA7YG5wNUbaEJTS7HsQ5h+W3JQw8evr3P30rg1bfsMhUO/Djt1DxBQkqTi5bFGkjbPrLsK6wO/FC6HVE/zRw7isFO+mq9PTU0OF0aSJEklLubn5f9gh+hTAN6Jd+Dq2i8HziRJKnUV1PCl9JP52oNzJElN7sAvQUWbZP3RHHjrubB5JLUsL94GxMm6a3/eoVPQOJKk0vOtlw/Kr997/K90GXFvwDRqyeI4nhjH8bW5r3Gh89RXHMfz4jgelcu9oQlkauZSZOmbmg6jh8Jvu8GEK9Zt/trlYEbUfJM+K/8XTv21zV+SJK2HE8Ak1Vs7ltU5HQ048MxwYaTN0f0MeOjHABydmklHlgYOJEmSpFL0hdTTnJYuHEiw+wWjmLnvgICJJEmCgampdIyWJUW7Pbn5B5dByrPjJElNqFUbOOisZPoXJCeA73Vk2EySWoZsBqbdUqirhsGscHEkSaXpkWwVH8Zt6RQtZddoUdIAwemhY0lS01iyAF68lSda/YXO0Ucwe637K7aHHoOT6eC79uSOy+8PElOSpObCBjBJ9XZS+gXI1ibF7odCh73CBpLqq/0esMcRsOA5yqIsp6YnA05akCRJUhNasoBflP+zUPcaCjZ/SZKKwDnpSYWi1wU2f0mSwuj9lUID2Ky74OSroXX7sJkkNX/zJsEnCwBYFLfhiJujwIEkSaVk/shBheLhKfDMHwA4Nz0J+GmYUJLUFGpXcVLq+eTvu+teAmI6r/VS/IXsfozO9Gf8ij7MPv2sIDElSWqObACTVG+npZ4rFE7/UnPTYzAsSP4fPiP9TOAwkiRJKinZLPz7P2gbLU/qDpXJZkZJkkJbPJ/j0jNyRQS9zg8aR5JUmipHjAdiHqjYk+6pt6D2c5g5Dg77Zuhokpq76pvyy39ljmUV5QHDSJJKWtWwfAPY8alpsOwDaLNT4FCS1MDeewlevA1mjOGGio/XuXtR3IY7M8cxOtOP1+PO+duT9wUkSVJ92AAmqV46spSjUrMKNxz4xXBhpC1xwBfhgcsgznB46tVkvHT7PUKnkiRJUimY/CeY/yQAmTgifeYN0Gr7wKEkSQKm3VpY7zMA2nXe8LWSJDWqiDsy/bkqlZsCNu0WG8AkbZ3PPoJX7s+X3/z+f/HNnboHDCRJKmk77gt7HglvPUt5lIHpd8DR3w+dSpLyNtaEtcZEw7Ut+xBmjEkavxbOXP81XfpD1TA6dhvEhWWtuLAezylJktbPBjBJ9XJy+gXKomxS7HGEm0HU/LTpBF36wtxHk3rWv+DoH4TNJEmSpJZv4csw8ap8+afMGXx3zyMCBpIkKSebSTbXr1Y1LFwWSVJJWmcD2fIjWXnNbbSKauDdafD+TNjloDDhJDV/0++AbA0AU7P70tvmL0lSaL0ugLeeTdbTboajvgdRFDaTJG2J2lUw58Gk6ev1CZCtXeeSd+OO3Jk5ju9dchV0qFzvj9loY5kkSVqvVOgAkpqHL6SfLhQHfSlcEGlrHDS4sJ4xLlwOSZIktXiVI8az34h/M+t/z4XMSgBmZiv5fe1ZgZNJkpTz+iPw6bsAfBi3hf1ODhxIklTytu3IQ9lDC/W0m8NlkdS8xTFU35QvR2f6hcsiSdJqB3yRZfE2yfqjOfD2C2HzSNJ6zB85KP+1hjhODmu5/1L4zf4wZijMeWDN5q+y1tDjbBj6b45Z+Qd+U3v2Bpu/JEnSlnECmKRNW/QGfVKvJOsoDQfaAKZmqvtprPz3D5LTQ99/CT56DXbcN3QqSZIktVCXl93Ggak3AVgZl/OfNd+mxrdiJEkBVY4Yn1//ufx3nJxO1ndmjuNbZRWBUkmSVDAm048z0rmpCC+NhoE/h7JWYUNJan4WPA8fvQrAsngb7sscybWBI0mSRKs23Jc5gnPLHkvq6ptgj8ODRpKkTenEYn75k28zOP0E3VIL1n/RnkdCz/PggC/CNm0ByDJ+/ddKkqSt4q4jSZv20pjCep8B0KZTuCzS1timHZOyPTk5nTtFacZY6P/jsJkkSZLUIg1MTeFrZQ/l61an/oqJfYYHTCRJUkEnlnBCqjpfj8n041sB80iStNrT2QN5O96RztFH8PlivnvFL7gveyTAuqePS9KGTCtM/7o3cyTL2SZgGEmSCsZk+hUawGbdBSePhFZtgmaSpHWs+ARm38st5f/HkamXSUfxute02wMO+TIcci7s0LXpM0qSVKJSoQNIKnJxDNNvL9SHnBsui9QA7s4cVShevB2y2XBhJEmS1DItWcCvy28o1PsPgsMvCpdHkqS1vHDaB5RHmaTY8ygevfrCsIEkScqJSTG2tm++Pjv9WLgwkpqnFUth5r/y5ZhMv3BZJElaS3W8L69nd0uKVcvg5X+HDSRJORXUcGLqBRgzDH69L9z9HY5Jz1qz+at8W+7MHMuXV/2EvRdeTeXDPan89StUjhhP5QgnfkmS1BRsAJO0cQueh8VvALA03hb2PyVwIGnrPJKtYkm8XVJ88ha8+VTYQJIkSWpZMrVw5zdpH32W1G07wxf+CFEUNpckSXkxVBcmIlA1LFwUSZLWMn/kIC7+0VVA8jvUcemZ7M6HYUNJal5m/QtqlifrTt2ZFu8TNo8kSWuIGF2nKY4/FwAAIABJREFUOfn5u/5g04SkcLJZmP8U3PN9nm/1bUZV/A5evhsyK+tcFEHlsfCF/4UfzuGSmv/g2eyBxG4/lyQpiLLQASQVuTrTv+7L9OG88tYBw0hbbxXl3J05iq+UTUhuePE22Pu4sKEkSZLU7K3+gPaSsjF8r+w5AGrjFGWD/wbbdgwZTZKkNfSJXoFF85KiVTs44AthA0mStLb2e0DX/jD3USBmSNnjXFc7OHQqSc3F2ocdLPBQHklScbkrcyyXlo2mPMpweOpVukTvho4kqdS8PxNmjIEZd8LStwFov/bL5l16QI+z4aCzoN3u+Zvnjxy0zo9b/TmpDa2SJDU+G8AkbVjNiuSEtJx/ZY7lvIBxpIYyNtO30AD28t1w6q+h1fZhQ0mSJKnZOyY1g++k787Xv60dzKV7HhEwkSRJ6zqnbFKhOHgIVGwbLowkSRvSa2iuAQwGp5/g97VfChxIUrOw8GV4Z2qyTlfAwefA3c+FzSRJUh35xok7xsMr9wFwdvpx4MJwoSQVpQ01U62vAatePp4Ls+6CmXfCBy+v95IF2U7s0XdY0vi1U7ctex5JktSobACTtGFzHoAVnwDwVrYTU+L9AweSGsbMeG9mZ/ege2oB1CznRz//OWMz/bb8F2RJkiSVvN35kD+UX08qipMbuvTj0gtuCJpJkqS1teUzTk1NLtzQa2i4MJIkbUy3QdC6I3y+iM7RRxydmgWcHjqVpGI37ZbCutsg2G6HcFkkSdqYXkPzDWBnpZ+ATA2kywOHktTiLHoDZt3FzAk3clBq/vqvad0RDjyTs57uzNR4P+afcNpmP4177iRJajqp0AEkFbHqm/LLu7LHAmvP+ZWaq4hxmePy1ZD04wGzSJIkqdmrWcGfKq6jY7QsqdvsAmeOgpRvu0iSisvp6WfZJqpJil16wG49wwaSJGlDylolk3tyzklP2sjFkgTUroKX7ijUHnYgSSpm+wxIPksAOkWfwGsTAgeSVKzmjxy0eQ1Wi9+Ep38Po/rBH3rCI1et0/z1eVzBPZkj+fqqH7Lv4uuofOoEpsb74/5QSZKKnxPAJK3f4vkw99FcETGmtm/INFKDyf9CvOxw+O1oyNZyeOpV9oreDxtMkiRJzVMcw/2XcHDqjaROlcPZN8H2O4fNJUnSegxJP1Yoeg0LlkOSpHqpGgqT/wTAiakpsHwRbNsxcChJRWvOg7D842TdtjN06RcyjSRJG5cug55fhqd+l9TTboFup4bNJKn5+uRtmPVvmHUXvDNlvZesjMto1e0kOPBMWu9/Mt//ryeaOKQkSWoINoBJWr8607/YZwDvzOwULovUGNp0gn1PhFfvB+Dc9CTgG2EzSZIkqfmZ+s/kg9nVTr4a9uwTLI4kSRu0cBY9U/OSdboCegwOm0eSpE3Z+UDYrQreraZVVAsvjYEjvhU6laRiVef9md8vOozf/fjBgGEkSaqHnhcUGsDmPAifLvRwOUn1t/RdePnupOlrweT1X5Mqh31O4OKZezMx25sZXx6Sv2uzpopJkqSiYQOYpHVlavjgib+xU26i70UvHxQ2j9RYqoblG8DOTj8GtSuhrFXYTJIkSWo+3p4C9/8oX96ZOYazDvtmwECSJG1E3Yblbqc5QUWS1Dz0ugDerU7W026GPsMhisJmklQUKkeMz693YjHPtnqYdO6vh3GZ4wKlkiRpM+y4D5Oz3eiTegXiDLx0Bxz9g9CpJBWxPaOF8PQfYPa98PYLQLzONTVxmqeyB9H/S8Oh2yBo3Z676rx2liRJzZsNYJLWNedBdoqWALAwbs8j2arAgaRGsu+J0LYzLH2bHaJP4eV74OAhm36cJEmStPRduON8yNYA8HJ2L35S8w3OciOiJKkY1a6C6XcU6qqh4bJIkrQ5egzm8/tG0DpaBQtnwrvTYHc/t5K0prPST5KOks2vz2QO4Mmrvx44kSRJ9TM20zdpAAOovhmO+r4HHkiqI4b3Z8Lse3mg4ja6p96CCeteVRuneCZ7IPdlj+ChzGF8QhsYDfB0UweWJEmNzAYwSeua+s/8cue+FzL3+DPCZZEaUyoNvb8Kk36Z1FP+ZgOYJEmSNm3Vcmb8zyn0SL0PwCfxtgyv+U9W4DRZSVJxWT0V4ZTUZP5UsQiAt+Md6bx335CxJEmqv23acX/2cM5KP5XU0262AUzSGuZffSpc/zNIXu5y1GAnp0iSmo/xmT5cWXYjbaIV8PFrsOB52LNP6FiSQspm4e0XuLzsVk5OvQB//gCA7qm1rovSPF3bjfuyR3D1j3/CcdvtwHHAGKd9SZLUotkAJmlNi9+E1x8BIBtHpHp5GrBauKph1Dx6NeVRBt56FhbOgp0PDJ1KkiRJxSqbhbuG0yM1H0hO1PuPmv9kQbxz2FySJG3E2enH8us7M8fxg1Q6XBhJkjbTmNr+hQawGePgxF9BxbZhQ0kqHm89B4vmJuuK7aG7h5tKkpqPz9mGezNH8uWySckN026yAUwqRZkamP8kzL4XXrkflr3P8PXs7l4Zl/NEtgcPZw9lYqaKxbQF4OrtdshfM3/koKZKLUmSArABTNKaXvgrEAPwRPZg+nXYK2weqbFtvzMPZQ/ltPTkpJ7ydxj0m7CZJEmSVLwe+2+YfU++LDv9N9x26NcDBpIkaeN24WP6l81Y/ZYfP7jkyqB5JEnaXJPjbryR3Zm9Uwth5dJkQ9wh54SOJalYTLulsO5xlg2ikqRmZ0ymX6EBbOZdcPI10KpN2FCSNlvlRiZv1W3KWn3ddnzOMakZnJiewoBUNe2i5et/cMX2sN+JfLt6dx7PHsJntG7Q3JIkqXmxAUwSkPxi0ZoVPNfqr7SLkttuygykX9BUUtO4NTMg3wC27Plb6PPkkXxGa09EkSRJElD4IOaM1NP8oeJ/87f/o/YkvmbzlySpyJ2VfhLibFLs3Rc88EmS1OxEjM3049LU6KScdrMNYJKAZNMss+4q3NBraLgwkiRtoWnxPrDj/vDRq1DzWfJvW5X/pkkt0pIFDE0/zIBUNUekXqZVVLveyz6Ot+fhzKE8lD2Uf/70R1DWiv8b3MRZJUlSUbIBTFLeWekn8ydJvJHdmUnZnoETSU3j2ewBvJ7djX1S79ImWsFZ6Se4KXNS6FiSJEkqIn2i2fy6/IZ8/VjmEH5ZewFfC5hJkqRNichydvqxwg1uiJUkNVPjMsdxacXYpKl5/pOwaB507BI6lqTATk1PTjbKA3TqBrv3DhtIkqQtEiUNXw//NCmn3WIDmNSM1T1wfO8R93JINI/rf/oVBqSq6Z56i1+Ub+CBbTtD99Oh++nssOcRfDmV5stNE1mSJDUjNoBJApLNIF9LP5iv9x50CW/0OT1gIqnpzB95Gkx+Fx74EQDfSD/ALZmBgVNJkiSpWOwfvcVfKn5TOIWvUzf6feNe5m7TLmwwSZI24fDoVfZKfZAU27SD7qeFDSRJ0hb6gA6w74kwJ/dZ1rRb4IQrwoaSFNyahx1cAFEULIskSVvl4HNh4pWQrYUFz8GHc6DTfqFTSdoSqz6DuZNgzgM83+peOkWfbPjanQ+C/U5O3rfdtaevZyVJ0ibZACYJgONSM+iaei8pWrWFnueFDSQ1tZ7nwaRfwopP2Cv1AQNTUwCbICVJkkpR5Yjx+fVufMSdra6lbW5aMm12hvPGJJvoJUkqcmeXPVYoegyB8tbBskiStLUumtmdURVJA9j7T/ydXfr9GNJ+3C2Vqi7RuxyWmpMUqTI4+JywgSRJ2gqVv3yeP5f34uT0CwD8+fdX8a1f3ho4laR6+/R9LkhP4IRUNVzzNcisBKDT2v1c6QqoPBb2PwX2Owna79n0WSVJUrPmO+KSAPh6+oFC0WsotNo+XBgphFZt4NCvw1O/A+DCsvuBq8JmkiRJUlDtWMaNFdewa7QouaFiezh/HHTYK2wwSZLqY8UnnJqaXKh7XRAuiyRJDeDRbC8+jNvSKVrKLtFimPtIsmFOUkkakn68UOx3MrTZKVwYSZIawOhMv3wD2FnpJyFTA+nywKkk1cur9/PL8n8k68xa9227Y/K7634nQ9f+7suUJElbxQYwSfDBbPqmX0rWUQr6XBQ2jxTK4cPhmT9CtoZDU3NgwQuwx2GhU0mSJCmAVqxi+r5/hwXvJDekyuHcW2HXg8MGkySpvmb+i9bRqmS980Gwa8+weSRJ2kLzRw4qFA+/AM9cn6yrb7IBTCpVmdpkY/xqHnYgSWqm1nitmzkJfnczLHufTtEn8NrD0G3Qhh8sqXjsdzJwcaHu1B32Pxn2PxV27w2pdLBokiSpZUmFDiCpCOQmHgHJLx0dKoNFkYJquyv0GFyon/1juCySJEkKpoIabij/HSx4rnDjmX+GLn3DhZIkaXNNu6Ww7jUUoihcFkmSGkqvYYX1nAdh2QfhskgK5/WJ7BQtSdZtdoZ9BobNI0lSQ0iXQc/zCnXd93YkFbe2u3FT7UCurBkGP5gO33kOBlwJexxu85ckSWpQNoBJpW7RGzBjXKE+5uINXyuVgiO/k19mZt3NcZf/ncoR46kcMT5gKEmSJDWZTA1/KP8j/dLTC7ed9N9rHhQgSVKx+2A2vDMFgJVxGRx8duBAkiQ1kE77MSW7X7LO1sL0O8LmkRTGi3U2xB9ybrJhXpKklqDuVMs5D8Gn74fLImmzXFH7Nf6ZOdnD9yVJUqOyAUwqdU//HuIMAE9lDoTOhwYOJAW2Sw+eyPQAIB3FfDt9d+BAkiRJajLZDNz1LU5Ov1C4re9laxwSIElSs1DnhOgJ2d6wbceAYSRJalijM/0KxbRbII6DZZEUwGcfwasPFOqeF2z4WkmSmpsdujI52y1ZxxkPPJAkSZK0BhvApFK29D148dZ8+b+ZLwYMIxWP474xMr8+t+IpOkcfBkwjSZKkxrR62uveI+5lzBVnwsw6E5KP+h70uzxcOEmStkTtqjU2B42pu0lekqQWYHzmCJbF2yTFR6/C2y9s/AGSWpaXRicTACGZCNhpv8CBJElqWGNq+xWKaTd74IEkSZKkPBvApBJVOWI8f7n2/0FmFQDV2X14NntA4FRSkag8BvY6Jllna50CJkmS1IKsbvha/QUQkeUXZf/g7LLH89fdVDsQBv4CoihUVEmStsycB2H5RwC8G3fkqWyPwIEkSWpYy9mG+zJHFG6ovilcGElNK46h+uZ8OSbTN2AYSZIax/3Zw/k0bp0UH78OCyaHDSRJkiSpaNgAJpWoHfiE89KP5Os/1n4RcGOjlNf30vxycPpxduOjgGEkSZLUWFJkuabsL1xQVvj9iJ4XMOznY2z+kiQ1T9NuyS/HZY4j68cAkqQWaI0Jl7PugpXLgmWR1ITerYYPZwOwPG7F+LrNoJIktRCfsw33rnHgwc0bvliSJElSSfGTX6lEfafsbraLVibFzgfx91/9lPkjB4UNJRWTvY+DPY8EoCLK8B9l9wQOJEmSpIY0f+Qg5v/qJOYddvcak7/ocTac8QdI+ZaJJKkZWvoevD4hX451IoIkqYWqjveFHfdPilXLkiYwSS1fncMOxmf68BmtA4aRJKnxjMn0LxSz7oKVn4YLI0mSJKlouJtJKkVL3uL89MRC3f8nnmwvrS2K1pgCdnb6MVj8Zrg8kiRJali1q2Dc12DG2MJtvS6AM/8MqXS4XJIkbY3pt0OcTdaVx7Ig3jlsHkmSGk0EVUML5TSnIkgt3qrlMGNcvlxjEqAkSS3Mi3FXXs12Toqaz7j051dROWJ82FCSJEmSgrMBTCpFj11Dq6g2WXc+HPY/JWweqVh16Z/8GYHkz8ykXwUOJEmSpIawDSthzFCYXWfK66HfgNOvt/lLktR8xfEaExHoNXTD10qS1AL0vmcHauLc73ALJnPC5aPCBpLUuF65D1YuTdYdu/BCvH/YPJIkNaqIMXUmu5+dfjxgFkmSJEnFoix0AEmNr+4JMF2jd3i44lbSqwd+nXCF07+kDYkiGHgV/CPXJPnSaAa9cAiz4koA5o8cFC6bJEmStkg7lvG3iv+BOXMKNx7xbTjpv/3dSJLUvL31LCyam6xbtYXupwOTgkaSJKkxfUw7JmarOCX9AgBnpx8DLgqaSVLjqBwxnlvLr+PoXM/ntQsPA3wfR5LUMuX3onzWB34zGrK1HJqaQ9fonbDBJEmSJAXnBDCpxFxSNpZ0FAPwRKYH7H1s4ERSkdvrKCZkqvLlZWW3BwwjSZKkrbJkAeMqruLQVJ3mr2P+n81fkqSWoe70rx6DoWLbcFkkSWpE80cOyn+dMvRH+du/lH4SMjUBk0lqLJ2jDzg6PQuATBxxZ8bPuCVJJWC7HWH/U/JlcuCBJEmSpFJmA5hUQub/RwdOTT+fr4/71h8CppGaj4Hf+xNEyT+Zx6VncGzqpcCJJEmStNkWzoK/DWTfVJ0TMk8eCQP+y+YvSVLzt2Ipy6eNy5dnPL03lSPGBwwkSVIT6XoCbL8rAJ2ipTDnocCBJDWGIekn8uv0vgOYPHJovhFUkqQWrdew/NIDDyRJkiTZACaViBRZuP/Swg0Hfgl2r9rwAyQV7NQNel2QL39cdlvyZ0qSJEnNw9xJ8PdT4NP3AFgVp+Gsv8ER/xE4mCRJDWTWXWwbrQTglewevBR3CRxIkqQmki6DnucV6mk3h8siqXFkMwxOP16o63xmJ0lSi9f1eA88kCRJkpRnA5hUIs5NT4KFM5KirDWc+IuwgaTmpt+Pkz87QPfUW1yQnhA4kCRJkurl+b/ALWfByk8A+DRuzVdqRkCPwYGDSZLUgKbdkl92O+XbzB95Wn4iglMRJEktXt1mkNcehqXvhcsiqeG98Ti7Rx8n69YdYf9TwuaRJKkpeeCBJEmSpDpsAJNKQFuW8cOy0YUbjrkY2nUOF0hqjtruCsdeki9/WDYWln0QMJAkSZLWVjlifP5rnxF3c9NPB8P9P4Q4A8D7cQfOXfUzns0eGDipJEkN6MNX4e3ngdyUy4PPDhxIkqQm1rELz2YOSNZxFqbfHjaPpIZV57ADDj4HylqFyyJJUgg9zy+sX5sAny4Ml0WSJElSUDaASSXg4rI76RgtS4p2e8LR3w8bSGqujv4+dOwCQNtoOUy4InAgSZIkrU9blvGP8msZVlaY2jo924UvrPwFs+LKcMEkSWoMdU5+npjtDdvtGDCMJElhjMn0LRTTboE4DhdGUsNZvghm31eoe52/4WslSWqpdujK5Gy3ZB1n4KU7wuaRJEmSFIwNYFJL9/ZUhqUfLtQn/RLKW4fLIzVnZa3g1F8X6um3w5vPhMsjSZKkdRwYvcFLu/yKY9Mz69x4Jof89GkmjxzK/JGDmD9yULiAkiQ1pEwNTC9s+hmT6RcuiyRJAT2QPZxP49znX4vmwlvPhQ0kqWHMvBMyKwF4Kbs37NIjcCBJksIYU9uvUHjggSRJklSybACTWrLaVXDPd0lHuV/6u/SH7meEzSQ1d/sM4P7M4YX6vouhdmW4PJIkSUrEMeemH+VfFVfCkjcLt/e7HAb/Ayq2DRZNkqRG89rD8NmHALwXd+SJ7MGBA0mSFMYKWnFv5sjCDdNuCRdGUsOpM+3Www4kSaXs/uzhLIu3SYqP5sDbU8IGkiRJkhSEDWBSS/b07+GDlwFYHreC06+DKAocSmr+flEzlM/iVknx4Svw2NVhA0mSJJW6Vcvh399mZPlfaRXVJLdVbA9n3wz9Rvh7kCSp5aoubIi9M3MsWd/ylySVsLrNIZ9NG8uBI8ZROWJ8uECSts77M+C96QCsjMu5p26TpyRJJeZztuG+zBGFG+o0SUuSJEkqHX4aLLVUC1+GJ67Nl7+pHQIdKsPlkVqQ99iBq/8/e3cfZtdZ1wv/e88k6TtM0/JeIKRQoCA0aVFRoQgJghQEbFqBcvCITdRz9NEjNq0Hj3j0SNPH46PnIJqggIc3aYKgUkUbsFAEPLRpKS/lraEF2lLapukLTZtk5n7+2HsykzSTmSSzZ+295vO5rrn2Wnuvvdcvc83K+u691+++d7924o5/+1OjKwEANOV7X0r+8kXJF94/cd8jn5Gs+WRyqhmQAWixe7/XmQGsa+PomQ0WAwDNu7aenK+PPS5Jckx5MD89/O8NVwQclmvet2fxY2PPyT05tsFiAKB5e33286W/TXb+oLliAACARmgAgzba/WDyt+cnozuTJNeOnZx3jb6k4aKgXd43+qLkSc/vrNSx5CO/nOza0WxRAADzydhY8tk/S97xk3tmPk6STaPPT35xc3LCyQ0WBwC9teTCy/LWi9+S1NEkyefGnp6b6qObLQoAGnTjxS/LjReflVNe8st77jtn+IrmCgIOz+4Hk+s+uGf1UoMdAECurqckJzy5s7Lz3uT6f2i2IAAAYM5pAIM2+sTvJ7d9qbO84Mi8adeajDncYVbVDCWveFuyqDva4B1fTz7+35stCgBgvrjn1uS9r0r++bf3DHyxoy7K2l3n50271iSLjm64QADotbrXRe2X7nZBLAAkSZ51bjK0IEnynKGvZ2m5peGCgEPytX9KdmzrLD/88fnM2DOarQcA+kJJlp03sXrNe5srBQAAaISOEGibrZ/M2L+9bc/qf9txbr5ZT2qwIGivJeu+lIt+cO7EHZ97e/LVy5orCACg7WpNvvDB5M+fm2y9Ys/dXxxbkrN2/o98cPQnk5TGygOAuXJ6+XpOHrq1s7LouPzxW/5bd+aTlzVbGAA07dhHJqe8ZM/qquFPNlgMcCiWXHhZ/vVv/njP+p/c+ZzOwIwAQH74o4/IaO1+D3LjlXneRe9stiAAAGBOLWi6AGAW3XNr8qFfzFCpSZIrRp+d/zP64oaLgnb7wOgL88Kha7JyeEvnjo/8crLmU8nxSxqtCwCgde7+bvLR30i+8S977hqrJetHz8ovv+Wd+fiCRQ0WBwBz65zJF7P/0M8mi45prhgA6DfLzku++tEkyc8OX5mM7k6GfS0Og+LRuTPPH7puz/qmUbPdAsC47+f4XDF2Wl40fE2S5OzhTyX5hWaLAgAA5oxPuqEFllx4WRZkdz6w6A/ynKHvJ0lurw/LCy64NDce9+iGq4P2echo2vf/WL677jk5qdyRPHB3svE/Jr/wz4mLkAEAZmzJhfufSbVkLK8d/kQuXPCBHFd27Ln/u/XEvGnXL+VzY6fml+UuAOaTB+/LWcOfnVhf9vrmagGAfvTklcmxj0ruuy2PLNuTb25OnvqS6Z8H9IVXD1+Z4e6Ap3nSmfn0G36+0XoAoB/sdZ3KV0aTSzufB509/KlkbDQZGm6oMgAAYC4NNV0AMDsuWvCBPGfo60mS0Vrya7t+NdH8BXPj6MX51Z2/ml21+4HaLVvy/recmyUXfrTZugAABtwzy9Z8aNFb8j8WvnNP89dYLXn37hfnpx5cl8+NndpwhQDQgC9/OMeUBzvLj3ha8rjTm60HAPrN8ILk2T83sX7Ne5qrBTg4te49263BDgDgoU55SXL0CUmSx5U7k299cponAAAAbWEGMGiB1wx/PG9c8E971odX/m4+8BO/0WBFMP9cU5+Si3e/Jr+z8L1Jktcu+ES+WR+X5KxmCwMAGDA3Xvyy5P5tySd+P7nqXUnqxIMnPCVDr/jf+fknPjc/31SBANC0a947sbzs9UkpzdUCAP3qtPOSf/vTzvLXP5bcd3ty7COarQmY3k2fyZKh2zrLRzw8ebrv2QDgIRYsSp51bvK5t3fWr3lvcvILm60JAACYE2YAg0H3zY/n9xe8a2L9aWclP/7rzdUD89SNF78sv/MHb0t+aNWe+9684L3J1z7WYFUAAINlOKPJVe9M/vfyzu1489fwouR5b0p+6dPJE5/baI0A0Kg7vpF853NJ0pmJ/FnnNlwQAPSpR5ySq8ZO6SyP7U6u+2Cz9QAzM3mwgx86O1l4VHO1AEA/O+11E8vXfzTZcVdztQAAAHNGAxgMstu+klz6hiwoY531xzw7edV6o/5CU0pJXvG25KQfTpIMlZp86I3JrV9ouDAAgD5Xa1489Pl8bNGFyUd/Y+8vKp+8MvmVzyUv+p1k4ZHN1QgA/eCa9+xZ/PjYcjOZAMABXDp65sTKNe9Jap16Y6B5D9yTfOUjE+vLzmuuFgDod49+Zq4be1JnefTBvPkPfi9LLrxszw8AANBOGsBgUG3bmrz3Z5Od9yZJbq4nJK/5YHLEsQ0XBvPcwiOTn3t/vjPWvQBr533Je16V3P61ZusCAOhXN30m+asXZ8Oi/y9PGbp54v6RJyY/94HkdRuTE05urj4A6Beju5JrP7Bn9YOjL2iuFgAYAJeN/mjur0d0Vm7/anLzlmYLAg7syx9Odt2fJLl+7PHJY5c1XBAA9LdLJ302dM7wFY3VAQAAzB0NYDCItn87+etXJPfekiS5tx6VX9j5W8nDHtNwYUCS5NhH5I273pS769Gd9fvvzG1ve3Gef9E7m60LAKCffPfq5H3nJO96afLd/ztx/6Ljkp98c/Kf/j152k+b4RgAxn1zc/KD7ydJbqsj+dTYsxouCAD62w9yVC4b/ZGJOybNpAn0j/GZSq7+u/+9576Noy/wmRAATOMP3vy7yXBnwINnDX0rN/76ExuuCAAA6DUNYDBo7r45efdZyd3f6awvOCrn7/rNfK0+odm6gL18vT4+P79zbe6rRyZJHlW25/2L/kdy143NFgYA0LSbPtOZIfUvX5h845/33L2zDuevdr80+X+uTc78rWThUQ0WCQD9Y/yC2H957/+7574PjT4/oxlusCoAGAyTZ0XIlz6U7Ly/sVqAqZ1cbs7pQ99Ikuyqw/nI6I83XBEADICjjk+eftbE+rXva64WAABgTmgAg0FyxzeTd70k2X5TkuTBujDn3f/r+dzYqQ0XBuzrxotflg+/9ddz7M9vShZ0msBOKnckf/VTyW1fabg6AIA5Vmtn1pJ3/XRnxq8bPrHnobFa8rejP5EX7vyf+f3dr0+OObHBQgGgPz0e9QXRAAAgAElEQVQi2/PCoWv2rG8cPbPBagBgcHy+PjVZvLSz8uA9yfX/0GxBwH6tGv7knuWFp/50tlz8mgarAYABsuy8ieUv/E0WZndztQAAAD23oOkCgANbcuFlSZJnlRvyrkWX5IRyb5LO6Pi/tOvX8+mxH2qyPGA6T3pecu778uB7fy5HlF3Jfd/rXPT8uk3J45/TdHUAAL218/7kur9JPvcXyR1f2+uh0Vry92M/lrfv/pl8o57UUIEAMBheOfzpLChjnZUn/Fj+9Rd+sdmCAGBglFxy23NywcKtSZLPbPqTvPYDx+bGi1/WcF3AuAXZnZ8dvnLijmWvb64YABg0TzozedhJyT3fTXZsy4uGtuRjYz/cdFUAAECPaACDAfCCoWvyZwv/V44pDyZJ7q9H5Fd2/Vre/YdvbrgyYEaesiJv2LU271j4P3Nc2ZE8sD33/+XL8pu7fil//of/venqAABm3/ZvJ1e9M7nqXckD2/d+bGhBPrjzJ/L20Vfkk299Y17VTIUAMEBqzpk0I8JeIzsDANP60Ojz8psLLs1wqfmx4a/k8btva7okYJIXDH0hjyh3d1aOfXRy8ouaLQgABsnQcHLaa5NPXZKkM6umBjAAAGgvDWDQz8bG8p+HP5z/smBThkrt3HfU8Tn6tRvzbjMHwUD53Nipec3O/5q/XrQuJ5R7c3R5MH++6E+TTxyRvOCiZGio6RIBAA7P7geTr/1jsuX/ZOyb/zrxHqbr3npUNo6emb/a/dLcnEc0VCQADJ7l5Rt5ytDNnZVFxyan/kyzBQHAgNhrlq/3/X3yjX9Jkpw9/Kkkv9BMUcBDrJo82MFpr0mGXcYCAAdlUgPYC4auzSNzV8MFAQAAveKTM+hXD9ydfORX8qaFH5247+GPT877UPKIpzZXF3BI9nzRfMdLkvefk2zb2ln/1CXJ976YvPLtydGLmysQAOAQ/dRFf56zhz+VVw9fmRPKvUmSoTLx+E1jj8y7R38qG0fPzH05uqEqAWBw7XVB7DNfnRxxbHPFAMCgWnbe3g1gY6Od2RKAZt33/bxw6JqJ9dPMdgsAB23xk5Ilz0tuvDLDpebVw1cmcU4FAIA20gAG/ejGTycf/qXk7u9M3LfkecmqdyfHnNhYWcAsOPEpyfmfyKf+8OV5/vAXO/d9/Z+SP/+x5JV/npz8k83WBwAwE3fekHzpb5MvfSj/fMT1D3l4rJZcOfZDOfO1a/PEp740vzs0nN9toEwAGHg7f5CXD392Yn3Z65urBQAG2SkvTY4+Ibn/zjyu3JlsvSJ58ouargq47oNZWEY7y094bnLik5utBwAG1bLzkhuvTNIdTKjWpJRpngQAAAyavm0AK6UsT7Imyfh0KNuSbKy1bm7TPmEvu3bkL37vF7N6+LIMlbrn7r/a/dK88fXvTYb79pAFDsZRx+c/7roga+vfZPWCyzr33Xtr8p5X5p27X5I/2n1O7s+RezbfM3sY0BqyLjCQ7vhm8rV/TL78t8kt1+x/m4c/Pll2XoZOe23OHHnC3NYHQN+Qd2fRlz+SY8sDneUTT0lOek6z9QDAoFqwKHnWucnn3t5Zv+a9GsA4JLLuLKq1cyyOW2amEgA4ZE9/RXLZm5Kd9+bkoVuT7/x78oQfbboq5tAg59TW5l0AgB7oy26SUsr6JGckOb/WuqV739Ik60spa5OsqrVuH/R9QpIsubDT/PHCoS15y4K/zi8tuH3PY3fVY/Pbu96Yfxr7kbxR8xe0ymiG84e7X5fPjT09lyzckBPLPUmSX1jwsfzU8Ofzll1vyOVjZzRcJdALsi7Qz8bfnyTJcEazvHwjK4avzoqhLZ0vDPdjR12UzWPL8/I3/Fay9CeToeG5KheAPiTvzrK9Loh9vZGbAeBwLDtvogHsqx9N7t+WHL34wM+BSWTdWXbz1cntX02S/KAekWNOfWXDBQHAAFt0dPLMVydb/rqzfs17NYDNI4OcU1uddwEAeqDvOkpKKZcnWZrk9MnBrda6NcnK7uNXJzl5kPcJ404uN+fCBX+TlcNX7/PAC3P8z7w9f/6wxzRTGNBTE7N6vSy5d3Xyd7+SfLMzcM3jyp15x6I/zr+OPjvrdr+muSKBWSfrAv3ucbk9Pzb85fz40Jdy5tB1Ob7ct9/tdtbhfHLstPzD6HOzeWx57s+RefmTV8xxtQD0G3l3lt3xzeTbn0mS7K5DWfDsn2u4IAAYcI96Rr4wtjTPHtqajO5Mvrgp+ZHVTVfFgJB1e+Ca9+xZ/Ojoc3PuEcc2WAwAtMCy1080gH35w8lLLk6cX1tvkHNq6/MuAEAP9FUDWClldZIV2SfQ7WNVkrtKKetrrWsGcZ+QJNn+7eSKi/Mvi96f4VIn7j9yJFn5e8my/5AMDTVXHzB3jntU8rpNyXUfTP75vyb335Ek+cnhL+TMoeuSD38hef5vJSf4PAMGmawL9KX7vp/c9Jlk6xXJtz6Zfzty69TbLjgqOfmFyVNfmkVPPysrjzo+K+esUAD6nbzbA9dOzP71ibFlefGxj2ywGABoh42jZ3YawJJ86bI/y1kfflySyYO2wUPJuj2w8/7kix/as3rp6Jk5t8FyAKAVTjoj3xx7bJ48dEuy877kK3+XLHtd01XRQ4OcU1ufdwEAeqTfukvWJdk6PpXr/nTD3uYkq7tTvQ7iPpnPbrkm2fTG5E9PS659397NX8vOS3716uT0n9f8BfNNKcmzfy75z59Plr8hSUmSDJWafOEDydvOSC59Q3LzlKcroP/JukCzxkaT730x+fxfJn+7uvOe5I+ekmx8Q3L1u5Jt+2n+OvbRnfcnr700Wfut5DXvT5a/Pjnq+DkvH4C+J+/OkiUXXpaTL/z73Hblu/bcd+noC5orCABa5O9HfywP1IVJkmcO3ZhnlBubLYhBIevOtuv/Ptl5b5LkhrHH5Op6SsMFAUALlJJLR8+cWL/2fc3VwlwZ5Jza7rwLANAjfdNhUko5O8lIkk0z2Hxj9/awuvqb2Cfz1K4dyXUbk3eflWx4QfKlTUkd3fPwJ0eflay+IvmZP0uOObGpKoF+cPTi5BX/K/nlz2Tz6LKJ++tY8pWPJO/4yeSdL0mufX+y8wfN1QkcFFkXmHOju5Pbvpxc+4HkY7/deS9y8ROSv/iJ5LLf7Mw8ete3HvK0HXVRPjX6Q8mK30tWfzL5L9cnL//T5JSfShYe1cA/BIBBIO/OvucPXZdHlc7At9+vI/nXsdMarggA2uG6i8/Jkc965Z71s4c/2WA1DAJZt0eumZjtduPomRkfGBEAODwfHn1edtfuJaE3/Vty5w3NFkTPDHJOnRd5FwCgRxY0XcAk4wFtJu86xoclPzvJ2gHbJ/PF6O685nf+OC8f+mzOGv5sHlZ2PGSTz46emj/Z/bP59/r03PjYZft5EWDeetSp+cVdv5Xn7P5q/tOCv8sLhr8w8di3P9v5+ccLkme+Kjn1lcmS5yULFjVXLzAdWRfojbGx5J6bkzu+ltzxjeT71yffuy657SvJ6IPTPv3BujDX1Sfls2On5jNjz8yWsadkZxbmxp942RwUD0CLyLuz7JzhK/YsP/In3pAbVr6iuWIAoG2WnZd8sXMN4auGP52Ld7+m4YLoc7LubNu2Nbnxys5yGc6HRp/XbD0A0CK3pzOQ0Mrh7qRK174/edHvNFsUvTLIObXdeRcAoIf6qQHsjO7t1gNutfc2S0spI92pXgdln7TZju3Jtz6VfO0fk69/LB9YdNdDNtldh/LRsR/NK3/5rXnuY0/LcxsoExgcn69Py8/velqevvumnL/gsrx86LNZWLozCO68N9nyfzo/Rz48OeUlyVNfmix5fnLMCc0WDuxL1gUOXa0546IP5KRyex5fvp8nltvy5KGbc3K5JSeXW3N0mb7Ra9z36vG5euwp2TJ2Sq4eOyVfrkuyKwty48Uvy6/18J8AQOvJu7PohNydFUNbJu447bzmigGANlry/OThT0ju/nZGyg+6591XNV0V/UvWnUVLLrws/2XBpfm17pUqm3c/K7fn+GaLAoCW2Th65p4GsFs/9c78+OWnZevFL2+4KnpgkHNqa/MuAECv9UUDWCllaTpTuiYzCHW11q2llPHVM5JsHoR90kL33Jrcck1nyuwbr8zYLddlqNT9b7t4aXLaa7Pg2a/NKx/+uLmtExhIN16898wbSy58Yt6a1+bVw1fmnOErcvLQrRMPPnB3ct0HOz9JvjL2xPzb2DNy1dhTc93Y0nz2ra9PJs5jwBySdYFp7dqR3Pu95L7bkntvTe7+bnLXTcn2byfbO7dXHXn/Qb/sd+uJuX7siflyfWK+PLYkXx5bkltyQm68+KyY3wuA2SLvzr5XDn96YvCXx/9o8ohTmi0IANpmaChZ9rrkircm2XvmTZhM1p19QxnL2cOf2rO+cfQFzRUDAC31ibFluaM+LCeWe/KYsi3PG/piEg1gbTLIObXteRcAoNf6ogEsydJJy9sO47n9vk8G1YP3JdtuSO78ZnL715Jbrk1uvbZzgeYkQ/v0VtxaF+fy0dPzH87/zeQJP6r5AjgsEw1hr0tqzat/+0/y08P/npcMfz4nlTv22vbUoZty6tBNOT//2Lnjj34/eeyy5DHPSk58anLiU5ITnpwccezc/iNgfpJ1Yb4ZG0se2J7suCu5f1uyY1vn9v47kx98P7m32+g13vD1wN2Ht7+jT0hOPGXi59HPTB79rJx09OKclGTlrPyjAGBK8u5sqjXnTr4IfZnZvwCgJ057bXLFxUlq54LYu7+bPPykpqui/8i6s+wnhr6Yx5buP+voE7P+zb+dLFjUbFEA0CJ7riv55/+bfPZtSZJVw59M8tvNFUUvDHJObXXeBQDotX5pABuZfpNZf24T+6Qfje7uXJh57y2dGb3uvSW5p7u8/aZO09e9t07/OklGa8kX65Ny2pmvTp5+Vh7zmNPyHzR9Ab1QSv72rb/RWa41ufULyVc/mmz9ZHLz1Ukd3Xv7H3w/+cY/d34mubmekG+PPSq3ZHF+9gU/0vmC+2EnJQ97THL0icnRi5MFR8zRPwpaS9aFQVFrsvvBZPeOzqxcD96XPHhv8uA9yYP35k3v+3SOzY4ckwdyXNmRY3N/ji078sqnP2xPs9edd3wvI7kvw1PNDHyI7qlH5zv1EXnGqT+UHL+k08x94lM7DV/HnDCr+wKAgyTvzqabr84pQzd3lhcekzzjlc3WAwBtNfKEZOmZydYrMlRqcu0HkjN/q+mq6D+y7iw7Z/iTEyvP/jnNXwDQK6e9bk8D2MqhqzoDFR69uOGimEWDnFNbnXcBAHqtXxrADsX2dALdXF7p1sQ+56dak7HRZGx3Mrarczs6eXlX9/Hu+u6dya77J3523t+5YHPyfQ/eNzEK/4678p2bb8nDyw/ysHL/IZf5g3pEvlyX5Id/fGXypOdn+AnPzWlHPmwWfxEAM1BK8tjTOj8vfHPnQvWbPpvceGU+e+XmPHPoWzmu7NjvUx9X7szjhu/srFz56f1uc289KnfVY/OEkx7fmWHkiGOTRccmRxyXLDqmu3xssui4ZNHRyfCizs+CI5LhI5Lhhd3lRRO3wwuTMpyUoWRoeNLyUK9+SzBoZF36X61JHZv4GRudtD468fhe948/NjaR+R9yf/c5o7s6eX90/D3AzknLkx57yHa7OtvuWX4wH/n8N3NkduXI7MyRZWeOzM4ckc7tkx4+3G34eiDZ/UCSqRu3/mjhFA98fWLxhEMY/2FXHc73M5Lb60huq8fne/X4fKc+Mm9+3U8lI09Mjn9iHnbU8XnGwb80APQreXcq17xnYvmZr+q89wYAemPZ65OtV3SWr31v8rzf9Bk1s0HWncr92zoXoI877XXN1QIAbfeoU5PHLk9u2ZIjyu7kixuTH1nTdFU0a5Bz6mDkXQCAOdAvDWB7hpeotW4/yOceald/E/vsvWvfn3z6T5LUzgWVyUEsZ//3J9312VhO7nlgV5Ka8esiS2pKao5ZtCCpY9m1a2cWln1mrumBxx/E9ze76nC+XR+ZrfWx2VofnTWrfiZ57Gk55oQn54eHhntXJMChOOK45JQXJ6e8OM998e8nY2Od2Qxv2ZJ8//rO8h1fT7Zt7VwcP43jyo5OA9ktt89B8Zm6MWzy/eNnkTJxNtl7fX/3lb1uDu45B9rPPn70V5Iz/uMB/4nMO7LubHr3Wcl9t3WW6+RGnUnLB3v/AZ+TKe6fyT4Os65Dqvdw/h0Tj9334O6USduVJEMZy5HDmWjSOkCjVL955YEi+7092umi4zojKR69ODmqe3v0CZ0ZNo97dHLcY5LjHpUc95gsPGpxHjc0lMf1qBQA6DF5d7bsvD/54ocm1pe9vrlaAGA+eNrLcnc9Og8v9yd33Zjc9G/Jk57XdFX0F1l3Nn1xY+cC9CR53OmdC9MBgN5Zdl7nOpEkuea9GsDaZZBzanvzLgDAHOiXBrDDCWaHOjdxz/dZSrl6ioeeff311+f0008/jBKm8IPbk3tunv3Xbbsy3JmNZnhhMrRoYnl4YWf2mgWL0rns9e4kd2fDP13ScMEAs+GJye6dufH7d2VhdmdhRru3u7MgozlyuHYbxAbnAv++cNzvJMe+bdZf9vrrr0+SJbP+wsyFVmbdpKG8+/2vdGZ3gh6pKRnrDlMxWodyxKLurJX7NiPvtdy9HVrQ+SnDk5qF7+3+3NTgvwrg8N16891JktMv/289eX15d6C1Mu82knV33JVsvzVJ8mBdmCP+4T/N/j4AgL3cecsDOaHc11l5z6uTkSfM+j5k3YHWyqybNJR3b/9asntHZ/nhNyR/0YN9AAATxkZTb/tBd9DHzyRvPzVZeNSs70bebcQg59R2frab3n+PAgA81Hy8jqFfGsDmm9EdO3bcvWXLlht79PpP695+tUev30JjSXY1XQQkjl8YZJ3j99abv5r0pBl7SZJ7evHC0APyLi3yYNMFtI3jFwbX05Jky209O36XRN5lMPQ663Y9mHxvS293Mf/IIfSavzF6zd9Yj0wM2XJH92fWLYmsy+CYm892b/32V5Nv92gXzGPOlfSavzF6rbd/Y7de35OXjbzL4JiTrNvD71GA3pHzYHDNu+sY+q4BrJQycpBTu27r133WWhsZsmp8BIOm9g8cOscvDC7HLzPRpqybyLvAwXP8wuBy/DITbcq7/tbbx/9j9Jq/MXrN3xg0q01ZN/HZLu3k74te8zdGr/kb41AMck5t22e7jmEYXI5fGFzz8fgdarqAroMJcbP13Cb2CQDA/CPrAgDQZvIuAABtJesCANCPBjmnyrsAAIehXxrADmVUgZHu7Z0DtE8AAOYfWRcAgDaTdwEAaCtZFwCAfjTIOVXeBQA4DP3SADa5M3/pYTy33/cJAMD8I+sCANBm8i4AAG0l6wIA0I8GOafKuwAAh6FfGsCumrS8eLqNSymTg99VU27Yf/sEAGD+kXUBAGgzeRcAgLaSdQEA6EeDnFPlXQCAw9AXDWC11u2Z6M6fSVf/yKTlrYOyTwAA5h9ZFwCANpN3AQBoK1kXAIB+NMg5Vd4FADg8fdEA1nVp93bkgFt1jAe/Ld1AOEj77Lla6+m11tObrgM4eI5fGFyOX6Yh684ixxsMLscvDC7HL9OQd+l7/h+j1/yN0Wv+xqAxsu4s8n8ZveTvi17zN0av+RvjIA1yTm1l3nUMw+By/MLgmo/Hbz81gG3s3q6cwbbndm8/OID7BABg/pF1AQBoM3kXAIC2knUBAOhHg5xT5V0AgENUaq1N17BHKeWGdDr2jz9Qt34ppSbZXms9/gDbbEyyIsmGWuvaudgnAABMRdYFAKDN5F0AANpK1gUAoB8Nck6VdwEADk0/zQCWJGu6txdNtUEpZXV38fxptjk7nSliLyilLO/1PgEAYBqyLgAAbSbvAgDQVrIuAAD9aJBzqrwLAHAI+qoBrNa6OcnadELkin0fL6UsTbI+nVEGNg3qPgEAmH9kXQAA2kzeBQCgrWRdAAD60SDnVHkXAODQlFpr0zU8RDfQrU+yKcnlSbalM73sRUnW1lo3zOA1Ls/ElLRrZrD9Ye8TAACmI+sCANBm8i4AAG0l6wIA0I8GOafKuwAAB6cvG8DGdcPd+HSyW+eik7+JfQLzW3fa7DVJFnfv2pZkY3ekE6DPTPrwaXM6Hz5tSbKt1rq9lDKSZGn3Z2WSpbXWlY0VS1+TdYH5QNYFmL/kXWA+kHcB5idZ9+A4XwLA/nWvL1id7rUF6Zwrr0rnGoT1tdatDZbHABrknDqIedcxDABzx3W7E/q6AQyg7Uop65OckeT8WuuW7n3jU1gnyapa6/am6gMeqpRydpKNM9h0cxzDAMxjsi4MvlLKBUlSa72k6VoAoN/Iu8wVmQwYZM6XzAXnSnql+//VmnRmolmaTgPr1nS+K77U/18cju7/XeemexHreKNI98LWdek0wsxoJiZg7jmGod26syKuM3AJ9A/X7U4YaroAgPlq0tTZLxr/wiNJaq1bJ3UeX91IccDh2JpkTa11ZZtDJAAciKwLg6/75eW6JCc0XQsA9Bt5l7kikwGDzPmSueBcSa90/7YuT3JDkvOTnJ5kbZLt6Vzsf1cpZXVzFTLISinrkpxcaz291rph8ixBtdbNtdbT07nuYHX3fAr0EccwtFu3yWRFkpGmawEOyry5bndB0wUAzEfdDwJXJDn9ACeaVel8aLjeaCDQdy5J8tZ0Rq1cms4bvq1JtpjCHYD5TtaFwdUd1XhFOhezLG24HADoS/IuvSaTAW3gfEkvOVfSa90L+5fWWk/e56GtSTZNGnl+fSnl5Frr2jkvkoHV/T9s+aRm6KmsSacJcUUp5exa66beVwdMxzEM7VZKGUnyjqbrAKbkut2YAWzeKaWsKKXcUEpZX0o5u5SytHvCSillpJSyvHv/eqMPQE+tS7J18mh3++p+GbI5ndFAfHANfabWur07cs+GWusltdZN8ylEAsAByLowYEopF5RSajojr69K5wIqX0YCwP7Ju/SETAa0jPMls865krlQSlmeZEWtddVU23Qv4h9v+rqg2xAGM7UmnYaQq8ev2dufWuvmfZ4D9AfHMLTbupj5C/qa63Y1gM1HI+l0PK5OZzSaG9IZVasmuSudD8o2dreZ8sMM4NB1P/wbycw+jN7YvfVGEAAOQ/eL4QuargPaTtaFgbWh1lpqrcfXWlcaiRJggvcSTCbv0mMyGdAKzpf0kHMlc2FdkvOn26jWekmS8RkO1/W0Itpm/KLy5UnOmeFzFveoFuDgOYahpboDAWxPZzYhgL6lAYx9bU2ypvth2fZptwYOxfgXGDfMYNvxMGnEKAA4RN2LNdclOaHpWmAekHVhAPkMCGD/vJdgP+RdekYmA1rE+ZKecK5kjiw90OyF+9gw/pzuBcMwE5d3b8dnwtyvfWYW2tbTioCD4RiG9lpXa107/WYAzVrQdAE04pIkb01yRjozfY2k88Hqlvk2BR405Izu7UyOt/FtlpZSRnyoDQAzU0pZmmRFkrXpZF5gbsi6AMBA816Caci7ADA950tgIHWbuJaWUu5Kcv4MZpmb3Oh6RpKZNo4xj9VaN5VSjp/BOW/yjEGXT7kVMKccw9BO3cHg1jddB8BMmAFsnqq1bq+1bq61bqi1XlJr3aT5C3qvewHJ+Agf0x5z+xyXZ0y5IQCQpPOhTCmlJrk6yap0Ltqc7gs6YBbIugDAIPNegunIuwAwPedLYMCNDwIykuSiGWx/1aTlk2e/HNpqhg3P47Njbs/EbHNAH3AMQ7t0Z+x7zgya/wH6ggYwgLk1edTgg53e2YjDADC9DbXWUms9vta60gc0MKdkXQBgkHkvwXTkXQCYnvMlMMgmz+B11ZRbTZj8/9ads1wLrOnerjVDJgwkxzAMjnekMyAcwEBY0HQBAPPMyPSb9OS5QA90R7I8O8lzJt39+XQuGvMBDjTAsQeNknUBgIHlvQQzIO8CwPScL4GBVWvdWko5PsnSWuuWaZ+wdwPYTLaHGSmlrEvn7+uSWquZg2DAOIZhcJRSViT5/D6zUwN9br5ft6sBDKD/bU/nC48Tmi4EmND9wGYkybpa6yWT7r8gybdKKecbLRwApiXrAgDQZvIuAEzP+RLoG92LBWfazLXnYsNa6+beVMR80r2QdW2Sc5Kscr0BDBbHMAyktbXWlU0XAcyc63Y1gAHMtcXjC4fQZWzUO+gfq9P5sOYhH+TXWi8ppZyQZGMpxQc6AMwnsi4AAG0m7wLA9JwvgXmhlDKSzojzSXLJgbaFAymlXJ7O+XNpOufCDUmeNB9mLoA2cAzD4Oo2kaxrug7goLhuN8lQ0wUAzDOH88XF4uk3AebAlkwRIsfVWtemM2Llxu6H/wAwH8i6AAC0mbwLANNzvgTmi9WTlt/aWBUMvFrrylrr6bXW42utJcnlST5eSrm8O5sQ0MccwzCYusfniFlcYaC4brdLA9g8VkpZWkq5oJSycdLPBW3+gweAw1Vr3TrDN3+Xdm+NFAIAAAAAAADQAt3rqsa/A15llhdmU611U6319HQao28opZw93XOA/uEYhoGxPsnaposAZs51uxM0gM1T3akr1ybZVGtdNf7Tffhbgif03iE0W27rSSFAr1zevV19wK0AoIVkXQAA2kzeBYDpOV8CLfaO7u0ltdZNjVZCm41fx7fRdXwwkBzD0KdKKauTbNTED63V+ut2NYDNT6uTXF5rXVNr3Tr5gVrrJUk2RPCEXjmc0ChwwmDZc44tpaxoshAAmCOyLgAAbSbvAsD0nC+BVuteMHx2kg21VrNG0DPda/rGZzh4xyE0VgMNcgxDf+oei6tqrRuargXomdZft6sBbP7Zks7Ja8op8LofUGxPpwlM8ITZdSgj140fh3fOZiFAz03+onJpY1UAwNyRdQEAaDN5FwCm53wJtFYpZXmS9ek0f61puh7mhY3d25G0eIawl5cAABFTSURBVAYDaDHHMPSfdUk08UO7tf66XQ1g80ytdeuBmr8mubR7u66X9cA8dDgnFqPewWCZ/CXnyY1VAQBzR9YFAKDN5F0AmJ7zJdBK3QG0P55kk+Yv5tDWScsrG6sCOFSOYegj3Wb+7bXWLU3XAvRU66/b1QDGVC7v3hp5AGbXVZOWF0+3cSll8hcjV025IdBzpZSRUspdpZQ6w6lhJx/jRq0EYD6QdQEAaDN5FwCm53wJtNXVSTbXWlc1XQiDq5SyvJRyQ/dn+QyeMvni1VbOXgCDxDEMA29drdXsXzBgXLf7UAuaLmA+KqWsTtLLDwTWzXCWrwPZM/pAKWXFLLwekKTWur2Usj2dqZ1n8sZuZNLy1im3AubCikwck6uSTHdudPwCMK/IugAAtJm8CwDTc74E2qiUcnmSrZq/mAUXZeL8uKb7M1NmyoTmOYZhQHWbNleUUupBPG1jKWXy+qpa66bZrQyYAdft7kMDWDNm+mHn4bz+4ZocOI0+ALPr0nRm15vJsTp+/G2ptXojCM3aPul24wy2n3z+1EjNvDIgAx4AvSHrAgCHzHsJBoC8CwDTc74EWqOUsj5Jaq0rD7DNSJLFtdZWXlzIrJo8G9ANM9h+8uwF/r6geY5hGFC11i2llJNnuPn48b0mk675k/WgMa7b3YcGsAbUWi9JcknTdUxjclid6UkPmJmN6XzpsTLT/19wbvf2gz2tCJiJq9L5AvL0GW4//iXAZl9aMg8NwoAHQG/IugDA4fBegn4n7wLA9JwvgVYopVyQZOmBmr+6VqRzkf+G3lfFgLs6nYtQ189wBpHJf3vOldA8xzAMsJk2cE2a9Wubpi/oC67b3YcGsHmiO9rMt9L5gnvlDEY5nTz6wJ09KwzmoVrr5lLK1nSmlB2Z5gRzdpLt3cZRoEG11u2llK2llOW11i0H2rZ73l3dXV3b++qgvwzIgAdAD8i6AMDh8F6CfifvAsD0nC+BNiilnJ3k3BleZPicJJf3uCTa4dJ0rh+Y6UwEZ3dvt86w2QToLccwAMwx1+0+1FDTBTBnVmRidNNVM9h+8kioOphh9q3p3l401QallPGT0Pm9LweYobVJNpZSphuN/B3d20umC50A0EKyLgAAbSbvAsD0nC+BgVVKWZ5kzUGMML88nVHp4YC6TdHrkny8e3HqlLrnyfHrEmZyrR/QY45hAGiM63YnMQPY/LF90u3GGWw/+QCZ6YgFwAx1R75bm2RdKeXyfWfl656k1ifZYAQQ6B+11q2llDVJLi+lrN3f8VlKWZ/OKD4baq2tHUUAAKYi60JrjOxzCwBE3mXOyWTAQHK+ZA45VzKruv8/bUzn/6+zD7Dp4nT+7k5OsmKa2Q5hj1rrhlJKknyrlHL+FNccXJBOk0mSrGzzxaswaBzDADD3XLe7t1JrbboG5kB3xIGPz3R0mu5BsDrJ5lrryp4WB/NYKWVFOl9ubEpyeZJt6czYd1GStbXWDQ2WB0yhO+rbO9L5UH9LOrNlLk3n+N2WzvHrC0voE6WUjem8wbuk7W/woJ/IujCYup8hrcjEAELb0xmd8ioXsgDzjfcSHIi8Sy/JZEBbOF/SK86V9EL37+rq7D1o9kxsOYjZwiDJnmsO1iU5I53B2bemc/3BinT+BjenMxPd1saKBKbkGIb26WbB1Zlo4HQcQ59x3W6HBrB5pPtl9VunG1GgexK7q7t6uhEIoPe6X34s765unQ8nIGiD7ghwK9IJlNvT+VLJeRP6jIs2oVmyLvS/7mjGM5kxfpzPi4B5wXsJZkLeZbbIZECbOV8yG5wr6bVSyup0mlYP1qZa66rZrof5YVJD63jj4dZ0BmzXzAoDwDEMg2/ShCkHVGstc1AOMAPz/bpdDWDzSPeP/fJ0ppWdsiPZl9oAALSJfAsAABwK7yUAAAAAAACAfjHUdAHMnW7T15okl3dHRnqIbifz2Uk2+EIbAICWGNnnFgAAYCa8lwAAAAAAAAD6ghnA5qFSyvIk70jnS+st6Uw7Oz4V3rYka2utm5qrEAAADl8pZSSdjLuxe9f2JKvSmfZ5e2OFAQAAfc17CQAAAAAAAKDfaACbx0op401fI+l8gX1VrXVLs1UBAMCh6850u3HaDSecLgMDAADeSwAAAAAAAAD9TAMYAAAAAAAAAAAAAAAAQJ8aaroAAAAAAAAAAAAAAAAAAPZPAxgAAAAAAAAAAAAAAABAn9IABgAAAAAAAAAAAAAAANCnNIABAAAAAAAAAAAAAAAA9CkNYAAAAAAAAAAAAAAAAAB9SgMYAAAAAAAAAAAAAAAAQJ/SAAYAAAAAAAAAAAAAAADQpzSAAQAAAAAAAAAAAAAAAPQpDWAAAAAAAAAAAAAAAAAAfUoDGEADSikjpZTlTdcBAACzTdYFAKDN5F0AANpK1gUAoM3kXaANSq216RoAeqaUMpJkRZLFSU5OMpJkaZK1tdYtc1jH6iRru3WMTHro5Frr1rmqY6b65fcGAMDU+iWzyboAAPRCv+Q2eRcAgNnWL5lN1gUAoBf6JbfJu0AbLWi6AIAeOyfJ+v3cvzTJXAairUk2JVmeTkDrd/3yewMAYGr9ktlkXQAAeqFfcpu8CwDAbOuXzCbrAgDQC/2S2+RdoHWGmi4AoJdqrRtqrSWdbvjNDdaxuda6tta6MsklTdUxU/3yewMAYGr9ktlkXQAAeqFfcpu8CwDAbOuXzCbrAgDQC/2S2+RdoI00gAHzQne61rVN19H1+aYLmKk++70BALAffZbZZF0AAGZVn+U2eRcAgFnTZ5lN1gUAYFb1WW6Td4FW0AAGzCfbmy6gq1/qmKlBqxcAYD7ql8zWL3XM1KDVCwAwX/VLbuuXOmZq0OoFAJiP+iWz9UsdMzVo9QIAzFf9ktv6pY6ZGrR6gTmiAQwAAAAAAAAAAAAAAACgT2kAAwAAAAAAAAAAAAAAAOhTGsAAAAAAAAAAAAAAAAAA+pQGMAAAAAAAAAAAAAAAAIA+pQEMAAAAAAAAAAAAAAAAoE9pAAMAAAAAAAAAAAAAAADoUxrAAAAAAAAAAAAAAAAAAPrUgqYLABgEpZSlSVYkGUmyPclVtdYtPdrP8iRLu/vZWmvdPAuvu6L7mj2tHwCAwSPrAgDQZvIuAABtJesCANBm8i7AQ5kBDOAASilLSykbk6zr3jUevi4qpdRSyvpSysgs7GdFKeXyJGv32c/aUspdpZR1Uzx1ute9oJRyV5I1k153JMk7uq97wWEVDgDAwJJ1AQBoM3kXAIC2knUBAGgzeRdgamYAA5hCKWV5kouSnF9r3b7Pwxu6j388yTmllBcdamd+NySOJFk1xX5WJNlYSjk7ycpa69YZvObSJJcnWZxk39o2J7mku991pZRza62nH0rtAAAMJlkXAIA2k3cBAGgrWRcAgDaTdwEOzAxgAPvRHR1gXa11f+EuSdINZ6vSCYEf74a3g7U+yUitdc0B9rO5u5+lSa6ebj/dx6/ubj9lwK21rk2yKcny7igGAADMA7IuAABtJu8CANBWsi4AAG0m7wJMTwMYwP6dk2RFKeWG7ogB+9UNeZvSCZOHMt3r4lrrmuk26u5nQ3c/04W+jd3tLpnB6AZv7d6u6I5UAABA+8m6AAC0mbwLAEBbyboAALSZvAswDQ1gAPu3snu7NJ3pZA9kPNgdShB76/Sb7LG2e7u0lHLB/jYopaxOMh58p33tbtAcD5vT/TsBAGgHWRcAgDaTdwEAaCtZFwCANpN3AaahAQxg/7ZOWp6uc3/b+EJ3CtqDsd/pY/enO9XseF1Thb7xsLllqqlp92Nz93bKERMAAGgVWRcAgDaTdwEAaCtZFwCANpN3AaahAQxgP2qta9MZTeD0WuuGg3jq4h6VNG489I2UUlZMfqA75e3S7upVB/GaN0x6jRUH2hAAgMEn6wIA0GbyLgAAbSXrAgDQZvIuwPQWNF0AQL+qtW6evN4dJeCMdALmSDqhcSQT4S3d9V66etLyykwEyySZHAJvyMxNHjWh1/UDANAHZF0AANpM3gUAoK1kXQAA2kzeBTgwDWAA0+h2169NJ6htSfLB7s/WWuv2UsrZSTbOUTnbJi0v3eexkyctrymlrJzhay7ORJic8dS2AAAMPlkXAIA2k3cBAGgrWRcAgDaTdwH2TwMYwBS6Iwd8PMnydALWyn1HF2jA5KC3b5CcPI3tuoOcAhcAgHlE1gUAoM3kXQAA2krWBQCgzeRdgAPTAAawH6WUpelM2zqSzugBL6q19kOX/eSpXrdNuRUAAExB1gUAoM3kXQAA2krWBQCgzeRdgOkNNV0AQJ+6PJ3Qtj39EyKTvUcL2LrPY5PXRwIAAPsn6wIA0GbyLgAAbSXrAgDQZvIuwDQ0gAHso5RyQSamaV17OCGylLJ6dqra4+RJy1fv89jlU2wHAABJZF0AANpN3gUAoK1kXQAA2kzeBZgZDWAAD7Vm0vKlM9h+8QEeW3uYtexrxaTlvWqrtW6etHrGLO8XAIB2kHUBAGgzeRcAgLaSdQEAaDN5F2AGNIABPNT4KALbZziKwFx27S/v3m6aorYN49uVUg5qOtlSysZSyvLptwQAYIDJugAAtJm8CwBAW8m6AAC0mbwLMAMawAAO39mH8dyVM92wO8XtuKlGKFibZDxgrjuI116aZHmtdctMnwMAwLwg6wIA0GbyLgAAbSXrAgDQZvIuMC9pAAN4qK3d25FuwJpSKWVFkk2T7jrQtLL72p7k7On20d3PSCaC4apa69b9bdcdXWBVd3X1QYwMsD57T6ELAEA7yboAALSZvAsAQFvJugAAtJm8CzADGsAAHmpyl/6U3fjdALiu1ro2yXgH/spJj69IsvkA+9nQ3X7jgaZ97T52dXd1Ta1101TbJkmtdXMmwuTHpwuTpZSNSbZ0nwcAQLvJugAAtJm8CwBAW8m6AAC0mbwLMAMawIDWK6Us7Ya69ZPuvqiUsqL72F4hrhvUxoPY2aWUhwS97rSuG5O8qHvX+d3bC7qvuzydQDrVlK9Jsr47IsD56QS+h0xJW0pZneRb3dWVtdYN0/6DJ/4Np6czKsLVpZR1+45YUEo5u5RydZLPd8Pwvvs+qN8bAABzT9aVdQEA2kzelXcBANpK1pV1AQDaTN6Vd4HeKLXWpmsA6JluEFs/zWYbaq37nUa1+/xVScZD2PgUruv37ejvhq51SZanM4LAmv1N+Tq+Xa319Cn2lXSmpB1JZ4SCD043esCBdPe3plvX4iTbug9tykSY3fc5h/V7AwCg92RdWRcAoM3kXXkXAKCtZF1ZFwCgzeRdeRfoHQ1gQOuVUkZqrdsP9rH5zu8NAKD/yWyHxu8NAGAwyG2Hxu8NAKD/yWyHxu8NAGAwyG2Hxu8NmI4GMAAAAAAAAAAAAAAAAIA+NdR0AQAAAAAAAAAAAAAAAADsnwYwAAAAAAAAAAAAAAAAgD6lAQwAAAAAAAAAAAAAAACgT2kAAwAAAAAAAAAAAAAAAOhTGsAAAAAAAAAAAAAAAAAA+pQGMAAAAAAAAAAAAAAAAIA+pQEMAAAAAAAAAAAAAAAAoE9pAAMAAAAAAAAAAAAAAADoUxrAAAAAAAAAAAAAAAAAAPqUBjAAAAAAAAAAAAAAAACAPqUBDAAAAAAAAAAAAAAAAKBPaQADAAAAAAAAAAAAAAAA6FMawAAAAAAAAAAAAAAAAAD6lAYwAAAAAAAAAAAAAAAAgD6lAQwAAAAAAAAAAAAAAACgT2kAAwAA/v/27VgAAAAAYJC/9TR2lEcAAAAAAAAAAAAATAlgAAAAAAAAAAAAAAAAAFMCGAAAAAAAAAAAAAAAAMCUAAYAAAAAAAAAAAAAAAAwJYABAAAAAAAAAAAAAAAATAlgAAAAAAAAAAAAAAAAAFMCGAAAAAAAAAAAAAAAAMCUAAYAAAAAAAAAAAAAAAAwFcClJVxaTCYxAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<matplotlib.figure.Figure at 0x7fadcc8ec550>"
-      ]
-     },
-     "metadata": {
-      "image/png": {
-       "height": 567.0,
-       "width": 1728.0
-      }
-     },
-     "output_type": "display_data"
+   "execution_count": null,
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2021-02-05T21:54:00.528510Z",
+     "iopub.status.busy": "2021-02-05T21:54:00.528063Z",
+     "iopub.status.idle": "2021-02-05T21:54:02.625157Z",
+     "shell.execute_reply": "2021-02-05T21:54:02.624711Z"
     }
-   ],
+   },
+   "outputs": [],
    "source": [
-    "fig = figure(figsize=(24, 8))\n",
+    "fig = figure(figsize=(12, 5))\n",
     "\n",
     "priors = [\n",
     "    bilby.core.prior.Uniform(minimum=5, maximum=50),\n",
     "    bilby.core.prior.LogUniform(minimum=5, maximum=50),\n",
     "    bilby.core.prior.PowerLaw(name='name', alpha=2, minimum=100, maximum=1000),\n",
-    "    bilby.gw.prior.UniformComovingVolume(name='name', minimum=100, maximum=1000, latex_label='label'),\n",
-    "    bilby.core.prior.FromFile(name='name', file_name='comoving.txt', minimum=100, maximum=30000, latex_label='label'),\n",
+    "    bilby.gw.prior.UniformComovingVolume(name='luminosity_distance', minimum=100, maximum=1000, latex_label='label'),\n",
+    "    bilby.gw.prior.AlignedSpin(),\n",
     "    bilby.core.prior.Gaussian(name='name', mu=0, sigma=1, latex_label='label'),\n",
     "    bilby.core.prior.TruncatedGaussian(name='name', mu=1, sigma=0.4, minimum=-1, maximum=1,\n",
     "                                  latex_label='label'),\n",
@@ -94,7 +84,7 @@
     "\n",
     "for ii, prior in enumerate(priors):\n",
     "    fig.add_subplot(2, 5, 1 + ii)\n",
-    "    hist(prior.sample(100000), bins=100, histtype='step', normed=1)\n",
+    "    hist(prior.sample(100000), bins=100, histtype='step', density=True)\n",
     "    if not isinstance(prior, bilby.core.prior.Gaussian):\n",
     "        plot(np.linspace(prior.minimum, prior.maximum, 1000),\n",
     "             prior.prob(np.linspace(prior.minimum, prior.maximum, 1000)))\n",
@@ -107,75 +97,6 @@
     "close()"
    ]
   },
-  {
-   "cell_type": "markdown",
-   "metadata": {},
-   "source": [
-    "## Default Priors\n",
-    "\n",
-    "We have a range of predefined prior distributions for common parameters, e.g., a uniform in comoving volume prior for `luminosity_distance`.\n",
-    "\n",
-    "The predefined prior distributions are:\n",
-    "\n",
-    "```python\n",
-    "'mass_1': Uniform(name='mass_1', minimum=5, maximum=100),\n",
-    "'mass_2': Uniform(name='mass_2', minimum=5, maximum=100),\n",
-    "'chirp_mass': Uniform(name='chirp_mass', minimum=5, maximum=100),\n",
-    "'total_mass': Uniform(name='total_mass', minimum=10, maximum=200),\n",
-    "'mass_ratio': Uniform(name='mass_ratio', minimum=0.125, maximum=1),\n",
-    "'symmetric_mass_ratio': Uniform(name='symmetric_mass_ratio', minimum=8 / 81, maximum=0.25),\n",
-    "'a_1': Uniform(name='a_1', minimum=0, maximum=0.8),\n",
-    "'a_2': Uniform(name='a_2', minimum=0, maximum=0.8),\n",
-    "'tilt_1': Sine(name='tilt_1'),\n",
-    "'tilt_2': Sine(name='tilt_2'),\n",
-    "'cos_tilt_1': Uniform(name='cos_tilt_1', minimum=-1, maximum=1),\n",
-    "'cos_tilt_2': Uniform(name='cos_tilt_2', minimum=-1, maximum=1),\n",
-    "'phi_12': Uniform(name='phi_12', minimum=0, maximum=2 * np.pi),\n",
-    "'phi_jl': Uniform(name='phi_jl', minimum=0, maximum=2 * np.pi),\n",
-    "'luminosity_distance': UniformComovingVolume(name='luminosity_distance', minimum=1e2, maximum=5e3),\n",
-    "'dec': Cosine(name='dec'),\n",
-    "'ra': Uniform(name='ra', minimum=0, maximum=2 * np.pi),\n",
-    "'iota': Sine(name='iota'),\n",
-    "'cos_iota': Uniform(name='cos_iota', minimum=-1, maximum=1),\n",
-    "'psi': Uniform(name='psi', minimum=0, maximum=2 * np.pi),\n",
-    "'phase': Uniform(name='phase', minimum=0, maximum=2 * np.pi)\n",
-    "```\n",
-    "\n",
-    "Each of these parameters has a default latex label."
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABc8AAAKjCAYAAADLf/cVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3XmU3VWZL/zv71QlIUAgBEQmMSTMY8jEICgKcYq2E6CCoiIQFW3bvrcF+7799u1+b98L9mpvt+0UEBVUFKEdgIAKtCNjSJgJAgkBVOYQxkxV9Xv/OJUmVSdDperUOaeqPp+1WBXq2WfvhywN8M3m2UVZlgEAAAAAAF5RaXYDAAAAAADQaoTnAAAAAADQi/AcAAAAAAB6EZ4DAAAAAEAvwnMAAAAAAOhFeA4AAAAAAL0IzwEAAAAAoBfhOQAAAAAA9CI8BwAAAACAXoTnAAAAAADQi/AcAAAAAAB6EZ4DAAAAAEAvwnMAAAAAAOhFeA4AAAAAAL0IzwEAAAAAoJf2ZjdAayiK4qEk2yRZ2uRWAAAAAAAGYmKS58uy3GMgmwjPWWubsWPHTthvv/0mNLsRAAAAAID+WrRoUVasWDHgfYTnrLV0v/32m7BgwYJm9wEAAAAA0G/Tpk3LwoULlw50HzPPAQAAAACgF+E5AAAAAAD0IjwHAAAAAIBehOcAAAAAANCL8BwAAAAAAHoRngMAAAAAQC/CcwAAAAAA6EV4DgAAAAAAvQjPAQAAAACgF+E5AAAAAAD0IjwHAAAAAIBehOcAAAAAANCL8BwAAAAAAHoRngMAAAAAQC/CcwAAAAAA6EV4DgAAAAAAvQjPAQAAAACgF+E5AAAAAAD0IjwHAAAAAIBehOcAAAAAANCL8BwAAAAAAHoRngMAAAAAQC/CcwAAAAAA6KW92Q0AAAAAANA3E8+e16/PLT1ndp07Gf7cPAcAAAAAgF7cPAcAAAAAGGL6epO8vzfVcfMcAAAAAABqCM8BAAAAAKAX4TkAAAAAAPQiPAcAAAAAgF6E5wAAAAAA0IvwHAAAAAAAehGeAwAAAAAMa2WzGxiShOcAAAAAAMPRM4vz1+0/yrWj/yZZ+Xyzuxly2pvdAAAAAAAAdbLqheSenyS3X5w8cmP+cm0CfO9Pk6mnNLW1oUZ4DgAAAAAwlHV1JUt/Vw3MF12erHm5ds2iK4Tnm0l4DgAAAAAwFC17qBqY3/GD5LlHa+tFW67pOCSXdb4+c9//t43vb4gTngMAAAAAI8LEs+f163NLz5ld5076b8uszNvbbk6+/dXk4evXv2jHA5JDT04OOiGn/6/51e+1j2lck8OE8BwAAAAAoJWVZfLIjclt388tYy7L1sXK5OFea8ZOSA4+MZlyUrLTwUlRNKXV4UR4DgAAAACMKH29Sd7fm+p189yfkjsuro5mWbYkSbL1upl40ZbsNSuZcnKy91uT9tHN6XOYEp4DAAAAALSKNSuT+65Mbv9+svhXScqaJQ907Zq93jInOfj9ybidGt/jCCE8BwAAAABoprJM/rwwue37yd2XJSufq10zZpvkwPfl3TfskdvLyVn6unc0vs8RRngOAAAAANAMLz6Z3HlJNTR/atF6FhTJpDckUz6U7PeOZNTY3H59k0fJjCDCcwAAAACARulck9z/i+pYlgd+mXR11K7ZbmJ1jvkhH0zGv6bhLVIlPAcAAAAAGGxP3FO9YX7nJcnLT9fWR22Z7P/u5NCTk92PTCqVxvdID8JzAAAAAIDB8PKy5O7/SG77XvLY7etfs/sR1VvmB7w7GTOusf2xUcJzAAAAAICNmHh23+eMV9KVoyt35cJD70/um5d0rq5dNG6XZMoHq6H59pPr2Cn1VNfwvCiKqUnmJJnQ/a1lSS4ty/Laep4zGGe22j4b2f+aJOcO5s8pAAAAALB59igey/Ftv8l7236fnYtlyT29FrSNSfadXR3LMumNSaWtKX3Sd3ULz4uimJtkepLTy7Jc2P29SUnmFkVxVpITyrJcXq/z6nlmq+2zkf2PT3Jckrn93QMAAAAA6Jul58ze+IJVLyT3/KQ6y/zRm9a/ZpdDqzfMDzo+Gbtd/Ztk0NQlPO++DT0pybR1w+GyLJckmdVdX5Ckbv8NQr3ObLV9NrL/+CTn9+ezAAAAAECddHUlD/++GpgvujxZ83LNkqfLbbLDkackU05KXn1AE5qkHgYcnhdFcUaqt6GnbeRW9QlJni2KYm5ZlnNa5cxW22cTzk0yvh+fAwAAAAAGavmjye0XJ7d/P1n+cG290p7s9Zacftc++VXXlDz4lnc1vkfqqlKHPc5NsmTtmJL16Q6Ur01yRvcYk1Y5s9X2Wa/uOerLkyzZnM8BAAAAAAPQsSq5+z+Si96d/OtBya//d21wvuP+yZv/Kfnr+5IPXpxruqano75PTdIkAwrPu2dwj09yWR+WX9r9dUA3z+t1ZqvtswnnlmV51mZ+BgAAAADoj8fvSq4+K/mXfZLLTk2W/CpJ+Up9i22TGaclp/8q+eQNyZGfTrZ+VdPaZXAM9LdA1obAi/uwdu2t6eOTDCQIrteZrbbPehVF8fl4IBQAAAAABteK5cndlyULv5s8dvt6FhTJpGOSQz+U7PuOZNQWDW6QRhtoeD69+2tfxomsXTOpKIrxG5kN3qgzW22fGt2PhM4oy/KLfdgbAAAAANgcax//XPjd6uOfHStr12y7e3LoydXHP8fv3vgeaZp+h+fdc7vXPmC5yeC4LMslRVGs/dPpqc7/bsqZrbbPRpyfgd3SBwAAAAB6e+5P3Y9/fi95dmltvW1Mst87kkM/nOzxhqSy+dOvJ549b7PWLz1n9mafweAayM3zdR+9XDaAzzbjzFbbp0ZRFMclmV+WpUdCAQAAAGCgOlbnbZWbc2Lbr5N/vSspu2rX7HRQcugpyUHHJ1tOaGh7mxu2M/gGEp6P3/SSun+2Xme22j7rc1ZZlrMGsD8AAAAA8MS9yW3fS+78Yb4++pnq99Z5+zNbbJscdGJ1lvkuUwZ83ObeIBeat66BzjzfXMtTDY23H4JnNmyfoijOTXLuAM8BAAAAgJFp5fPJ3f+R3Pbd5E8L1r9mjzdUx7Ls945k1NjG9rcO41pa10DC8//67xb68fhnf29s1+vMVtvnv6ydo16W5WbPhO+Loig28KtF9h2M8wAAAACgIcoyefiGamB+z0+TjhU1S/5cTsilnW/IZ//b/0y2m9jwFhlamjW2pb8Dg+p1Zqvts665SU4YwL4AAAAAMHI8/1hyx8XV0SzL1vN8YGVUsu/sZOqHc9Q3V6QrlXxWcE4fNHpsCxtRFMUZSS7txy32PivLctoGzl6QZOpgnQsAAAAAddO5Jrn/59XA/IFfrv/xzx0PSKZ+uDrPfKvqBOWumC9O39UlPC+KYvxmBr7LWuXMVtmnKIrxSU7wSCgAAAAAbMBTf6iOZbnjh8lLT9XWx2yTHHR8dZb5LocmRdH4Hhk2BhKeD+R2dH8/W68zW22fpPpA6FkD2A8AAAAAhp9VLyT3/CRZ+N3kj7esf83Eo7sf/3xnMnrLxvbHsDWQ8Lw/t8fXzgh/pslnttQ+RVFMTbK8LMuF/dgPAAAAAIaXskwevbkamN/zk2TNS7Vrxu2STDmp+sf2kxvfI8NevW6eT0qyOcFvPW6eD+TMVtvnXONaAAAAABjppp19cd7b9rt8oO1XmVx5rKa+pmzLtV1Tc0nnMfntU4ek65pKcs19WXqO8Jz6G0h4fus6P56wqcVFUUzawGebcWbL7NN96/y4oijKTX1+HZcWPec1nVCW5WWb8XkAAAAAaA1dXcmS/0wWXpQbx1yZ0UVnzZL7u3bNJZ3H5CedR2dZtmlCk4xE/Q7Py7JcXhTF8lTHkEza1Pq8Mq4kSZY088xW2qcsy4VFUfT1t8YWd3+dk+Tadfro188nAAAAADTNc39Mbvt+ctv3kuceSZKMXve+6OhxyYHvTaaekr13nZa/K4r8Xa8tJp49r2HtMvIM5OZ5kvwoyRnpGQpvyNpweWFZlgN5aLNeZ7bMPn0Nv9e5bb5MYA4AAADAkNO5Jrn/58nCi5IHr03KrpolC7r2yrT3/FWy/7uTMVs3oUmoqgzw85d2f+3LvO73d3+9pEXObLV9AAAAAGB4emZxcs3fJ1/aP7nkQ8kDv+wZnI+dkBx+Zmat+mLet/ofkkM/JDin6QZ087wsy2uLoliS6szu8Zu4UX58kuVlWX5xQwuKorg0yXFJzivL8qzBPLPV9gEAAACAYWXNymTR5dVb5kt/t/41k45Jpp6S7PuOpH1MHvi1MSy0joHePE+q87eT5AsbWlAUxRndPzx9E2uOT3X8yee7H9Ic1DNbcB8AAAAAGNoevzu56vPJv+yT/Pj02uB83M7J0f89+cvbk1N+lhz4vqR9THN6hY0Y6MzztTevz0pyblEU15Rlee269aIoJiWZm+pt8ssGel49z2y1fTakKIrxqc5VX2tOURQLzT0HAAAAoCWseiG5+z+qt8z/tKC2XlSSvd6STPtIsuespG3AsSQMurr8r7Qsyy8WRbEwydyiKC5Lck2SZamOYPlCkjllWZ63iT3OK4rihLwytmXhYJ/ZivusqyiKuekZmq91XJLFax8QLcuyWM8aAAAAABg8ZZn88dZk4YXJ3T9O1rxUu2b8a6tjWaaclGyzS+N7hAGo22/xdN+2nlwUxXFJ1o5cWVKW5XabsUdfHt2s65mtuM86+83JKyNhAAAAAKD5Xl6W3HlJ9Zb5k/fW1ttGJ/u9sxqaT3x9UqnH5GhovLr/9xHdAfK1m1zYgme22j4AAAAA0BK6uqqzyxdemCy6IulcXbvmVfsmUz+SHPz+ZKvtG98j1JnhQgAAAADA+r3weHL795OF302efai2PmrL5ID3VmeZ7zYjKUwXZvgQngMAAAAAr+jsSB68tnrL/P5fJGVn7ZpdDq3eMj/wfckW2zS+R2gA4TkAAAAAtKCJZ8/r1+eWnjO7X2fsVjyZE9t+nRPafpudi2U1a58vt8xPOl+XSzrfmKvOOLNfvcFQIjwHAAAAgBFqVDoyq3JrPtD2q7y+7a71rrm5a9/8sOONuarrsKzK6AZ32Df9/Y0G2BjhOQAAAAC0sL7eJN+sAPmZxcnCC3PjmG9nh+L52vqWOyRTTkqmnpLDdtgrhyX5v5t7BgxxwnMAAAAAGAk6ViX3XZks+E7y0G+TJDv0eN+zSPY8Npl6SrL325L21rxlvq7NGVEDm0t4DgAAAAAN0LRb208/mCz8TnL7xcnLz9SUHysnZOdjTk8O/VAyfvfG9wctSngOAAAAAMNNx6pk0RXVW+ZLf1dbLyrJXm/Ox+8+IL/umpLFb/yLhrcIrU54DgAAAAANNJijRiYVf05+8T+qt8xXLKtdsM2u1bEsh34o2Xa3XGeGOWyQ8BwAAAAAhrI1K5NFV+SHo/8lh1cWJTf2qheVZO+3JtM+mux5XFJpa0aXMOQIzwEAAABgKHrqD8mCC5M7Lk5WPJvDK73q276mest8ysnJtrs2pUUYyoTnAAAAADBUrFmR3Ht5dZb5IzfUlDvKStr3e3v1lvnkN7llDgMgPAcAAACAVvfkou5b5j9IVi6vrW+7e/756cNzaecbcssHPjTo7UzczFnpgznnHQaL8BwAAAAAWtGaFck9P63eMn/0ptp60Zbs233LfNIb89W//XmjO+yzzQ3boRUIzwEAAACglTxxbzUwv/OHycrnauvjX5tM+0h1lvm4nRra2ubeIBeaM5QJzwEAAACg2Va/nNz70+TWbyd/vKW2XmlP9p1dvWW+xzFJpffroK3JuBaGMuE5AAAAADTLE/dUb5nfcUmyaj23zLebmEz9SHLoh5Ktd2x0dzCiCc8BAAAAoJFWv5Tc85NqaP7H+bX1yqh1bpm/YcjcMofhRngOAAAAAA2wT/FITmq7LvmXTySrnq9dMGFS9Zb5lJOTrV/V+AaBHoTnAAAAADBY1qz8r1nmvxhzU/V7q9apV0Yl+72zest84tFumUMLEZ4DAAAAQL09/UB1LMvt309WPFtbnzC5GphPOSnZaodGdwf0gfAcAAAAAOqhY3Vy35XJrd9Klv6uprymbMsvumbkHR/722SP1ydF0YQmgb4SngMAAADAQDy7NFlwYXLbd5OXnqqtj989mfbRHDlvpzyV8XnHpDc0vEVg8wnPAQAAAGBzdXYkD/yiesv8weuSlD3rRSXZ+23J9I8lk9+UVNry1Lx5TWkV6B/hOQAAAAAkmXj2psPtnfJMPtD+q7y/7dfZuVhWu2DcLsnUU6p/bLvrIHQJNIrwHAAAAAA2opKuvL5yZ05quy7HVhamreh1yzxFsuexyfRTk73ekrSJ3GA48P9kAAAAAFjH0nNmV3/w4pPVOeYLvpMsf6Rm3VPlNvlR5zE587/9f8l2ExvaIzD4hOcAAAAA8F/KZMlvqrPM77sy6eqoXbLH65NpH8uR32vLmrTnn8+9J8k9De90Q/oyfgbYNOE5AAAAALy8LKe1zctJbdclFz1eWx+7XTLl5GTaR5Md9kqSrImQGoYz4TkAAAAAw9Kmb2CXmVbcn5Pbr8vsys35f0atqV3ymsOrs8z3f1cyaosepf8a79IiWq0fGOqE5wAAAACMKOPyct7T9ruc3HZd9qn8sXbBmG2SQz6QTPtY8ur9G98g0BKE5wAAAAAMa0vPmZ2UZfLnhdVZ5nf/OFnzcu3CXQ6t3jI/8H3J6K0a3yjQUoTnAAAAAAxbW2ZlsuA71dD8sTtqF4zaKjno+GT6x6rhOUA34TkAAAAAw8+Ti/IP7d/Oe9t+n1yxora+4wHJjFOTg05Mttim8f0BLU94DgAAADACbPrxzPUbUo9QdqxOFl1evWX+8PX5SO/kq32L5ID3Vm+Z7zYjKYqmtAkMDcJzAAAAAIa25Y9UR7MsvCh56ana+vZ7JtM/Xn0EdMsJDW8PGJqE5wAAAAAjSF9vkvf3pnrDdHUli69L5n8zeeCXSdnVs160ZV7HtHyvc1Z+8Om/ccsc2GzCcwAAAACGjpeeTm77bnLrt5PlD9fWx+2STPtoMvWUnPm/F1a/JzgH+kF4DgAAAEBrK8vk0Vuqt8zv/WnSubp2zaQ3JjM+nuz9tqRN5AUMnF9JAAAAAGhNq15I7vxR9QHQJ+6urW8xPjn0Q8n0U5PtJze+P2BYE54DAAAA0FqeuDe59YLkjkuS1S/U1nedVn0A9MD3JqPGNr4/YEQQngMAAADQcL0fJB2dNXlrZX5Obr82h1Xuq1m/ohydn3Ueme91HpcrT/9Mo9oERjDhOQAAAABNs1vxVD7Ydl3e3/br7FA8X1Nf3LVzvtd5XP6j8/V5Pls1oUNgpBKeAwAAADBgvW+Sb0wlXTmmckc+1HZtjmu7PUnZa0F7su/sZMZpmTzx6Px9UeTvN/MMgIESngMAAADQENvnuZzY9puc1HZdXlN5qnbBuF2S6R9Lpp6SjNup8Q0CrEN4DgAAAEDdLD1nds9vlGXyyE3VB0Dv/VnSubr2Q5PfVH0AdO+3Jm3iKqA1+NUIAAAAgPpb9UJy5yXJ/G8lT95TWx+7XTLl5GT6qcn2kxvfH8AmCM8BAAAAqJ8nFyW3nF8Nzle/WFvfdXoy47TkgHcno8Y2vj+APhKeAwAAADAwnWvy9spNOaX9muRri2rro7ZMDjq+OppllymN7w+gH4TnAAAAAEPQxLPnNbuF5PnHkoUXJgu+k6+Nfqy2vsPe1VvmB78/GTu+bse2xF87MOwJzwEAAADou7JMHr4hueW85L4rk66OnvWiLdl3djLz9GTi0UlRNKdPgAESngMAAAAMYUvPmd2Yg1a9mNz5w2T+BcmT99aUnyzH5wedb8pn/+Z/JdvuOigtNOyvFSDCcwAAAAA25qk/JPO/mdz+g2T1C7X13Y9MZp6W132vPWvSns8OUnAO0GjCcwAAAAB66uzIWyq35JS2a5Kv3lNbH7VldY75jNOSnQ5MkqyJOeTA8CI8BwAAAKDqxSeTBRcmC76duaP/VFvffq9qYD7lg8kW2za+P4AGEp4DAAAAjGRlmTx6c3LL+cm9P0u61vSsF5Vkn7dXQ/NJx3gAFBgxhOcAAAAAI9Hql5K7Lk1u+WbyxF015afLbfLDzjfm0//9n5Lxr2lCgwDNJTwHAAAAGEmeWVx9APS27yernqut7zYzmXl6jrx4dFZnVD4tOAdGKOE5AAAAQAuYePYgPrjZ1Znc/4tk/vnJ4v+srbePTQ46Ppl5erLzIUmS1Rd7ABQY2YTnAAAAAMPVS08nCy9Kbv128twjtfUJk5LpH08OPTkZu916txjUUB+ghQnPAQAAAFrI0nNmD2yDskz+tKD6AOg9P046V/daUCR7vzWZeVoy6U1JpTKw8wCGKeE5AAAAwHCwZkVy939UQ/PHbq+tj52QTD0lmX5qst1rN7ndgEN8gCFOeA4AAAAwlD27NJl/QXLbd5MVz9bWd52WzDg9OeA9yagtGt4ewFAlPAcAAAAYasoyWfKr6i3zP1ydpOxZbxtTfQB0xmnJrlOb0iLAUCc8BwAAABgqVr2Q3P6DZP75ydP319bHvzaZ8fHk0A8nW05ofH8Aw4jwHAAAAKDVPf1Acst51eB89Qu19clvSmbOSfaalVTaGt8fwDAkPAcAAABoRV2dyQO/TG6eWx3R0tvoccmUk5KZpyc77NX4/gCGOeE5AAAAQCt5eVly2/eS+d9Mlj9cW99h72TmGckhH0jGjGt8fwAjhPAcAAAAoAXsVzycU9p+mXzp40nHip7FopLs/bbqLfNJxyRF0YwWAUYU4TkAAABAs3SuSRZdkdxyfq4ec0P1ex3r1Mdul0w9JZn+8WS71zalRYCRSngOAAAA0GgvPpks+E5y67eSFx6rre90UPUB0IOOT0aNbXh7AAjPAQAAAAbFxLPn1XxvSvFgPtL+i8yu3JTRRWeP2pqyLT/vmpF3nv4PyWsOM5oFoMmE5wAAAACDaExWZ3blppzS/stMqSypqT9VbpuLO4/N9zuOzZPZLu/c/fAmdAlAb8JzAAAAgEGwc57Jye3X5tPbXJ+8/HTtgt1mJjPPyKv2f1c+2z46n218iwBshPAcAAAAoF7KMnn4+uTmufndmCvTXnQlL69TbxtTnWM+8/Rkl0Ob1iYAmyY8BwAAABio1S8ld/4oueX85Ml7kiTt644s32a3ZMbHk6mnJFvt0JweAdgswnMAAACA/lq2JJl/QXLbd5OVz9WUb+jcP0ee9LfJ3m9L2sQwAEOJX7UBAACAEWfi2fP6/dml/+ftyeL/TG6emzzwyyRlzwWjtkwO+UBmXb9vHih3y9L9Zg+sWQCaQngOAAAA0AdbZmXe2/a75Kv/M3n6/toFEyYlM05PppyUjB2fB37f/4AegOYTngMAAAAj1tJz+nArfNlDyfxv5vkbvpVtipeTp3uW/7NzSi7qfHN+8+eDU/6skvzs+sFpFoCGEp4DAAAA9FaWyUO/qY5m+cPVScpss84DoC+UY3Np5xtyUeesLC13blqbAAwe4TkAAADAWqtfSu68JLn5vOSpRbX1CZOTwz6RcVM+mFPHjMupje8QgAYRngMAAAAtZyAPevbLsw8n889PFl6UrHyutr7ncclhn0gmH5tUKo3tDYCmEJ4DAAAAI1SZPPS75OZvJH+4Kim7epZHb119/HPmGckOezWnRQCaRngOAAAADLr+3iTv04Oem2v1y8ldl1bnmV94T219uz2Sw+ZUg/Mttq3/+QAMCcJzAAAAYGRY/mgy/5vJwguTFc/W1ie/qTqaZc9ZRrMAIDwHAAAAGmdQbpJvTFkmD9+Q3DI3WXRlUnb2rI/aKpnywepollft09jeAGhpwnMAAABg+FmzMrn7suo888fvqq2Pf201MD/0Q8nY8Y3vD4CWJzwHAAAAho/n/pTcekGy4DvJy8/U1vd4Q3U0y95vSSptDW8PgKFDeA4AAAAMbWWZPHpz9Zb5vZfXjmZpH5sc8oHqI6A77tecHgEYcoTnAAAAwNDUsSq5+8fV0Pyx22vr2+6ezDy9OpplywmN7w+AIa2u4XlRFFOTzEmy9u9Iy5JcWpbltfU8ZzDObKV9iqIYn+SMJLOSTOre69YkC5PMLctyyeb0BAAAAMPK848lt34rWfDt5KWnausTj66OZtnnbUazANBvdQvPi6KYm2R6ktPLslzY/b1JSeYWRXFWkhPKslxer/PqeWYr7VMUxeeTvD/J3CRz1gblRVEcl+TcJJ8viuK8siznbKofAAAAGFb+eGty09eTe3+adHX0rLVvkRx8YjJzTrLTgc3pD4BhpS7heVEU16R6Q3rauuFwd/A7q7u+IMnkepxXzzNbaZ+iKM5NMr4sy2m9a90316cVRbE4yRlFUUwqy3LWxnoCAACAIa9zTbLo8mpo/sf5tfVtdktmnpZM/YjRLADU1YDD86IozkhyXHqFxr2ckOTZoijm1uPGdL3ObKV9um+oT+1DID4nyTVJjiuK4viyLC/bxHoAAAAYel5eliz4TnLL+ckLf66tv/Z11QdA95mdtHnSDYD6q9Rhj3OTLFk7pmR9ugPla9N9Y7qFzmylfeakGogv6J55vqF9ru31GQAAABg+nrwvueKzyZf2T677h57BedvoZMrJyZzfJh+7Ktn/XYJzAAbNgMLzoiiOTzI+SV9uP1/a/XVAgW+9zmy1fbr3SJKpSU7sw17JK4+SAgAAwNDV1ZXc/8vkoncnXzuseuO8Y8Ur9a12TI75QvK5e5J3fy3Z+ZCmtQrAyDHQm+drQ+DFfVi7pPvr8S1yZqvtc03317U31Ner1630ZX04EwAAAFrTqherY1m+OiO5+IRkya961nc6OHn3N5LP3Z0cc3ay9Y7N6ROAEWmg/23T9O6vSza6queaSUVRjN/IbPBGndlS+5RleVlRFNv14edl3dvm12xwFQAAALSq5Y8kt5yXLLgoWfVcz1pRSfadnRz+qWT3I5KiaE6PAIx4/Q7Pu+d2r70FvcnguCzLJcUrf8Obno3crh7sM1ttn3XqffkNhbW31pcnOa8P6wEAAKAFlJle/CG55IfJfVcmZVfP8phtk6kfTmaekWz32ua0CADrGMjN83Ufvdzc8SGasqdUAAAgAElEQVT9fTS0Xme22j6bY+2YmLMGcHsfAAAAGqNjVXLPT3LF6P+TgypLk0W96hMmJ4d/Mjnkg8mYrZvRIQCs10DC8/GbXlL3z9brzFbbp0+Kojg31dD9i2VZunUOAABA00w8e95G69vnuZzcdl0+1H5tdiyW56Der65NOqY6mmXPWUlloE+yAUD9DXTm+eZanmpovP0QPLNp+3SPhzkryYlJTijL8rIB9gAAAACDYv9iaT7W9vP8RdsNGVN09KitLEdli2knJYd9Inn1/k3qEAD6ZiDh+X89XNmP8SH9vbFdrzNbbZ8aRVFc073/2rnq5yXZw6gWAAAABsOmbpJvyNJzZiddnckfrk5u+nry8O9rF43bOZl5eraY+tFkq0bepwOA/mvW2JYJm14yqGe22j41yrKcte6fF0VxfJLriqJYlmROWZabfKB0fYqiWLCB0r792Q8AAICRa1xeTm78anLz3GT5w7ULdp1WHc2y/7uStlGNbxAABqDRY1vop+5RLZd1h9+Li6IwvgUAAIC6W3rO7E0vemZxcst5yW3fS37xYs9a0VYNyw//VPKaGYPTJAA0QF3C86Ioxm/mOJFlrXJmq+3TByckWZzk0v4E6GVZTlvf97tD+an97AkAAIDhriyTh36T3PSN5P6fJyl71rcYn0z/WDLjtGTb3ZrSIgDU00DC84HM3u7vZ+t1Zqvt02dlWS4piuLaJMclOb8oimvNQQcAAGDQrFmR3HVpdZ75k/fW1nfYJzn8E8nBH0hGb9n4/gBgkAwkPO/Pzem1M8KfafKZrbbP5ro01fB8fJIzknxxAHsBAABArRceT+Z/M7n1W8nL6/lX2D1nJYd/Mpn8pqQoGt8fAAyyet08n5RkYT8/24wzW22fzbXuY6GzIjwHAACgXh67M7npa8ldlyVda3rWRm2ZTDkpOewTyQ57Nac/AGiQgYTnt67z4wmbWlwUxaQNfLYZZ7bUPkVRTE31NnmSnFCW5aZC+HVvvE/a4CoAAADoi66uHFtZkNPark7mrmc0y7avSWaekUz9cDJ2u8b3BwBN0O/wvCzL5UVRLE91dEhfAtzx6/x4yQZXNeDMVtsnyRfW+fyc7j/6yrxzAAAAakw8e94m14zNyhzf9tt8rO3nuWD047ULdpuZHPGpZN93Jm0DuX8HAEPPQP/O96NUZ26P39TCvBIOLxzgA5f1OrOV9ln3JvniPuyz7i33fv1GBAAAAENHX4LwzbFTnslH2n+ZD7b9Z8YXL/UsFm3J/u9Kjjgz2W16Xc8FgKFkoOH5pakGx32Zu/3+7q+XtMiZrbTPgiTXJplbluVlm9gj3WetNdCfTwAAAIaxpefMfuVP/rQgufFryb0/Tbo6ei4cs20y7ZRk5pxk/Gsa2yQAtKABhedlWV5bFMWSJMcVRTF+EzfKj0+yvCzLDQbMRVFcmuS4JOeVZXnWYJ7ZYvv8KMlZqQbofXF899clfQzbAQAAGAZ6BOF91dWZ3Dev+gjoIzfW1rfbIzn8k9WHQMeMG3iTADBMVOqwx9r53F/Y0IKiKM7o/uHpm1hzfKrjTz7f/YjmoJ7ZKvt0B+7nJrmuKIqNjn/p3mft+JcTNrYWAACAEWzl89Vb5l8+NPnRh2uD89e+LvnAxclnFiSHzRGcA0AvA37to/vm9VlJzi2K4pqyLHvcni6KYlKSuaneJq/LLel6ndlK+5RleV5RFEnyUFEUp69vXVEUn081ZE+SWWVZLtxQTwAAAIxQzz6c3HJesvCiZNXzPWuV9uTA9yWHfyrZZUpz+gOAIaIuT2WXZfnFoigWJplbFMVlSa5J9RHM41K9jT2nLMvzNrHHeUVRnJBXxrZsNBiux5mttk/3z8GtqYbw56c6xmVJqrfxj0v1xvm13Xt5KBQAAIBXPHpLcuNXkkVXJGVXz9rY7ZLppyYzTk+22bk5/QHAEFOX8Dyp3r5OMrkoiuOSrB25sqQsy+02Y49Zm15V3zNbbZ/u3zSY1T2+ZW1g/kyqYfy1m5ipDgAAwEjS2ZEs+ll1PMufbq2tb79XdZ75IR9MRm/Z+P4AYAirW3i+VneA3NeHL1vqzFbapzsk9xgoAAAAtVYsr45lueW85LlHa+uTjkkOPzPZ87ikUo/nzgBg5Kl7eA4AAAAMkmVLkpu+kdz2vWTNSz1rbaOTg06s3jTf6cDm9AcAw4jwHAAAAFpZWWZmsSintV+VfHlhkrJnfcsdkhmnJTM+nmy9Y1NaBIDhSHgOAAAAvUw8e16/Prf0nNn1a6JjdXLPT5Kbvpofjbmjtv6q/ZIjPlW9bT5qi/qdCwAkEZ4DAABAa3l5WbLg28kt5ycvPFZb3/O45Igzk0lvTIqi8f0BwAghPAcAAIAN6OtN8v7eVO/h6QeSm76W3P6DpGNFj9LKclR+3Hl0TvrsOcmr9hn4WQDAJgnPAQAAoFnKMln6++TGryT3/7y2vvWrk5mn54irdsuz2SYnCc4BoGGE5wAAANBonWuq88xv/Ery2Hrmme90UHL4mcmB703ax+TZq+pwsx0A2CzCcwAAAGiUFcuThRcmN89Nnv9Tr2KR7P3W6jzziUeZZw4ATSY8BwAAgMH27MPJzd9IFl6UrH6xZ619bDLlg9Wb5jvs2Zz+AIAawnMAAAAYLH+8Nbnh35NFlydlV8/aVjsmM89Ipp+abLV9c/oDADZIeA4AAAD11NWZ/OGq5IavJI/eVFt/1X7V0SwHnZCM2qLx/QEAfSI8BwAAgDoYm5XJzeclN30tefah2gWT3pgc8elkz2PNMweAIUB4DgAAAAPxwuP5m/Yf5uS265KrX+pZq4yq3jA/4sxkpwOb0x8A0C/CcwAAAOiPx+9ObvxqctelObN9Tc/aFuOrs8xnnpFss3Nz+gMABkR4DgAAAH1VlsmD1yU3fiVZ8qva+nYTk8PPTA49ORm91Qa3mXj2vMHrEQCoC+E5AAAAbErHquTOH1Vvmj+1qKY8v2vvfLNjduZ+5u+SSlsTGgQA6k14DgAAABvy8rJk/gXJLeclLz3Zs1ZUkv3+IjnyMznhK09Uv7eZwfnSc2bXqVEAoN6E5wAAANDLHsVj+XjbVcmXPp50rOhZHL11cuiHk8M/UR3TkiQxhgUAhhvhOQAAACTVeeYP35Dc+JVcN/rqVIoy6VinPm6XamA+9SPJ2PFNaxMAaAzhOQAAAENOfx/cXO+YlM41yb0/qz4C+ufbkiSVYp36TgcnR34mOeA9Sduofp0LAAw9wnMAAABGppXPJQsvSm6emzz3aE35us5Dc+yp/5hMPDopivVsUKu/oT4A0HqE5wAAAAxZfX1ws0eovfzR5OZvJAsuTFa/0HNh+xbJIR/IsTcckMXlrlm6x+vr2C0AMJQIzwEAABgRDi4WJ5d+rDqipezsWdxyh2Tm6cmM05Ktdsji6zfvBnlfQ3wAYOgQngMAADB8dXUl91+dS0b/Yw6r3Jfc06u+w97JEWcmB78/GTW2KS0CAK1JeA4AAMDws2ZFcscPkhu+kixbnMMqveoTj64+ArrnrKTSuwgAIDwHAABgOHnpmWT++ckt5yUvP9OjtKZsy6hDjq/eNN/5kCY1CAAMFcJzAAAAhr5nFic3fjW5/eKkY0XP2pht842XXp/vdLw5N733lOb0BwAMOcJzAAAAhq5Hb0lu+HKy6MokZc/atq9JDv9UMvXDOefvf9uU9gCAoUt4DgAAQNNNPHten9dW0pU3VxbkjPZ5yQX31y7Y6eDkdZ9N9n930uZfewGA/vFPEQAAAAwJY7I672v7XU5rm5dJlcdrF+w5q/oI6B6vT4qi8Q0CAMOK8BwAAICWsfSc2bXf3MgjoKmMSg4+MTni08mr99/k/ptzwx0AGNmE5wAAALSmTTwCmhmnJjPnJNvs3Jz+AIBhTXgOAABAa+njI6AZM67PW673RjsAwEYIzwEAAGi6Il2ZVVmQXPDl5NGbahd4BBQAaDD/xAEAAEDzrFmR3PGDXDf63OojoI/2qnsEFABoEuE5AAAAjffSM8n8b3Y/Avp0JlXWqW3mI6AAAINBeA4AAEDjPLM4uelryW3fr3kE9Plyy2xz1BnJYZ/wCCgA0HTCcwAAAAbfo/OTG/5tg4+A/uPTx+SSzmNyz6zjm9IeAEBvwnMAAAAGR1dXcv/VyfWbegT0XfnW//hl4/sDANgI4TkAAAD11f0IaG78avLMg7V1j4ACAEOA8BwAAID66PUIaA8eAQUAhhjhOQAAABs18ex5G63vXjyR09quygltv8nYYnXP4phtk+kf8wgoADDkCM8BAADolwOLJflE+5V5W+XmtBU9HwH9Y7lDdnvrf0umfjgZM65JHQIA9J/wHAAAgD5Zes7spCyTxdcl1/9b8tBvaxftdHD+8pHX56qumXnwiHc1vkkAgDoRngMAALBJ7elI7vxRNTR/4u7aBZOPTV73l8keb8jlX7iq8Q0CANSZ8BwAAIANW/ViTm27Oqe2X538uNcjoEVbcuD7qqH5Tgc1pz8AgEEiPAcAAKDWi08mN89N5n8z/++o5T1ro7ZMpn4kOeJTyfjdm9MfAMAgE54DAADwimcWJzf8e3L7xUnnqp61LXdIDvtEMuPjyZYTmtMfAECDCM8BAABGmIlnz6v53pTiwZzRfmXeWpmfSlH2qD3U9ep8s3N2/ulz/zsZNbZRbQIANJXwHAAAYMQqc0zl9nyi/cocXllUU729a1K+0fEX+WXX9HSlkn8SnAMAI4jwHAAAYIQZlY68s3JDvrTbb5Mn761dsNebkyP/MlMmHpVvFEXjGwQAaAHCcwAAgJFi5fPJwgvz2zFfys7FsuTJdWqV9uSgE5IjP5O8+oCmtQgA0CqE5wAAAMPdC48nN38jmf+tZNVz2Xndy+Sjt06mfTQ5/JPJtrs1q0MAgJYjPAcAABiunn4gueHLyR0/TDpX9yg9VW6bVx332WT6qcnY7ZrUIABA6xKeAwAADDeP3Jxc/2/JH65KUvasbb9nzn78mPyk86j84ej3NKU9AIChQHgOAAAwxE08e16KdOXYym2Z035FZlTur1mzsGvPzO14Z67507R0pdKELgEAhhbhOQAAwFDWsSontP06c9quzJ6VP9eUr+mcmrkd78it5T5JitrPD6KJZ89r6HkAAPUkPAcAABiKVj6X3Prt5Kav559HPd6zVhmVHPz+5MjPZNaO+2ZWczoEABjShOcAAABDyfN/Tm76ejU4X/1Cz9roccn0jyWHfzLZZpfm9Jdk6Tmzm3Y2AEC9CM8BAACGgifvS2749+TOS5KuNT1KT5Tj862Ot+ULZ5+bbLFtkxoEABhehOcAAAAt5pVZ4WVmFH/InPYrclzbbTXrHuzaJXM735Gfdb4uqzMqXxCcAwDUjfAcAACgxVTSlVmVBZnTfkWmVh6sqd/StU/mdrwj/9l1aMpUmtAhAMDwJzwHAABoFR2rkjt+mGtG/59MrjxWW9/3HcmRf5mZux+WmY3vDgBgRBGeAwAANNvK55MF305u/Fry4uOZvO5l8rbRySEfSI74TPKqvZvWIgDASCM8BwAAaJYXnkhu/noy/1vJqud6lJ4vt8w2R89JDvtEMm6nJjUIADByCc8BAAAG2SsPgFa9tng8Z7TNy/Ftv82YYk2P2hPl+FzQ8bZc3Hls7j7uhEa2CQDAOoTnAAAADXJA8VA+2X5F3la5OW1F2aO2uGvnnNf5jvyk86iszqgmdQgAwFrCcwAAgMFUljmycnc+2XZ5jm67u7a+y9TkqM9l8r6zc26lLec2vkMAANZDeA4AADAYujqTRZcnv//XXDz69tr65GOTo/4qmXh0UhSN7w8AgI0SngMAANTTmpXJHT9IbvhysmxJz1pRSQ54T/K6zyY7H9Kc/gAA6BPhOQAAQD2sfC659VvJTV9PXnyiZ6kclR91HpNT/vqfkwl7NKlBAAA2h/AcAABgIF54PLnpa8mt305WPd+ztsW2yYzT87prJueZbJtTBOcAAEOG8BwAAKA/nlmcXP9v1REtnat71sbtnBxxZjLto8mYcXnmmnlNaREAgP4TngMAAGyOPy1Mrv/X5N7Lk5Q9a9vvVZ1nfvCJSfuYprQHAEB9CM8BAAA2pSyTJb9Kfv+vyUO/qa3vOj056nPJPm9PKpXG9wcAQN0JzwEAADakqzO596fV0PzxO2vKv+48JF/v+IvcvHjfZHGR5OrG9wgAwKAQngMAAPS2ZmVy+/eTG/49efahnrWikp92HJ65He/MovK1zekPAIBBJzwHAABa2sSz+/fY5tJzZm/+h1YsT269ILnpG8lLT/astW+RHPrh5MhP56/Ovaf/ZwAAMCQIzwEAgBFt4tnzsmOezantV+fktusyrljRo7683CoXdc7KhSvfkmd+t23yu3ua1CkAAI0kPAcAAIaEvt7y3qyb6k8/kHPaz8t72n6fMUVHj9Kfywm5oOPt+UHnm/JytticVgEAGAaE5wAAwLC0sRD9kOLBfKL9irylcms+0F72LO6wT/K6z2aXg07I37WPzt8Ncp8AALQm4TkAADBClHl95c58su2KHNF2b215t5nJUX+V7P22pFJpfHsAALQU4TkAADCs1Ix36exI7v1pcv2/Jo/fVfuBvd6cHPW5ZPcjkqJoTJMAALQ84TkAADA8rVmZ3P795IYvJ88u7Vkr2pKDjk9e99nk1Qc0pT0AAFqb8BwAABheVj6f3HpBcuPXkpee7FlrH5tMPSU54sxku9c2pz8AAIYE4TkAADA8vPhUctPXkvkXJKue61nbYnxy2Jxk5hnJVjs0pz8AAIYU4TkAADC0PftwcsO/J7d9N+lY2bM2bpfkyE8nUz+SjNm6Of0BADAkCc8BAICh6clFye//b3LXZUnZ2bM2YXJy1F8lB78/aR/TnP4AABjShOcAAMDQ8uj85PdfSv5wVW1t50OSo/462e+dSaWt8b0BADBsCM8BAIAhoEwevDb53f9NHv59bXni0clRn0smvykpisa3BwDAsCM8BwAAWldXZ2ZXbson2y9Pvre0tr7P7Gpo/poZDW8NAIDhTXgOAAC0no5VyR0/TK7/t3x19OKetaItOfjE5HV/ley4b3P6AwBg2KtreF4UxdQkc5JM6P7WsiSXlmV5bT3PGYwzW2mfoigmde9xXJJJ3XssSXJpkh+VZbl8c3oCAIAhY9ULyYLvJDd+NXnhsZ619rHJ1FOS/5+9O4+Ssjr3Pf7dVd00k9AyOoOggoCoTMqkJw6JikOiEBP1JGpUjFMSk6t4cuZ77ol6jkMSowE1icY4QUzU4EhMlElBJiecmBREFBAQGbvqvX9UIRTdQHdXdVV19fezVq+qrme/ez+41mvDj81+h1wFlQcVpD1JkiQ1HTkLz0MIY4EBwKVRFM1Of9YNGBtCuB4YlevQN1drFtM8IYTrSAXnNwGPAGuAfsC5wNj0XKOjKBq3p34kSZKkRuOLVfDKr2HGONiU+VvmdVFL7kt8lat/8r/QumOBGpQkSVJTk5PwPITwPKkd0v13DIejKFoInJyuzwK652K9XK5ZTPOEEG4CukVRtPOYhcCEEMJIUrvPx4YQukdRdP3uepIkSZKK3tqlMO0OmH0fbN2QWWvdGQZfyZAn92M9Lbna4FySJEl5FMt2ghDCZaSOF9ndrupRQLf0zuys5WrNYponfdzLSVEUjdrVOlEUTQC2BebXpcN0SZIkqfH59F348xXw8yPhlbsyg/O9u8Lpt8EPXoOhP2A9LQvWpiRJkpqurMNzUseLLNx2TElN0oHyJOCy9DEmxbJmMc1zE3Dprq7fYZ6bSR3lsu0aSZIkqfFYNhseuQB+NQjm/gGSVdtrnY+Ac+6Fq2bBgIuhvHnh+pQkSVKTl1V4nt75XAlMqMXw8enX0cWwZrHNQ+q4ll2G7zvZdt55t/SOdUmSJKl4RREs/Dvcdybc/RWY/yQQba8fNATOnwCXT4YjRkI8Z49mkiRJkuot253n20LgBbUYuzD9mu1RI7las2jmSQfg3UIIn9XyKJYd1xpQi/GSJElS/iWTqaD87hPg/rNg0YuZ9cNOgYufhYufhkNPhhAK06ckSZJUg2y3dGwLbhfudlTmmG4hhMrdnA2erzWLaZ5tx7hUAjew513sr+7wPmcPYZUkSZJyomoLvD4ept4OK9/NrIUY9DkHhv4Q9ulTmP4kSZKkWqh3eJ4+t7sy/e0eg+MoihaG7TtJBpA6/7sgaxbbPMCOx7W8yp7teGb6qlqMlyRJkhreli9g9v0w7Q5YtzSzFq+Aoy+AIVfT9ea3YOYSYElB2pQkSZJqI5ud5zsGuKuzuLYQaxbVPOlQfW9qf+75juvW9px0SZIkqWFsWA0z74GX74KNO/22uNleMPB7cOwVsFfn9Idv5b1FSZIkqa6yCc8r9zwk59fmas1im4f0ES61DcIH7nBdnXfwS5IkSTmxbjlMvwNm/Q62rM+stewAg6+AAd+DFjX/tnnxjSMavkdJkiSpnvL9GPs1pELj9o1wzaKYJ4RQyfYHjt6cZS+SJElS3a1akDrPfN7DkNiSWWt7EAy9JnVES3mLwvQnSZIk5UA24Xm7bW/q8fDP+u7YztWaxTZPXVy2w/uf1fXiEMKsXZR61q8dSZIkNRnL58GU2+CtxyFKZtY6Hg7DfgR9zoZ4eWH6kyRJknKoUMe2tNvzkAZds9jmqZX0rvOb0t+OqkdgL0mSJNVNFMGSqanQ/P0aTgw8YCAMuxYOOwVisfz3J0mSJDWQfB/bouzcnX69OYqiCfWZIIqi/jV9nt6R3q++jUmSJKnEJJPw3rMw+VZYOqN6vfuJMPxa6DIUQsh/f5IkSVIDy0l4HkKorOMu6NXFsmaxzbMrIYTLSJ11Pi6Kouvrcq0kSZJUa4kqfvgv/8LlZU/SM/ZhRikZBZ5KHsNdVWfy5ptd4c21wFMFaVOSJElqaNmE59kcGVLfa3O1ZrHNs1shhH7AWFLB+egs1pQkSZJqtnUjzHkApv2C25t9kFHaHJXxx8RwxiVOZ3G0b4EalCRJkvIrm/C8PrvHt50RvqrAaxbbPLuUPuf8r8AEg3NJkiQBdB0zsV7XLb5xRPUPN62DV++F6b+CLz7NrJW3ggEXUTH4Ss5rsx/n1WtVSZIkqXHK1c7zbsDsel5biDWLbZ7dmQVMiqJoVB3mliRJknbvi1Xwyl3wyjjYvDajtDpqzW+rTuHH1/0PtKzzc+4lSZKkkpBNeP7qDu/3+DvqEEK3XVxbiDWLbZ5djX8eWGhwLkmSpJrUuJO8Bhk71dcug+l3wKzfwdYNmQPb7A9Drmbonzuxkeb82OBckiRJTVi9w/MoitaEENaQOoak257Gs/24EoCFhVyz2OapSQhhbHqNk3czphJoF0VRvf57SpIkqenoEj6GJ66GuQ9BcmtmsV13GPYj6HsulDVj45/rdyyMJEmSVEpiWV7/aPq1crejUraFy7OjKMrmQZu5WrPY5vlSCOE6oNvugvO0k9JfkiRJUs1WvMnPy+/ghWY/htn3ZwbnnY+Akb+Fq2ZCv3+EsmaF61OSJEkqMtmG5+PTr3sKeQHOTb8+UiRrFts8AIQQRgLn1iI4BxhIPXfxS5IkqcR9OBMe/BbcNYSz4tOIh2h77cBj4LzxcPlk6HM2xOKF61OSJEkqUtmceU4URZNCCAuBk0IIlXvYUT4SWBNF0c27GhBCGE9qJ/W4KIqub8g1i20egBBCP2B0FEX9dzPHjvoBP6vlWEmSJJW6KIKFf4fJt8DiydXr3U+E4T+GLkMghLy3J0mSJDUmWYXnaaOB54EbgBoD7xDCZem3l+5qkvSYkelvrwshPBJF0eyGXLOY5kk/THQ8cFN69/mutCN1REx34KQsj8CRJElSKUgm4d2nU6H5slnVyk8nBnJn1Vk8+Y9XF6A5SZIkqXHKOjxP77y+nlTo+3wURZN2rKdD4bGkdpNPyHa9XK5ZLPOkH/z5PKkz0cfu/lefYVd/uSBJkqSmIFEFbz4Gk2+FT+dn1kIc+n4Thv6Q79+6oDD9SZIkSY1YLnaeE0XRzSGE2cDYEMIEUkHwalJHsNxA6iiScXuYY1wIYRTbj23ZbTCcizWLaJ5vsv1honXheeeSJElNUAVbOCc+GX55A6xZklmMV6Qe/jnkGti7S/pDw3NJkiSprnISnkNq9zXQPYRwEqmzuAEWRlG0dx3mqM1DMnO6ZjHMkw7V9xjQS5IkqYnbvB5m/ZaXKv6XzmEN7HiAX7PWMPB7cOyVsFfngrUoSZIklYqchefbpAPkSXscWIRrFts8kiRJEgAbVsOMu+GVu2DjZ3Te8VmfLfaGY74Px1yWei9JkiQpJ3IenkuSJEnKkc8/hum/gld/A1vWZ5RWRJV0/tr/gf4XQkXrwvQnSZIklTDDc0mSJKnYfLYYpv4C5jwAic2Ztb27csMnJ/LHxHG8O+TrdZq265iJuetRkiRJKnGG55IkSVKx+ORtmHIbvD4eokRmrePhMPzH0PsbPPTTZwvTnyRJktSEGJ5LkiRJhbZsNky+Bd7+S/Xa/v1Toflhp0IsVq/pF984IssGJUmSpKbH8FySJEkqhCiCJVNTofmCF6rXDz4uFZoffDyEUL0uSZIkqUEZnkuSJEn5FEXw3nOp0PzDV6rXe5wGw66FAwfmvzdJkiRJXzI8lyRJUpNS34dmZn30STIBb/0ZJt8GK17PrIUY9DkHhv0IOvfObh1JkiRJOWF4LkmSJDWkqi3w2sMw5XZYvSCzFivnwS3DGJs4gyUz94GZi4HFBWhSkiRJ0s4MzyVJktQk1XYneX13qrNlA8y+H6b9AtYty6yVt4T+F8GQq/in/55Tv/klSZIkNSjDc0mSJCmXNq6BmffAy3fChlWZteZtYdBoOOZyaNU+/WEqPM/6WBhJkiRJOWV4LkmSJOXC+k9TgfnMe2Dzusxaq04w+EoYcDE0b1OY/iRJkiTVieG5JEmSlBqrkSUAACAASURBVI21S2HaL2HWfVC1MbPW9kAY+gM4+gIob1GY/iRJkiTVi+G5JEmSVB8r34ept8G8hyFZlVlrfygMvxaOGAXx8sL0J0mSJCkrhueSJElSXSx/DabcCm/+GYgya/v0heN+Aj1Ph1i8IO1JkiRJyg3Dc0mSJKk2PngZJt8C7z1XvXbQEBj+YzjkRAgh/71JkiRJyjnDc0mSJGlXoojjYvO4suxx+M3b1euHnJw6nqXLkPz3JkmSJKlBGZ5LkiRJO0sm4e2/wORbuL/Z3J2KAXqdlQrN9z2yIO1JkiRJaniG55IkSdI2ia3w+gSYchusfCezFiuDvt+CYT+EDocWpj9JkiRJeWN4LkmSJG3dCHMegKm/gLUfZJQ2ReU8lDiBi35yC1QeWKAGJUmSJOWb4bkkSZKars2fw8x7Yfqv4ItPMmvN9oJBlzBs0mGspC0XGZxLkiRJTYrhuSRJkpqcSj6Hv/03vPJr2LQ2s9iyPRz7fRh4KbSoZOWkiXWau+uYuo2XJEmSVJwMzyVJktR0rPuIn5Y9wHnxv8KLmzNre+0HQ6+Bft+BZq0K058kSZKkomF4LkmSpNK3eiFM/TnMfZBLy7Zk1tp1g2E/gr7nQllFzpZcfOOInM0lSZIkKf8MzyVJklS6VrwFU26FN/4IUTKz1qk3DL8Wen0d4v62WJIkSVIm/5QgSZKk0rP0VZh8K7xT/fzx2clDuKPq6/zm+/8MIRSgOUmSJEmNgeG5JEmSSkMUwaKXYPItsOjF6vVuX4HhP+bssWuBYHAuSZIkabcMzyVJktS4JZPw7jOp0HzZq9XrPU9PHc+yf//0B9V3o0uSJEnSzgzPJUmS1DglquDNP/H2hP+gZ+zDjFJVFOOJ5BDuqjqT9+YeAHM/JtvQvOsYQ3dJkiSpKTE8lyRJUuNStRnmPQRTbofPFtEztr20OSpjfOJ4xiZO58Ooc+F6lCRJktToGZ5LkiSpcdjyBcz6HUz7JXy+PKP0RVRBq6GXUXHslVzQZl8uyOGyi28ckcPZJEmSJDUWhueSJEkqbhs/gxl3w8t3wcbVmbXmldz2+Yncl/gqc7/6rcL0J0mSJKkkGZ5LkiSpOK3/BKbfATPvhS3rM2utO8Pgq2DARfz8314qTH+SJEmSSprhuSRJkorLmg9g6i9gzu+halNmrfIgGPpDOOp8KG9emP4kSZIkNQmG55IkSU1Y1zET63Vdg5wD/uk7qYeAvv4oJKsyax17wrBroc85EPe3sJIkSZIann/ykCRJUmF9NAcm3wrznwSizNp+R8Pwn0CP0yAWK0h7kiRJkpomw3NJkiTVeid5fXaq7+qaQWE+V5Y9zvHx16rVpid6MfjC/wfdvgIh1HlNSZIkScqW4bkkSZLyKOIfYvO4ouxxBsXeqVadlDiaO6vOYnZ0GIu7n1CA/iRJkiQpxfBckiRJDS5GkoX/WAWTb4GPX88shhj0/gYM+xEn7XMEl9TzHHZJkiRJyiXDc0mSJDWcqi2Miv+dy+NPwvjlmbVYORz1bRj6Q2jfvTD9SZIkSdIuGJ5LkiQp97ZsgDm/h6m/4H/Kl2bWylrAgItg8FXQdv/C9CdJkiRJe2B4LkmSpNzZtBZm3gPT74QNKzNrFW1h0KVw7PehVYc9TlWfh5NKkiRJUq4YnkuSJKnOdg6227GOi8qe4bvx52gTNmTUVkZtuLfqNK4fczM0b5vPNiVJkiSp3gzPJUmSVG/7sIrLyiby7fgLtAhbMmrLovaMrTqdRxP/wCYquL6WwfniG0c0RKuSJEmSVCeG55IkSaq1L4PtVQtg6u0w9yFIbs0c1P4QGPYj9j/im/xnWTP+M/9tSpIkSVLWDM8lSZJUex+/AVNuhTf/BFEys7bPETDsWuh1FsTihelPkiRJknLE8FySJEl79uEMmHwLvPtM9dqBx8JxP4FDToIQ8t+bJEmSJDUAw3NJkiTVLIpg4d9g8q2weHL1evcTU6F5lyH5702SJEmSGpjhuSRJkjIlk/DOxNRO84/m7FQMcPgZMPxa2O/ogrQnSZIkSflgeC5JkqSURBW88cfUmeafvp1ZC3Hoey4M+yF07FGY/iRJkiQpjwzPJUmSmrgKtsDMe2Hqz2HNksxivAL6fQeGXA17dylMg5IkSZJUAIbnkiRJTdXmz7k0/hcuLXsKJq7JrDXbCwZ+D469AvbqXJj+JEmSJKmADM8lSZKamg2r4ZWx8Mqv+Wn5TqF5i3apwHzQJdBi78L0J0mSJElFwPBckiSpqfj8Y5h+B8z8DWz9IrO2176po1n6fRcqWhemP0mSJEkqIobnkiRJRazrmIn1um7xjSO2f7N6EUz7Bcx5ABJbMsYtSXbirsSZ3PiD/4ayimxalSRJkqSSYnguSZKUR/UNw+vlk/kw5TZ4fQJEicxap14w/Mec8IdmJIhzo8G5JEmSJGUwPJckSWoEMnaS70bXMRPpGxbAw+fD23+pPmD//jD8J3DYKRCLkSCPYb4kSZIkNSKG55IkSQVQ2zC81qIIFk/h/vKfcVz8dXh7p/rBx8PwH8PBx0EIuV1bkiRJkkqQ4bkkSVJjFkXw7rMw+RZYOoPj4jvVe4yA4dfCAQMK0p4kSZIkNVaG55IkSY1RMgFv/il1pvmKNzJKiSgQ7zsKhv0IOvcqUIOSJEmS1LgZnkuSJDUmVVvgtYdTofnqhZm1eDMe3DyMXyfO4IOZnWHmImBRQdqUJEmSpMbO8FySJKkx2PIFzL4fpv0S1i3LrJW3hAEXw+Ar+af/nlOY/iRJkiSpxBieS5IkFbONa2Dm3fDyXbBhVWateVs45nIYNBpatQdg8Y37FaBJSZIkSSo9hueSJEnFaP0n8PKdMOMe2PJ5Zq1VJxhyFfS/CJq3KUx/kiRJklTiDM8lSZKKyZoPU0ezzL4PqjZl1toeBEOvgaMvgPIWhelPkiRJkpoIw3NJkqRisPI9mHJ76mGgyarMWofDYNi1cMRIiJcXpj9JkiRJamIMzyVJkgpp+TyYfCu89TgQZdb2PQqG/xh6ng6xWEHakyRJkqSmyvBckiSpEJZMh8m3wPvPV691GZoKzbufACHkvzdJkiRJkuG5JElS3kQRx8fmcUXZ4/Dbt6vXD/1q6niWLoPz35skSZIkKYPhuSRJUkNLJuHtJ2HyLdzXbN5OxQC9v54KzfftW5D2JEmSJEnVGZ5LkiQ1lMRWeH08TLkNVr6bWYuVwZHfgqE/hA6HFqY/SZIkSdIuGZ5LkiTl2taNMOcBmPpzWPthRmlj1IyHE1/hop/cApUHFqhBSZIkSdKeGJ5LkiRloeuYiV++b80GLohP4ntlT9ExrMsYty5qwe8TJ/ObqlNZRVsuMjiXJEmSpKJmeC5JkpSlvVnHhWXPcmH8WdqGDRm1VdFe3Ft1Kg8kTmYdrQrUoSRJkiSprgzPJUmS6mvtMv657PecF3+BlmFzZq3N/jDkGtr3+w7XNWvJdYXpUJIkSZJUT4bnkiRJdbXyfZh6O8x7mEvKtmbW2nWDYT+Cvt+CsmaF6U+SJEmSlDXDc0mSpNr6aC5MuRXeegKIMmud+8Dwa6HX1yEWL0h7kiRJkqTcMTyXJEnanSiCxVNSofmCF6qVZyYP486qs/jt5T+FEArQoCRJkiSpIRieS5Ik7aDrmIkABJKcGJvDFWWP0y/2frVxf0scyZ1VZzEz6pn6wOBckiRJkkqK4bkkSdIO4iQ4Izad75c9QY/Y0oxaIgo8lTyGu6rO5K2oa2EalCRJkiTlheG5JEkSwNaNMOcB/t7sJg6MfZpZizeDo84jPuQazmjfnTMK06EkSZIkKY8MzyVJUtO2aS3MvBdevhO++JQDYzvUmrWGARfBsVdCm30L1qIkSZIkKf8MzyVJUtO0/tNUYD7zHti8LqO0OmpNuxN+AAMvgZbtCtSgJEmSJKmQDM8lSVLT8tkSmPZLmPN7qNqUWWuzP/+x6gQeTnyF+cefU5j+JEmSJElFwfBckiQ1DZ/Mhym3w+vjIUpk1tofCsN+CEd8k9/+8/OF6U+SJEmSVFQMzyVJUsnqOmYiR4f3uKLsCU6Oz6pWfy15MHdWncVzywaQfCQGjxicS5IkSZJSDM8lSVLpiSJY8AIPlf8Xg+NvVStPS/TizsRZTEn2AUL++5MkSZIkFT3Dc0mSVDqSCZj/JEy5DZbPZXB8p3qPETD8WoYcMIAhBWlQkiRJktRYGJ5LkqRGo+uYiTV+Xk4VX49P4fL4k3SPLc+oVUUxyo46F4b+ADodno82JUmSJEklwPBckiQ1Wi3YxLfjf+OSsonsF1Zn1DZF5Tyc+Ap3V41g6jcuLEyDkiRJkqRGy/BckiQ1Oov/dTDMGAev/Bo2fpZZrGgLgy6h+THf58LWHbmwIB1KkiRJkho7w3NJktRodGY1l5Q9BbddClu/yCy26gSDr4ABF0PztoVpUJIkSZJUMnIanocQ+gGjgXbpj1YD46MompTLdRpizWKbZ6c5rwOIoujm+s4hSVKjtmoBTL2dlyoepCJUwdYdapVdYOg1cNT5UN6iYC1KkiRJkkpLzsLzEMJYYABwaRRFs9OfdQPGhhCuB0ZFUbQmV+vlcs1im2enOa8DbgIMziVJTc/yeTDlNnjrcYiSVIQdap16wbAfQe+zIe4/ppMkSZIk5VZO/qQZQnge6Ab03zEcjqJoIXByuj4L6J6L9XK5ZrHNk56rG3AScH16TkmSmo4ogkUvwdTbYcEL1cqvJg9jwPn/Fw79KsRiBWhQkiRJktQUZP0nzhDCZaSC3t3tqh4FdEvvzM5artYswnmuCyFEpEL2UaTC8wm7Gi9JUklJJlI7zO/+Ctx/ZvXg/JCT+Obmf2Hkln+DHqcYnEuSJEmSGlQu/tR5E7Bw2zElNUkHypOAy9K7qotlzWKbZ1wURSGKor2jKDo5iiKDc0lS6avaDLN+B3cMhEe/Ax/N2V4LMehzDox+CS74IzOiw4Gwq5kkSZIkScqZrI5tCSGMBCqBcbUYPp7U7uzRpHZUF3TNYpsHvgzYJUlqtLqOmVjrsa3ZwPnxv3Jx2dN0Djv9CCxrnnoA6JCroJ0nmEmSJEmS8i/bM89Hp18X1GLswvTrSLIIz3O4ZrHNI0lSk9CRNVxU9gwXxCfRJmzIqK2NWvL7xMn8btMprJzSFqbMB+YXplFJkiRJUpOWbXg+IP26cLejMsd0CyFUZrHLOldrFts8kiSVjMU3jqj+4aoFMO2XMPdBSGzOKH0c7c29VafyUOIE1tMyT11KkiRJkrRr9Q7P0+d2V6a/3WNwHEXRwhC+PKN0AKnzvwuyZrHNI0lSSftoDky5HeY/AVEys9b+UBh6Dfv0PZefllXw08J0KEmSJElSNdnsPN/xANLVWVxbiDWLbR5JkkpLFMGiF2HKbbDw79Xr+/eHYT+CHiMglovnl0uSJEmSlFvZhOeVex6S82tztWaxzSNJUkmIkeSU2AwYdzMsn1t9QPcTU6F512Gw/V9jSZIkSZJUdLI987yu1pAKjds3wjWLbR5JkorH1k0w7yH+2uxnHBxbAct3qIUY9D4bhv4A9u1bsBYlSZIkSaqLbMLzdtve1OPBl/XddZ2rNYttnrwJIczaRalnXhuRJJWGTWvh1d/Ay3fB+hUcvOMJLGXN4egLYPBV0O7ggrUoSZIkSVJ9FOrYlnZ7HtKgaxbbPJIk5UXXMRPrdd3iG0dkfvD5x/DynfDqb2HzuozS2qglbY+7Ao65HFp3rG+rkiRJkiQVVL6PbVGBRVHUv6bP0zvS++W5HUlSY7NqAUz9Ocx7CBJbMmt77cd/rf4KDyVO4M0TRxamP0mSJEmSciQn4XkIobKOx5asLpY1i20eSZLyodpO8l3YtlP9jBt+yeVlT3BqbCaxEGWMWZDcl18nzuDPnw5jq38vL0mSJEkqEdn8CbeuZ3zn4tpcrVls80iSVHyiiGGx17k8/gTD4m9WK89JHsJdVWfwfLI/EbEaJpAkSZIkqfHKJjyvz87pbWeEryrwmsU2jyRJxSNRBW/9GabezgPNXq9eP+RkGPZDju4ylHEh5L8/SZIkSZLyIFc7z7sBs+t5bSHWLLZ5JEkqvM3rYc4DMP1XsPaDzFqIQ5+zYegPYJ8jCtOfJEmSJEl5lE14/uoO79vtaXAIodsuri3EmsU2jyRJhbP+U5gxFmbcDZt2+rvdshZw9AUw5CrYu2tB2pMkSZIkqRDqHZ5HUbQmhLCG1DEk3fY0nu3HlQAsLOSaxTaPJEkFsWoBTPslzH0QEpszay3bw6DRMPASaNW+MP1JkiRJklRA2ew8B3gUuIzMUHhXtoXLs6MoyubIklytWWzzSJKUF0eH9+CRC2D+X4Aos7h3VxhyNRx5HjRrWYj2JEmSJEkqCrEsrx+ffj25FmPPTb8+UiRrFts8kiQ1nGQS3nmaR5r9J3+q+DeY/yQZwfl+/WDU7+Dq2and5gbnkiRJkqQmLqud51EUTQohLAROCiFU7mE39UhgTRRFN+9qQAhhPHASMC6Kousbcs1im0eSpAZRtRleezR1PMvKdzhm5782P/SrMOQa6DoMQihIi5IkSZIkFaNsd54DjE6/3rCrASGEy9JvL93DmJGkjj+5LoTQr6HXLMJ5alK506skSXu2cQ1MuQ1u7wtPXAUr3/mytCWKp45l+f50OH88HDzc4FySJEmSpJ1kHZ5HUTQJuJ5U4H3SzvUQQjdgLKnd5BOyXS+XaxbbPDtdUxlCGElqJz7AN0MIJ4UQDNElSbu2dhk8+1O4rQ9M+ndY//H2WrO9GFs1guM23w7fuAs69ypYm5IkSZIkFbtsHxgKQBRFN4cQZgNjQwgTgOeB1aSC3xuA0VEUjdvDHONCCKPYfmzL7IZes9jmSYfl43dRrkzPSdi+O7D/nv47SZKaiBVvpo5meX08JKsya633gWO/DwMu4mf/PqUw/UmSJEmS1MjkJDyHL3dfd0/vvN525MrCKIr2rsMctXnoZk7XLKZ50rvS/XfzkqTaiSJYPAWm/hzef756vWNPGHI1HDEKyiry358kSZIkSY1YzsLzbdIB8qRcz5uPNYttHkmSapRMwPwnUqH5R3OqlV9J9mRs1en87cOjiB6JwSP+SJIkSZIkqa5yHp5LkqQGsmUDzP0DTL8DPlucUUpGgWeTAxhXdTpzokML058kSZIkSSXE8FySpGK3/lOYeTfMvAc2rMoobY7KmZA4jvN/9D+c2r47pxaoRUmSJEmSSo3huSRJRaLrmIkZ33cPy/he/CnOiU+hImzNqK2JWnF/4mTur/oaK2nL+e2757NVSZIkSZJKnuG5JElFJeLY2HwuiU/kpHj188yXRh24p+o0Hk38AxtoXoD+JEmSJElqGgzPJUkqBomtnBmbyqVlEzkitrh6fb9+MOQqDjj8LP49Xsa/57s/SZIkSZKaGMNzSZIKadM6mH0fvPxrftFs6U7FAD1OhcFXQZchEEJBWpQkSZIkqSkyPJckqRDWLoWX74LZ98PmdZm1suZw5Ldh8JXQ4dDC9CdJkiRJUhNneC5JUj59NAem3QFv/gmiREZpZdSG+6u+yrX/5yZo1aFADUqSJEmSJDA8lySp4SWT8N5zMP0OWDy5er3DYTD4SoaOb8tmmnGtwbkkSZIkSQVneC5JUi11HTOxTuMr2MI34lO4cd+XYOW7NUw4PHWe+aFfhViMzePrNr8kSZIkSWo4hueSJOVYO9ZxQXwS3yl7jg5hHazcoRji0PsbMOQq2O/ogvUoSZIkSZJ2z/BckqQ6WnzjiJoLK9+D6b+CeQ9B1abMWrO9oP934ZjLofLAhm9SkiRJkiRlxfBckqRsRBEsmZY6z/ydp4Eoo/xR1I79vnYt9PsONG9bmB4lSZIkSVKdGZ5LklQfVVvgzT/By7+C5fOq1/c9kmuWDOOp5DG8P+Ss/PcnSZIkSZKyYnguSVIdVPI5vPS/MONuWP9x9QGHfi11nnnX4Txxw1P5b1CSJEmSJOWE4bkkqcnqOmZircd2D8v4f2XPcHZ8MrywJbNY1hz6nguDr4SOPbJaR5IkSZIkFQfDc0mSdilieOx1Lo4/zVfiNRzN0rozDLwUBlwErTrkvz1JkiRJktRgDM8lSU3e4htHZH6wdSO89ii8fBd8Or/6BfscAcdeCX3OhrKK2s8rSZIkSZIaDcNzSZK2+XwFzLwHXr0XNqzaqRigx2kw+AroMhRCKEiLkiRJkiQpPwzPJUn6+HWYfie8MQESO51nXt4Kjr4AjhkN7bsXpj9JkiRJkpR3hueSpKYpmeTE2Cy+F38afv1W9XrbA2HQZdDvO9CiMv/9SZIkSZKkgjI8lyQ1LZvXw9wH4ZW7uLfZwur1AwaljmbpeQbE/TEpSZIkSVJTZSogSWoa1i6FV8bC7Ptg09rMWohDr7Ng8JVwwIDC9CdJkiRJkoqK4bkkqXRFEXzwMrzya5j/JESJjPK6qCUPJk7g8p/cCJUHFqhJSZIkSZJUjAzPJUmlZ+smePOxVGi+fF71ertucOwVHPtYOzbQnMsNziVJkiRJ0k4MzyVJJWPQmAe4oOx5zou/QIewrlp9WqIX9yZO5YWPjiZ6LFaADiVJkiRJUmNheC5JKlpdx0ysxaiIfuE9Lix7lqkVMygPmUezbIrKeSwxjPsSX+Od6KCGaVSSJEmSJJUcw3NJUqPUjK2cFnuFC8ue4ajYwuoD2hwAgy6leb/vcF7LdpyX/xYlSZIkSVIjZnguSSp6i28csf2bz1fAq79JfX3xSfXBXYbCMaOhxwiI+2NOkiRJkiTVj6mCJKlxWDYLXhkLbzwGya2ZtXgF9B0Fg0bDvn0L058kSZIkSSophueSpKJVThWnxmbAPbfB0pnVB+y1Hwz8HvS/EFp1yHt/kiRJkiSpdBmeS5KKz/pPYdbvmFJxB53DGli6U/3AY+CYy+HwMyBeXpAWJUmSJElSaTM8lyQVj2WzYMY98MYESGyhc9ihFm8Gfc6BQZfB/v0K1qIkSZIkSWoaDM8lSYW1dRO8+SeYMQ4+ml2t/ElUSacTrkwdzdK6U/77kyRJkiRJTZLhuSSpMNZ8AK/+BmbfDxtWVa/vP4BrFh3D08ljeO/4s/LfnyRJkiRJatIMzyVJ+ZNMwsK/wcx74N1nIEpm1uPNoPfZMOhSOGAAT4yZWJg+JUmSJElSk2d4LklqeBvXwLyHUqH5qver19seCAMuhn7fgVYd8t+fJEmSJEnSTgzPJUkNZ8WbMONueO0R2Lqher3bV1K7zA87BWLx/PcnSZIkSZK0C4bnkqTcSmyF+U+mQvMPplWvV7SBo86DgZdAh0Pz358kSZIkSVItGJ5LknJj3XKY9bvU1/qPq9c79UrtMj/im1DROt/dSZIkSZIk1YnhuSSp/qIIlkxNnWU+/0lIVmXWY2Vw+Bkw8FLoMgRCKEyfkiRJkiRJdWR4Lkmqu42fwbxH4NXfwMp3qtdbd4b+F0H/C6HNvnlvT5IkSZIkKVuG55Kk2okiWDY7FZi/8Ueo2lh9zEFDYNAl0PMMKGtWrdx1zMQ8NCpJkiRJkpQ9w3NJErDrYLslmzgrPpXz43+lT2xxtfr6qDmtB54PAy6Gffo0cJeSJEmSJEn5YXguSapRj/AB58f/yjfiU9grVN9l/layCw8kTuLxxBDePH1kneZefOOIXLUpSZIkSZLUIAzPJUlfqmAL73x7c+polg9fqT6grDn0OQcGXEyv/fvz4A1PAR7HIkmSJEmSSo/huSQJVi3gn8r+wKj4i/Cn9dXr7Q9NHcty1Lehxd7570+SJEmSJCnPDM8lqalKbIW3J6Z2mS96kct2/okQK4fDz0iF5l2HQQjVpvD4FUmSJEmSVKoMzyWpqVm1AGbfD3MfhC8+qV6vPAj6XwRHXwCtO+W/P0mSJEmSpCJgeC5JTcHWTfD2X2DW72Dx5Or1EOP5qqP5Q+JEfnfNGIjF896iJEmSJElSMTE8l6RS9sn81C7zeQ/Bxs+q11vvA/2+A/2/y6U/m5f6zOBckiRJkiTJ8FySGouuYybWalwLNnF6/GW+Ff8b/WPvVR8QYnDoV6Hfd1Ov8W0/CublrllJkiRJkqRGzvBckkpE77CIb8df4Mz4NNqEjdUHtD0I+v0jHHU+tN0//w1KkiRJkiQ1IobnktTILL5xxPZvNq2F1yfA7PtgefWd41ujOM8l+/Nw4gSmrOhD9HQMnp4LzM1fw5IkSZIkSY2Q4bkkNTZRBB/OSAXmb/4Jtm6oPqZdd/57xSD+mDiOVbTNf4+SJEmSJEmNnOG5JDUSnfiMc+KT4Y5/g1U1nGUer4BeZ0H/70KXofxTCPxT/tuUJEmSJEkqCYbnklTMqjbDO0/D3D8wveJ54iGCVTuN6dQ7FZgfMQpatitIm5IkSZIkSaXG8FySitHy12DuH+C1R2HjagDiYYd6s9bQ+xvQ/0LYvz+EUOM0kiRJkiRJqh/Dc0kqFhtWw+vjYc4D8PFrNQ6ZnujF4HOugV5nQrNWeW5QkiRJkiSp6TA8l6RCSiZgwQupwPydpyCxpfqYNgfAUecx/Pl9+TDqzOKjRuS/T0mSJEmSpCbG8FySCmHl+/zq9v/g7PgU9g2rq5U3R+U8kxzI+MTxTPukN8nnYgVoUpIkSZIkqekyPJekfNmwGt74I8x7GJa9ypU1/B94brIbExLH80RiMOtonf8eJUmSJEmSBBieS1LDqtoM7z4Lrz2Sek1urT6mZQc48ltw1Pkc1bkXRwH/lfdGJUmSJEmStCPDc0nKtSiCpTNh3kPwxmOwaU31MbFyntvalwmJ4xj3Lz+FeHn++5QkSZIkSdIuGZ5LUq6sXgSvPQqvPQyrF9Y8Zv8BqV3mfc7hsv+cnvrM4FySJEmSJKnoGJ5L0i50HTNxj2Pa8AWnxV/h7PhkBsXeqXHM0qgDjyWG8efEMBYu2A8WAI9Nz3G3kiRJkiRJyiXDc0mqo2Zs5bjYKDPcvQAAHChJREFUa3w9PoWTY7OpCNXPMV8XteCpxDE8lhjOzKgHEbECdCpJkiRJkqT6MjyXpD1YfOMISCZg8RR4YwK89ThsWlt9YIjDISfBkefSpsdpfKu8Bd/Kf7uSJEmSJEnKAcNzSdqliCPDAnjmhtSDP9d/XPOwfY+Evt+CI0ZC6075bVGSJEmSJEkNwvBcknb26Tvw+gT+3uw+usZWwMs1jKk8CPqMhL7fhE6H571FSZIkSZIkNSzDc0lNxu4eALofKzkjPp0z49PoHVuSGr/zMeWtOkLvs1M7zA8YCCE0YLeSJEmSJEkqJMNzSU1WB9ZySnwGZ8anMSj2To1j1kUtaHN0OjDvehzE/d+mJEmSJElSU2AKJKlJ6cBaXj1nA7z5Z1gyFaJk9UHxCuhxCvQZSZtDvwrlzfPfqCRJkiRJkgrK8FxSo7S7I1h2tm2H+UPlrzAoNh8mRtUHhTh0+wc4YhT0HAHN2+SsV0mSJEmSJDU+hueSSlJH1vC1+ExGxFKBeTzUEJgToMsQ6P0N6PV1aN0x731KkiRJkiSpOBmeS2rUFt84Yvs3n6+A+U/AW4/v+kiWHQPzw8+AvfbJW6+SJEmSJElqPAzPJTVuny2Bt/8C8/8CH75sYC5JkiRJkqScMDyX1LhEEXzyFtfEH+Nr8Znw8yW7GGhgLkmSJEmSpPozPJdU/JJJWDoT3n4ytcP8s0VcW17TQANzSZIkSZIk5YbhuaSi0HXMxIzvy6liSOxNvhabycnxWXQMa2u+MN4MDj4eDj8depwGrTvloVtJkiRJkiSVOsNzSUWjLes5PjaPk+Kz+YfYXNqEjTWOWx8152/Jo3guMYBf/uv10LxNnjuVJEmSJElSqTM8l1Q4UQQr34V3n+GRZg/SP7xLWajpgZ9Ayw7Q8zToeQatux3PGWUVnJHfbiVJkiRJktSEGJ5Lyq+qLbBkKrz7LLz7DHy2CIBjYjWMrTwIep6ROpLlwGMgFs9vr5IkSZIkSWqyDM8lNbwvVsJ7z6XC8vdfgC2f1zgsGQViB/SHHqfAYadA5z4QQp6blSRJkiRJkgzPJTWERBUj//nnHB9/jeNir3FEWEQsRDUOXR81Z3LyCP6a7MffE0fx6qXn5blZSZIkSZIkqTrDc0m5seYDeP+vsOCvsPBFJlSs2+XQD5MdmZTsx1+T/ZiR7MkWyvPYqCRJkiRJkrRnhueS6mfrRlg8NRWWvz8p9eDPXQlxOGBg+jiWUzmwYw8uCoGL8tetJEmSJEmSVCeG55JqJ5mAj1+DRS/Bwr/DkmlQtWmXw5dF7Xkx0ZfzzrsIDj4eWlTmr1dJkiRJkiQpS4bnkmoWRand5AtfhEUvsmb+36gMX+xy+KaonFeSh/NSsi9/Tx7Jgmg/IHBerxH561mSJEmSJEnKEcNzSdt9tiS1s3zRi6nX9Su+LFWG6sPfS+7PS8m+vJjsyyvJw9lMszw2K0mSJEmSJDUcw3OpqYoiWL0wdfzKB9NhyVT4bPFuL/kkqqRT35NTx7B0O55DKw/iUOB7eWlYkiRJkiRJyp+chuchhH7AaKBd+qPVwPgoiiblcp2GWLNU51HT0XXMxN3WYyTpET5kYOxtBsXeZlDsHTqFNbuftHlb6DocDj6eE/8MC6L9WHzO6TnsWpIkSZIkSSpOOQvPQwhjgQHApVEUzU5/1g0YG0K4HhgVRdEekrrCrFmq86hpq2ALvcNiBsXeZmDsHQbG3qFN2LDbazZEFcxM9mBqsjfTkr15a1NXknNjMDdPTUuSJEmSJElFIifheQjheaAb0H/HUDeKooXAyen6LKB7LtbL5ZqlOo+amCjioLCCo8L7/GJYFSydCR+/Dsmtu71sXdSSmckezEz2YEayJ69H3djqaU6SJEmSJElS9ilZCOEy4CR2Cnt3Mgr4LIQwNoqi0cWyZqnOo9Kwu2NY9mIDfWMLODq8z1Gx9zk69j4vVXyeKs7YzaStO8NBg6HLUOgymDadenFiLM6JuW1dkiRJkiRJavRyscX0JmDhtuNFahJF0ZoQwiTgshDCTeld1MWwZqnOoxKyFxvoFZbQJ7aI3rHF9AmLOCR8RCxEe764/SFwwCDoMiT11a4bhNDwTUuSJEmSJEmNXFbheQhhJFAJjKvF8PGkdlWPBq4v9JqlOo8auQ2rYflcWD6PO8qfoXdYxMGxFbW7tnlb2H8AHDAw9bV/P2jZbs/XSZIkSZIkSaom253n244NWVCLsdt2SI8ku8A3V2uW6jwqQjsfwVLBFg4Jy+gRPuSw2NIvX/cPq74cc3p8NxOGOHTunQ7K04F5u+4QizXQr0CSJEmSJElqWrINzwekX2tzdMi2Md1CCJW7OdM7X2uW6jwqJls3wupFnBZ7mR6xpRwWPuSwsJSu4WPitTl2BSBWBh0Ph32P3P61Tx9o1qphe5ckSZIkSZKasHqH5yGEbqSOGYFaBL5RFC0M289aHgBMKtSapTqP8mfHneRxEuwfVtItLOfgsJyDw8ep19jH7McqYiHizma1nDhekdpRvmNQ3qkXlDdvmF+IJEmSJEmSpBpls/O82w7vV2dxbSHWLNV51BCSSfjiE1jzwZdf/1U2hQPCSg4Mn3Bg+IRmIVG3OUMs9fDOToenwvFtr+26Qby8YX4dkiRJkiRJkmotm/C8cs9Dcn5trtYs1XlUV5vXw/oV8PnH8Pny7e/Xr0h9v3YZrP0QElsyLrugtndOiEFlF2h/SGZQ3rEHlLfI/a9HkiRJkiRJUk5ke+Z5Xa0hFfa2b4Rrluo8Tc/6T+C3p6ZC8i3rczPnXvumAvL23VMP7mx/SOpr765QVtszWyRJkiRJkiQVi2zC83bb3tTjgZX13S2dqzVLdR7VRkUbWPV+nS5ZE7ViadSRpVFHlkUdWBp1YGnUkbuv/ga0Oxgq9mqgZiVJkiRJkiQVQqGObWm35yENumapzrNHIYRZuygdOX/+fPr3759FK43Iik2QrAICxMvZUBWjijhtWrVInTkeK0+9bvsK8fSFn6W/3gOg/7NPFOgXIEmSJEmSJO3Z8mVrAej//L8WuJP8mT9/PkDXbOfJ97EtKl6JjRs3rp09e/biQjeS1jP9+nbDL7Xjwz4/b/jlJOXx/pZUAN7jUuny/pZKl/e3VNp6Asxe0aTu8a7AumwnyUl4HkKorONxI6uLZc1SnWdXoihqFFvLt+2Qbyz9Sqo972+ptHmPS6XL+1sqXd7fUmnzHq+/WBbX1vVs7lxcm6s1S3UeSZIkSZIkSVIOZBOe12f3+LazvVcVeM1SnUeSJEmSJEmSlAO52nneLYtrC7Fmqc4jSZIkSZIkScqBbMLzV3d4325Pg0MIO4bCr+5yYH7WLNV5JEmSJEmSJEk5UO/wPP1Qy227nmuzW7pyh/cLC7lmqc4jSZIkSZIkScqNbHaeAzyafq3c7aiUbaHw7HRYXOg1S3WekhBFUX+fACyVJu9vqbR5j0uly/tbKl3e31Jp8x6vv2zD8/Hp15NrMfbc9OsjRbJmqc4jSZIkSZIkScpSiKIouwlCWEBqJ/Teu9sFHUKIgDVRFO29mzHjgZOAcVEUXd/Qa5bqPJIkSZIkSZKk7GS78xxgdPr1hl0NCCFcln576R7GjCR1bMl1IYR+Db1mCc8jSZIkSZIkScpC1uF5FEWTgOtJBd4n7VwPIXQDxpLaTT4h2/VyuWapziNJkiRJkiRJyk7Wx7Z8OVEq7B0LTACeB1aTOoLlBuD6KIrG1WKO59l+bMvoWozPes1SnkeSJEmSJEmSVD85C8+/nDAV/G47cmVhPnZI52rNUp1HkiRJkiRJklQ3OQ/PpfpKn3M/GmiX/mg1MD59nI2kBhBCuA4giqKb63FtTu7ZYptHauzSx7yNJvWv1rqRuhcWAuOBR3f3UPIa5iqq+9P7XE1dCKESuAw4mdT93Q54FZgNjI2iaGEd5iqq+9L7W9qz9L/Wv6m290Wx3Z/e52qKdjhdYhKp0yVmA6ujKFqT/rneLf11MtAtiqKTazFnUd2TpX5vG56rKIQQxgIDgEujKJqd/mzbGe8Ao+ryh31Je5YOzm8Cbo6i6Po6XpuTe7bY5pEau/R9PZrUvf0qsIbUv2I7l//f3v0fN5FkcQB/72oDMHcRrMkAdiNYk4G9G8FBBlBEsGUyACLYMxmYjWDBGeCL4BZn0PfH9OBh0I+Rka2W5/Op6pIsjdpDFV9L89Tzprswe0TEs4nt9JrKp5wzdzXfv0U9AO8L5fWg/DS6rE9tf9lULuUb1svM4+i+CD+ZclZ6a/mUc+ZqkN113seEHLSWyTlkW/Gcnavfnh9GxONFgeqfL6U8vPOdg3umvokdRXdx4sP68EbF821ltrV5YN9l5ml0/9dPljw//OC+Mvet5VPOmbua74NVhfHM/BRdTt6vWrXWWi7lG9arq1P/GxEHMaF43lo+5Zw5m1A8v4zujJKp14psJpOzyXYpxTB2NqI77bRExKMV2xzUbV7ven8NY19HRDyvOfoc3ali/Rt4ie6Neuo8W8lsa/MYxr6P6FacfpywXf+3oETE8ZJtmsqnnBtzH9EdlJ5P2O5Ivg3jfo7oVnCuzPdg26byKefG3Ec99j6t/8+Paiae18cPN5inqUzOKdtWnrNTmfk5ul5PU77NOoqIh2WDXo5AJzMPyuib4Mw8i+4Ne/LK821ltrV5YN/V/+MvSj1Vcs22n6P7IHu5KDut5VPOmbu66vx5dD1Sfxm/n4+27Q/uFq4+by2X8g3r1V7Cffu1w1iz8ry1fMo5c1dXnv889Zh7xTxNZXJO2f7HrneA+ap/QA4iYm2/trg+xWVtD0fgW6sOtKfaVmZbmwfuicMphfOqPyX0sB6Qf9FaPuUcIqLLQER3hsmvE1/zz/EDreVSvmGy0w0WujSVTzmH7Wgtk3PLtuI5u9QH59OEbftvp45XbgXcpm1ltrV5YK/VAvhhZn6uH2TXGWbmp9FzreVTzqFrtxbRXQD4/bKNak/k3t8LNmktl/INa9QLBb9eu+G11vIp57AdrWVyVtlWPGeX+gP2Kadt9Nscjg4MgLuzrcy2Ng/su/7ivwcR8XLC9h8G98enWbaWTzln9mp7hgellAdrTncerjY/X/B8a7mUb1ih/l//eVWLlgVay6ecw3a0lslZZVvxnJ3IzMO4PgV1bdhGBwrjVXLALdtWZlubB+6JYbuWD0u3unY4uP+//k5r+ZRzuDax/Vq/ousqrtszRUR7uZRvmORtREzukdxaPuUctqO1TM4x2z/segeYreGB+6LTSqe+Frgb28psa/PA3iulXGbmg5je93yYgYslj7eQTzmHzfSnUL9YUGxvLZfyDStk5lFE/LXhxfVay6ecw3a0lsnZZVvxnF35nlM19vI0D9hz28psa/PAvVALZVMvGPrz4HXD/smt5VPOYaLMPI3ugPRVKeXNgk1ay6V8w2ovSilPNnxNa/mUcxipq7aPY/B5PCL+iog3K84yay2Ts8u2ti3sk/4Pyb92uhfAVNvKbGvzwN6qfQb71g6vtjBla/mUc2YlMw8z83VEPI2Ik1LK5BYPE7SWS/lmFuqXYad39Otay6ecc2/VbL+IiHellJN+1Kf/m5nbvKBma5nc62xbec6ufLmg0cQejkN7+U0V7LltZba1eWBung7u/z56rrV8yjkskJnn0eWj7zn6JiJ+XJOT1nIp37BA30t4dGbYVK3lU87hWv8l9zfZLqW8ysx/RcRZZp4suEhwa5mcXbatPGdXvicw/1y/CbBl28psa/PAbNRV5/1KtpMFH3Zby6ecwwKllCellMellAellIyI84j4MzPPa+FtkdZyKd+w2OvY4CKhI63lU86hcxFLCue9eubYVXQF9HF2Wsvk7LKteA4AMA9v6+2rBStagD1VSnlXSnkc3QHppy2f9g3ckcx8GhFnN1jJCTSslHI58WyS/9Tbu2rbxESK5+zcgm/V1tn0ar7AFm0rs63NA/dZPSA/ju5iRGtXtLWWTzmHSfq+qWerCuit5VK+4UsOTpZc8Pem821CzmH3zuvt02UbtJbJuWRb8Zxd+Z5v030TD3dvW5ltbR649zLzUXSngb8ppTxbsWlr+ZRz2EAp5TIi+pVtb0cHtK3lUr7ha/2FBL9Ha/mUc9jMZX8nM48Gj7eWydllW/GcXbnJt039AcD/trkjwCTbymxr88C9Votnf0bEuzWF84j28innsLmzensQX69cay2X8g1V/ZL7qpRy8Z1TtZZPOYfNDAvLw2uYtJbJ2WVb8ZxdWfZHYdPXAndjW5ltbR647z5GxPtSysnaLdvLp5zD5i4H958M7reWS/mGa6dTWqpN0Fo+5Rw2MyxKPxzcby2Ts8u24jm78mFwf+3VdjNzGMgPSzcEbsu2MtvaPHBvZeZ5RFxOLJxHtJdPOWf2MvNRZn6q49GElwwPvJdlooVcyjfEl1XnR5lZ1o24zvTZ6Ln+Gget5VPOmbXMPMjMzzWnR+tf8VVOhiu0W8vk7LKteM5O1CuI9984Tfmmatiz8XLpVsCt2FZmW5sH7qvMfB0RUUp5smKbg+GH2dbyKecQEREvo/v/fxgR61ovjX1Z3dVaLuUbOrVVy8OJo/ds+Hgp5V2dq6l8yjnEUVz/v56ymGUvMjnHbCues0v/qbcHK7fq9IG8qEEF7t62MtvaPHCvZObziDhcVTivjuoYai2fcs7cDVeSf5qw/XAF2PgAtbVcyjdEd7HfKWPwkr+XPB7RXj7lnDm7GtyerdqwGhai34+eay2Ts8q24jm71P/xWHdwHxHxW73945b2BVhvW5ltbR64N+qp279NKJxHRPwc3xbXWsunnDN3H6M7gD4ppbyasP0wK+MstJZL+Ybtay2fcs6cfYiuYPyglDIuhi/S5+T9giJza5mcVbazlLLrfWDGMvNTdN9CPVj1DVTt8XZVSnlwZzsH91xmnkXEcUS8mnqRom1ltrV54D6ofVNPJxbO+57oJ+PstJZPOWfOMvMgugL64ymrtQZ5uSylPFzxfBO5lG+YruYgonvvfrdiu6byKefMWT3m/r22aFq13UFEfK4/Pl60fWuZnFO2rTxn1/rejS+XbZCZT+vdf9/+7sCsHIxup9hWZlubB/Za7V1+Ft1FxI5XjKeZ+bz2RD9a8kG3tXzKObNVM3oaEX/WA+ulag76U6OX9VZtLZfyDdvXWj7lnDl7Ed3n83W9wd/W21crCu2tZXI+2S6lGMZOR0Q8j4gS3UH8+LnD+tzrXe+nYdyXEV2x/Lhmq0T3DfdRRBxMfP1WMtvaPIaxr6Nm+tMg01PHxxVzNpVPOTfmPiLiaX2/Pl7yfJ+RhTlZsm0TuZRvw1g96vv8MOPn0V3bZNVrmsqnnBtzHtEda39a8R7+el8zOZdsa9tCEzLzKLo/GO+i+zDwd3R/YF5GxItSypsd7h7svdoHecpFSnoLTxUbzLeVzLY2D+yjuqLj9Q1e+q6Usmx1anP5lHPmrm/NFBE/RdcH/TK6otpRdAeo7yPiWfn2AoKL5moql/IN36pniT1dt10pJZe8vql8yjlzVt/D30b3vn0R3Xv4YXQZ+Du6DCxtxzSaq6lMziHbiuc0pYbuUf3xcuofD2A3tpXZ1uYBrrWWTzln7mr7lr5gHtEdgC+6uNiUuZrKpXzD9rWWTzlnzmr7lqPoiuhXEfFh1aK1NXM1lcn7nG3FcwAAAAAAGHHBUAAAAAAAGFE8BwAAAACAEcVzAAAAAAAYUTwHAAAAAIARxXMAAAAAABhRPAcAAAAAgBHFcwAAAAAAGFE8BwAAAACAEcVzAABgqzLzLDPLknGw6/0DAIApftj1DgAAAPfOX/X2MCIeDZ8opVzd/e4AAMDmspSy630AAADuqcw8jYjn9cf3pZQnu9wfAACYStsWAADgNh0O7p/vbC8AAGBDiucAAMBtOhrcf7+zvQAAgA1p2wIAANyKzDyMiE/1x6tSyoNd7g8AAGzCynMAAOC2WHUOAMDeUjwHAABuy/DioPqdAwCwV7RtAQAAbkVmfo6Ig/rjw1LK5S73BwAANmHlOQAAsHW133lfOL9SOAcAYN8ongMAALdBv3MAAPaa4jkAAHAb9DsHAGCvKZ4DAAAby8ynmfkxMz/XcZ6Zw9XmVp4DALDXFM8BAIDJatG8RMRpRLyOiB9LKQ/qz2f1ef3OAQDYez/segcAAID9kJlnEXEcEZcR8biUctU/V0p5n5m/RMSfEfFm8DKrzgEA2EuK5wAAwFqZeR5dK5ZvCue9UspFZr6JiOeDh/+4o10EAICt0rYFAABYqa4473uYP1tUOB8YF8utPAcAYC8pngMAAEtl5tPoWrVERLwrpawrhg8L65drCu3j3/UpM8uacbrpvwEAAG5C8RwAAFgoMw+iuyho7/cJLzsa3N9o1Xkp5WFEPIiIk8HDFxHxsJSSdbzYZE4AALgpxXMAAGCZl4P7l6WUiwmvGRa+zzf9hQtWqr8opVxuOg8AAHwvxXMAAOAbddX58MKf7ya+9KfB/Zv2O/+5vzOhTQwAANwKxXMAAGCRo9HP4wuBfiMzH0XEQf1xo37nS373lJXuAABwKxTPAQCARX4b3L+a2LLlxv3Oe3XF+6PvmQMAALZB8RwAAFjkJoXwJ4P7G/c7r4ZtX246BwAAfDfFcwAAYJGDwf2pRezvXnkegwK8fucAAOyS4jkAAPCV2jpl6MOE1zwa/Hgx7neemccL5l1Ev3MAAJrww653AAAAaEsp5Sozhw9NufDnulXnZ6WUXPD4F/qdAwDQEivPAQCARb4UzEsplxO2H15g9Ks2L5l5FNNWkut3DgBAMxTPAQCARb6s/F7XbiUzj+N6xXjEt21eTiLijwm/U79zAACaoXgOAAAs8npw/6dlG9Ve52/j65Xq4zYvv0bEmwm/U79zAACaoXgOAAB8o6787ld/P1u0TV1x/mdE/BIRvw8ePxjcfx4RHxYU1Mdz6XcOAEBTFM8BAIBlTqJbBX6cmad9UTwzH2XmeUS8jIgfSykX0a0s73uj/1q3O67bLCy+j9yo33n9HQAAsHWK5wAAwEKllKtSyuPoit9HEfE5Mz9HxGlEvC6lPO5XlNfbxxHxKiJOM7PU1z2eeMHRm/Y7n1KYBwCAjWUpZdf7AAAAzFxmfoyubctFLdhPec3TiDgopby61Z0DAGCWftj1DgAAAPP2Hf3On0XXbx0AALZO2xYAAGDXNu53Xi9E+ve6C5ECAMBNKZ4DAAC7tlG/88w8jK7v+tlt7hQAAPOmeA4AAOzaUb29WLdhZj6KiI8REaWUN7e5UwAAzJviOQAAsDOZeRzX/c4vl2xzkJnHmXkeXeH8ICLe3dEuAgAwU1lK2fU+AAAAM1IL5t/bcuXJlBYvAABwU4rnAAAAAAAwom0LAAAAAACMKJ4DAAAAAMCI4jkAAAAAAIwongMAAAAAwIjiOQAAAAAAjCieAwAAAADAiOI5AAAAAACMKJ4DAAAAAMCI4jkAAAAAAIwongMAAAAAwIjiOQAAAAAAjCieAwAAAADAiOI5AAAAAACMKJ4DAAAAAMCI4jkAAAAAAIwongMAAAAAwIjiOQAAAAAAjCieAwAAAADAiOI5AAAAAACMKJ4DAAAAAMCI4jkAAAAAAIwongMAAAAAwMj/AWAP4x663LygAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<matplotlib.figure.Figure at 0x7fadc9d5e6d8>"
-      ]
-     },
-     "metadata": {
-      "image/png": {
-       "height": 337.0,
-       "width": 743.0
-      }
-     },
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "prior = bilby.prior.create_default_prior(name='luminosity_distance')\n",
-    "\n",
-    "figure(figsize=(12, 5))\n",
-    "hist(prior.sample(100000), bins=100, histtype='step', normed=1)\n",
-    "plot(np.linspace(prior.minimum, prior.maximum, 1000), prior.prob(np.linspace(prior.minimum, prior.maximum, 1000)))\n",
-    "xlabel('{}'.format(prior.latex_label))\n",
-    "show()\n",
-    "close()"
-   ]
-  },
   {
    "cell_type": "markdown",
    "metadata": {},
@@ -187,15 +108,22 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
-   "metadata": {},
+   "execution_count": null,
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2021-02-05T21:54:02.634470Z",
+     "iopub.status.busy": "2021-02-05T21:54:02.634040Z",
+     "iopub.status.idle": "2021-02-05T21:54:02.635882Z",
+     "shell.execute_reply": "2021-02-05T21:54:02.635491Z"
+    }
+   },
    "outputs": [],
    "source": [
-    "class Exponential(bilby.prior.Prior):\n",
+    "class Exponential(bilby.core.prior.Prior):\n",
     "    \"\"\"Define a new prior class where p(x) ~ exp(alpha * x)\"\"\"\n",
     "    \n",
     "    def __init__(self, alpha, minimum, maximum, name=None, latex_label=None):\n",
-    "        bilby.prior.Prior.__init__(self, name, latex_label, minimum, maximum)\n",
+    "        super(Exponential, self).__init__(name=name, latex_label=latex_label, minimum=minimum, maximum=maximum)\n",
     "        self.alpha = alpha\n",
     "        \n",
     "    def rescale(self, val):\n",
@@ -211,30 +139,21 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAABZgAAAKjCAYAAACQt2okAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAWJQAAFiUBSVIk8AAAIABJREFUeJzs3XuYnWV9L/zvPTMhHARCEE8ohAQVlIIGRBHPJNqKtrs10Xbrbnf7FlK7290zYO3ebffWt4T2rT1ZG9zd9dLaVoNKVbRKqngCDyRQPAAiIaAiioSAHEMy9/vHWpM1CUlmZq0188zM+nyua65132s9az1fr0v++eZ33U+ptQYAAAAAAKZqqOkAAAAAAADMTQpmAAAAAAC6omAGAAAAAKArCmYAAAAAALqiYAYAAAAAoCsKZgAAAAAAuqJgBgAAAACgKwpmAAAAAAC6omAGAAAAAKArCmYAAAAAALqiYAYAAAAAoCsKZgAAAAAAuqJgBgAAAACgKwpmAAAAAAC6omAGAAAAAKArI00HmEtKKbckOSzJloajAAAAAAD0YkmSe2utx/XyIwrmqTnsoIMOWnziiScubjoIAAAAAEC3rr/++jz44IM9/46CeWq2nHjiiYs3btzYdA4AAAAAgK6deuqp2bRp05Zef8cZzAAAAAAAdEXBDAAAAABAVxTMAAAAAAB0RcEMAAAAAEBXFMwAAAAAAHRFwQwAAAAAQFcUzAAAAAAAdEXBDAAAAABAVxTMAAAAAAB0RcEMAAAAAEBXFMwAAAAAAHRlpN8/WEo5L0lqrRf1+7f3uM/yJGuSLG6/tTXJ+lrrhum8LwAAAAAALX0tmNvl8tok010ur0tyWpJzaq2b2u8tTbKulHJ+ktW11m3TmQEAAAAAYND1XDC3i90VSc5PsrTnRBPf7/L2fU4dXyLXWjcnWdn+fGOSZdOdBQAAAABgkHV9BnMp5bxSSk2rzF2dVsF8Sb+C7eOe56ZVZu9vQnl1kqXtKWcAAAAAAKZJLw/5u7jWWmqtR9RaV9Zap7VcblubZPPYsRh70y6eNyQ5tz1dDQAAAADANOi6YJ7pM45LKauSLMrkpqTXt1/XTF8iAAAAAIDB1ssE80wbK4tvnsS1m9uvq6YpCwAAAADAwJtLBfNp7dfN+71q92uWllIWTVMeAAAAAICBNicK5vZZymNF8YQFc611/DWn7fNCAAAAAAC6NicK5iTjH9a3tYfvAgAAAADQJ3OlYO7lmAtHZAAAAAAATIORpgNMo21plctHNh1kTtqxPbnpE8mtVybbbkt+9r1NJwIAAAAAZpm5UjAvHlvUWrdN8btTnmAupWzcx0cnTPW35q6afOCXkx0Ptbb3fi857InNRgIAAAAAZpVBOCJj8cSX8CgjC5Ojxz0f8bYrm8sCAAAAAMxKc6VgnlG11lP39pfkhqazzahjn99Z33pVczkAAAAAgFlpzhXMpZSpTjNvnZYgg+DYMzrr2xTMAAAAAMDu5krBPNVzl/v13cH25NOTMtxaf//ryYN3N5sHAAAAAJhV5krB3M0U8tik8139DDJQFj4meeIp7U1NbvtSo3EAAAAAgNllrhTM46eQl/bwXaZqt3OYv9BcDgAAAABg1pkrBfPV49aLJ7q4lDK+hL56nxcysfEFs3OYAQAAAIBx5kTBXGvdls4k8mQmmMc/CHBz/xMNkGPGPejv9muS7fc3lwUAAAAAmFXmRMHc9v7266L9XtUyVkJvapfTdOvgxclRJ7bWozuS7xgIBwAAAABa5lLBvL79unIS176u/fq+acoyWI4dN8XsmAwAAAAAoG1WFMyllPWllLtLKWv3dU2tdUNax12sKKVMNMW8Ksm2WutF/cw5sI7xoD8AAAAA4NH6XTAv2uN1QqWUc9MqhBclOa+Usnw/l69pv75pgt9LknMmm4EJjJ9g/vZXkh3bm8sCAAAAAMwafSmYSymLSimrkqxov/XaUspkJo2npD3FfH5aRfSKPT8vpSxNsi7JxbXWS/p574F2+JOTRce01jseTL73H83mAQAAAABmha4L5lLKqlJKLaXUJHenc0Zy0ppGvjzJ3WPX7GsyudZ6cZIN7e3FtdZN+7tv+9iLlUnWlVLWtovs5aWU85JsTLKm1rpmf79BF449s7O+7crmcgAAAAAAs8ZIt19sTwiXfoSotU7mwX3jr9+QZFl7inmsuN5caz2iH3nYi2POSP7jn1vrW69KzvyNZvMAAAAAAI3rumCeDdpF84YJL6R3x4570N9tVyWjo8nQrHhGJAAAAADQEA0hk3Pk8ckhR7XWD21L7ry+2TwAAAAAQOMUzExOKa1jMsbc6hxmAAAAABh0CmYmb/yD/hTMAAAAADDwFMxM3rF7TDDX2lwWAAAAAKBxCmYm7/EnJQsPa63vuyPZurnZPAAAAABAoxTMTN7Q8O7nMG/5fHNZAAAAAIDGKZiZmiUv6KwVzAAAAAAw0BTMTM2eBbNzmAEAAABgYCmYmZonnNw5h/lHtzuHGQAAAAAGmIKZqRkecQ4zAAAAAJAkGWk6ALPbkgsue9R75wwfmTcvaK0/dOn78lvrH/uoa7ZcePZ0RwMAAAAAGmaCmSn74ugzdq2fO3R9EucwAwAAAMAgMsHMpOw2kbxzR3LRRcnD9+ZJZWu2nPeMZPHSJHufeAYAAAAA5icTzEydc5gBAAAAgCiY6daSF3TWCmYAAAAAGEgKZrqzZ8FcncMMAAAAAINGwUx3nnBysvCw1vre7yZ339JsHgAAAABgximY6c7wSHLM8zp7x2QAAAAAwMBRMNM95zADAAAAwEBTMNM95zADAAAAwEBTMNO9J5ySHHBoa+0cZgAAAAAYOApmujc8khx7RmfvmAwAAAAAGCgKZnrjHGYAAAAAGFgKZnozvmC+5XNJnMMMAAAAAINCwUxvnnBKsvCw1vpHt2dJuaPZPAAAAADAjFEw05vhkeTYM3dtzxz6eoNhAAAAAICZpGCmd0tfvGv5/KGvNRgEAAAAAJhJCmZ6d9yLdi3PGPpGSkYbDAMAAAAAzBQFM7173DOSgx+bJFlc7suJ5baGAwEAAAAAM0HBTO9K2WOK2TnMAAAAADAIFMz0x7hzmD3oDwAAAAAGg4KZ/hg3wXz60A3JzkcaDAMAAAAAzAQFM/1xxHHJ4cckSR5THkq+u6nhQAAAAADAdFMw0x97nMOcWz7bXBYAAAAAYEYomOmfcecw55bPNJcDAAAAAJgRCmb6Z/wE87e/lDzyYHNZAAAAAIBpp2Cmfw59Qm4aPbq13rk9ue2LzeYBAAAAAKaVgpm++sLoMzsb5zADAAAAwLymYKavrtqtYHYOMwAAAADMZwpm+uqq0RMzWktrc/s1yYPbmg0EAAAAAEwbBTN9dW8ek6/VJa1NHU1uvbLRPAAAAADA9FEw03dXjp7U2TgmAwAAAADmLQUzfXfl6DM6m80KZgAAAACYrxTM9N2XR09Ihg9obe68Prn3e80GAgAAAACmhYKZvnsoC5Njntd5Y/OnmwsDAAAAAEwbBTPTY+lLO+ubFcwAAAAAMB8pmJkey8YVzJuvSGptLAoAAAAAMD0UzEyPJ5ySHLS4tb7/B8n3v95sHgAAAACg7xTMTI+hoWTpSzr7mz/VVBIAAAAAYJoomJk+ux2T4RxmAAAAAJhvFMxMn/EP+rv1yuSRh5rLAgAAAAD0nYKZ6bPoKcmRx7fWOx5Kbruq2TwAAAAAQF8pmJley17WWTsmAwAAAADmFQUz02v8MRk3K5gBAAAAYD5RMDO9lrwgKcOt9R3XJff/sNk8AAAAAEDfKJiZXgceljz5OZ395isaiwIAAAAA9NdI0wGYn5ZccNmu9X8ffnJ+e0Fr/f73vTvnvfegR12/5cKzZyoaAAAAANAnJpiZdp8fPWnX+gXDX01SmwsDAAAAAPSNCWb6aq+TyDtfkVz0tuThe/KksjVbfudpyVFPS7L7pDMAAAAAMLeYYGb6DY8kx72ws7/5U81lAQAAAAD6RsHMzFj20s5awQwAAAAA84KCmZmx7KzOesvnkkceai4LAAAAANAXCmZmxuLjksXLWutHHkhuu6rZPAAAAABAzxTMzJzjV3TW39rQXA4AAAAAoC8UzMyc3Qrmf28uBwAAAADQFwpmZs6SM5Phha31ndcn93yn2TwAAAAAQE8UzMycAw5Jjn1+Z2+KGQAAAADmNAUzM8s5zAAAAAAwbyiYmVnjC+bNV2QkO5rLAgAAAAD0RMHMzDrq6cnhT2mtH743zyrfajYPAAAAANA1BTMzq5Tk+LN2bV88fF2DYQAAAACAXiiYmXnjjsl4ydC1DQYBAAAAAHqhYGbmHfeiZGgkSfJjQ1vy2NzTcCAAAAAAoBsKZmbegYcnT3nuru0LhxyTAQAAAABz0Ug/f6yUsjzJmiSL229tTbK+1rqhn/fZ457nJlmd5LT2W1cn2ZTkT2qt26brvvTo+LOSW7+QJHnx8H80HAYAAAAA6EbfJphLKeuSvDPJulrr6lrr6iRrk5xfSrm8lLKoX/dq3295KWVjkmVJzq+1HlFrPSLJ+e1LbimlnNfPe9JH485hftHQdcnozgbDAAAAAADd6MsEcynl8iRLk5w6fmq41ro5ycr252NlcD/utzzJv7fvt3n8Z7XWTUk2tQvvjaWUZbXWNf24L330+B9LDnlccv8Psrjcl3zv2uToU5tOBQAAAABMQc8TzO0jKlYkWb2fIylWJ1naLn37YX2Ss/Ysl8drf7Y6ybntQprZZGiodUzGmJum7RQVAAAAAGCa9OOIjLVJNrcnh/eqXTxvSKvsXdrLzUopq5Is3t/9xt13Q5LNaZ0LzWwz7piM3PSJ5nIAAAAAAF3pqWBul72LklwyicvXt197LXtXpvUgv8nakM4DAJlNjj8rO2r7/4Lf3ZTcd2ezeQAAAACAKel1gnmsLL55EteOHWexqsd7JlMvjLf24Z7020FHZGN9WntTk29d3mgcAAAAAGBqei2Yx4refZ6FPM7YNUtLKYt6uOfNSRaVUs6b5PUrkmguZ6lP73xWZ3PTJ5sLAgAAAABMWdcFc/ss5bGieMKCeY8H8vVyZMXY2ctrJyqZSykrkixNcnEP92MafWr02Z3Ntz6V7HykuTAAAAAAwJT0MsE8/mF9Uz2CousH/bUf3De+ZL58bxPR7ffWJ1nTfsggs9A365PznfrY1ubhe5Jvf6nZQAAAAADApPVSMPdyzEUv302Ss5KMlcYrktzSfuBgkl3T1f+e5Pxaq+nlWa3sfkzGNz/RXBQAAAAAYEp6PYN5qsZK4SN7+ZH2RPJxSTa031qUZH0pZX0p5dwk65Kco1yeG3Y7JsM5zAAAAAAwZ/RSMC8eW3RxBEWvE8yptW6rta5MctG4t1elVS6vrbVu2vs3mW2uGn1GMnJga3PnDcndtzYbCAAAAACYlKaOyFg88SWTdldaZzKPL7kvL6Ws7fYHSykb9/aX5IRew/JoD2VhctyLOm+YYgYAAACAOWGmj8jom1LK0nbpu63Wemqt9Ygkl4y75Lx2MdzztDQz4Kkv76ydwwwAAAAAc0JfCuYuStytPd5vRZKN2eMhfrXW1UlWpzPNvDzJlEvmdmH9qL8kN/SSm/142is66y2fS7Y/0FwWAAAAAGBSeimYp3rucl++W0pZnuTyJKtrrRv2/LzWekl2fwDg0iTru70fM2TRMclRJ7bWOx5Kbvlss3kAAAAAgAn1UjB3M4U8Nkl8Vw/3XZ9kw97K5TF7eQDgivbUM7PZ08Ydk3GTYzIAAAAAYLbr1wTz0h6+O2ntknhpkvMnc32t9fwkY0dorO7mnsygp447JuObn0xqbS4LAAAAADChXgrmq8etF090cSllfAl99T4v3L+VSVJr3TSF74yV0VMtwZlpT3lucuDhrfW930l+8I1m8wAAAAAA+9V1wVxr3ZbOJPJkytvxD9rb3OVtl071u+2cm6Jgnv2GR5JlZ3X2N368uSwAAAAAwIR6mWBOkve3Xxft96qWsYJ3U7v07UY35z4nrVK621KbmfT0n+isv/lvzeUAAAAAACY00uP31yc5N62jKy6a4NrXtV/f18P9NiY5t5SyaIol9fIka3u4L9NsyQWXJUkOT83GhUMZKaMZ/fbVee4F782de/n3iy0Xnj3TEQEAAACAPfQ0wVxr3ZDWZPCKUspEU8yrkmyrte6ziC6lrC+l3F1K2VcZPDYx/c7JZmw/GHDxuO8yi92Tx+QroyckSYZKzUuHr2k4EQAAAACwL71OMCfJmiSXJ3lTOg/U200p5dz28px9/Uj7mlXt7XmllPft+TC/Wuu2UsqaJOtKKefWWi/eX7D2gwXXJzmnh2M5mEZ7nUS+akvyid9Pklx00ndz0c91rhmbdAYAAAAAmtfrGcxjU8znp1UKr9jz83bJuy7JxbXWS/pwv4vb91vXnnje6+R0u7DemOT8ftyXGTT+HOabP51sf6C5LAAAAADAPvVcMCdJ+9iLlWmVvmtLKStKKctLKeelVfKuqbWumeA3Lk6yob29eM/p5b3c79S0Hi54dynl8vZ917bXdydZneSsiaacmYUWL02Oah2TkR0PJpuvaDQOAAAAALB3/TgiI8muSeZl7Snm5e23N9daj5jCb6ycwrWbkqxsTzAvTXJaWoXzuiSrHYkxxz39J5I7b2itb/xYcsIrm80DAAAAADxK3wrmMe2iecOEF/bvftuSbGr/MV88/ZXJ59/WWn/z35LR0WSoLwP3AAAAAECfaOyYnY4+NTnkqNb6/juT725sNg8AAAAA8CgKZmanoeHkaT/e2d/4seayAAAAAAB7pWBm9nr6uHOXb/x4czkAAAAAgL1SMDN7LX1JMnJga33n9cnWzU2mAQAAAAD2oGBm9jrg4GTpSzt7U8wAAAAAMKsomJndnv4TnbWCGQAAAABmFQUzs9v4B/3demUOz33NZQEAAAAAdqNgZnY79PHJ0ae11nVnXjZ0TbN5AAAAAIBdFMzMfiecvWv5iuGrGwwCAAAAAIynYGb2O/HVu5YvHvqPHJiHGwwDAAAAAIxRMDP7PfapyWOfniQ5qGzPi4euazgQAAAAAJAomJkrTnzVruXLh7/SYBAAAAAAYIyCmblh3DEZK4Y2JTsfaTAMAAAAAJAomJkrnvis5PCnJEkOLw8kWz7fcCAAAAAAQMHM3FBKcsLZnf31H2kuCwAAAACQRMHMXHJC5xzm3HBZMjraXBYAAAAAQMHMHHLMGbmrHtpa33dH8t2NzeYBAAAAgAGnYGbuGB7Jhp2ndvbXf7i5LAAAAACAgpm55ROjp3U2N3w0qbW5MAAAAAAw4BTMzClfGD0p99UDW5utm5MfXN9sIAAAAAAYYApm5pSHc0CuGH1W540bPtpcGAAAAAAYcApm5pxP7Bx3TIZzmAEAAACgMQpm5pxPjz4rGT6gtbnjq8ndWxrNAwAAAACDSsHMnHNfDk6WvrTzxjf+tbkwAAAAADDAFMzMTc/4qc7665c2lwMAAAAABthI0wGgGye/byQbFw5nQdmZ3L4pZ17wrnw3R+3z+i0Xnj2D6QAAAABgMJhgZk66N4/JF0ZP2rX/ieEvN5gGAAAAAAaTCWbmlN0mkTdtTT78a0mSPzjum/mDX/7bR12/5ILLZioaAAAAAAwcE8zMXSecnZTh1vo7X0nu+U6zeQAAAABgwCiYmbsOXpwsfXFn/40PN5cFAAAAAAaQgpm57Rk/1Vl/49LmcgAAAADAAFIwM7ed8OrOMRnf/lJyz3ebzQMAAAAAA0TBzNx2yJHJkhd09td/pLksAAAAADBgFMzMfc/8T521YzIAAAAAYMYomJn7Tnh1Utr/V77ti8m932s2DwAAAAAMCAUzc99jjkqOPbO9qY7JAAAAAIAZomBmfnBMBgAAAADMOAUz88MJr05SWutbr3RMBgAAAADMAAUz88Ohj0+WvKC9qck3/rXROAAAAAAwCBTMzB8nvaaz/toHmssBAAAAAANCwcz8ceJPJkMjrfV3vpzcfWuzeQAAAABgnlMwM38ccmSy9KWd/dc/2FwWAAAAABgACmbmF8dkAAAAAMCMUTAzv5zwymR4YWt9x1ezrHy32TwAAAAAMI8pmJlfDjw8eerKXdtXDX2xwTAAAAAAML8pmJl/xh2T8erhq5LU5rIAAAAAwDymYGb+edqPJwsOSZIcP3R7Tiy3NRwIAAAAAOYnBTPzzwEHt85ibmtNMQMAAAAA/aZgZn4af0zG0FVJdUwGAAAAAPSbgpn5adnLWg/8S/KUoTuT725sOBAAAAAAzD8KZuankYXJia/u7L/2geayAAAAAMA8pWBm/hp3TEa+9sFkdGdzWQAAAABgHlIwM38teVHurIe11vfdkdzy2WbzAAAAAMA8o2Bm/hoeyUd3ntHZX/f+5rIAAAAAwDykYGZe+9DOF3Q2138k2f5Ac2EAAAAAYJ5RMDOvXVeX5ubRJ7Y223+UfPPjzQYCAAAAgHlEwcw8V/KvO8/sbB2TAQAAAAB9o2Bm3rt0dFzB/K0Nyf13NRcGAAAAAOYRBTPz3m318cmTn9PajO5Ivv7BZgMBAAAAwDyhYGYwnPy6ztoxGQAAAADQFwpmBsMzfzoZGmmtv/PlZOstzeYBAAAAgHlAwcxgOOSxybKzOvuvrm8uCwAAAADMEwpmBsfJr+2sr3t/UmtzWQAAAABgHlAwMzie/srkgMe01nfdlNx+TbN5AAAAAGCOUzAzOA44ODnx1Z29h/0BAAAAQE8UzAyW8cdkfHV9svOR5rIAAAAAwBynYGawHPfi5NAnttYP/DD51oZm8wAAAADAHKZgZrAMDScnv66zv/a9zWUBAAAAgDlOwczgedZ/7qxv/Lfkga3NZQEAAACAOUzBzOA56unJ0ae21qOPJF/7QLN5AAAAAGCOGmk6AMyEJRdcttv+DcMn5y0LNiZJ/uOjf5uf+uCTdvt8y4Vnz1g2AAAAAJirTDAzkD6y84w8XFv/vnLK0OY8tXyn4UQAAAAAMPeYYGZe2+8k8vsvS77xr0mSy1/6neTlax416QwAAAAA7JsJZgbXKeMe9nfd+5OdO5rLAgAAAABzkIKZwXX8Wckhj2ut77sj2XxFo3EAAAAAYK7pa8FcSlleSllXSlnf/ltXSlnRz3vs596rSimXl1JuLqXcXUrZWEo5bybuzRw1vCA5+bWd/bXvbS4LAAAAAMxBfSuYSynrkrwzybpa6+pa6+oka5Oc3y5+F/XrXnvcd3kp5eYka5KsrbUuq7UekeScJEeWUjZOx32ZJ075uc76hstyWO5vLgsAAAAAzDF9KZhLKZcnWZHkrFrrprH3a62ba60r29u+F72llFXt311Xa11Za90w7t6baq3nJ3lfKWVtv+/NPPGEk5InnNxa73w4rxr+YrN5AAAAAGAO6blgLqWcm1a5vLrWum0fl61OsrQ95dwX7aM31ie5qNZ60T6uWZvWFPWMHNPBHPWs1+9arh7+TINBAAAAAGBu6ccE89okm8dPLu+pXTxvSHJuKWVpH+6ZtMrlze0p5X05t/06LcdzME/82OpkaEGS5NlD38rTyrcbDgQAAAAAc0NPBXP7iIpFSS6ZxOXr269rerln+77r2ved6OiL85Nsar/C3h1yZHLC2bu2rxu+orksAAAAADCH9DrBPFYW3zyJaze3X1f1csP2wwLPTZJa68X7u7bWenGt9dRa62QKcAbZ8v+ya/nTw59LdjzcYBgAAAAAmBt6LZhPa79u3u9Vu1+ztF0Sd+u17dd9HskBU7b0pcnhT0mSLC73JTd+rOFAAAAAADD7dV0wt89SHiuKJyyYa63jrzltnxdObGxqekMPvwG7Gxre7WF/2fTu5rIAAAAAwBzRywTz+If1be3hu1O1vP2661iOUsraUsq6Usr6Usrl7XW/HibIoHj26zNaS2t986eTbbc1mwcAAAAAZrleCuZejrno6rullOXjtltLKYtKKeuTrKu1rqm1rq61rkyyMcnNpZRze8jIoFl0TD4/elJ7U5Nr/6nROAAAAAAw2/V6BvNUbWu/Htnl98dPJW9LsrZdKu92REf74X/nJ1mnZGYq3rfzpZ3NNf+YjO5sLgwAAAAAzHK9FMyLxxa11m37u3Avup1+XjxuvTzJ5fu6sNZ6UVpnQ0/5uIxSysa9/SU5oavUzBmXj56arfUxrc093042X9FoHgAAAACYzZo6ImPxxJdMeM81tdZLJrh+7PO1Xd6PAbM9C/KhnS/svHHNe5oLAwAAAACz3EwfkdFPGyZxzdiE86pSyqQL8VrrqXv7S3JDV0mZU9638yWdzQ2XJfff1VgWAAAAAJjN+lIwT6W8bdva5a3GH8Vx8ySuH38284ou78mA+WZ9SnL0qa3Nzu3Jdf/SbCAAAAAAmKV6KZineu5yv747ZvPEl+xWZD+nD/dkUCz/+c5647uSWhuLAgAAAACzVS8FczdTyGOTzt2eOTD+njP1YEEG0UmvSQ44tLX+4TeTW7/QbB4AAAAAmIX6NcG8tIfvTsWmceupFsbdPliQQbTw0OTk1Z391f/QXBYAAAAAmKV6KZivHreesLwtpYwvoa/e54X7UWsdfyzGVAvjyRypAR2n/mJnff2Hk/t/2FwWAAAAAJiFui6Ya63b0plEnswE8/iJ417K3rEp5lMnce34EnoyDwWEjieenBx9Wmu9c3ty7XubzQMAAAAAs0wvE8xJ8v7262SOqxgroTe1y+lubdjj9/ZnfK4N+7wK9uW0cVPMG9+VjI42FgUAAAAAZpteC+b17deVk7j2de3X9/V4z3Xt19Mmce3YNZv2OF4DJueZP5MsPLy13ro52fLZZvMAAAAAwCzSU8Fca92Q1nEXK0opE00xr0qyrdZ60b4uKKWsL6XcXUpZu597bk5rGnlRKWXFBPdc0379kwmug7074ODklJ/t7K/+v81lAQAAAIBZptcJ5qRT4r5pXxeUUs5tL8+Z4JpVaR1rcV4pZfkk7rnPIrqUsirJ8iSX1Fov2c9vwf6NPybjhsuSH32/uSwAAAAAMIv0XDC3p5jPT6sUftREcSllaVrHWlzcr6K3PcW8OsnyUsr6PT9v51ifZEOtdXU/7skAe9yJyTFntNajO5KBbTeFAAAgAElEQVRr/7HZPAAAAAAwS4z040dqrReVUjYlWVdKuSTJ5Um2JlmR1mTzmlrrxRP8xsWllNXt71xca900wfWXlFJWtu95d1oPHNyW1tTyiiTn7+84DtifJRdcttv+Pw09O39xwFVJkm9f/o686LKnpY7795ktF549o/kAAAAAYDboS8Gc7JpkXtaeHh473mJzrfWIKfzGZB4WuLd7jpXKSbJuqr8DE/n46On5w/ruHFHuy1OG7syLh67LFaPPajoWAAAAADSqbwXzmHbpu6HfvzvBPTcl2e/EM0zGfieRP3F1ctXfJEne9cz/SF7/5kdNOgMAAADAIOnHQ/5gMJz2S531TZ9Mtm5uLgsAAAAAzAIKZpisI5clx4+dvlKTr/x9o3EAAAAAoGkKZpiK08/trK95Tw7Mw81lAQAAAICGKZhhKo5fkRyxpLV+6J781PCVjcYBAAAAgCYpmGEqhoaS55yza/sLw59MUpvLAwAAAAANUjDDVD379cmCg5Mkzxi6Nc8pNzYcCAAAAACaoWCGqTroiOTk1+7a/sLIJxsMAwAAAADNUTBDN8Ydk/GKoa8k997eYBgAAAAAaIaCGbrxhJOSY89MkiwoO5ON72o2DwAAAAA0QMEM3Tq9M8Wcq/8h2bG9uSwAAAAA0AAFM3TrhFfljnpEa33/D5LrP9xsHgAAAACYYQpm6Nbwgrx3x1md/Zcvbi4LAAAAADRAwQw9+JedL8v2OtzafPtLye3XNhsIAAAAAGaQghl6cGcW5WOjz+288aW/ay4MAAAAAMwwBTP06F07fryz+eolyY/uaC4MAAAAAMwgBTP06Np6fPKU9hTz6CPJl9/ZbCAAAAAAmCEKZuiH5/1qZ3313yfbH2guCwAAAADMEAUz9MMJr0oWHdNaP3h3ct2/NJsHAAAAAGaAghn6YXgkee4bO/ur/jYZHW0uDwAAAADMAAUz9Muz35AccGhrfddNybcubzYPAAAAAEwzBTP0y4GHJaf+Qmd/1dubywIAAAAAM0DBDP303DVJaf9ndctnkju+2mweAAAAAJhGCmbop0XHJCf+ZGd/1d82lwUAAAAAppmCGfrtjF/rrL+6PvnRHc1lAQAAAIBppGCGfnvKc5Inn95ajz6SfOX/NJsHAAAAAKaJghmmwxm/2ll/5e+TRx5sLgsAAAAATJORpgPAfLDkgst22w9nOJ9Z+Ng8ufwweXBrfv+P3px/2nnWrs+3XHj2TEcEAAAAgL4zwQzTYGeG8w87fnzX/pzhj2Yoow0mAgAAAID+M8EMPdjvJPLDL0re9pHkoXty3ND3s/m/7MyS9/g3HQAAAADmD20XTJeFhybPOaez//zbktTG4gAAAABAvymYYTo991eSkQNb6+9dm+cPfb3ZPAAAAADQRwpmmE6POSp59ht2bd84/OEGwwAAAABAfymYYbqd8WtJaf2n9sLhr+WksrnhQAAAAADQHwpmmG6Lj0ue+TO7tr8y8pEGwwAAAABA/yiYYSac+Ru7lj8x9OXkrpsbDAMAAAAA/aFghpnwxJOT41ckSYZLTa78q4YDAQAAAEDvFMwwU878zc762n9KfnRHc1kAAAAAoA8UzDBTlrwg14we31rv3J588R3N5gEAAACAHimYYaaUkr/b8erO/ur/mzx0T3N5AAAAAKBHCmaYQZ8cPTU3jz6xtXn43uQrf99sIAAAAADogYIZZlDNUP5u57gp5qvenmx/oLlAAAAAANADBTPMsEt3viA57MmtzQM/TDb+Q7OBAAAAAKBLCmaYYY9kJHnhb3Xe+MJfJo882FwgAAAAAOiSghma8Kw3JIe2z2K+7/vJpvc0mwcAAAAAujDSdAAYREv+x7/nvw6vzB8teHeS5Hsf+5O8+EOPy/Ys2Ov1Wy48eybjAQAAAMCkmGCGhvzzzpflznp4kuSJZWtWD3+m4UQAAAAAMDUmmGEGPWoS+crvJJ/8gyTJWx97ed7662uTkQN2fbzkgstmMh4AAAAATIkJZmjSab+UHHxka33Pt5Pr/qXZPAAAAAAwBQpmaNIBhyRn/Fpn/9k/S3Y+0lweAAAAAJgCBTM07fRzkoOOaK233Zp8dX2zeQAAAABgkhTM0LSFhybP+9XO/rN/lozubC4PAAAAAEySghlmg9PPTRYe3lpvvTn52gebzQMAAAAAk6BghtngoEXJc9d09p9Zm+zc0VweAAAAAJgEBTPMFs97Y7LwsNb6rpucxQwAAADArKdghtni4MXJGf+ts7/iTzISU8wAAAAAzF4KZphNnvfG5KAjWuttt2b18GeazQMAAAAA+6FghtnkwMOTM39j1/bXRz6UhdneYCAAAAAA2DcFM8w2p5+bHPK4JMmTytb83PCnGg4EAAAAAHunYIbZ5oBDkhf+zq7tfxv512T7/Q0GAgAAAIC9UzDDbHTqf00OOzpJclS5J/nyxc3mAQAAAIC9UDDDbLTgwORFv9fZf/4vkofuaS4PAAAAAOyFghlmq2e/IbeOts5izkPbki++o9k8AAAAALAHBTPMVsML8pc7fqazv+rtyQNbm8sDAAAAAHtQMMMsdunoC/Kt0Se1Ng/fm3zhL5sNBAAAAADjKJhhFhvNUN62Y1XnjS+tS+69vblAAAAAADCOghlmuY+Nnp484eTWZseDyRUXNhsIAAAAANoUzDDL1QwlK/+488Y170nuvLG5QAAAAADQpmCGuWDZy5KlL22t62iy4Y/3fz0AAAAAzICRpgMAE1tywWV5ZlmRyxZ+uvXGjZflNW/682ysT9/r9VsuPHsG0wEAAAAwqEwwwxzx9XpcLt35/F3731/wT0lqc4EAAAAAGHgmmGEWe9Qk8t3PTP7mOcnO7Tl16KZs+YWanPiqXR8vueCyGU4IAAAAwCAzwQxzyRFLkuf8cme/4Y+TnTsaiwMAAADAYFMww1zzwt9NFh7WWt91U3LNe5rNAwAAAMDAUjDDXHPIkckLfrOzv+JPku33N5cHAAAAgIHV14K5lLK8lLKulLK+/beulLKin/eYQpbLm7o3TLvnvjE59Emt9X3fT67622bzAAAAADCQ+lYwl1LWJXlnknW11tW11tVJ1iY5v132LurXvSaRZVWSFUlm7J4wow44OHnpmzr7L/xF8qPvN5cHAAAAgIHUl4K5lHJ5WoXuWbXWTWPv11o311pXtrcb+3GvSWRZlFbRDfPbKf85OerE1nr7fcmn/nezeQAAAAAYOD0XzKWUc9Mql1fXWrft47LVSZa2p5yn29qYXGYQDI8kr3hrZ3/NP+aZZUtjcQAAAAAYPP2YYF6bZPP4yeU9tYvnDUnOLaUs7cM996qUsjzJtiSbp+seMKscf1by1Fe0NzX/Y8F7ktQmEwEAAAAwQHoqmNtnHS9KcskkLl/ffl3Tyz0nsLbWev40/j7MPi9/SzI0kiR53tD1ecXQVxoOBAAAAMCg6HWCeawsvnkS145NFa/q8Z57VUo5L8lMHMEBs8tRT0uec86u7ZtH3pvseLjBQAAAAAAMil4L5tPar5M5kmLsmqXtB/H1Tfv3nlNrncwkNcw/Lz4vOeiIJMkxQ3cmX3xHw4EAAAAAGARdF8zts5THiuIJC+Za6/hrTtvnhd15ZxJHYzC4Dl6cvOT3O/vP/lly3w+aywMAAADAQOhlgnn8w/q29vDdnpRSViT5yh4FNgye034xN40e3Vpv/1Hyqbc0mwcAAACAea+XgrmXYy76eUTG+bXWi/r4ezA3DS/IW3a8obPf9O7ke9c1lwcAAACAea/XM5inalv79ch+/FgpZW2Stf34LZgPPjN6Sj6985T2riaf+P2k1kYzAQAAADB/9VIwLx5b1Fq37e/Cveh5gnnsDOha64Zefwvmk7fseENShlubLZ9Lvv6hZgMBAAAAMG+N9PDdXkrixRNfMqF1SVb34XcepZSycR8fnTAd94N+urkenZx+TvKlv2u98Yk3J099ebLwMc0GAwAAAGDemekjMvqilHJukvVdTE7DYHjJm5JDHtda/+j25LOOKQcAAACg//pSMJdSpjrNvLXHe62utV7c7W9MpNZ66t7+ktwwXfeEvjpoUbLyf3X2V709ufPG5vIAAAAAMC/1UjD3Mj3cy3fXJjm/h+/DYDjlZ5NjzmitR3ckH/s9D/wDAAAAoK96KZi7mUIem3S+q5sbllKWJ9lWa93UzfdhoJSSvPJPk9L+z/yWzyTfuLTZTAAAAADMK7085G/8FPLSJFMpfbudYF5ba13Z5XdhYCy54LJd6z8cWZlfHPlEkuT29/92Vjw8mgdy4G7Xb7nw7BnNBwAAAMD80MsE89Xj1osnuriUsnQf352U9vTyilJKnegvrcI7Sdbv8dmqqd4X5rq37ViVO+thSZInla359ZEPNZwIAAAAgPmi6wnmWuu2Usq2tI69WDrR9ekcj5Ekm7u436ZSyrJJXn5z+3VNkg3jfmPK94W5ZJ+TyNfuTC79lSTJGw/4t7zxN/5nctTTdpt0BgAAAICp6mWCOUne335dtN+rWsZK6E211q6OyKi1bp7M37ivbN3H+zBYTvnZ5CnPa61HH0k+7oF/AAAAAPSu14J5fft1Muciv679+r4e7wlMVSnJ2X/WeeDf5iuSr32g0UgAAAAAzH09Fcy11g1pHXexopQy0RTzqiTbaq0X7euCUsr6UsrdpZS1veQC9uIJP5acvqaz//j5OTz3NZcHAAAAgDmv1wnmpHXOcZK8aV8XlFLObS/PmeCaVWkdt3Fe+6F+QD+97M3JYUe31g/8MG8a+adm8wAAAAAwp/VcMLenmM9PqxResefnpZSlSdYlubjWekmv99ufUsqiUsp5495a074/kCQLD01e+ae7tj87ckWeW65vMBAAAAAAc1k/JpjTPvZiZZJ1pZS1pZQVpZTl7bJ3Y5I1tdY1E/zGxUk2tLcX11o3Tfb+pZR1pZSa5O4k44/XWJHk5lJKbX8OnHB2csKrdm3/3wX/J9nxcIOBAAAAAJir+lIwJ61J5lrrsiSXJ1meVrm7udZ6RLs8nsxvrKy1lonK6L18b037e/v9m/r/KpinXvmnyQGHJkmWDX0v+dyfNxwIAAAAgLmobwXzmHbRfFH7b1qPxAC6dNiTkhV/2Nl/7v9L7ryxuTwAAAAAzEl9L5iBOeK0X8o1o8e31qOPJB/5zWR0tNlMAAAAAMwpCmYYVEPDedMjv5xH6nBrf9uVyTXvbjYTAAAAAHOKghkG2A31mLxz59mdNy7/n8mP7mguEAAAAABzioIZBtxf7viZ5Iglrc1D9yQf/e2k1kYzAQAAADA3jDQdAGjWwzkgP/f91+efD3hr640bL8t/f/Mf5MOjz9/nd7ZcePY+PwMAAABgcJhgBnLV6DPz3h1n7dr/8YJ35bG5p7lAAAAAAMwJJphhgO02ifzQC5N3PD+559s5otyXq5/9seS170lK2XXJkgsuayAlAAAAALOVCWag5cDDkp/8q87++o8kX/9Qc3kAAAAAmPUUzEDHspcly3++s//Y7yb33dlcHgAAAABmNQUzsLuXvyU57OjW+oG7WiUzAAAAAOyFghnY3YGHJ68ed1TGNy5Nvn5pc3kAAAAAmLUUzMCjPXVF8qw3dPaX/U5y/w+bywMAAADArKRgBvbuFW9NDn1ia/3AD5OP/EaS2mgkAAAAAGYXBTOwdwctSn7yrzv7Gz6aVcOfbS4PAAAAALOOghnYt6euTE77f3Zt/3Dk3Xly+UGDgQAAAACYTRTMwP69/H8ni5clSQ4tD+bPF7wjGd3ZcCgAAAAAZgMFM7B/BxyS/MzFSRlOkpw+dGNy5V81HAoAAACA2UDBDEzsyaclL/q9zv5Tb02+d11zeQAAAACYFRTMwOS86Hdz7WjrqIyMPpJ88NzkkYeazQQAAABAoxTMwOQML8hvPfKrebAe0NrfeX3y7/+r2UwAAAAANErBDEzaLfWJeeuO13fe+OLbk5s/3VwgAAAAABqlYAam5B93rkiOX9l540NrkvvubC4QAAAAAI1RMANTVJKfentyyFGt7X3fTy79lWR0tNlYAAAAAMw4BTMwdYc+PvnpdZ39tzYkV/1Nc3kAAAAAaMRI0wGAuWfJBZclSS4YeXV+ZeQjSZJHPvlHec1Hk+vqskddv+XCs2c0HwAAAAAzwwQz0LU/27E61462CuUFZWf+esFf5zF5oOFUAAAAAMwUE8zApO11Ennrycm6FyUP35tjh36Qr5328eQ1f5+UsmvSGQAAAID5yQQz0JvFxyWv/ovO/msfSK75x+byAAAAADBjFMxA7056TbL85zv7j5+X/OCG5vIAAAAAMCMUzEB//Pja5LFPb60feSB5/8/n/2/vzuPsquv7j7++d5ZANiZhXw0TZFXRBMSlWIWJhQLaSkYElaJIgm2t/rQlYLWt1kIGK7bVqhPq1rIIiQpaXEiEuotkAWTXhCCyZ5kEss7y/f1xzp25M5nlzr0zc+6deT0fj/O4Z/mecz43j8fNvfO+3/v9TmZntjVJkiRJkiRpVBkwSxoZ9ZOh+WtQu3eyveERrqr7LyBmWZUkSZIkSZJGkQGzpJFz4PFw9me7N99a8wsurLk9w4IkSZIkSZI0mgyYJY2sV54Pcy/q3vxY7XXwxN3Z1SNJkiRJkqRRY8AsaeSd0QIHnwhAfeiEpRfBto3Z1iRJkiRJkqQRZ8AsaeTV7QVv/2/a4pRke+sf4Fvvg67ObOuSJEmSJEnSiDJgljQ6Zszi/7X/Zc/22jvgx1dnV48kSZIkSZJGnAGzpFFzZ9er+HzHW3t2/LgFfrs8u4IkSZIkSZI0ogyYJY2qazqa4cg3pFsRll0MG9dmWpMkSZIkSZJGRm3WBUga37rIMfeh8/nupPs5JGyCXVv47b+fw5/v/gQvMrnfc9YvPmuMq5QkSZIkSVIp7MEsadRtZB8W7v4wO2MdAC/NPcln675IoCvjyiRJkiRJklQOezBLGjV79ES+9wD49gIA5tWs4rE33Qen/X334VmX3zaW5UmSJEmSJKlM9mCWNHZOPA9e+9c92z+5Gh78Tnb1SJIkSZIkqSwGzJLGVtMnoPFNPdvfvhSefSC7eiRJkiRJklQyA2ZJY6umFuZ/BWbMSrbbt8E3LoDtmzItS5IkSZIkScNnwCxp7E2eCe+4EeqmJNub18PNF1JHR6ZlSZIkSZIkaXgMmCVl48Dj4W2tPdvrf8qnar8CxMxKkiRJkiRJ0vAYMEvKznHnwGkf7948r/b/uLTmuxkWJEmSJEmSpOEwYJaUrVM/Aide0L15ed034MFbMyxIkiRJkiRJxTJglpStEOCcf4eXvL5n37cWwpOrsqtJkiRJkiRJRTFglpS92no47zoe6zow2e7YATeeD21PZFuXJEmSJEmSBmXALKkyTJ7Je9svoy1OSbZffBZuOA92bs22LkmSJEmSJA2oNusCJCnvsXgwC3d/mP+pv5L60AnPPcCP/+UsLm7/WzoG+e9q/eKzxrBKSZIkSZIk5dmDWVJFuSsex0c73te9/cc199FSdy0QsytKkiRJkiRJ/bIHs6SK0dMT+Sy4swF+3ALAuTU/5dw/Phma/rFX+1mX3zbGFUqSJEmSJKmQPZglVaY3XgGvenfP9s+ugbuWZFePJEmSJEmS9mDALKkyhQBn/xscfUbPvu9fBg/eml1NkiRJkiRJ6sWAWVLlqqmF+V+BQ09Kd0T45iXw+C8yLUuSJEmSJEkJA2ZJla1+ClxwM+x7VLLduQtufAc8+2C2dUmSJEmSJMmAWVIVmLIvvOubMPXAZHvnFrjubRwWnsu2LkmSJEmSpAnOgFlSdZgxC965FOqnJdsvPM31dVdyAJszLUuSJEmSJGkiM2CWVD0OPhHOvxFqJgHwktxz/E/9VbB9U8aFSZIkSZIkTUwGzJKqy5Gnwtv/G3K1AByT+wNc9zbYuTXjwiRJkiRJkiYeA2ZJ1eeYM+DPW+mKIdl+ak0y8V/7jmzrkiRJkiRJmmAMmCVVp5fP5+873tuz/fjP4eYLoWN3djVJkiRJkiRNMAbMkqrWjZ2nc2X7+T07fns7fOsS6OzIrihJkiRJkqQJxIBZUlVb0nkOnPq3PTsevAW+vdCQWZIkSZIkaQwYMEuqfqd9DE65tGf7/mVwy/uhqzO7miRJkiRJkiYAA2ZJ1S8EOGMxnPy+nn2/uRlu+UtDZkmSJEmSpFFkwCxpfAgBzvw0zH1Pz777vgHf+QB0dWVXlyRJkiRJ0jhWm3UBklSuWZff1r0eOJ0ra9dzfu2dyY57ruemlU9yecf7iOl3ausXn5VFmZIkSZIkSeOOPZgljSuRHB/tuJibOt7Yve+82v/jytovE7AnsyRJkiRJ0kiyB7OkqjVoT+Sus+DWv4J7bwDg/No7qQ/tXNa+cIyqkyRJkiRJGv8MmCWNT7kcvPXzQIR7bwTg3JqfMYl26DwTauqyrU+SJEmSJGkccIgMSeNXrgbe+gWY8xfdu86uuQtueje078ywMEmSJEmSpPHBgFnS+JbLwTn/Dqdc2rPv0e/Dje+A3duzq0uSJEmSJGkcGNGAOYQwJ4TQGkJYmi6tIYSmkbxHn/s1hhBaQgirQgibQwhrQwjLQwgLQggNo3VfSVUmBDhjMV/sOKdn37o74fr5sOuF7OqSJEmSJEmqciMWMIcQWoFrgdYYY3OMsRloARaloe+IBr4hhMuA5cBa4BJgLrAIaANagc0hhAUjeU9JVSwEWjrewWfa5/fse/zn8N9/Bts3ZVeXJEmSJElSFRuRgDmEsBxoAk6PMa7O748xrosxzks3V43EvdL7tQAnxxhnxxiXxBhXp/dalgbbzWnT1rStJAGBz3W+Deb9c8+uJ1fCV8+ELU9mV5YkSZIkSVKVqi33Amkv4SZgboyxbYBmzSQ9iltjjAvLvN8coCnGOHegNjHGZSGERSQ9qC8LIdwdY1xWzn0ljR+zvjubd9W8h0/Wfo1ciPD8wzx5zalcuPty1sZD92i/fvFZGVQpSZIkSZJU+UaiB3MLsK6w53JfafC8AlgQQmgcgftdMlSjGOPVJMNl5M+RpG7Xdc7jg+1/xe5YA8ChYSNL6z/BieF3GVcmSZIkSZJUPcrqwRxCmA80AEuKaL6UpKfzQpKxkkvVOFiY3ccS4DKgMYQwZxjnSRqH9uyJfBb87jS46V3Qvp2Z4UVundoC77gOZp/GrMtvy6ROSZIkSZKkalFuD+b8cBdri2i7Ln2cP2irQaTDYzSGEDan4fZQCus6qdT7ShrHjjod/uK7sPeMZLt9G1z/drj/m9nWJUmSJEmSVAXKDZjzoe26QVv1btMYQmgo8X754TUagCuKaL+yYH12ifeUNN4ddhK894cwPR1/uasdll3MxTW3ATHT0iRJkiRJkipZyQFzOpZyPigeMmCOMRa2KbU3ceEQFysHbNWjcLznjSXeU9JEsP8xcPHtsN/R6Y7Ix+uu559qvw5dnZmWJkmSJEmSVKnK6cFcGN5uKuPcoqUh9Qxgboxx4VDt+9zH8ZclDW6fw5KezIe/pnvXRbW3wzfeCbu3ZViYJEmSJElSZSonYC51mIuyzo0xtg1jsr6TC85bUeo9JU0gk2fChbfCCX/es+/R78PXzoIXns2uLkmSJEmSpApU7hjMw9WWPu472jdKx3nOTwR49WjfT9I4UrcXnPsVvtRxTs++p9bAfzXB849kV5ckSZIkSVKFqS3j3Jn5lRhj22AN+1FO7+diLShYv2o4J4YQVg1w6NjSy5FUVXI5FneczxNxf/6l/msQu2DL7+HL86D5azD7tKwrlCRJkiRJylxWQ2TMHLpJ6dLeyy3pZnMJAbgkAXB9ZxOcfxPUTUl27NwC182Hu5ZAjNkWJ0mSJEmSlLGxHiJjrFybPl4dY1w23JNjjHP7W4CHR7ZMSVXh6DfDe78P0w5JtmMnfP/v4H8/BB27s61NkiRJkiQpQ+UMkdEthNAwzF7Cm0bivgPUsoBk7OUlMcZFo3UfSRPHrMtvA2B//p5r66/hlbm1yYFVX+NXd9/F+3d/kM1M726/fvFZWZQpSZIkSZI05srpwVzOsBOjMmRFCGEO0EoSLi8cjXtImrieZwbn7f443+58ffe+1+Qe4tb6j/PS8IcMK5MkSZIkScpGOT2YS+mFnB+3eWMZ9+1XOu7yj4BlhsuSRsKAPZHjn8HProEffRKAI3LPs3zaJ1n44iX8sOvkMaxQkiRJkiQpWyPVg7mxjHNHyipgRYyxeRSuLUk9QoBTPwLvuKFn8r/dL9Ja/1n+rvYb0NWZbX2SJEmSJEljpJyAeWXB+syhGocQCkPolQM2LEEIYTmwznBZ0pg69iy4+HZoOKJ711/VfgeuOxe2jfgPNSRJkiRJkipOyQFzOqlfvidyMT2YGwrW15V6375CCK1pPfMGadPQJ+CWpJFx0MtgwY9h9uk9+9bdCUveCE/dk1lZkiRJkiRJY6GcHswAN6ePDYO2SuQD3tVpOF22EMJlQONg4XKqKV0kaeRNngnvXMp/dPxZz74tv4cvvxnWXJ9dXZIkSZIkSaOs3IB5afo4VMALcF76eFOZ9wQghDAfOK+IcBngZEaw17Qk7SFXwzUdb+d9uz8Ck6Yn+zp3wa1/Cbf+Nezenm19kiRJkiRJo6CsgDnGuIIkuG0KIQzVi3k+0BZjvHqgBiGEpSGEzSGElsEuFEKYAyyMMc4tstQ5jPC4z5LUnxVdc+GSO2H/43p2rvkfuPY0eO7h7AqTJEmSJEkaBbUjcI2FwHLgCmBRfw1CCAvS1UsGukjaZn66eVkI4aYY4+p+2jWS9JxuSXsxD2QmydAds4GmkRqWQ5KGMutfH2Eyf8eVdf/Fn9X8Itn5/ENs/8838A8dF7Gs84/3OGf94rPGuEpJkiRJkqTylR0wxxhXhBAWkQS+y9Nezd3SQLgVWBJjXFbOvdJe0stJxnNuHcapewTVkjSatrMXH2r/K37ZdRgGt64AACAASURBVAKfqP0ae4V2Jodd/GtdK6/NPcjH29/DdvbKukxJkiRJkqSyjEQPZmKMV4cQVgOtIYRlJCHwJpKJ9a4gGc5iyRDXWBJCaE7PWdJf72Xg7fRMFjgcjr8sadT13wv5bHj2PbD0ItjwKADn1vyUcw98Fpq/xqzPrh/LEiVJkiRJkkZUuZP8dYsxrogxziYJl+eQBMXrYowzhgqXC64xL8YYYowLBzi+JD0+3KV5pJ6nJA3bgSfAgv+DEy/o2bfhUbj2NN5ZswKIGRUmSZIkSZJUnhHpwVwoHSJjxZANJWkiqZ8Cf/5FOPJUuO0j0L4dOnbyL3Vf4U25NfDiq2HqAVlXKUmSJEmSNCwj1oNZklSEV16Q9GY+4PjuXU01a+ALr4VHvp9ZWZIkSZIkSaUwYJaksbb/MXDJHXDK+3v2bd8AN74DvvtB2L0tu9okSZIkSZKGwYBZkrJQtzecuZh37b6CZ+KMnv2rvgZfOhX+sCqz0iRJkiRJkoplwCxJGfpZ18s5Y9diOP6tPTs3rYUvz4M7r4LO9uyKkyRJkiRJGsKIT/InSRqeNqYxa/XbeVvuYD5R93WmhR0QO+HHi3nwzhv5u/aFPBBn9Tpn/eKzsilWkiRJkiSpgD2YJakiBL7V9QbO3H0Vd3cd3b33+Nzj3FL/cf5f7VLq6MiwPkmSJEmSpD3Zg1mSMtRvT+SuC+FXX4Q7/hk6dlIXOvlg7bf54CGPcM4TF/Cb2Dj2hUqSJEmSJPXDHsySVGlyNfC6v4ZLfw5HvLZn/3MP8u36f+Cy2m9A+87s6pMkSZIkSUoZMEtSpdrvKLjoe3BGC9RNBqA2dPGXtd+B1lPh8V9kXKAkSZIkSZroDJglqZLlcvCaS+H9P4dZp/bs3/AofPVMuPWvYfum7OqTJEmSJEkTmgGzJFWDmY1w4Xf4WPt7eDHu1bN/zf/A50+Ce26EGLOrT5IkSZIkTUgGzJJULXI5ruucx7xdn4Zjz+7Zv30j3HIp/PdbYMPvsqtPkiRJkiRNOLVZFyBJGp6n2ZdZ91xAU+4YPlH3NQ4NG5MDj/2EXZ87hS92voUvdryFXdR3n7N+8VnZFCtJkiRJksY1ezBLUpVa0TWXebs+zbUdf0pHTP47nxQ6+FDtt7i9/jKacqsAh82QJEmSJEmjxx7MklRF+u+JfC48fR/874fgyVUAvCT3HP9V/xn+r/NEPtnx7rEtUpIkSZIkTRj2YJak8eDgV8DFy+Gsz8BeDd2731hzLz+sXwS3fwx2bs2wQEmSJEmSNB4ZMEvSeJGrgZPfB3+zBk66GELyX3xd6IRffA4+NxfuuQG6ujIuVJIkSZIkjRcOkSFJ483kmXD2NTD3Iu764iWckns42b/tObjl/dzzrU9zZfs7+XU8bsBLOCmgJEmSJEkqhj2YJWm8OvgVnLf74/zN7r/m6Tize/crc+u4edI/s6TuMzSGpzIsUJIkSZIkVTt7MEvSOLZ+8dnA2bDrCvjZNfCLz0PnLgDeXLOKN9feA3MvgjdeAVP3Z9blt2VaryRJkiRJqi72YJakiWDSVDj9H+ADK+EV5/Xsj52w8svwH6+En3yavdiVXY2SJEmSJKnqGDBL0kTScAS8bQks+DEc+Yae/btfhDs+xf9N+jDvrFkBHbuzq1GSJEmSJFUNA2ZJmogOeSVc+B24YCnsf2z37oPCZv6l7ivw+ZPgnhuhqzPDIiVJkiRJUqUzYJakiSoEOPrNcOnP4Zx/h6kH9hxrexxuuRS+8Fp44Bbo6squTkmSJEmSVLEMmCVpoqupTSb6+5t7uLL9fDbHqT3HNjwCS/8ClvwxPHo7xJhZmZIkSZIkqfIYMEuSEvWTWdJ5Dqfu+jd44xVQP63n2DP3wQ3N8F9N8OgPDZolSZIkSRJgwCxJ6uNFJsMbL4cP3Qev/yDU7t1z8MmVcMPbkx7ND33XoTMkSZIkSZrgDJglSf2bPBPmfRI+eA+8egHUTOo59vS9cNO74Et/BPd/y8kAJUmSJEmaoGqzLkCSVHlmXX5bnz1v5ABOZEHt//LOmh+xd9id7H7uAVj2HtjvaPijD8PLzoXa+jGvV5IkSZIkZcOAWZJUlOeYwac63s2XOt7C+2q/x7trbmdK2JUc3PAo3HIpT337o3yl40y+0fmmZKiNAaxffNYYVS1JkiRJkkaTAbMkqVvxwe8FsG0jn7vqw1xU80OmhR0AHBI28bG66/mb2m9zfefpfLXjDJ5jxugVLEmSJEmSMmXALEkqzZR9+cCnvg47NsPdX4a7vgTbngdgetjO+2u/y/vrfwCvOA9e9wE44Nh+ht6QJEmSJEnVzEn+JEnl2XsGvOFv4UP3wzn/Dvse1XOsqx3uuQ6+cArccB6vz/0GiJmVKkmSJEmSRpY9mCVJI6NuL5h7EbzqQnjke/CL/4An7uo5/ugPuL7+BzzadSjc/Qy84h0waWpm5UqSJEmSpPLZg1mSNLJyOTjubLj4dnjv7XDs2UDoPnx07km47SNwzfHwg4/CpnXZ1SpJkiRJkspiD2ZJ0ug54hQ44nrY8Dv49RJeuOu/uycEZNcW+NV/0vXLL3BH1yv5euef8NOul1MYRucVP/mgJEmSJEkaSwbMkqTRt99R8KdX89qfnMy5NT/lwprbmZ17GoBciDTVrKGpZg3rug7iG51vYlnnH7OJ6RkXLUmSJEmShmLALEkaM/cvbgaaoasL1t4Bv26F397efbwx9wwfzd3IRyctg+PO4fw1x/GrruOyK1iSJEmSJA3KgFmSNPZyOXhpU7JsXAu/vhbuuR52bU2Od7XDA9/ixnp4rOtA+NlaeOU7Yer+2dYtSZIkSZJ6cZI/SVK29p0NZy6GjzwMb/0CHHZyr8NH5p6FFf8I1xwHN18Ij94OnR0ZFStJkiRJkgrZg1mSVBnqp8Cr3pksz9wPq7/O1ruuY3rYnhzvaocHb02WqQfCy5vhlRfAgSdkW7ckSZIkSROYPZglSZXnoJfBn36aV+/6Tz6y+1I4/JTex198Fn75efji66D1DfCrL8G2DdnUKkmSJEnSBGbALEmqWDuZxDe73gAX3w5/+St43QeS3suFnr4XfrAIPnMM3HhB0sO5fUc2BUuSJEmSNME4RIYkqToccBy8+VNw+j/B2jvg3hvg4e9B567keFcHPHJbstRPg+POhpedC41vhJq6DAuXJEmSJGn8MmCWJFW8WZff1s/eZqZzJmfX3MW5NT9hbu63PYd2vwD33pgsk/eF49+ahM1HvA5y/nhHkiRJkqSRYsAsSapaW5nKDZ2nc0Pn6TSGp/izmp9xTu6XHJl7tqfR9o2w8iuw8is8HWfyv52v4fudr2ZNPIqYjhS1fvFZGT0DSZIkSZKqmwGzJKliDTf4nXX5IVxDMy8Pj3FOzS85p+aXHBw2dR8/OGziktrvcUnt93g2NvDDzpP5fterofNPoMa3REmSJEmShsu/piVJ40bvQPoD0NUFv/8l3P9NePCWpDdz6sDQxoW1y7mQ5fCvX4Rj/hSOf0syZnPtpLEuXZIkSZKkqmTALEkav3I5mPX6ZDmzBdb9GB66FR6+rVfYzI5NcM91yVI/DY5+Mxx7Nhx1Ouy1T3b1S5IkSZJU4QyYJUkTQ00dvLQpWc76LPz+l3z1y5/jjJq7ew2jwe4Xkh7P938TcrXwktfB0Wcky76zs6tfkiRJkqQKZMAsSZp4amrhyFP5RMdWPtnxbk4M6zij5m7OyP2aWYUTBHZ1wGM/SZYffpS1XQdzR9eruOTi98MRr01Ca0mSJEmSJjADZknShBbJcU88ins6jmIx7+CY8ARn1vya03JreEXusV5tZ+eeZnbuafj692DS9GQIjaPmwew3wfRDMnoGkiRJkiRlx4BZkjRh9Z4UsND7k4etT8Nvb4dHfwjr7oT27T1Ndm2FB76dLAAHHA+zT0vC5iNeB/WTR7V2SZIkSZIqgQGzJEkDmX4wzP2LZGnfyV/84zWcllvN6TVrOCxs6N32uQeT5ZefZ1es49ddx/DTrpfz065X8P0r3w8hZPMcJEmSJEkaRQbMkiQVo24vftx1Ij/uOpF/7LiIl4YnOS23hlNz93Fy7hEmhY7uppNCO6fW3M+pNfcDN8K/fhaOPBVmpcu+sw2cJUmSJEnjggGzJElFGnBIjd3b4PFfwNo7kuX5h3sf3/Yc3P/NZAGYdjDM+qN0ORVmNho4S5IkSZKqkgGzJEnlqp8CL52XLABbnoR1d/Kdb13HH+V+w8zwYu/2LzwNv1maLADTD+0dOM+YZeAsSZIkSaoKBsySJI20fQ6FV72Lv7lpBoEujg+P85rcg7wm9xCn5B5metjeu/3WJ+G+m5IFYOpBcMQpcPhr4PBT4OBXQE3d2D8PSZIkSZKGYMAsSdIoiuR4IB7JA51H8uXOs8jRxfFhPa/JPcRrcg/y6tzDTA87ep/04jPw4K3JAlC7Nxw6tyB0Phn2njH2T0aSJEmSpD4MmCVJGiUDjtlcqLMDnrkP1v+UO37wLU7KPbJn4NyxAx7/WbLk7X8cHP5qOOxkOHQO7H8s5GpG9glIkiRJkjQEA2ZJkrJUU5sExIfO4b3fPYocXRwd/sBJuUeYm3uUk8KjHJ57fs/znn8oWVZ/HYBtcRL3xyO5p2s293bN5r44mz/E/YA9x3IuKviWJEmSJKkIBsySJFWQLnI8HI/g4c4juK4zmTTwADZzUu4RTso9ytzco5wQ1lMbunqdNyXs4pTwMKfkHu7etyFOT8LmrkbujbO5v+tINrDPmD4fSZIkSdL4ZsAsSVKFKLpn8e5t8ORqeOIueGpNsv7CU3s02y9s5fSaNZxes6Z737OxAa5/NRz0cjjoFckEgjOOhLBnT2dJkiRJkoZiwCxJUrWpnwJHnposeVufSoLmJ1fBU6vhyTWwa8sepx4Y2uC3tydL3qTpvQPng14B+x8DNXVj8GQkSZIkSdXMgFmSpPFg+iHJctzZyXZXF2xamwTOT66Gp9aw/Yl7mRx27Xnurq3w+M+TJb8r1vK7eCiPxMN52580wQHHJ8s+h9nbWZIkSZLUzYBZkqTxKJeD/V6aLCe+A4CXXf5djgxPc0J4nONz6zkhrOeE3Hpmhhf3OH1S6OCE8Dgn8Dis+FnPgfppcMBxyXLgCen68TBlv7F6ZpIkSZKkCmLALEnSBLFu8Tl77owRtj4Jz/wGnr4Pnrkvedzy+/4vsvsF+MOvk6XA83E6v+s6jLXxYN519rw03D4aph+WhN2SJEmSpHHJgFmSpIkshGTYi30Og2PO7Nm/YzPzP/kVjsn9gaPDExybe4JjwhM0hG39Xmb/sJX9ax7ktTwIP/hRz4HavWHfo3oC5/zjvkdB/eRRfnKSJEmSpNFmwCxJkva09wyWXfWR3vtihBefhWcfgOceSpcH4LmHoWNH/9fp2AHP/iZZ+vhD3I91XQfzhlNeDTMb0+VImDEL6vYe+eckSZIkSRpxBsySJKk4IcC0g5LlqNN79nd1Qdt63vOvNzA7PMXs8BSNuaeZHZ5iv7B1wMsdFjZwWM0GWLln+Mz0Q5PAecasgvA5DaAnTRv55yZJkiRJKokBsyRJKk8uBzMb+eqVH9vz2PZNsOG3sOHRZNn4u+Rx02MQOwe+5tYnk2X9T/c8NmV/aHgJNBwODUeky0tgn8OTffVTRu65SZIkSZIGZcAsSZJGz+SZcMQpyVKoYzdNH/8qs8KzvCQ8kz4my2HheWpCHPia255PlidXDnDP/QqC58PTMDrd3udwmDR15J6fJEmSJE1wBsySJGns1daz4qqF/R/rbIe23ye9nDetg83J4+8evo/Dw3NMCh2DX3v7hmR5anX/xyftA9MPKVgO7fN4COy1TzIkiCRJkiRpUAbMkiSpstTUwb6zk6VA0+W3kaOLg9jEoWEDh4Xn0yVZPzRs4JCwgfowyNAbALu2wPNb4PmHBm5TP7WfAPoQmHYwTD0wGYd6yv5JrZIkSZI0gY1owBxCmAMsBGamuzYBS2OMK0byPlnfU5Ikjb31i88aulFXJ7zwDLT9ng+1fqdXEH14eJ6Dw8ahe0AD7H6xZ9zogW4VA5uYxn4HHg7TDkyC5/zSvX0QTD0gmZjQHtGSJEmSxqERC5hDCK3AScAlMcbV6b5GoDWEsAhojjG2jdT9srqnJEmqYLka2OdQ2OdQ/u3K1+55PEbYvjGdRPCpgsen+Pnq+zgobOKQsJG9w+6hbxUi+7EVnnsgWQZTNxmmHsDdG+vZEPdhY5zORqazKU5nU5zGBvZhU5yWbDONTmp6nV5UuC5JkiRJGRiRgDmEsBxoBOYWBroxxnXAvPT4KmD2AJeointKkqQqFwJM2S9ZDj6x16HX/3m6EiPsbOsOntn6JGxJg+gXnoYXn4MXn6HrxQ3kBpuMsFD7dti8npNzxTXfHKeyKU7rDqH57vKk5sn79dQ/eT/Ye0ay1O0NITDr8tuK/7coYIAtSZIkqVRlB8whhAVAE32C3j6agc0hhNYY4wAz+lT2PSVJ0gQRQk9we+AJAzZ76eXfYV+2sn9o44DQljzSVrC9hQPYzAGhjb1C+7BKmBFeZEZ4kdk8nexYdfeg7XfFOjYzlR/UT2ULU2iLU5OFKWyJU2ljKm1xCpuZxpaYHmcq25kEOHSHJEmSpNKNRA/mFmBdfoiK/sQY20IIK4AFIYSWtJdxtd1TkiSp29rFbymuYYywayu88Cy8+Axsex62bYTtG2DbhmR7+8ZkffsG2L4JKLJndGpSaOcgNnNQ2Dys83bHGrYwFT5/EOzdAJOmw177wF7Te6/vlT+W7ssfq5/i2NKSJEnSBFdWwBxCmA80AEuKaL6UpNfxQmBRNd1TkiSpZCGkQe0+sP/RQ7fv6kxC5nwA3R1EF6znA+kdm2HHJugceszo/tSHTvZnC2zYUtL5hJpkAsOBguj6qTBpavo4LXmsn9Kznj9WPxVqRnTuaUmSJEljpNxP8vmhJ9YW0Tbfg3g+5YW9WdxTkiRpbORqYOr+yVKMGKF9Rxo2p4Fz93rBsn0T7Gjrva9jR3m1xs5kvOqdIzCncu3eaeA8BeqnFQTT/QXUyb5Lb3qIHUxiR6xnO5PS9Und67uoo78hQBxzWpIkSRo55QbMJ6WPxQw/kW/TGEJoGGTs5Eq8pyRJUmUKAeonJ8s+hw7v3HwwvX1TMozHzi2wc2u63pas79ySbm9lzW8fZxrbmR62M43t7B1K6zndr44dybLt+aJP+VL94Me7YmAHSfi8szt4rueXH/9U9/qOmITR25nETurZnm7nw+qd1PHli/8oCcBrJyUTKtZO6r1dMwlyRc7gKEmSJI0zJQfMIYRGkqEqoIiwN8a4LvSM0XcSsKIa7ilJkjRu1e2dLNMPKar5q/ru6NjdE0wXBtTp9jX/u5opYQdT2cmUsIMp7GIKO5gSdjI1fZxCsuTC8MadLkYuxPSeu8qby/B/PjNkk12xll3Us4s6dsb0cYDtXbHgGPV88M0v6wmuayZBTT3U1iePNZMK1tOldlKf9br0vDrHxJYkSdKYK6cHc2PB+qYyzq30e0qSJKk/tfVQux9M2a/fwx9+bZHXiRHat3PyP9ySBtE7u0PpqexkctjJFPJBdRJO7x12sTe7mcxO3nDkVNi9LemR3b69Z71z18g91yFMCh1MoiPZGG7Ge8e3R6yOXbGW3dTRTg27qWN3rOWI/Rv2DKK7w+y6gmP1kKtL1nO16WNdMj52v/sHazec8wzGJUmSqlk5AXPD0E1G/Nws7ilJkqTRFALUT+Huxe8c2et2diTDbuzengTP7duT4Lk7jN6WHkvXex1L23fsSrY7dqXDeOyCjp3QvjN5zC8VolfQDUnYvbH4YUey0hFzdFBDO7V0UJOu19ARazhiv2lJIB1qksdcTbrUpvtzPev5/Xvsqxn4GqHgWrmC80JNP/cq3O5TQ8gl+0Iuade9HXq292gTBjgn13sZ6LqSJEkVYKyn624jCXr3Hef3lCRJUtZqaqFmWjJB4GiKsSd4zi/dAXRBMN03qO4vuO7YDZ27k97X3eu7k+Odhdtpm8L1ro6ha61QtaGLWrrYi/beBwKwqfID8szsEUrnHwcKrkOR5+SAwN2/b6OLZHzxrpgjAl0EYsHS1esxafPmEw5O75Vcp/v6Bdfu2Rf2bENB2177QnnX7e+8fq8b+n+EAY7Re31Y7Ye6PsNsX+z1GWb7oa5P8e17tS14fgPtG+7+gb58GfIaI3G/4VxjmPfzSyVJFaycgHlmfqWEyfNK7U2cxT0lSZKkgYUAdXslS5a6uvqE0Lv6rLfvGUr3Wm9Plq78Y0fBdkfB/mT7O2sep5ZO6uiklo5kPXRSm24n+zvTNh3UhqTt/pNzva8XO7P9d6tmsTNZutqHbluCk0udu/LhES1D0oBGNhTf2dHVvR4L9ufXC2dLKDw+dVLdEPcboObBhMDm7YP/31bs7A1xiHvuO6V+WHUV0chrjcq1RqzR0HUd/1aY98niriUguyEyZg7dJLt7hhBWDXDoxIceeoi5c+eWUUZ1efrJLQDMXf4PGVciSZKk6pFLl7qhGiZiBOKej4XHerUj3Zdvy8DrQ11rwOsOtF54Tj/37Xus13a+fcGxgjYdXUm4Uxjl5Nd7+jyO/ISYkiSpwN5PQ8NtWVcxJh566CGAWeVeZ6yHyKh2nTt27NiyevXq9VkXMoaOBVj9rP0QpCp3bProa1mqfr6epfHB17I0fvh6lsaH9LX8/MMwYYbomgVsLfciIxIwhxAahjlkxaZKvmeMceJ0UR5Cvje3/yZSdfO1LI0fvp6l8cHXsjR++HqWxgdfy6UrdVQtSCbPG+tzs7inJEmSJEmSJKkf5QTMpfRCzo+hvLGK7ilJkiRJkiRJ6sdI9WBuLOPcSr+nJEmSJEmSJKkf5QTMKwvWZw7VOIRQGAivHLBh5d1TkiRJkiRJktSPkgPmdIK9fK/gYnoTNxSsr6uWe0qSJEmSJEmS+ldb5vk3AwvoHeQOJB8Ir06D4mq654TlzJnS+OBrWRo/fD1L44OvZWn88PUsjQ++lktXzhAZAEvTx3lFtD0vfbypCu8pSZIkSZIkSeojxBjLu0AIa0l6Cs8YrJdwCCECbTHGGYO0WQo0AUtijIvG4p6SJEmSJEmSpNKU24MZYGH6eMVADUIIC9LVS4ZoM59k6IvLQghzRvuekiRJkiRJkqTSlR0wxxhXAItIQuGmvsdDCI1AK0mv5GXl3i+re0qSJEmSJEmSeit7iIzuCyVBbyuwDFgObCIZ7uIKYFGMcUkR11hOzxAZC4toX/Y9JUmSJEmSJEmlGbGAufuCSeibH95i3Vj0IM7inpIkSZIkSZI00Y14wKzql45/vRCYme7aBCxNhyaRJEmSVIYQwnySz9uNJJ+51wE3xRivzrQwSUVJ53xqBk5Kd60EVgNXxRjbMitM0h5CCJcBlPIeaz5WvJGY5E/jSAihFbgWaI0xNscYm4EWYFEIYXkIoSHbCiUVI4TQGEJoCSGsCiFsDiGsTV/DC3wdS+NL+treY04KSZUnhDAnhLCW5I/Vlhjj7BjjDJKJyfcNIazKtkJJg0lfw6uA2STDcs5IX8OL0iaP5cMsSdlLX48twL4lnGs+Ngz2YFa3dAzsRmBuf9+65o/HGGePeXGSipa+iS4kefNbCbSRDCN0HjA/bbbQceql6pf2glwKNDtEmFTZCl6viwbqRZW+h+8bY1zU33FJ2Ul7Mv6I5O/ldQO0aQRWATcXM6+UpJGXvg6bSL74aUx3Xz2c91bzseGzB7OA7p/4NJH8gTrQT3qagcb0WxxJFSiE0AKcnPaIWhJjXB1jXBdjXJZ+49qcNm1N20qqUmmviWuzrkPS0NJfGSwl+QN3oHC5heTLYX+RIFWmpcDpA4XLAOmxZmBBGkhLGiMhhMtCCJHkS55mkoB52B0wzMdKY8CsvBaSCRJXD9QgfWGtIHmzbByonaRspB9im9IguV9pD8f8N7eXpb2pJFWnFsCf5knVYSnJZ+3Bek8tSB99XUsVJv3MPHOwv5fz0rFZ15H8olDS2FkSYwzp0DXzyvh1n/lYCQyYlX+zbKC4b3aWpo++WUqVp4VkDMdBpT2n8t/E2otZqkLpF0ptJH/ASqpgae+mBoZ+z11EMkmYw2NIlWceydBzxVpBzwSAksbASEywaT5WOgNmQc+LYW0RbfN/yNrrUao8jcX0qkjlx19u9Od7UlVqcYxWqfKlQ9ksABhq7oN0aKu5jqcuVazhBsabRqUKSaPJfKxEBsyCnjfKYnpB5ds0OmOmVDnSkLgxhLC5yGEvCt8w7V0hVZF0EjDHe5Oqw9vTx2K/AJZUmdYCDel7cDGagOWjWI+k0WE+ViID5gkuHSsm/0IY8gXUZ0IDQympcuTHfWoAriiifeFP/Jz5VqoS6YfXk+3hKFWNfE+oFZlWIalc+S+JWoYKmdNJPRvp+cWgpCpgPlae2qwLUOYKByMf7k94HMhcqhyFPaOKGR+u8PW7cYRrkTR6rsXxWaVqkh+GqvuXQyGE/ASdM9PHdSTD3jimulShYowrQgirSV7TLSGEeUBz3zFf0y+ClwILR2I8WEljynysDPZgVjnd+Cf8TwCkSpH+UToDmBtjLGaSgcI3QH+2K1WBtEfU3YZQUnXoM8fBphBCQwhhKdAaY1wYY2yOMc4DVgFrQwgLsqlUUpFOp2ei7CbgscKh6dLejz8CFg015rqkimQ+VgZ7MKsUbSQvnn2zLkRSj7SXRLFh8ckF5/mzXak6LErDKEnVofDL3DaSXsrNfRvFGJekvR5bQwhDTgYoKRsxxrYQwpEkPZSbSP4mXhpCWEYy3nIzcMkwJt2WVP3Mx1L2YNbM/EoJP+GZ8N/QSNUo/SM239vi6ixrkVSc9Cf1LVnXIWlYZhasz2GQCb9ijFeTDJXRmvaClFSBYoxt6Ze9hZ+h55NMvttiuCxVNfOxcONH5AAADF9JREFUMhgwq5wXwcyhm0iqQIU/wb0qsyokFSU/4Yi/NpCqTuHn7IVFTM6ZP+6XSVLl20jyy8HCEGp5+oWwpOpkPlYGA2ZJmkDS3sv5D757TEwiqSK14sR+UrUr5guifA/n+en7taQKE0JoDCGsAtpijHNjjDPo+XII4LIQwipfw5ImGgNmdSvhTXC4s2pKyt616ePVRfSkkpSxdNKvpX4ZJFWlwtft2iLaF07g2TTCtUgqUzrZ7ir6TOKXjq3eTM9rfg5gyCxVMfOx4TNgVjl/sPrHrlRF0qBqPrAkxmhvSKnCpR9sm53wSxoX1g3dpNcfpycP2ErSmAsh5MdRb+5vyKq048aR9PxaoZFkMkBJ1cN8rAwGzCrlW5b8NzkbR7IQSaMn/VDcShIuL8y6HklFacGhMaRqVvg528mCpOq2FFgx2HwI/UwA2JT2epZUHczHymDArMIPu8OdsXrCf0MjVYO0F+SPgGWGy1J1SL8UanM2eqmqFb5+hxsYT/jJgqRKkYbEjRT5pW/6S8H8r4+aR6suSSPOfKwMBsxaWbA+5AfZdCb7/s6VVLlWkfS48AOuVD1aHMpGqm4xxsJhMYYbGBczpIaksTEPYJhf+ubfw4cbUknKjvlYGQyYJ7h00qD8Ny3FvPkV9r7wg69U4UIIy4F1hstS9Uh7LzeFEOJQCz3v3Uv7HJuf4VOQ1CMfSM0tom3hH7PFTAooaWw0Msy/fdO/s1djwCxVDfOx8tRmXYAqws3AAor76V7+RbbaGe2lyhZCaAVIx4IbqE0DMLNPLytJGYoxrg4hzC6yeT6EWkjPxEJ9e05Kys4KYA7D/0N1wHFeJY25UsZlhSRwcjx1qbqYj5XIHsyCntltBwyhCpyXPt40SrVIGgEhhMuAxsHC5VRTukiqIDHGdcUsBadsGmC/pGy1po8nFdE232a1r2OpoqwCGtOOGcMxh56/tSVVB/OxEhkwi3Qm3HUkP8cd6k1zPsmkQ1cP0U5SRtKfxp9XRLgMcDL+nEeSpFGRBsUrgIZ0orDB5CfivWp0q5I0TDenj9cWe0L6ep9ZcK6kKmA+VjoDZuXlP9BeMVCDEMKCdPWS0S9HUinSsVsXxhiLGesRkp4VE35CAkmSRlH+c3bLQA3SL4fnAMtijMvGpCpJRUl/+r4QmF/wN/GA0om/lgKX+LN5KXMNfR6LYT5WghBjzLoGVYj0J/UtwLz0W5vCY40k4zwuiTEu7O98SdlKX6fLSV7Hg40VN5PkDXY2sCDGGMagPEmjIJ3oD6DZUEqqXGmAvJQkQG7uc6yJ5P17RZG/PpKUgYK/l5cxQHichk4twKIY45IxLlFSKu193ETPkBdtQDOwspgvfszHhs+AWb2kH3BbSd40l5OEVE0k39z4JilVqPQNdBXDn6l69TB6O0uqEOlrPv9HLCQ/wV/ouK1S5Sr4nJ3/2XwbSa/lJpLP2f7EVqpw6a8FW0hetyuA1emhOSTjqK8keT2v7v8KkkZLwZe5xZo72GvVfGx4DJjVr/SFNCfdXGevKKmypb0lWodsuKc9elJJqlwhhFaSYHlQ/jJBqlxpQJUfj9nP2VIVSr/obSQJlRtIxmxd4ZAY0vhjPlYcA2ZJkiRJkiRJUkmc5E+SJEmSJEmSVBIDZkmSJEmSJElSSQyYJUmSJEmSJEklMWCWJEmSJEmSJJXEgFmSJEmSJEmSVBIDZkmSJEmSJElSSQyYJUmSJEmSJEklMWCWJEmSJEmSJJXEgFmSJEmSJEmSVBIDZkmSJEmSJElSSQyYJUmSJEmSJEklMWCWJEmSJEmSJJXEgFmSJEmSJEmSVBIDZkmSJEmSJElSSQyYJUmSJEmSJEklMWCWJEmSJEmSJJXEgFmSJEmSJEmSVBIDZkmSJEmSJElSSQyYJUmSJEmSJEklMWCWJEmSJEmSJJXEgFmSJEmSJEmSVBIDZkmSJEmSJElSSQyYJUmSJEmSJEklMWCWJEmSJEmSJJXEgFmSJEmSJEmSVBIDZkmSJEmSJElSSWqzLkCSJEkaKSGEBmAm0Ajk12+OMbb1adOUtmkDNsUYl5Vxz8b0eg3p9VbGGFdXQt0hhDnASeXU1s818zWM2DUlSZJUvezBLEmSpHEhhLAA2AysBZYDS4FWkjA036YFuDbdzIeiLSGEmB4bzv0aQwhLgfx5+etdkV6vNQ2FR7vu1n6uOT+EsJwkkF6XLnOBVSGEtWnwPCwhhMtCCJuBhQV1NADXhhA2hxAuG+41JUmSVP1CjDHrGiRJkqSypWHuSSTB7CJ6Atq5JAHrUmBRf71tC8LYZTHG5iLuNQe4AriksJdxn+M/SjdPH6yH7wjVvSLGOC/ddxmwb4xxUT/tm0hCbIDZMcZ1RTzXxvScmQM9lzQAvwxYHWOcO9Q1JUmSNH4YMEuSJGncCSHMJwlmIQlqW4CFAwWqaSC8Kt0cNHhNA+Gl+UB3kHb5MLcNmFtkmFtO3fl65vUXLhecswqYQxFhehouryLpqTx3iKB8KTCfgrBbkiRJ459DZEiSJGk8KgxkF5IEwgMGvGlw2lbQfjBvB5qGGmoixrgCWEYSzhY7/EY5dTeThNEDhsupm9LH+UXUs5Sk/quLGGf5qvSxKQ3KJUmSNAEYMEuSJGk8Khy24u0xxiVFnJMPcocanzjfO7eRZJiMweSHoyg2cC2n7gUF9yumPYMF5OnY0PnjVw3ULi8NoLvHoS6iDkmSJI0DBsySJEka71YU2W5T+jhziHaFPYqHCnTz18wPrTEcw6272HMKQ+zBnmu+J/Tq/saZHkD+/sOeRFCSJEnVyYBZkiRJ493dw2w/aBCcDkExj2RM4mJ6GOcNFVz3Ndy624oZ55negXS/0p7N+ckGVw6jhrUF12gaxnmSJEmqUrVZFyBJkiSNsmJ73xYtHV+5W9o7+SSS4LmBJExuoCekhSGC634Mt+4hg+NhKAyH1w7Yak+FAfdwn68kSZKqkAGzJEmSxruRDF57SXvpLiIJZFeTTKB3E7AuxtiWTna3tMTLj1rdRZhdsL4whDBvwJa9zaQnZB7xYF+SJEmVx4BZkiRJGqa0x/KPSMYabgPm9e3VXOUKh/NoGeZQIJIkSZpADJglSZKkYQghNAKrSIaAWA2cPoxJ8CRJkqRxxUn+JEmSpOFZThIutzF+w2XHUpYkSVJRDJglSZKkIoUQLqNn4r5F5YTLIYQFI1PVqFhesD57wFaSJEma8AyYJUmSpOItLFi/uYj2Mwc5tqjMWkZNn/GkT8qsEEmSJFU8A2ZJkiSpePney21F9l6u5t6/+Yn95qSTGhYthLA0hDBnFGqSJElShTFgliRJkkbP/KwLKMMiknGmAVqKPSmdBHFOjHH1qFQlSZKkimLALEmSJBUvP/ldQxqkDiiE0AQsK9g12HAZFSftod2cbi4YRo/kVnoPJSJJkqRxzIBZkiRJ41HhkA7FBrsz+zz2p3Dc5AF79abhc0uMcRGQ78k7r+B4E7Cin1NHq+7+2ve93x7SsZjzIfOPhgqZQwhLgdV9xnCWJEnSOBZijFnXIEmSJJUtHSd4Jsk4yYuApvTQOpIeteuATYVjJ6dBcAPJRHatBZdbRBIAt8UY1xXsJ4QwH1iabi4DLulzzcuA84DTY4xtaSi7Kj08D9hEEk43p8dHve4+92gB8kHx6vScPe7R5znPAa5Nz7saaO1z/fnAFcBNMcar+7uGJEmSxicDZkmSJI0LIYQF9A5b+7Mkxtg9fEMIoZgPwzP6C17T+zXTM/FfPnBtjTEu69O2iZ5gdwWwMB/QjkXdaeg91DjKV6c9rgeUPo+FJM9jJklYDknQ3to3jJckSdL4Z8AsSZKkcSOE0DBIL9w9jqU9exkgQB7w2Egbi7qHew9JkiSpGAbMkiRJkiRJkqSSOMmfJEmSJEmSJKkkBsySJEmSJEmSpJIYMEuSJEmSJEmSSmLALEmSJEmSJEkqiQGzJEmSJEmSJKkkBsySJEmSJEmSpJIYMEuSJEmSJEmSSmLALEmSJEmSJEkqiQGzJEmSJEmSJKkkBsySJEmSJEmSpJIYMEuSJEmSJEmSSmLALEmSJEmSJEkqiQGzJEmSJEmSJKkkBsySJEmSJEmSpJIYMEuSJEmSJEmSSmLALEmSJEmSJEkqiQGzJEmSJEmSJKkkBsySJEmSJEmSpJIYMEuSJEmSJEmSSmLALEmSJEmSJEkqiQGzJEmSJEmSJKkkBsySJEmSJEmSpJL8f4UVLL1cXX6BAAAAAElFTkSuQmCC\n",
-      "text/plain": [
-       "<matplotlib.figure.Figure at 0x7fadc9d1cbe0>"
-      ]
-     },
-     "metadata": {
-      "image/png": {
-       "height": 337.0,
-       "width": 716.0
-      }
-     },
-     "output_type": "display_data"
+   "execution_count": null,
+   "metadata": {
+    "execution": {
+     "iopub.execute_input": "2021-02-05T21:54:02.640725Z",
+     "iopub.status.busy": "2021-02-05T21:54:02.640231Z",
+     "iopub.status.idle": "2021-02-05T21:54:03.064456Z",
+     "shell.execute_reply": "2021-02-05T21:54:03.063925Z"
     }
-   ],
+   },
+   "outputs": [],
    "source": [
     "prior = Exponential(name='name', alpha=-1, minimum=0, maximum=10)\n",
     "\n",
     "figure(figsize=(12, 5))\n",
-    "hist(prior.sample(100000), bins=100, histtype='step', normed=1)\n",
+    "hist(prior.sample(100000), bins=100, histtype='step', density=True)\n",
     "plot(np.linspace(prior.minimum, prior.maximum, 1000), prior.prob(np.linspace(prior.minimum, prior.maximum, 1000)))\n",
     "xlabel('{}'.format(prior.latex_label))\n",
     "show()\n",
@@ -249,25 +168,7 @@
    "source": []
   }
  ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "py3.4",
-   "language": "python",
-   "name": "py3.4"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.4.5"
-  }
- },
+ "metadata": {},
  "nbformat": 4,
  "nbformat_minor": 2
 }
diff --git a/examples/tutorials/visualising_the_results.ipynb b/examples/tutorials/visualising_the_results.ipynb
index 9bf2de0aaf5f276dfbe821bacd8bf706da669a60..7313214414a750e01ede587ed79b4719121828a5 100644
--- a/examples/tutorials/visualising_the_results.ipynb
+++ b/examples/tutorials/visualising_the_results.ipynb
@@ -277,25 +277,7 @@
    ]
   }
  ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.7.3"
-  }
- },
+ "metadata": {},
  "nbformat": 4,
  "nbformat_minor": 2
 }