diff --git a/bilby/core/prior.py b/bilby/core/prior.py index be34de2031e1f4ed0f9a37a257037b64dde89011..7e57c7f1ff27bd86ef8182d7ec7efb86476bf158 100644 --- a/bilby/core/prior.py +++ b/bilby/core/prior.py @@ -2434,50 +2434,20 @@ class FermiDirac(Prior): return lnp -class MultivariateGaussianDist(object): +class JointPriorDist(object): - def __init__(self, names, nmodes=1, mus=None, sigmas=None, corrcoefs=None, - covs=None, weights=None, bounds=None): + def __init__(self, names, bounds=None): """ - A class defining a multi-variate Gaussian, allowing multiple modes for - a Gaussian mixture model. + A class defining JointPriorDist that will be overwritten with child + classes defining the joint prior distribtuions between given parameters, - Note: if using a multivariate Gaussian prior, with bounds, this can - lead to biases in the marginal likelihood estimate and posterior - estimate for nested samplers routines that rely on sampling from a unit - hypercube and having a prior transform, e.g., nestle, dynesty and - MultiNest. Parameters ---------- names: list - A list of the parameter names in the multivariate Gaussian. The + A list of the parameter names in the JointPriorDist. The listed parameters must have the same order that they appear in - the lists of means, standard deviations, and the correlation - coefficient, or covariance, matrices. - nmodes: int - The number of modes for the mixture model. This defaults to 1, - which will be checked against the shape of the other inputs. - mus: array_like - A list of lists of means of each mode in a multivariate Gaussian - mixture model. A single list can be given for a single mode. If - this is None then means at zero will be assumed. - sigmas: array_like - A list of lists of the standard deviations of each mode of the - multivariate Gaussian. If supplying a correlation coefficient - matrix rather than a covariance matrix these values must be given. - If this is None unit variances will be assumed. - corrcoefs: array - A list of square matrices containing the correlation coefficients - of the parameters for each mode. If this is None it will be assumed - that the parameters are uncorrelated. - covs: array - A list of square matrices containing the covariance matrix of the - multivariate Gaussian. - weights: list - A list of weights (relative probabilities) for each mode of the - multivariate Gaussian. This will default to equal weights for each - mode. + the lists of statistical parameters that may be passed in child class bounds: list A list of bounds on each parameter. The defaults are for bounds at +/- infinity. @@ -2488,7 +2458,7 @@ class MultivariateGaussianDist(object): else: self.names = names - self.num_vars = len(self.names) # the number of parameters + self.num_vars = len(self.names) # set the bounds for each parameter if isinstance(bounds, list): @@ -2513,83 +2483,12 @@ class MultivariateGaussianDist(object): "a prior transform.") else: bounds = [(-np.inf, np.inf) for _ in self.names] - - # set bounds as dictionary self.bounds = {name: val for name, val in zip(self.names, bounds)} - self.mus = [] - self.covs = [] - self.corrcoefs = [] - self.sigmas = [] - self.weights = [] - self.eigvalues = [] - self.eigvectors = [] - self.sqeigvalues = [] # square root of the eigenvalues - self.mvn = [] # list of multivariate normal distributions - self._current_sample = {} # initialise empty sample self._uncorrelated = None self._current_lnprob = None - # put values in lists if required - if nmodes == 1: - if mus is not None: - if len(np.shape(mus)) == 1: - mus = [mus] - elif len(np.shape(mus)) == 0: - raise ValueError("Must supply a list of means") - if sigmas is not None: - if len(np.shape(sigmas)) == 1: - sigmas = [sigmas] - elif len(np.shape(sigmas)) == 0: - raise ValueError("Must supply a list of standard " - "deviations") - if covs is not None: - if isinstance(covs, np.ndarray): - covs = [covs] - elif isinstance(covs, list): - if len(np.shape(covs)) == 2: - covs = [np.array(covs)] - elif len(np.shape(covs)) != 3: - raise TypeError("List of covariances the wrong shape") - else: - raise TypeError("Must pass a list of covariances") - if corrcoefs is not None: - if isinstance(corrcoefs, np.ndarray): - corrcoefs = [corrcoefs] - elif isinstance(corrcoefs, list): - if len(np.shape(corrcoefs)) == 2: - corrcoefs = [np.array(corrcoefs)] - elif len(np.shape(corrcoefs)) != 3: - raise TypeError("List of correlation coefficients the wrong shape") - elif not isinstance(corrcoefs, list): - raise TypeError("Must pass a list of correlation " - "coefficients") - if weights is not None: - if isinstance(weights, (int, float)): - weights = [weights] - elif isinstance(weights, list): - if len(weights) != 1: - raise ValueError("Wrong number of weights given") - - for val in [mus, sigmas, covs, corrcoefs, weights]: - if val is not None and not isinstance(val, list): - raise TypeError("Value must be a list") - else: - if val is not None and len(val) != nmodes: - raise ValueError("Wrong number of modes given") - - # add the modes - self.nmodes = 0 - for i in range(nmodes): - mu = mus[i] if mus is not None else None - sigma = sigmas[i] if sigmas is not None else None - corrcoef = corrcoefs[i] if corrcoefs is not None else None - cov = covs[i] if covs is not None else None - weight = weights[i] if weights is not None else 1. - - self.add_mode(mu, sigma, corrcoef, cov, weight) - # a dictionary of the parameters as requested by the prior self.requested_parameters = OrderedDict() self.reset_request() @@ -2626,16 +2525,310 @@ class MultivariateGaussianDist(object): Check is all the rescaled parameters have been filled. """ - return not np.any([val is None for val in - self.rescale_parameters.values()]) + return not np.any([val is None for val in + self.rescale_parameters.values()]) + + def reset_rescale(self): + """ + Reset the rescaled parameters to None. + """ + + for name in self.names: + self.rescale_parameters[name] = None + + def _get_instantiation_dict(self): + subclass_args = infer_args_from_method(self.__init__) + property_names = [p for p in dir(self.__class__) + if isinstance(getattr(self.__class__, p), property)] + dict_with_properties = self.__dict__.copy() + for key in property_names: + dict_with_properties[key] = getattr(self, key) + instantiation_dict = OrderedDict() + for key in subclass_args: + if isinstance(dict_with_properties[key], list): + value = np.asarray(dict_with_properties[key]).tolist() + else: + value = dict_with_properties[key] + instantiation_dict[key] = value + return instantiation_dict + + def __len__(self): + return len(self.names) + + def __repr__(self): + """Overrides the special method __repr__. + + Returns a representation of this instance that resembles how it is instantiated. + Works correctly for all child classes + + Returns + ------- + str: A string representation of this instance + + """ + dist_name = self.__class__.__name__ + instantiation_dict = self._get_instantiation_dict() + args = ', '.join(['{}={}'.format(key, repr(instantiation_dict[key])) + for key in instantiation_dict]) + return "{}({})".format(dist_name, args) + + def prob(self, samp): + """ + Get the probability of a sample. For bounded priors the + probability will not be properly normalised. + """ + + return np.exp(self.ln_prob(samp)) + + def _check_samp(self, value): + samp = np.asarray(value) + if len(samp.shape) == 1: + samp = samp.reshape(1, self.num_vars) + + if len(samp.shape) != 2: + raise ValueError("Array is the wrong shape") + elif samp.shape[1] != self.num_vars: + raise ValueError("Array is the wrong shape") + + # check sample(s) is within bounds + outbounds = np.ones(samp.shape[0], dtype=np.bool) + for s, bound in zip(samp.T, self.bounds.values()): + outbounds = (s < bound[0]) | (s > bound[1]) + if np.any(outbounds): + break + return samp, outbounds + + def ln_prob(self, value): + """ + Get the log-probability of a sample. For bounded priors the + probability will not be properly normalised. + + Parameters + ---------- + value: array_like + A 1d vector of the sample, or 2d array of sample values with shape + NxM, where N is the number of samples and M is the number of + parameters. + """ + + samp, outbounds = self._check_samp(value) + lnprob = -np.inf * np.ones(samp.shape[0]) + lnprob = self._ln_prob(samp, lnprob, outbounds) + if samp.shape[0] == 1: + return lnprob[0] + else: + return lnprob + + def _ln_prob(self, samp, lnprob, outbounds): + ''' + CHILD CLASS OVERWRITES THIS METHOD AND FILLS IN THIS PART OF ln_prob METHOD to samplethe lnprob for + the value of this sample + ''' + return lnprob + + def sample(self, size=1, **kwargs): + """ + Draw, and set, a sample from the Dist + + Parameters + ---------- + size: int + number of samples to generate, defualts to 1 + """ + + if size is None: + size = 1 + # samples drawn from unit variance uncorrelated multivariate Gaussian + samps = self._draw_samp(size=size, **kwargs) + for i, name in enumerate(self.names): + if size == 1: + self.current_sample[name] = samps[:, i].flatten()[0] + else: + self.current_sample[name] = samps[:, i].flatten() + + def _draw_samp(self, size, **kwargs): + """ + Draw, and set, a sample from the joint dist (needs to be ovewritten by child class) + + Parameters + ---------- + size: int + number of samples to generate, defualts to 1 + """ + samps = np.zeros((size, len(self))) + """ + Here is where the subclass where overwrite sampling method + """ + return samps + + def rescale(self, value, **kwargs): + """ + Rescale from a unit hypercube to multivariate Gaussian. Note that no + bounds are applied in the rescale function. + + Parameters + ---------- + value: array + A 1d vector sample (one for each parameter) drawn from a uniform + distribution between 0 and 1, or a 2d NxM array of samples where + N is the number of samples and M is the number of parameters. + mode: int + Specify which mode to sample from. If not set then a mode is + chosen randomly based on its weight. + + Returns + ------- + array: + An vector sample drawn from the multivariate Gaussian + distribution. + """ + + # pick a mode (with a probability given by their weights) + + samp = np.asarray(value) + if len(samp.shape) == 1: + samp = samp.reshape(1, self.num_vars) + + if len(samp.shape) != 2: + raise ValueError("Array is the wrong shape") + elif samp.shape[1] != self.num_vars: + raise ValueError("Array is the wrong shape") + + samp = self._rescale(samp, **kwargs) + return np.squeeze(samp) + + def _rescale(self, samp, **kwargs): + ''' + needs to be overwritten + :param samp: + :param kwargs: + :return: + ''' + return samp + + +class MultivariateGaussianDist(JointPriorDist): + + def __init__(self, names, nmodes=1, mus=None, sigmas=None, corrcoefs=None, + covs=None, weights=None, bounds=None): + """ + A class defining a multi-variate Gaussian, allowing multiple modes for + a Gaussian mixture model. + + Note: if using a multivariate Gaussian prior, with bounds, this can + lead to biases in the marginal likelihood estimate and posterior + estimate for nested samplers routines that rely on sampling from a unit + hypercube and having a prior transform, e.g., nestle, dynesty and + MultiNest. + + Parameters + ---------- + names: list + A list of the parameter names in the multivariate Gaussian. The + listed parameters must have the same order that they appear in + the lists of means, standard deviations, and the correlation + coefficient, or covariance, matrices. + nmodes: int + The number of modes for the mixture model. This defaults to 1, + which will be checked against the shape of the other inputs. + mus: array_like + A list of lists of means of each mode in a multivariate Gaussian + mixture model. A single list can be given for a single mode. If + this is None then means at zero will be assumed. + sigmas: array_like + A list of lists of the standard deviations of each mode of the + multivariate Gaussian. If supplying a correlation coefficient + matrix rather than a covariance matrix these values must be given. + If this is None unit variances will be assumed. + corrcoefs: array + A list of square matrices containing the correlation coefficients + of the parameters for each mode. If this is None it will be assumed + that the parameters are uncorrelated. + covs: array + A list of square matrices containing the covariance matrix of the + multivariate Gaussian. + weights: list + A list of weights (relative probabilities) for each mode of the + multivariate Gaussian. This will default to equal weights for each + mode. + bounds: list + A list of bounds on each parameter. The defaults are for bounds at + +/- infinity. + """ + super(MultivariateGaussianDist, self).__init__(names=names, bounds=bounds) + + self.mus = [] + self.covs = [] + self.corrcoefs = [] + self.sigmas = [] + self.weights = [] + self.eigvalues = [] + self.eigvectors = [] + self.sqeigvalues = [] # square root of the eigenvalues + self.mvn = [] # list of multivariate normal distributions + + self._current_sample = {} # initialise empty sample + self._uncorrelated = None + self._current_lnprob = None + + # put values in lists if required + if nmodes == 1: + if mus is not None: + if len(np.shape(mus)) == 1: + mus = [mus] + elif len(np.shape(mus)) == 0: + raise ValueError("Must supply a list of means") + if sigmas is not None: + if len(np.shape(sigmas)) == 1: + sigmas = [sigmas] + elif len(np.shape(sigmas)) == 0: + raise ValueError("Must supply a list of standard " + "deviations") + if covs is not None: + if isinstance(covs, np.ndarray): + covs = [covs] + elif isinstance(covs, list): + if len(np.shape(covs)) == 2: + covs = [np.array(covs)] + elif len(np.shape(covs)) != 3: + raise TypeError("List of covariances the wrong shape") + else: + raise TypeError("Must pass a list of covariances") + if corrcoefs is not None: + if isinstance(corrcoefs, np.ndarray): + corrcoefs = [corrcoefs] + elif isinstance(corrcoefs, list): + if len(np.shape(corrcoefs)) == 2: + corrcoefs = [np.array(corrcoefs)] + elif len(np.shape(corrcoefs)) != 3: + raise TypeError("List of correlation coefficients the wrong shape") + elif not isinstance(corrcoefs, list): + raise TypeError("Must pass a list of correlation " + "coefficients") + if weights is not None: + if isinstance(weights, (int, float)): + weights = [weights] + elif isinstance(weights, list): + if len(weights) != 1: + raise ValueError("Wrong number of weights given") + + for val in [mus, sigmas, covs, corrcoefs, weights]: + if val is not None and not isinstance(val, list): + raise TypeError("Value must be a list") + else: + if val is not None and len(val) != nmodes: + raise ValueError("Wrong number of modes given") - def reset_rescale(self): - """ - Reset the rescaled parameters to None. - """ + # add the modes + self.nmodes = 0 + for i in range(nmodes): + mu = mus[i] if mus is not None else None + sigma = sigmas[i] if sigmas is not None else None + corrcoef = corrcoefs[i] if corrcoefs is not None else None + cov = covs[i] if covs is not None else None + weight = weights[i] if weights is not None else 1. - for name in self.names: - self.rescale_parameters[name] = None + self.add_mode(mu, sigma, corrcoef, cov, weight) def add_mode(self, mus=None, sigmas=None, corrcoef=None, cov=None, weight=1.): @@ -2744,69 +2937,37 @@ class MultivariateGaussianDist(object): self.mvn.append(scipy.stats.multivariate_normal(mean=self.mus[-1], cov=self.covs[-1])) - def rescale(self, value, mode=None): - """ - Rescale from a unit hypercube to multivariate Gaussian. Note that no - bounds are applied in the rescale function. - - Parameters - ---------- - value: array - A 1d vector sample (one for each parameter) drawn from a uniform - distribution between 0 and 1, or a 2d NxM array of samples where - N is the number of samples and M is the number of parameters. - mode: int - Specify which mode to sample from. If not set then a mode is - chosen randomly based on its weight. - - Returns - ------- - array: - An vector sample drawn from the multivariate Gaussian - distribution. - """ + def _rescale(self, samp, **kwargs): + try: + mode = kwargs['mode'] + except KeyError: + mode = None - # pick a mode (with a probability given by their weights) if mode is None: if self.nmodes == 1: mode = 0 else: mode = np.argwhere(self.cumweights - np.random.rand() > 0)[0][0] - samp = np.asarray(value) - if len(samp.shape) == 1: - samp = samp.reshape(1, self.num_vars) - - if len(samp.shape) != 2: - raise ValueError("Array is the wrong shape") - elif samp.shape[1] != self.num_vars: - raise ValueError("Array is the wrong shape") - - # draw points from unit variance, uncorrelated Gaussian samp = erfinv(2. * samp - 1) * 2. ** 0.5 # rotate and scale to the multivariate normal shape samp = self.mus[mode] + self.sigmas[mode] * np.einsum('ij,kj->ik', samp * self.sqeigvalues[mode], self.eigvectors[mode]) + return samp - return np.squeeze(samp) - - def sample(self, size=1, mode=None): - """ - Draw, and set, a sample from the multivariate Gaussian. - - Parameters - ---------- - mode: int - Specify which mode to sample from. If not set then a mode is - chosen randomly based on its weight. - """ - - if size is None: - size = 1 + def _draw_samp(self, size, **kwargs): + try: + mode = kwargs['mode'] + except KeyError: + mode = None - # samples drawn from unit variance uncorrelated multivariate Gaussian + if mode is None: + if self.nmodes == 1: + mode = 0 + else: + mode = np.argwhere(self.cumweights - np.random.rand() > 0)[0][0] samps = np.zeros((size, len(self))) for i in range(size): inbound = False @@ -2827,42 +2988,9 @@ class MultivariateGaussianDist(object): if not outbound: inbound = True - for i, name in enumerate(self.names): - if size == 1: - self.current_sample[name] = samps[:, i].flatten()[0] - else: - self.current_sample[name] = samps[:, i].flatten() - - def ln_prob(self, value): - """ - Get the log-probability of a sample. For bounded priors the - probability will not be properly normalised. - - Parameters - ---------- - value: array_like - A 1d vector of the sample, or 2d array of sample values with shape - NxM, where N is the number of samples and M is the number of - parameters. - """ - - samp = np.asarray(value) - if len(samp.shape) == 1: - samp = samp.reshape(1, self.num_vars) - - if len(samp.shape) != 2: - raise ValueError("Array is the wrong shape") - elif samp.shape[1] != self.num_vars: - raise ValueError("Array is the wrong shape") - - # check sample(s) is within bounds - outbounds = np.ones(samp.shape[0], dtype=np.bool) - for s, bound in zip(samp.T, self.bounds.values()): - outbounds = (s < bound[0]) | (s > bound[1]) - if np.any(outbounds): - break + return samps - lnprob = -np.inf * np.ones(samp.shape[0]) + def _ln_prob(self, samp, lnprob, outbounds): for j in range(samp.shape[0]): # loop over the modes and sum the probabilities for i in range(self.nmodes): @@ -2870,55 +2998,7 @@ class MultivariateGaussianDist(object): # set out-of-bounds values to -inf lnprob[outbounds] = -np.inf - - if samp.shape[0] == 1: - return lnprob[0] - else: - return lnprob - - def prob(self, samp): - """ - Get the probability of a sample. For bounded priors the - probability will not be properly normalised. - """ - - return np.exp(self.ln_prob(samp)) - - def _get_instantiation_dict(self): - subclass_args = infer_args_from_method(self.__init__) - property_names = [p for p in dir(self.__class__) - if isinstance(getattr(self.__class__, p), property)] - dict_with_properties = self.__dict__.copy() - for key in property_names: - dict_with_properties[key] = getattr(self, key) - instantiation_dict = OrderedDict() - for key in subclass_args: - if isinstance(dict_with_properties[key], list): - value = np.asarray(dict_with_properties[key]).tolist() - else: - value = dict_with_properties[key] - instantiation_dict[key] = value - return instantiation_dict - - def __len__(self): - return len(self.names) - - def __repr__(self): - """Overrides the special method __repr__. - - Returns a representation of this instance that resembles how it is instantiated. - Works correctly for all child classes - - Returns - ------- - str: A string representation of this instance - - """ - dist_name = self.__class__.__name__ - instantiation_dict = self._get_instantiation_dict() - args = ', '.join(['{}={}'.format(key, repr(instantiation_dict[key])) - for key in instantiation_dict]) - return "{}({})".format(dist_name, args) + return lnprob def __eq__(self, other): if self.__class__ != other.__class__: @@ -2956,74 +3036,62 @@ class MultivariateNormalDist(MultivariateGaussianDist): """ A synonym for the :class:`~bilby.core.prior.MultivariateGaussianDist` distribution.""" -class MultivariateGaussian(Prior): +class JointPrior(Prior): - def __init__(self, mvg, name=None, latex_label=None, unit=None): - """ - A prior class for a multivariate Gaussian (mixture model) prior. + def __init__(self, dist, name=None, latex_label=None, unit=None): + if dist.__class__.__bases__ [0] != JointPriorDist: + raise TypeError("Must supply a JointPriorDist object instance to be shared by all joint params") - Parameters - ---------- - mvg: MultivariateGaussianDist - A :class:`bilby.core.prior.MultivariateGaussianDist` object defining - the multivariate Gaussian distribution. This object is not copied, - as it needs to be shared across multiple priors, and as such its - contents will be altered by the prior. - name: str - See superclass - latex_label: str - See superclass - unit: str - See superclass + if name not in dist.names: + raise ValueError("'{}' is not a parameter in the JointPriorDist") - """ + self.dist = dist + super(JointPrior, self).__init__(name=name, latex_label=latex_label, unit=unit, + minimum=dist.bounds[name][0], + maximum=dist.bounds[name][1]) + + @property + def minimum(self): + return self._minimum - if not isinstance(mvg, MultivariateGaussianDist): - raise TypeError("Must supply a multivariate Gaussian object") + @minimum.setter + def minimum(self, minimum): + self._minimum = minimum + self.dist.bounds[self.name] = (minimum, self.dist.bounds[self.name][1]) - # check name is in the MultivariateGaussianDist class - if name not in mvg.names: - raise ValueError("'{}' is not a parameter in the multivariate " - "Gaussian") - self.mvg = mvg + @property + def maximum(self): + return self._maximum - super(MultivariateGaussian, self).__init__(name=name, latex_label=latex_label, unit=unit, - minimum=mvg.bounds[name][0], - maximum=mvg.bounds[name][1]) + @maximum.setter + def maximum(self, maximum): + self._maximum = maximum + self.dist.bounds[self.name] = (self.dist.bounds[self.name][0], maximum) - def rescale(self, val, mode=None): + def rescale(self, val, **kwargs): """ Scale a unit hypercube sample to the prior. - - Parameters - ---------- - mode: int - Specify which mode to sample from. If not set then a mode is - chosen randomly based on its weight. """ - Prior.test_valid_for_rescaling(val) + self.test_valid_for_rescaling(val) # add parameter value to multivariate Gaussian - self.mvg.rescale_parameters[self.name] = val + self.dist.rescale_parameters[self.name] = val - if self.mvg.filled_rescale(): - values = np.array(list(self.mvg.rescale_parameters.values())).T - samples = self.mvg.rescale(values, mode=mode) - self.mvg.reset_rescale() + if self.dist.filled_rescale(): + values = np.array(list(self.dist.rescale_parameters.values())).T + samples = self.dist.rescale(values, **kwargs) + self.dist.reset_rescale() return samples else: return [] # return empty list - def sample(self, size=1, mode=None): + def sample(self, size=1, **kwargs): """ Draw a sample from the prior. Parameters ---------- - mode: int - Specify which mode to sample from. If not set then a mode is - chosen randomly based on its weight. Returns ------- @@ -3031,41 +3099,25 @@ class MultivariateGaussian(Prior): A sample from the prior paramter. """ - if self.name in self.mvg.sampled_parameters: + if self.name in self.dist.sampled_parameters: logger.warning("You have already drawn a sample from parameter " "'{}'. The same sample will be " "returned".format(self.name)) - if len(self.mvg.current_sample) == 0: + if len(self.dist.current_sample) == 0: # generate a sample - self.mvg.sample(size=size, mode=mode) + self.dist.sample(size=size, **kwargs) - sample = self.mvg.current_sample[self.name] + sample = self.dist.current_sample[self.name] - if self.name not in self.mvg.sampled_parameters: - self.mvg.sampled_parameters.append(self.name) + if self.name not in self.dist.sampled_parameters: + self.dist.sampled_parameters.append(self.name) - if len(self.mvg.sampled_parameters) == len(self.mvg): + if len(self.dist.sampled_parameters) == len(self.dist): # reset samples - self.mvg.reset_sampled() - + self.dist.reset_sampled() return sample - def prob(self, val): - """Return the prior probability of val - - Parameters - ---------- - val: float - - Returns - ------- - float: - - """ - - return np.exp(self.ln_prob(val)) - def ln_prob(self, val): """ Return the natural logarithm of the prior probability. Note that this @@ -3074,14 +3126,14 @@ class MultivariateGaussian(Prior): """ # add parameter value to multivariate Gaussian - self.mvg.requested_parameters[self.name] = val + self.dist.requested_parameters[self.name] = val - if self.mvg.filled_request(): + if self.dist.filled_request(): # all required parameters have been set - values = list(self.mvg.requested_parameters.values()) + values = list(self.dist.requested_parameters.values()) # check for the same number of values for each parameter - for i in range(len(self.mvg) - 1): + for i in range(len(self.dist) - 1): if (isinstance(values[i], (list, np.ndarray)) or isinstance(values[i + 1], (list, np.ndarray))): if (isinstance(values[i], (list, np.ndarray)) and @@ -3093,11 +3145,10 @@ class MultivariateGaussian(Prior): raise ValueError("Each parameter must have the same " "number of requested values.") - lnp = self.mvg.ln_prob(np.asarray(values).T) + lnp = self.dist.ln_prob(np.asarray(values).T) # reset the requested parameters - self.mvg.reset_request() - + self.dist.reset_request() return lnp else: # if not all parameters have been requested yet, just return 0 @@ -3115,27 +3166,27 @@ class MultivariateGaussian(Prior): else: return np.zeros_like(val) - @property - def minimum(self): - return self._minimum + def prob(self, val): + """Return the prior probability of val - @minimum.setter - def minimum(self, minimum): - self._minimum = minimum + Parameters + ---------- + val: float - # update the bounds in the MultivariateGaussianDist - self.mvg.bounds[self.name] = (minimum, self.mvg.bounds[self.name][1]) + Returns + ------- + float: - @property - def maximum(self): - return self._maximum + """ + + return np.exp(self.ln_prob(val)) - @maximum.setter - def maximum(self, maximum): - self._maximum = maximum - # update the bounds in the MultivariateGaussianDist - self.mvg.bounds[self.name] = (self.mvg.bounds[self.name][0], maximum) +class MultivariateGaussian(JointPrior): + """ + A synonmy class for MultiVariateNormal / deprecated, now use JointPrior with the dist object controlling + the type of joint prior + """ class MultivariateNormal(MultivariateGaussian): diff --git a/examples/core_examples/multivariate_gaussian_prior.py b/examples/core_examples/multivariate_gaussian_prior.py index 53d8f94e47ac41833bd536d2f596f3a78cc76e8d..e362d88c8e31162ebd6a3c08120f9e51a71c36db 100644 --- a/examples/core_examples/multivariate_gaussian_prior.py +++ b/examples/core_examples/multivariate_gaussian_prior.py @@ -50,8 +50,8 @@ mvg = bilby.core.prior.MultivariateGaussianDist(names, nmodes=2, mus=mus, corrcoefs=corrcoefs, sigmas=sigmas, weights=weights) priors = dict() -priors['m'] = bilby.core.prior.MultivariateGaussian(mvg, 'm') -priors['c'] = bilby.core.prior.MultivariateGaussian(mvg, 'c') +priors['m'] = bilby.core.prior.JointPrior(mvg, 'm') +priors['c'] = bilby.core.prior.JointPrior(mvg, 'c') result = bilby.run_sampler( likelihood=likelihood, priors=priors, sampler='dynesty', nlive=4000,