diff --git a/bilby/core/prior.py b/bilby/core/prior.py index a7a9da9c3e27ac1eb719654681dadb377db89771..f504cdac7629985eac0fd2d7339415b7b5e83e64 100644 --- a/bilby/core/prior.py +++ b/bilby/core/prior.py @@ -12,7 +12,7 @@ from scipy.interpolate import interp1d from scipy.special import erf, erfinv # Keep import bilby statement, it is necessary for some eval() statements -import bilby +import bilby # noqa from . import utils from .utils import logger @@ -89,7 +89,7 @@ class PriorSet(OrderedDict): except (NameError, SyntaxError, TypeError): logger.debug( "Failed to load dictionary value {} correctlty" - .format(key)) + .format(key)) pass self[key] = val @@ -105,7 +105,7 @@ class PriorSet(OrderedDict): else: logger.debug( "{} cannot be converted to delta function prior." - .format(key)) + .format(key)) def fill_priors(self, likelihood, default_priors_file=None): """ @@ -145,7 +145,7 @@ class PriorSet(OrderedDict): logger.warning( "Parameter {} has no default prior and is set to {}, this" " will not be sampled and may cause an error." - .format(missing_key, set_val)) + .format(missing_key, set_val)) else: self[missing_key] = default_prior @@ -952,7 +952,7 @@ class TruncatedGaussian(Prior): float: Prior probability of val """ return np.exp(-(self.mu - val) ** 2 / (2 * self.sigma ** 2)) / ( - 2 * np.pi) ** 0.5 / self.sigma / self.normalisation * self.is_in_prior_range(val) + 2 * np.pi) ** 0.5 / self.sigma / self.normalisation * self.is_in_prior_range(val) class TruncatedNormal(TruncatedGaussian):