diff --git a/bilby/core/sampler/ptemcee.py b/bilby/core/sampler/ptemcee.py
index 6aac4f34e2656b5141ea9893f5598157c48c099b..b55f490f1921977ebe9a44bd90ae0d253baab164 100644
--- a/bilby/core/sampler/ptemcee.py
+++ b/bilby/core/sampler/ptemcee.py
@@ -506,6 +506,7 @@ class Ptemcee(MCMCSampler):
                 self.tau_list,
                 self.tau_list_n,
                 self.Q_list,
+                self.mean_log_likelihood,
             )
 
             if stop:
@@ -638,6 +639,7 @@ def check_iteration(
     tau_list,
     tau_list_n,
     Q_list,
+    mean_log_likelihood,
 ):
     """ Per-iteration logic to calculate the convergence check
 
@@ -686,7 +688,7 @@ def check_iteration(
     if np.isnan(tau) or np.isinf(tau):
         print_progress(
             iteration, sampler, time_per_check, np.nan, np.nan,
-            np.nan, np.nan, False, convergence_inputs, Q,
+            np.nan, np.nan, np.nan, False, convergence_inputs, Q,
         )
         return False, np.nan, np.nan, np.nan, np.nan
 
@@ -704,25 +706,40 @@ def check_iteration(
     logger.debug("Convergence: Q<Q_tol={}, nsamples<nsamples_effective={}"
                  .format(Q < ci.Q_tol, ci.nsamples < nsamples_effective))
 
-    # Calculate change in tau from previous iterations
     GRAD_WINDOW_LENGTH = 11
     nsteps_to_check = ci.autocorr_tau * np.max([2 * GRAD_WINDOW_LENGTH, tau_int])
     lower_tau_index = np.max([0, len(tau_list) - nsteps_to_check])
     check_taus = np.array(tau_list[lower_tau_index :])
     if not np.any(np.isnan(check_taus)) and check_taus.shape[0] > GRAD_WINDOW_LENGTH:
-        # Estimate the maximum gradient
-        grad = np.max(scipy.signal.savgol_filter(
-            check_taus, axis=0, window_length=GRAD_WINDOW_LENGTH, polyorder=2, deriv=1))
+        gradient_tau = get_max_gradient(
+            check_taus, axis=0, window_length=GRAD_WINDOW_LENGTH)
+
+        if gradient_tau < ci.gradient_tau:
+            logger.debug("tau usable as {} < gradient_tau={}"
+                         .format(gradient_tau, ci.gradient_tau))
+            tau_usable = True
+        else:
+            logger.debug("tau not usable as {} > gradient_tau={}"
+                         .format(gradient_tau, ci.gradient_tau))
+            tau_usable = False
 
-        if grad < ci.gradient_tau:
-            logger.debug("tau usable as grad < gradient_tau={}".format(ci.gradient_tau))
+        check_mean_log_likelihood = mean_log_likelihood[:, -nsteps_to_check:]
+        gradient_mean_logl = get_max_gradient(
+            check_mean_log_likelihood, axis=1, window_length=GRAD_WINDOW_LENGTH,
+            smooth=True)
+
+        if gradient_mean_logl < ci.gradient_tau:
+            logger.debug("tau usable as {} < gradient_tau={}"
+                         .format(gradient_tau, ci.gradient_tau))
             tau_usable = True
         else:
-            logger.debug("tau not usable as grad > gradient_tau={}".format(ci.gradient_tau))
+            logger.debug("tau not usable as {} > gradient_tau={}"
+                         .format(gradient_tau, ci.gradient_tau))
             tau_usable = False
+
     else:
         logger.debug("ACT is nan")
-        grad = np.nan
+        gradient_tau = np.nan
         tau_usable = False
 
     if nsteps < tau_int * ci.autocorr_tol:
@@ -740,7 +757,8 @@ def check_iteration(
         nsamples_effective,
         samples_per_check,
         tau_int,
-        grad,
+        gradient_tau,
+        gradient_mean_logl,
         tau_usable,
         convergence_inputs,
         Q
@@ -749,6 +767,15 @@ def check_iteration(
     return stop, nburn, thin, tau_int, nsamples_effective
 
 
+def get_max_gradient(x, axis=0, window_length=11, polyorder=2, smooth=False):
+    if smooth:
+        x = scipy.signal.savgol_filter(
+            x, axis=axis, window_length=window_length, polyorder=3)
+    return np.max(scipy.signal.savgol_filter(
+        x, axis=axis, window_length=window_length, polyorder=polyorder,
+        deriv=1))
+
+
 def get_Q_convergence(samples):
     nwalkers, nsteps, ndim = samples.shape
     if nsteps > 1:
@@ -770,7 +797,8 @@ def print_progress(
     nsamples_effective,
     samples_per_check,
     tau_int,
-    grad,
+    gradient_tau,
+    gradient_mean_logl,
     tau_usable,
     convergence_inputs,
     Q,
@@ -794,10 +822,7 @@ def print_progress(
 
     sampling_time = datetime.timedelta(seconds=np.sum(time_per_check))
 
-    if grad < convergence_inputs.gradient_tau:
-        tau_str = "{}({:0.2f}<{})".format(tau_int, grad, convergence_inputs.gradient_tau)
-    else:
-        tau_str = "{}({:0.2f}>{})".format(tau_int, grad, convergence_inputs.gradient_tau)
+    tau_str = "{}(+{:0.2f},+{:0.2f})".format(tau_int, gradient_tau, gradient_mean_logl)
 
     if tau_usable:
         tau_str = "={}".format(tau_str)