diff --git a/bilby/core/sampler/ptemcee.py b/bilby/core/sampler/ptemcee.py index 6aac4f34e2656b5141ea9893f5598157c48c099b..b55f490f1921977ebe9a44bd90ae0d253baab164 100644 --- a/bilby/core/sampler/ptemcee.py +++ b/bilby/core/sampler/ptemcee.py @@ -506,6 +506,7 @@ class Ptemcee(MCMCSampler): self.tau_list, self.tau_list_n, self.Q_list, + self.mean_log_likelihood, ) if stop: @@ -638,6 +639,7 @@ def check_iteration( tau_list, tau_list_n, Q_list, + mean_log_likelihood, ): """ Per-iteration logic to calculate the convergence check @@ -686,7 +688,7 @@ def check_iteration( if np.isnan(tau) or np.isinf(tau): print_progress( iteration, sampler, time_per_check, np.nan, np.nan, - np.nan, np.nan, False, convergence_inputs, Q, + np.nan, np.nan, np.nan, False, convergence_inputs, Q, ) return False, np.nan, np.nan, np.nan, np.nan @@ -704,25 +706,40 @@ def check_iteration( logger.debug("Convergence: Q<Q_tol={}, nsamples<nsamples_effective={}" .format(Q < ci.Q_tol, ci.nsamples < nsamples_effective)) - # Calculate change in tau from previous iterations GRAD_WINDOW_LENGTH = 11 nsteps_to_check = ci.autocorr_tau * np.max([2 * GRAD_WINDOW_LENGTH, tau_int]) lower_tau_index = np.max([0, len(tau_list) - nsteps_to_check]) check_taus = np.array(tau_list[lower_tau_index :]) if not np.any(np.isnan(check_taus)) and check_taus.shape[0] > GRAD_WINDOW_LENGTH: - # Estimate the maximum gradient - grad = np.max(scipy.signal.savgol_filter( - check_taus, axis=0, window_length=GRAD_WINDOW_LENGTH, polyorder=2, deriv=1)) + gradient_tau = get_max_gradient( + check_taus, axis=0, window_length=GRAD_WINDOW_LENGTH) + + if gradient_tau < ci.gradient_tau: + logger.debug("tau usable as {} < gradient_tau={}" + .format(gradient_tau, ci.gradient_tau)) + tau_usable = True + else: + logger.debug("tau not usable as {} > gradient_tau={}" + .format(gradient_tau, ci.gradient_tau)) + tau_usable = False - if grad < ci.gradient_tau: - logger.debug("tau usable as grad < gradient_tau={}".format(ci.gradient_tau)) + check_mean_log_likelihood = mean_log_likelihood[:, -nsteps_to_check:] + gradient_mean_logl = get_max_gradient( + check_mean_log_likelihood, axis=1, window_length=GRAD_WINDOW_LENGTH, + smooth=True) + + if gradient_mean_logl < ci.gradient_tau: + logger.debug("tau usable as {} < gradient_tau={}" + .format(gradient_tau, ci.gradient_tau)) tau_usable = True else: - logger.debug("tau not usable as grad > gradient_tau={}".format(ci.gradient_tau)) + logger.debug("tau not usable as {} > gradient_tau={}" + .format(gradient_tau, ci.gradient_tau)) tau_usable = False + else: logger.debug("ACT is nan") - grad = np.nan + gradient_tau = np.nan tau_usable = False if nsteps < tau_int * ci.autocorr_tol: @@ -740,7 +757,8 @@ def check_iteration( nsamples_effective, samples_per_check, tau_int, - grad, + gradient_tau, + gradient_mean_logl, tau_usable, convergence_inputs, Q @@ -749,6 +767,15 @@ def check_iteration( return stop, nburn, thin, tau_int, nsamples_effective +def get_max_gradient(x, axis=0, window_length=11, polyorder=2, smooth=False): + if smooth: + x = scipy.signal.savgol_filter( + x, axis=axis, window_length=window_length, polyorder=3) + return np.max(scipy.signal.savgol_filter( + x, axis=axis, window_length=window_length, polyorder=polyorder, + deriv=1)) + + def get_Q_convergence(samples): nwalkers, nsteps, ndim = samples.shape if nsteps > 1: @@ -770,7 +797,8 @@ def print_progress( nsamples_effective, samples_per_check, tau_int, - grad, + gradient_tau, + gradient_mean_logl, tau_usable, convergence_inputs, Q, @@ -794,10 +822,7 @@ def print_progress( sampling_time = datetime.timedelta(seconds=np.sum(time_per_check)) - if grad < convergence_inputs.gradient_tau: - tau_str = "{}({:0.2f}<{})".format(tau_int, grad, convergence_inputs.gradient_tau) - else: - tau_str = "{}({:0.2f}>{})".format(tau_int, grad, convergence_inputs.gradient_tau) + tau_str = "{}(+{:0.2f},+{:0.2f})".format(tau_int, gradient_tau, gradient_mean_logl) if tau_usable: tau_str = "={}".format(tau_str)